xref: /freebsd/lib/libc/regex/regcomp.c (revision d8a0fe102c0cfdfcd5b818f850eff09d8536c9bc)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1992, 1993, 1994 Henry Spencer.
5  * Copyright (c) 1992, 1993, 1994
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * Copyright (c) 2011 The FreeBSD Foundation
9  * All rights reserved.
10  * Portions of this software were developed by David Chisnall
11  * under sponsorship from the FreeBSD Foundation.
12  *
13  * This code is derived from software contributed to Berkeley by
14  * Henry Spencer.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *	@(#)regcomp.c	8.5 (Berkeley) 3/20/94
41  */
42 
43 #if defined(LIBC_SCCS) && !defined(lint)
44 static char sccsid[] = "@(#)regcomp.c	8.5 (Berkeley) 3/20/94";
45 #endif /* LIBC_SCCS and not lint */
46 #include <sys/cdefs.h>
47 __FBSDID("$FreeBSD$");
48 
49 #include <sys/types.h>
50 #include <stdio.h>
51 #include <string.h>
52 #include <ctype.h>
53 #include <limits.h>
54 #include <stdlib.h>
55 #include <regex.h>
56 #include <stdbool.h>
57 #include <wchar.h>
58 #include <wctype.h>
59 
60 #include "collate.h"
61 
62 #include "utils.h"
63 #include "regex2.h"
64 
65 #include "cname.h"
66 
67 /*
68  * Branching context, used to keep track of branch state for all of the branch-
69  * aware functions. In addition to keeping track of branch positions for the
70  * p_branch_* functions, we use this to simplify some clumsiness in BREs for
71  * detection of whether ^ is acting as an anchor or being used erroneously and
72  * also for whether we're in a sub-expression or not.
73  */
74 struct branchc {
75 	sopno start;
76 	sopno back;
77 	sopno fwd;
78 
79 	int nbranch;
80 	int nchain;
81 	bool outer;
82 	bool terminate;
83 };
84 
85 /*
86  * parse structure, passed up and down to avoid global variables and
87  * other clumsinesses
88  */
89 struct parse {
90 	const char *next;	/* next character in RE */
91 	const char *end;	/* end of string (-> NUL normally) */
92 	int error;		/* has an error been seen? */
93 	sop *strip;		/* malloced strip */
94 	sopno ssize;		/* malloced strip size (allocated) */
95 	sopno slen;		/* malloced strip length (used) */
96 	int ncsalloc;		/* number of csets allocated */
97 	struct re_guts *g;
98 #	define	NPAREN	10	/* we need to remember () 1-9 for back refs */
99 	sopno pbegin[NPAREN];	/* -> ( ([0] unused) */
100 	sopno pend[NPAREN];	/* -> ) ([0] unused) */
101 	bool allowbranch;	/* can this expression branch? */
102 	bool bre;		/* convenience; is this a BRE? */
103 	bool (*parse_expr)(struct parse *, struct branchc *);
104 	void (*pre_parse)(struct parse *, struct branchc *);
105 	void (*post_parse)(struct parse *, struct branchc *);
106 };
107 
108 /* ========= begin header generated by ./mkh ========= */
109 #ifdef __cplusplus
110 extern "C" {
111 #endif
112 
113 /* === regcomp.c === */
114 static bool p_ere_exp(struct parse *p, struct branchc *bc);
115 static void p_str(struct parse *p);
116 static int p_branch_eat_delim(struct parse *p, struct branchc *bc);
117 static void p_branch_ins_offset(struct parse *p, struct branchc *bc);
118 static void p_branch_fix_tail(struct parse *p, struct branchc *bc);
119 static bool p_branch_empty(struct parse *p, struct branchc *bc);
120 static bool p_branch_do(struct parse *p, struct branchc *bc);
121 static void p_bre_pre_parse(struct parse *p, struct branchc *bc);
122 static void p_bre_post_parse(struct parse *p, struct branchc *bc);
123 static void p_re(struct parse *p, int end1, int end2);
124 static bool p_simp_re(struct parse *p, struct branchc *bc);
125 static int p_count(struct parse *p);
126 static void p_bracket(struct parse *p);
127 static void p_b_term(struct parse *p, cset *cs);
128 static void p_b_cclass(struct parse *p, cset *cs);
129 static void p_b_eclass(struct parse *p, cset *cs);
130 static wint_t p_b_symbol(struct parse *p);
131 static wint_t p_b_coll_elem(struct parse *p, wint_t endc);
132 static wint_t othercase(wint_t ch);
133 static void bothcases(struct parse *p, wint_t ch);
134 static void ordinary(struct parse *p, wint_t ch);
135 static void nonnewline(struct parse *p);
136 static void repeat(struct parse *p, sopno start, int from, int to);
137 static int seterr(struct parse *p, int e);
138 static cset *allocset(struct parse *p);
139 static void freeset(struct parse *p, cset *cs);
140 static void CHadd(struct parse *p, cset *cs, wint_t ch);
141 static void CHaddrange(struct parse *p, cset *cs, wint_t min, wint_t max);
142 static void CHaddtype(struct parse *p, cset *cs, wctype_t wct);
143 static wint_t singleton(cset *cs);
144 static sopno dupl(struct parse *p, sopno start, sopno finish);
145 static void doemit(struct parse *p, sop op, size_t opnd);
146 static void doinsert(struct parse *p, sop op, size_t opnd, sopno pos);
147 static void dofwd(struct parse *p, sopno pos, sop value);
148 static int enlarge(struct parse *p, sopno size);
149 static void stripsnug(struct parse *p, struct re_guts *g);
150 static void findmust(struct parse *p, struct re_guts *g);
151 static int altoffset(sop *scan, int offset);
152 static void computejumps(struct parse *p, struct re_guts *g);
153 static void computematchjumps(struct parse *p, struct re_guts *g);
154 static sopno pluscount(struct parse *p, struct re_guts *g);
155 static wint_t wgetnext(struct parse *p);
156 
157 #ifdef __cplusplus
158 }
159 #endif
160 /* ========= end header generated by ./mkh ========= */
161 
162 static char nuls[10];		/* place to point scanner in event of error */
163 
164 /*
165  * macros for use with parse structure
166  * BEWARE:  these know that the parse structure is named `p' !!!
167  */
168 #define	PEEK()	(*p->next)
169 #define	PEEK2()	(*(p->next+1))
170 #define	MORE()	(p->next < p->end)
171 #define	MORE2()	(p->next+1 < p->end)
172 #define	SEE(c)	(MORE() && PEEK() == (c))
173 #define	SEETWO(a, b)	(MORE() && MORE2() && PEEK() == (a) && PEEK2() == (b))
174 #define	SEESPEC(a)	(p->bre ? SEETWO('\\', a) : SEE(a))
175 #define	EAT(c)	((SEE(c)) ? (NEXT(), 1) : 0)
176 #define	EATTWO(a, b)	((SEETWO(a, b)) ? (NEXT2(), 1) : 0)
177 #define	NEXT()	(p->next++)
178 #define	NEXT2()	(p->next += 2)
179 #define	NEXTn(n)	(p->next += (n))
180 #define	GETNEXT()	(*p->next++)
181 #define	WGETNEXT()	wgetnext(p)
182 #define	SETERROR(e)	seterr(p, (e))
183 #define	REQUIRE(co, e)	((co) || SETERROR(e))
184 #define	MUSTSEE(c, e)	(REQUIRE(MORE() && PEEK() == (c), e))
185 #define	MUSTEAT(c, e)	(REQUIRE(MORE() && GETNEXT() == (c), e))
186 #define	MUSTNOTSEE(c, e)	(REQUIRE(!MORE() || PEEK() != (c), e))
187 #define	EMIT(op, sopnd)	doemit(p, (sop)(op), (size_t)(sopnd))
188 #define	INSERT(op, pos)	doinsert(p, (sop)(op), HERE()-(pos)+1, pos)
189 #define	AHEAD(pos)		dofwd(p, pos, HERE()-(pos))
190 #define	ASTERN(sop, pos)	EMIT(sop, HERE()-pos)
191 #define	HERE()		(p->slen)
192 #define	THERE()		(p->slen - 1)
193 #define	THERETHERE()	(p->slen - 2)
194 #define	DROP(n)	(p->slen -= (n))
195 
196 #ifndef NDEBUG
197 static int never = 0;		/* for use in asserts; shuts lint up */
198 #else
199 #define	never	0		/* some <assert.h>s have bugs too */
200 #endif
201 
202 /* Macro used by computejump()/computematchjump() */
203 #define MIN(a,b)	((a)<(b)?(a):(b))
204 
205 /*
206  - regcomp - interface for parser and compilation
207  = extern int regcomp(regex_t *, const char *, int);
208  = #define	REG_BASIC	0000
209  = #define	REG_EXTENDED	0001
210  = #define	REG_ICASE	0002
211  = #define	REG_NOSUB	0004
212  = #define	REG_NEWLINE	0010
213  = #define	REG_NOSPEC	0020
214  = #define	REG_PEND	0040
215  = #define	REG_DUMP	0200
216  */
217 int				/* 0 success, otherwise REG_something */
218 regcomp(regex_t * __restrict preg,
219 	const char * __restrict pattern,
220 	int cflags)
221 {
222 	struct parse pa;
223 	struct re_guts *g;
224 	struct parse *p = &pa;
225 	int i;
226 	size_t len;
227 	size_t maxlen;
228 #ifdef REDEBUG
229 #	define	GOODFLAGS(f)	(f)
230 #else
231 #	define	GOODFLAGS(f)	((f)&~REG_DUMP)
232 #endif
233 
234 	cflags = GOODFLAGS(cflags);
235 	if ((cflags&REG_EXTENDED) && (cflags&REG_NOSPEC))
236 		return(REG_INVARG);
237 
238 	if (cflags&REG_PEND) {
239 		if (preg->re_endp < pattern)
240 			return(REG_INVARG);
241 		len = preg->re_endp - pattern;
242 	} else
243 		len = strlen(pattern);
244 
245 	/* do the mallocs early so failure handling is easy */
246 	g = (struct re_guts *)malloc(sizeof(struct re_guts));
247 	if (g == NULL)
248 		return(REG_ESPACE);
249 	/*
250 	 * Limit the pattern space to avoid a 32-bit overflow on buffer
251 	 * extension.  Also avoid any signed overflow in case of conversion
252 	 * so make the real limit based on a 31-bit overflow.
253 	 *
254 	 * Likely not applicable on 64-bit systems but handle the case
255 	 * generically (who are we to stop people from using ~715MB+
256 	 * patterns?).
257 	 */
258 	maxlen = ((size_t)-1 >> 1) / sizeof(sop) * 2 / 3;
259 	if (len >= maxlen) {
260 		free((char *)g);
261 		return(REG_ESPACE);
262 	}
263 	p->ssize = len/(size_t)2*(size_t)3 + (size_t)1;	/* ugh */
264 	assert(p->ssize >= len);
265 
266 	p->strip = (sop *)malloc(p->ssize * sizeof(sop));
267 	p->slen = 0;
268 	if (p->strip == NULL) {
269 		free((char *)g);
270 		return(REG_ESPACE);
271 	}
272 
273 	/* set things up */
274 	p->g = g;
275 	p->next = pattern;	/* convenience; we do not modify it */
276 	p->end = p->next + len;
277 	p->error = 0;
278 	p->ncsalloc = 0;
279 	for (i = 0; i < NPAREN; i++) {
280 		p->pbegin[i] = 0;
281 		p->pend[i] = 0;
282 	}
283 	if (cflags & REG_EXTENDED) {
284 		p->allowbranch = true;
285 		p->bre = false;
286 		p->parse_expr = p_ere_exp;
287 		p->pre_parse = NULL;
288 		p->post_parse = NULL;
289 	} else {
290 		p->allowbranch = false;
291 		p->bre = true;
292 		p->parse_expr = p_simp_re;
293 		p->pre_parse = p_bre_pre_parse;
294 		p->post_parse = p_bre_post_parse;
295 	}
296 	g->sets = NULL;
297 	g->ncsets = 0;
298 	g->cflags = cflags;
299 	g->iflags = 0;
300 	g->nbol = 0;
301 	g->neol = 0;
302 	g->must = NULL;
303 	g->moffset = -1;
304 	g->charjump = NULL;
305 	g->matchjump = NULL;
306 	g->mlen = 0;
307 	g->nsub = 0;
308 	g->backrefs = 0;
309 
310 	/* do it */
311 	EMIT(OEND, 0);
312 	g->firststate = THERE();
313 	if (cflags & REG_NOSPEC)
314 		p_str(p);
315 	else
316 		p_re(p, OUT, OUT);
317 	EMIT(OEND, 0);
318 	g->laststate = THERE();
319 
320 	/* tidy up loose ends and fill things in */
321 	stripsnug(p, g);
322 	findmust(p, g);
323 	/* only use Boyer-Moore algorithm if the pattern is bigger
324 	 * than three characters
325 	 */
326 	if(g->mlen > 3) {
327 		computejumps(p, g);
328 		computematchjumps(p, g);
329 		if(g->matchjump == NULL && g->charjump != NULL) {
330 			free(g->charjump);
331 			g->charjump = NULL;
332 		}
333 	}
334 	g->nplus = pluscount(p, g);
335 	g->magic = MAGIC2;
336 	preg->re_nsub = g->nsub;
337 	preg->re_g = g;
338 	preg->re_magic = MAGIC1;
339 #ifndef REDEBUG
340 	/* not debugging, so can't rely on the assert() in regexec() */
341 	if (g->iflags&BAD)
342 		SETERROR(REG_ASSERT);
343 #endif
344 
345 	/* win or lose, we're done */
346 	if (p->error != 0)	/* lose */
347 		regfree(preg);
348 	return(p->error);
349 }
350 
351 /*
352  - p_ere_exp - parse one subERE, an atom possibly followed by a repetition op,
353  - return whether we should terminate or not
354  == static bool p_ere_exp(struct parse *p);
355  */
356 static bool
357 p_ere_exp(struct parse *p, struct branchc *bc)
358 {
359 	char c;
360 	wint_t wc;
361 	sopno pos;
362 	int count;
363 	int count2;
364 	sopno subno;
365 	int wascaret = 0;
366 
367 	assert(MORE());		/* caller should have ensured this */
368 	c = GETNEXT();
369 
370 	pos = HERE();
371 	switch (c) {
372 	case '(':
373 		(void)REQUIRE(MORE(), REG_EPAREN);
374 		p->g->nsub++;
375 		subno = p->g->nsub;
376 		if (subno < NPAREN)
377 			p->pbegin[subno] = HERE();
378 		EMIT(OLPAREN, subno);
379 		if (!SEE(')'))
380 			p_re(p, ')', IGN);
381 		if (subno < NPAREN) {
382 			p->pend[subno] = HERE();
383 			assert(p->pend[subno] != 0);
384 		}
385 		EMIT(ORPAREN, subno);
386 		(void)MUSTEAT(')', REG_EPAREN);
387 		break;
388 #ifndef POSIX_MISTAKE
389 	case ')':		/* happens only if no current unmatched ( */
390 		/*
391 		 * You may ask, why the ifndef?  Because I didn't notice
392 		 * this until slightly too late for 1003.2, and none of the
393 		 * other 1003.2 regular-expression reviewers noticed it at
394 		 * all.  So an unmatched ) is legal POSIX, at least until
395 		 * we can get it fixed.
396 		 */
397 		SETERROR(REG_EPAREN);
398 		break;
399 #endif
400 	case '^':
401 		EMIT(OBOL, 0);
402 		p->g->iflags |= USEBOL;
403 		p->g->nbol++;
404 		wascaret = 1;
405 		break;
406 	case '$':
407 		EMIT(OEOL, 0);
408 		p->g->iflags |= USEEOL;
409 		p->g->neol++;
410 		break;
411 	case '|':
412 		SETERROR(REG_EMPTY);
413 		break;
414 	case '*':
415 	case '+':
416 	case '?':
417 	case '{':
418 		SETERROR(REG_BADRPT);
419 		break;
420 	case '.':
421 		if (p->g->cflags&REG_NEWLINE)
422 			nonnewline(p);
423 		else
424 			EMIT(OANY, 0);
425 		break;
426 	case '[':
427 		p_bracket(p);
428 		break;
429 	case '\\':
430 		(void)REQUIRE(MORE(), REG_EESCAPE);
431 		wc = WGETNEXT();
432 		switch (wc) {
433 		case '<':
434 			EMIT(OBOW, 0);
435 			break;
436 		case '>':
437 			EMIT(OEOW, 0);
438 			break;
439 		default:
440 			ordinary(p, wc);
441 			break;
442 		}
443 		break;
444 	default:
445 		if (p->error != 0)
446 			return (false);
447 		p->next--;
448 		wc = WGETNEXT();
449 		ordinary(p, wc);
450 		break;
451 	}
452 
453 	if (!MORE())
454 		return (false);
455 	c = PEEK();
456 	/* we call { a repetition if followed by a digit */
457 	if (!( c == '*' || c == '+' || c == '?' || c == '{'))
458 		return (false);		/* no repetition, we're done */
459 	else if (c == '{')
460 		(void)REQUIRE(MORE2() && \
461 		    (isdigit((uch)PEEK2()) || PEEK2() == ','), REG_BADRPT);
462 	NEXT();
463 
464 	(void)REQUIRE(!wascaret, REG_BADRPT);
465 	switch (c) {
466 	case '*':	/* implemented as +? */
467 		/* this case does not require the (y|) trick, noKLUDGE */
468 		INSERT(OPLUS_, pos);
469 		ASTERN(O_PLUS, pos);
470 		INSERT(OQUEST_, pos);
471 		ASTERN(O_QUEST, pos);
472 		break;
473 	case '+':
474 		INSERT(OPLUS_, pos);
475 		ASTERN(O_PLUS, pos);
476 		break;
477 	case '?':
478 		/* KLUDGE: emit y? as (y|) until subtle bug gets fixed */
479 		INSERT(OCH_, pos);		/* offset slightly wrong */
480 		ASTERN(OOR1, pos);		/* this one's right */
481 		AHEAD(pos);			/* fix the OCH_ */
482 		EMIT(OOR2, 0);			/* offset very wrong... */
483 		AHEAD(THERE());			/* ...so fix it */
484 		ASTERN(O_CH, THERETHERE());
485 		break;
486 	case '{':
487 		count = p_count(p);
488 		if (EAT(',')) {
489 			if (isdigit((uch)PEEK())) {
490 				count2 = p_count(p);
491 				(void)REQUIRE(count <= count2, REG_BADBR);
492 			} else		/* single number with comma */
493 				count2 = INFINITY;
494 		} else		/* just a single number */
495 			count2 = count;
496 		repeat(p, pos, count, count2);
497 		if (!EAT('}')) {	/* error heuristics */
498 			while (MORE() && PEEK() != '}')
499 				NEXT();
500 			(void)REQUIRE(MORE(), REG_EBRACE);
501 			SETERROR(REG_BADBR);
502 		}
503 		break;
504 	}
505 
506 	if (!MORE())
507 		return (false);
508 	c = PEEK();
509 	if (!( c == '*' || c == '+' || c == '?' ||
510 				(c == '{' && MORE2() && isdigit((uch)PEEK2())) ) )
511 		return (false);
512 	SETERROR(REG_BADRPT);
513 	return (false);
514 }
515 
516 /*
517  - p_str - string (no metacharacters) "parser"
518  == static void p_str(struct parse *p);
519  */
520 static void
521 p_str(struct parse *p)
522 {
523 	(void)REQUIRE(MORE(), REG_EMPTY);
524 	while (MORE())
525 		ordinary(p, WGETNEXT());
526 }
527 
528 /*
529  * Eat consecutive branch delimiters for the kind of expression that we are
530  * parsing, return the number of delimiters that we ate.
531  */
532 static int
533 p_branch_eat_delim(struct parse *p, struct branchc *bc)
534 {
535 	int nskip;
536 
537 	nskip = 0;
538 	while (EAT('|'))
539 		++nskip;
540 	return (nskip);
541 }
542 
543 /*
544  * Insert necessary branch book-keeping operations. This emits a
545  * bogus 'next' offset, since we still have more to parse
546  */
547 static void
548 p_branch_ins_offset(struct parse *p, struct branchc *bc)
549 {
550 
551 	if (bc->nbranch == 0) {
552 		INSERT(OCH_, bc->start);	/* offset is wrong */
553 		bc->fwd = bc->start;
554 		bc->back = bc->start;
555 	}
556 
557 	ASTERN(OOR1, bc->back);
558 	bc->back = THERE();
559 	AHEAD(bc->fwd);			/* fix previous offset */
560 	bc->fwd = HERE();
561 	EMIT(OOR2, 0);			/* offset is very wrong */
562 	++bc->nbranch;
563 }
564 
565 /*
566  * Fix the offset of the tail branch, if we actually had any branches.
567  * This is to correct the bogus placeholder offset that we use.
568  */
569 static void
570 p_branch_fix_tail(struct parse *p, struct branchc *bc)
571 {
572 
573 	/* Fix bogus offset at the tail if we actually have branches */
574 	if (bc->nbranch > 0) {
575 		AHEAD(bc->fwd);
576 		ASTERN(O_CH, bc->back);
577 	}
578 }
579 
580 /*
581  * Signal to the parser that an empty branch has been encountered; this will,
582  * in the future, be used to allow for more permissive behavior with empty
583  * branches. The return value should indicate whether parsing may continue
584  * or not.
585  */
586 static bool
587 p_branch_empty(struct parse *p, struct branchc *bc)
588 {
589 
590 	SETERROR(REG_EMPTY);
591 	return (false);
592 }
593 
594 /*
595  * Take care of any branching requirements. This includes inserting the
596  * appropriate branching instructions as well as eating all of the branch
597  * delimiters until we either run out of pattern or need to parse more pattern.
598  */
599 static bool
600 p_branch_do(struct parse *p, struct branchc *bc)
601 {
602 	int ate = 0;
603 
604 	ate = p_branch_eat_delim(p, bc);
605 	if (ate == 0)
606 		return (false);
607 	else if ((ate > 1 || (bc->outer && !MORE())) && !p_branch_empty(p, bc))
608 		/*
609 		 * Halt parsing only if we have an empty branch and p_branch_empty
610 		 * indicates that we must not continue. In the future, this will not
611 		 * necessarily be an error.
612 		 */
613 		return (false);
614 	p_branch_ins_offset(p, bc);
615 
616 	return (true);
617 }
618 
619 static void
620 p_bre_pre_parse(struct parse *p, struct branchc *bc)
621 {
622 
623 	(void) bc;
624 	/*
625 	 * Does not move cleanly into expression parser because of
626 	 * ordinary interpration of * at the beginning position of
627 	 * an expression.
628 	 */
629 	if (EAT('^')) {
630 		EMIT(OBOL, 0);
631 		p->g->iflags |= USEBOL;
632 		p->g->nbol++;
633 	}
634 }
635 
636 static void
637 p_bre_post_parse(struct parse *p, struct branchc *bc)
638 {
639 
640 	/* Expression is terminating due to EOL token */
641 	if (bc->terminate) {
642 		DROP(1);
643 		EMIT(OEOL, 0);
644 		p->g->iflags |= USEEOL;
645 		p->g->neol++;
646 	}
647 }
648 
649 /*
650  - p_re - Top level parser, concatenation and BRE anchoring
651  == static void p_re(struct parse *p, int end1, int end2);
652  * Giving end1 as OUT essentially eliminates the end1/end2 check.
653  *
654  * This implementation is a bit of a kludge, in that a trailing $ is first
655  * taken as an ordinary character and then revised to be an anchor.
656  * The amount of lookahead needed to avoid this kludge is excessive.
657  */
658 static void
659 p_re(struct parse *p,
660 	int end1,	/* first terminating character */
661 	int end2)	/* second terminating character; ignored for EREs */
662 {
663 	struct branchc bc;
664 
665 	bc.nbranch = 0;
666 	if (end1 == OUT && end2 == OUT)
667 		bc.outer = true;
668 	else
669 		bc.outer = false;
670 #define	SEEEND()	(!p->bre ? SEE(end1) : SEETWO(end1, end2))
671 	for (;;) {
672 		bc.start = HERE();
673 		bc.nchain = 0;
674 		bc.terminate = false;
675 		if (p->pre_parse != NULL)
676 			p->pre_parse(p, &bc);
677 		while (MORE() && (!p->allowbranch || !SEESPEC('|')) && !SEEEND()) {
678 			bc.terminate = p->parse_expr(p, &bc);
679 			++bc.nchain;
680 		}
681 		if (p->post_parse != NULL)
682 			p->post_parse(p, &bc);
683 		(void) REQUIRE(HERE() != bc.start, REG_EMPTY);
684 		if (!p->allowbranch)
685 			break;
686 		/*
687 		 * p_branch_do's return value indicates whether we should
688 		 * continue parsing or not. This is both for correctness and
689 		 * a slight optimization, because it will check if we've
690 		 * encountered an empty branch or the end of the string
691 		 * immediately following a branch delimiter.
692 		 */
693 		if (!p_branch_do(p, &bc))
694 			break;
695 	}
696 #undef SEE_END
697 	if (p->allowbranch)
698 		p_branch_fix_tail(p, &bc);
699 	assert(!MORE() || SEE(end1));
700 }
701 
702 /*
703  - p_simp_re - parse a simple RE, an atom possibly followed by a repetition
704  == static bool p_simp_re(struct parse *p, struct branchc *bc);
705  */
706 static bool			/* was the simple RE an unbackslashed $? */
707 p_simp_re(struct parse *p, struct branchc *bc)
708 {
709 	int c;
710 	int count;
711 	int count2;
712 	sopno pos;
713 	int i;
714 	wint_t wc;
715 	sopno subno;
716 #	define	BACKSL	(1<<CHAR_BIT)
717 
718 	pos = HERE();		/* repetition op, if any, covers from here */
719 
720 	assert(MORE());		/* caller should have ensured this */
721 	c = GETNEXT();
722 	if (c == '\\') {
723 		(void)REQUIRE(MORE(), REG_EESCAPE);
724 		c = BACKSL | GETNEXT();
725 	}
726 	switch (c) {
727 	case '.':
728 		if (p->g->cflags&REG_NEWLINE)
729 			nonnewline(p);
730 		else
731 			EMIT(OANY, 0);
732 		break;
733 	case '[':
734 		p_bracket(p);
735 		break;
736 	case BACKSL|'<':
737 		EMIT(OBOW, 0);
738 		break;
739 	case BACKSL|'>':
740 		EMIT(OEOW, 0);
741 		break;
742 	case BACKSL|'{':
743 		SETERROR(REG_BADRPT);
744 		break;
745 	case BACKSL|'(':
746 		p->g->nsub++;
747 		subno = p->g->nsub;
748 		if (subno < NPAREN)
749 			p->pbegin[subno] = HERE();
750 		EMIT(OLPAREN, subno);
751 		/* the MORE here is an error heuristic */
752 		if (MORE() && !SEETWO('\\', ')'))
753 			p_re(p, '\\', ')');
754 		if (subno < NPAREN) {
755 			p->pend[subno] = HERE();
756 			assert(p->pend[subno] != 0);
757 		}
758 		EMIT(ORPAREN, subno);
759 		(void)REQUIRE(EATTWO('\\', ')'), REG_EPAREN);
760 		break;
761 	case BACKSL|')':	/* should not get here -- must be user */
762 		SETERROR(REG_EPAREN);
763 		break;
764 	case BACKSL|'1':
765 	case BACKSL|'2':
766 	case BACKSL|'3':
767 	case BACKSL|'4':
768 	case BACKSL|'5':
769 	case BACKSL|'6':
770 	case BACKSL|'7':
771 	case BACKSL|'8':
772 	case BACKSL|'9':
773 		i = (c&~BACKSL) - '0';
774 		assert(i < NPAREN);
775 		if (p->pend[i] != 0) {
776 			assert(i <= p->g->nsub);
777 			EMIT(OBACK_, i);
778 			assert(p->pbegin[i] != 0);
779 			assert(OP(p->strip[p->pbegin[i]]) == OLPAREN);
780 			assert(OP(p->strip[p->pend[i]]) == ORPAREN);
781 			(void) dupl(p, p->pbegin[i]+1, p->pend[i]);
782 			EMIT(O_BACK, i);
783 		} else
784 			SETERROR(REG_ESUBREG);
785 		p->g->backrefs = 1;
786 		break;
787 	case '*':
788 		/*
789 		 * Ordinary if used as the first character beyond BOL anchor of
790 		 * a (sub-)expression, counts as a bad repetition operator if it
791 		 * appears otherwise.
792 		 */
793 		(void)REQUIRE(bc->nchain == 0, REG_BADRPT);
794 		/* FALLTHROUGH */
795 	default:
796 		if (p->error != 0)
797 			return (false);	/* Definitely not $... */
798 		p->next--;
799 		wc = WGETNEXT();
800 		ordinary(p, wc);
801 		break;
802 	}
803 
804 	if (EAT('*')) {		/* implemented as +? */
805 		/* this case does not require the (y|) trick, noKLUDGE */
806 		INSERT(OPLUS_, pos);
807 		ASTERN(O_PLUS, pos);
808 		INSERT(OQUEST_, pos);
809 		ASTERN(O_QUEST, pos);
810 	} else if (EATTWO('\\', '{')) {
811 		count = p_count(p);
812 		if (EAT(',')) {
813 			if (MORE() && isdigit((uch)PEEK())) {
814 				count2 = p_count(p);
815 				(void)REQUIRE(count <= count2, REG_BADBR);
816 			} else		/* single number with comma */
817 				count2 = INFINITY;
818 		} else		/* just a single number */
819 			count2 = count;
820 		repeat(p, pos, count, count2);
821 		if (!EATTWO('\\', '}')) {	/* error heuristics */
822 			while (MORE() && !SEETWO('\\', '}'))
823 				NEXT();
824 			(void)REQUIRE(MORE(), REG_EBRACE);
825 			SETERROR(REG_BADBR);
826 		}
827 	} else if (c == '$')     /* $ (but not \$) ends it */
828 		return (true);
829 
830 	return (false);
831 }
832 
833 /*
834  - p_count - parse a repetition count
835  == static int p_count(struct parse *p);
836  */
837 static int			/* the value */
838 p_count(struct parse *p)
839 {
840 	int count = 0;
841 	int ndigits = 0;
842 
843 	while (MORE() && isdigit((uch)PEEK()) && count <= DUPMAX) {
844 		count = count*10 + (GETNEXT() - '0');
845 		ndigits++;
846 	}
847 
848 	(void)REQUIRE(ndigits > 0 && count <= DUPMAX, REG_BADBR);
849 	return(count);
850 }
851 
852 /*
853  - p_bracket - parse a bracketed character list
854  == static void p_bracket(struct parse *p);
855  */
856 static void
857 p_bracket(struct parse *p)
858 {
859 	cset *cs;
860 	wint_t ch;
861 
862 	/* Dept of Truly Sickening Special-Case Kludges */
863 	if (p->next + 5 < p->end && strncmp(p->next, "[:<:]]", 6) == 0) {
864 		EMIT(OBOW, 0);
865 		NEXTn(6);
866 		return;
867 	}
868 	if (p->next + 5 < p->end && strncmp(p->next, "[:>:]]", 6) == 0) {
869 		EMIT(OEOW, 0);
870 		NEXTn(6);
871 		return;
872 	}
873 
874 	if ((cs = allocset(p)) == NULL)
875 		return;
876 
877 	if (p->g->cflags&REG_ICASE)
878 		cs->icase = 1;
879 	if (EAT('^'))
880 		cs->invert = 1;
881 	if (EAT(']'))
882 		CHadd(p, cs, ']');
883 	else if (EAT('-'))
884 		CHadd(p, cs, '-');
885 	while (MORE() && PEEK() != ']' && !SEETWO('-', ']'))
886 		p_b_term(p, cs);
887 	if (EAT('-'))
888 		CHadd(p, cs, '-');
889 	(void)MUSTEAT(']', REG_EBRACK);
890 
891 	if (p->error != 0)	/* don't mess things up further */
892 		return;
893 
894 	if (cs->invert && p->g->cflags&REG_NEWLINE)
895 		cs->bmp['\n' >> 3] |= 1 << ('\n' & 7);
896 
897 	if ((ch = singleton(cs)) != OUT) {	/* optimize singleton sets */
898 		ordinary(p, ch);
899 		freeset(p, cs);
900 	} else
901 		EMIT(OANYOF, (int)(cs - p->g->sets));
902 }
903 
904 /*
905  - p_b_term - parse one term of a bracketed character list
906  == static void p_b_term(struct parse *p, cset *cs);
907  */
908 static void
909 p_b_term(struct parse *p, cset *cs)
910 {
911 	char c;
912 	wint_t start, finish;
913 	wint_t i;
914 	struct xlocale_collate *table =
915 		(struct xlocale_collate*)__get_locale()->components[XLC_COLLATE];
916 
917 	/* classify what we've got */
918 	switch ((MORE()) ? PEEK() : '\0') {
919 	case '[':
920 		c = (MORE2()) ? PEEK2() : '\0';
921 		break;
922 	case '-':
923 		SETERROR(REG_ERANGE);
924 		return;			/* NOTE RETURN */
925 	default:
926 		c = '\0';
927 		break;
928 	}
929 
930 	switch (c) {
931 	case ':':		/* character class */
932 		NEXT2();
933 		(void)REQUIRE(MORE(), REG_EBRACK);
934 		c = PEEK();
935 		(void)REQUIRE(c != '-' && c != ']', REG_ECTYPE);
936 		p_b_cclass(p, cs);
937 		(void)REQUIRE(MORE(), REG_EBRACK);
938 		(void)REQUIRE(EATTWO(':', ']'), REG_ECTYPE);
939 		break;
940 	case '=':		/* equivalence class */
941 		NEXT2();
942 		(void)REQUIRE(MORE(), REG_EBRACK);
943 		c = PEEK();
944 		(void)REQUIRE(c != '-' && c != ']', REG_ECOLLATE);
945 		p_b_eclass(p, cs);
946 		(void)REQUIRE(MORE(), REG_EBRACK);
947 		(void)REQUIRE(EATTWO('=', ']'), REG_ECOLLATE);
948 		break;
949 	default:		/* symbol, ordinary character, or range */
950 		start = p_b_symbol(p);
951 		if (SEE('-') && MORE2() && PEEK2() != ']') {
952 			/* range */
953 			NEXT();
954 			if (EAT('-'))
955 				finish = '-';
956 			else
957 				finish = p_b_symbol(p);
958 		} else
959 			finish = start;
960 		if (start == finish)
961 			CHadd(p, cs, start);
962 		else {
963 			if (table->__collate_load_error || MB_CUR_MAX > 1) {
964 				(void)REQUIRE(start <= finish, REG_ERANGE);
965 				CHaddrange(p, cs, start, finish);
966 			} else {
967 				(void)REQUIRE(__wcollate_range_cmp(start, finish) <= 0, REG_ERANGE);
968 				for (i = 0; i <= UCHAR_MAX; i++) {
969 					if (   __wcollate_range_cmp(start, i) <= 0
970 					    && __wcollate_range_cmp(i, finish) <= 0
971 					   )
972 						CHadd(p, cs, i);
973 				}
974 			}
975 		}
976 		break;
977 	}
978 }
979 
980 /*
981  - p_b_cclass - parse a character-class name and deal with it
982  == static void p_b_cclass(struct parse *p, cset *cs);
983  */
984 static void
985 p_b_cclass(struct parse *p, cset *cs)
986 {
987 	const char *sp = p->next;
988 	size_t len;
989 	wctype_t wct;
990 	char clname[16];
991 
992 	while (MORE() && isalpha((uch)PEEK()))
993 		NEXT();
994 	len = p->next - sp;
995 	if (len >= sizeof(clname) - 1) {
996 		SETERROR(REG_ECTYPE);
997 		return;
998 	}
999 	memcpy(clname, sp, len);
1000 	clname[len] = '\0';
1001 	if ((wct = wctype(clname)) == 0) {
1002 		SETERROR(REG_ECTYPE);
1003 		return;
1004 	}
1005 	CHaddtype(p, cs, wct);
1006 }
1007 
1008 /*
1009  - p_b_eclass - parse an equivalence-class name and deal with it
1010  == static void p_b_eclass(struct parse *p, cset *cs);
1011  *
1012  * This implementation is incomplete. xxx
1013  */
1014 static void
1015 p_b_eclass(struct parse *p, cset *cs)
1016 {
1017 	wint_t c;
1018 
1019 	c = p_b_coll_elem(p, '=');
1020 	CHadd(p, cs, c);
1021 }
1022 
1023 /*
1024  - p_b_symbol - parse a character or [..]ed multicharacter collating symbol
1025  == static wint_t p_b_symbol(struct parse *p);
1026  */
1027 static wint_t			/* value of symbol */
1028 p_b_symbol(struct parse *p)
1029 {
1030 	wint_t value;
1031 
1032 	(void)REQUIRE(MORE(), REG_EBRACK);
1033 	if (!EATTWO('[', '.'))
1034 		return(WGETNEXT());
1035 
1036 	/* collating symbol */
1037 	value = p_b_coll_elem(p, '.');
1038 	(void)REQUIRE(EATTWO('.', ']'), REG_ECOLLATE);
1039 	return(value);
1040 }
1041 
1042 /*
1043  - p_b_coll_elem - parse a collating-element name and look it up
1044  == static wint_t p_b_coll_elem(struct parse *p, wint_t endc);
1045  */
1046 static wint_t			/* value of collating element */
1047 p_b_coll_elem(struct parse *p,
1048 	wint_t endc)		/* name ended by endc,']' */
1049 {
1050 	const char *sp = p->next;
1051 	struct cname *cp;
1052 	mbstate_t mbs;
1053 	wchar_t wc;
1054 	size_t clen, len;
1055 
1056 	while (MORE() && !SEETWO(endc, ']'))
1057 		NEXT();
1058 	if (!MORE()) {
1059 		SETERROR(REG_EBRACK);
1060 		return(0);
1061 	}
1062 	len = p->next - sp;
1063 	for (cp = cnames; cp->name != NULL; cp++)
1064 		if (strncmp(cp->name, sp, len) == 0 && strlen(cp->name) == len)
1065 			return(cp->code);	/* known name */
1066 	memset(&mbs, 0, sizeof(mbs));
1067 	if ((clen = mbrtowc(&wc, sp, len, &mbs)) == len)
1068 		return (wc);			/* single character */
1069 	else if (clen == (size_t)-1 || clen == (size_t)-2)
1070 		SETERROR(REG_ILLSEQ);
1071 	else
1072 		SETERROR(REG_ECOLLATE);		/* neither */
1073 	return(0);
1074 }
1075 
1076 /*
1077  - othercase - return the case counterpart of an alphabetic
1078  == static wint_t othercase(wint_t ch);
1079  */
1080 static wint_t			/* if no counterpart, return ch */
1081 othercase(wint_t ch)
1082 {
1083 	assert(iswalpha(ch));
1084 	if (iswupper(ch))
1085 		return(towlower(ch));
1086 	else if (iswlower(ch))
1087 		return(towupper(ch));
1088 	else			/* peculiar, but could happen */
1089 		return(ch);
1090 }
1091 
1092 /*
1093  - bothcases - emit a dualcase version of a two-case character
1094  == static void bothcases(struct parse *p, wint_t ch);
1095  *
1096  * Boy, is this implementation ever a kludge...
1097  */
1098 static void
1099 bothcases(struct parse *p, wint_t ch)
1100 {
1101 	const char *oldnext = p->next;
1102 	const char *oldend = p->end;
1103 	char bracket[3 + MB_LEN_MAX];
1104 	size_t n;
1105 	mbstate_t mbs;
1106 
1107 	assert(othercase(ch) != ch);	/* p_bracket() would recurse */
1108 	p->next = bracket;
1109 	memset(&mbs, 0, sizeof(mbs));
1110 	n = wcrtomb(bracket, ch, &mbs);
1111 	assert(n != (size_t)-1);
1112 	bracket[n] = ']';
1113 	bracket[n + 1] = '\0';
1114 	p->end = bracket+n+1;
1115 	p_bracket(p);
1116 	assert(p->next == p->end);
1117 	p->next = oldnext;
1118 	p->end = oldend;
1119 }
1120 
1121 /*
1122  - ordinary - emit an ordinary character
1123  == static void ordinary(struct parse *p, wint_t ch);
1124  */
1125 static void
1126 ordinary(struct parse *p, wint_t ch)
1127 {
1128 	cset *cs;
1129 
1130 	if ((p->g->cflags&REG_ICASE) && iswalpha(ch) && othercase(ch) != ch)
1131 		bothcases(p, ch);
1132 	else if ((ch & OPDMASK) == ch)
1133 		EMIT(OCHAR, ch);
1134 	else {
1135 		/*
1136 		 * Kludge: character is too big to fit into an OCHAR operand.
1137 		 * Emit a singleton set.
1138 		 */
1139 		if ((cs = allocset(p)) == NULL)
1140 			return;
1141 		CHadd(p, cs, ch);
1142 		EMIT(OANYOF, (int)(cs - p->g->sets));
1143 	}
1144 }
1145 
1146 /*
1147  - nonnewline - emit REG_NEWLINE version of OANY
1148  == static void nonnewline(struct parse *p);
1149  *
1150  * Boy, is this implementation ever a kludge...
1151  */
1152 static void
1153 nonnewline(struct parse *p)
1154 {
1155 	const char *oldnext = p->next;
1156 	const char *oldend = p->end;
1157 	char bracket[4];
1158 
1159 	p->next = bracket;
1160 	p->end = bracket+3;
1161 	bracket[0] = '^';
1162 	bracket[1] = '\n';
1163 	bracket[2] = ']';
1164 	bracket[3] = '\0';
1165 	p_bracket(p);
1166 	assert(p->next == bracket+3);
1167 	p->next = oldnext;
1168 	p->end = oldend;
1169 }
1170 
1171 /*
1172  - repeat - generate code for a bounded repetition, recursively if needed
1173  == static void repeat(struct parse *p, sopno start, int from, int to);
1174  */
1175 static void
1176 repeat(struct parse *p,
1177 	sopno start,		/* operand from here to end of strip */
1178 	int from,		/* repeated from this number */
1179 	int to)			/* to this number of times (maybe INFINITY) */
1180 {
1181 	sopno finish = HERE();
1182 #	define	N	2
1183 #	define	INF	3
1184 #	define	REP(f, t)	((f)*8 + (t))
1185 #	define	MAP(n)	(((n) <= 1) ? (n) : ((n) == INFINITY) ? INF : N)
1186 	sopno copy;
1187 
1188 	if (p->error != 0)	/* head off possible runaway recursion */
1189 		return;
1190 
1191 	assert(from <= to);
1192 
1193 	switch (REP(MAP(from), MAP(to))) {
1194 	case REP(0, 0):			/* must be user doing this */
1195 		DROP(finish-start);	/* drop the operand */
1196 		break;
1197 	case REP(0, 1):			/* as x{1,1}? */
1198 	case REP(0, N):			/* as x{1,n}? */
1199 	case REP(0, INF):		/* as x{1,}? */
1200 		/* KLUDGE: emit y? as (y|) until subtle bug gets fixed */
1201 		INSERT(OCH_, start);		/* offset is wrong... */
1202 		repeat(p, start+1, 1, to);
1203 		ASTERN(OOR1, start);
1204 		AHEAD(start);			/* ... fix it */
1205 		EMIT(OOR2, 0);
1206 		AHEAD(THERE());
1207 		ASTERN(O_CH, THERETHERE());
1208 		break;
1209 	case REP(1, 1):			/* trivial case */
1210 		/* done */
1211 		break;
1212 	case REP(1, N):			/* as x?x{1,n-1} */
1213 		/* KLUDGE: emit y? as (y|) until subtle bug gets fixed */
1214 		INSERT(OCH_, start);
1215 		ASTERN(OOR1, start);
1216 		AHEAD(start);
1217 		EMIT(OOR2, 0);			/* offset very wrong... */
1218 		AHEAD(THERE());			/* ...so fix it */
1219 		ASTERN(O_CH, THERETHERE());
1220 		copy = dupl(p, start+1, finish+1);
1221 		assert(copy == finish+4);
1222 		repeat(p, copy, 1, to-1);
1223 		break;
1224 	case REP(1, INF):		/* as x+ */
1225 		INSERT(OPLUS_, start);
1226 		ASTERN(O_PLUS, start);
1227 		break;
1228 	case REP(N, N):			/* as xx{m-1,n-1} */
1229 		copy = dupl(p, start, finish);
1230 		repeat(p, copy, from-1, to-1);
1231 		break;
1232 	case REP(N, INF):		/* as xx{n-1,INF} */
1233 		copy = dupl(p, start, finish);
1234 		repeat(p, copy, from-1, to);
1235 		break;
1236 	default:			/* "can't happen" */
1237 		SETERROR(REG_ASSERT);	/* just in case */
1238 		break;
1239 	}
1240 }
1241 
1242 /*
1243  - wgetnext - helper function for WGETNEXT() macro. Gets the next wide
1244  - character from the parse struct, signals a REG_ILLSEQ error if the
1245  - character can't be converted. Returns the number of bytes consumed.
1246  */
1247 static wint_t
1248 wgetnext(struct parse *p)
1249 {
1250 	mbstate_t mbs;
1251 	wchar_t wc;
1252 	size_t n;
1253 
1254 	memset(&mbs, 0, sizeof(mbs));
1255 	n = mbrtowc(&wc, p->next, p->end - p->next, &mbs);
1256 	if (n == (size_t)-1 || n == (size_t)-2) {
1257 		SETERROR(REG_ILLSEQ);
1258 		return (0);
1259 	}
1260 	if (n == 0)
1261 		n = 1;
1262 	p->next += n;
1263 	return (wc);
1264 }
1265 
1266 /*
1267  - seterr - set an error condition
1268  == static int seterr(struct parse *p, int e);
1269  */
1270 static int			/* useless but makes type checking happy */
1271 seterr(struct parse *p, int e)
1272 {
1273 	if (p->error == 0)	/* keep earliest error condition */
1274 		p->error = e;
1275 	p->next = nuls;		/* try to bring things to a halt */
1276 	p->end = nuls;
1277 	return(0);		/* make the return value well-defined */
1278 }
1279 
1280 /*
1281  - allocset - allocate a set of characters for []
1282  == static cset *allocset(struct parse *p);
1283  */
1284 static cset *
1285 allocset(struct parse *p)
1286 {
1287 	cset *cs, *ncs;
1288 
1289 	ncs = reallocarray(p->g->sets, p->g->ncsets + 1, sizeof(*ncs));
1290 	if (ncs == NULL) {
1291 		SETERROR(REG_ESPACE);
1292 		return (NULL);
1293 	}
1294 	p->g->sets = ncs;
1295 	cs = &p->g->sets[p->g->ncsets++];
1296 	memset(cs, 0, sizeof(*cs));
1297 
1298 	return(cs);
1299 }
1300 
1301 /*
1302  - freeset - free a now-unused set
1303  == static void freeset(struct parse *p, cset *cs);
1304  */
1305 static void
1306 freeset(struct parse *p, cset *cs)
1307 {
1308 	cset *top = &p->g->sets[p->g->ncsets];
1309 
1310 	free(cs->wides);
1311 	free(cs->ranges);
1312 	free(cs->types);
1313 	memset(cs, 0, sizeof(*cs));
1314 	if (cs == top-1)	/* recover only the easy case */
1315 		p->g->ncsets--;
1316 }
1317 
1318 /*
1319  - singleton - Determine whether a set contains only one character,
1320  - returning it if so, otherwise returning OUT.
1321  */
1322 static wint_t
1323 singleton(cset *cs)
1324 {
1325 	wint_t i, s, n;
1326 
1327 	for (i = n = 0; i < NC; i++)
1328 		if (CHIN(cs, i)) {
1329 			n++;
1330 			s = i;
1331 		}
1332 	if (n == 1)
1333 		return (s);
1334 	if (cs->nwides == 1 && cs->nranges == 0 && cs->ntypes == 0 &&
1335 	    cs->icase == 0)
1336 		return (cs->wides[0]);
1337 	/* Don't bother handling the other cases. */
1338 	return (OUT);
1339 }
1340 
1341 /*
1342  - CHadd - add character to character set.
1343  */
1344 static void
1345 CHadd(struct parse *p, cset *cs, wint_t ch)
1346 {
1347 	wint_t nch, *newwides;
1348 	assert(ch >= 0);
1349 	if (ch < NC)
1350 		cs->bmp[ch >> 3] |= 1 << (ch & 7);
1351 	else {
1352 		newwides = reallocarray(cs->wides, cs->nwides + 1,
1353 		    sizeof(*cs->wides));
1354 		if (newwides == NULL) {
1355 			SETERROR(REG_ESPACE);
1356 			return;
1357 		}
1358 		cs->wides = newwides;
1359 		cs->wides[cs->nwides++] = ch;
1360 	}
1361 	if (cs->icase) {
1362 		if ((nch = towlower(ch)) < NC)
1363 			cs->bmp[nch >> 3] |= 1 << (nch & 7);
1364 		if ((nch = towupper(ch)) < NC)
1365 			cs->bmp[nch >> 3] |= 1 << (nch & 7);
1366 	}
1367 }
1368 
1369 /*
1370  - CHaddrange - add all characters in the range [min,max] to a character set.
1371  */
1372 static void
1373 CHaddrange(struct parse *p, cset *cs, wint_t min, wint_t max)
1374 {
1375 	crange *newranges;
1376 
1377 	for (; min < NC && min <= max; min++)
1378 		CHadd(p, cs, min);
1379 	if (min >= max)
1380 		return;
1381 	newranges = reallocarray(cs->ranges, cs->nranges + 1,
1382 	    sizeof(*cs->ranges));
1383 	if (newranges == NULL) {
1384 		SETERROR(REG_ESPACE);
1385 		return;
1386 	}
1387 	cs->ranges = newranges;
1388 	cs->ranges[cs->nranges].min = min;
1389 	cs->ranges[cs->nranges].max = max;
1390 	cs->nranges++;
1391 }
1392 
1393 /*
1394  - CHaddtype - add all characters of a certain type to a character set.
1395  */
1396 static void
1397 CHaddtype(struct parse *p, cset *cs, wctype_t wct)
1398 {
1399 	wint_t i;
1400 	wctype_t *newtypes;
1401 
1402 	for (i = 0; i < NC; i++)
1403 		if (iswctype(i, wct))
1404 			CHadd(p, cs, i);
1405 	newtypes = reallocarray(cs->types, cs->ntypes + 1,
1406 	    sizeof(*cs->types));
1407 	if (newtypes == NULL) {
1408 		SETERROR(REG_ESPACE);
1409 		return;
1410 	}
1411 	cs->types = newtypes;
1412 	cs->types[cs->ntypes++] = wct;
1413 }
1414 
1415 /*
1416  - dupl - emit a duplicate of a bunch of sops
1417  == static sopno dupl(struct parse *p, sopno start, sopno finish);
1418  */
1419 static sopno			/* start of duplicate */
1420 dupl(struct parse *p,
1421 	sopno start,		/* from here */
1422 	sopno finish)		/* to this less one */
1423 {
1424 	sopno ret = HERE();
1425 	sopno len = finish - start;
1426 
1427 	assert(finish >= start);
1428 	if (len == 0)
1429 		return(ret);
1430 	if (!enlarge(p, p->ssize + len)) /* this many unexpected additions */
1431 		return(ret);
1432 	(void) memcpy((char *)(p->strip + p->slen),
1433 		(char *)(p->strip + start), (size_t)len*sizeof(sop));
1434 	p->slen += len;
1435 	return(ret);
1436 }
1437 
1438 /*
1439  - doemit - emit a strip operator
1440  == static void doemit(struct parse *p, sop op, size_t opnd);
1441  *
1442  * It might seem better to implement this as a macro with a function as
1443  * hard-case backup, but it's just too big and messy unless there are
1444  * some changes to the data structures.  Maybe later.
1445  */
1446 static void
1447 doemit(struct parse *p, sop op, size_t opnd)
1448 {
1449 	/* avoid making error situations worse */
1450 	if (p->error != 0)
1451 		return;
1452 
1453 	/* deal with oversize operands ("can't happen", more or less) */
1454 	assert(opnd < 1<<OPSHIFT);
1455 
1456 	/* deal with undersized strip */
1457 	if (p->slen >= p->ssize)
1458 		if (!enlarge(p, (p->ssize+1) / 2 * 3))	/* +50% */
1459 			return;
1460 
1461 	/* finally, it's all reduced to the easy case */
1462 	p->strip[p->slen++] = SOP(op, opnd);
1463 }
1464 
1465 /*
1466  - doinsert - insert a sop into the strip
1467  == static void doinsert(struct parse *p, sop op, size_t opnd, sopno pos);
1468  */
1469 static void
1470 doinsert(struct parse *p, sop op, size_t opnd, sopno pos)
1471 {
1472 	sopno sn;
1473 	sop s;
1474 	int i;
1475 
1476 	/* avoid making error situations worse */
1477 	if (p->error != 0)
1478 		return;
1479 
1480 	sn = HERE();
1481 	EMIT(op, opnd);		/* do checks, ensure space */
1482 	assert(HERE() == sn+1);
1483 	s = p->strip[sn];
1484 
1485 	/* adjust paren pointers */
1486 	assert(pos > 0);
1487 	for (i = 1; i < NPAREN; i++) {
1488 		if (p->pbegin[i] >= pos) {
1489 			p->pbegin[i]++;
1490 		}
1491 		if (p->pend[i] >= pos) {
1492 			p->pend[i]++;
1493 		}
1494 	}
1495 
1496 	memmove((char *)&p->strip[pos+1], (char *)&p->strip[pos],
1497 						(HERE()-pos-1)*sizeof(sop));
1498 	p->strip[pos] = s;
1499 }
1500 
1501 /*
1502  - dofwd - complete a forward reference
1503  == static void dofwd(struct parse *p, sopno pos, sop value);
1504  */
1505 static void
1506 dofwd(struct parse *p, sopno pos, sop value)
1507 {
1508 	/* avoid making error situations worse */
1509 	if (p->error != 0)
1510 		return;
1511 
1512 	assert(value < 1<<OPSHIFT);
1513 	p->strip[pos] = OP(p->strip[pos]) | value;
1514 }
1515 
1516 /*
1517  - enlarge - enlarge the strip
1518  == static int enlarge(struct parse *p, sopno size);
1519  */
1520 static int
1521 enlarge(struct parse *p, sopno size)
1522 {
1523 	sop *sp;
1524 
1525 	if (p->ssize >= size)
1526 		return 1;
1527 
1528 	sp = reallocarray(p->strip, size, sizeof(sop));
1529 	if (sp == NULL) {
1530 		SETERROR(REG_ESPACE);
1531 		return 0;
1532 	}
1533 	p->strip = sp;
1534 	p->ssize = size;
1535 	return 1;
1536 }
1537 
1538 /*
1539  - stripsnug - compact the strip
1540  == static void stripsnug(struct parse *p, struct re_guts *g);
1541  */
1542 static void
1543 stripsnug(struct parse *p, struct re_guts *g)
1544 {
1545 	g->nstates = p->slen;
1546 	g->strip = reallocarray((char *)p->strip, p->slen, sizeof(sop));
1547 	if (g->strip == NULL) {
1548 		SETERROR(REG_ESPACE);
1549 		g->strip = p->strip;
1550 	}
1551 }
1552 
1553 /*
1554  - findmust - fill in must and mlen with longest mandatory literal string
1555  == static void findmust(struct parse *p, struct re_guts *g);
1556  *
1557  * This algorithm could do fancy things like analyzing the operands of |
1558  * for common subsequences.  Someday.  This code is simple and finds most
1559  * of the interesting cases.
1560  *
1561  * Note that must and mlen got initialized during setup.
1562  */
1563 static void
1564 findmust(struct parse *p, struct re_guts *g)
1565 {
1566 	sop *scan;
1567 	sop *start = NULL;
1568 	sop *newstart = NULL;
1569 	sopno newlen;
1570 	sop s;
1571 	char *cp;
1572 	int offset;
1573 	char buf[MB_LEN_MAX];
1574 	size_t clen;
1575 	mbstate_t mbs;
1576 
1577 	/* avoid making error situations worse */
1578 	if (p->error != 0)
1579 		return;
1580 
1581 	/*
1582 	 * It's not generally safe to do a ``char'' substring search on
1583 	 * multibyte character strings, but it's safe for at least
1584 	 * UTF-8 (see RFC 3629).
1585 	 */
1586 	if (MB_CUR_MAX > 1 &&
1587 	    strcmp(_CurrentRuneLocale->__encoding, "UTF-8") != 0)
1588 		return;
1589 
1590 	/* find the longest OCHAR sequence in strip */
1591 	newlen = 0;
1592 	offset = 0;
1593 	g->moffset = 0;
1594 	scan = g->strip + 1;
1595 	do {
1596 		s = *scan++;
1597 		switch (OP(s)) {
1598 		case OCHAR:		/* sequence member */
1599 			if (newlen == 0) {		/* new sequence */
1600 				memset(&mbs, 0, sizeof(mbs));
1601 				newstart = scan - 1;
1602 			}
1603 			clen = wcrtomb(buf, OPND(s), &mbs);
1604 			if (clen == (size_t)-1)
1605 				goto toohard;
1606 			newlen += clen;
1607 			break;
1608 		case OPLUS_:		/* things that don't break one */
1609 		case OLPAREN:
1610 		case ORPAREN:
1611 			break;
1612 		case OQUEST_:		/* things that must be skipped */
1613 		case OCH_:
1614 			offset = altoffset(scan, offset);
1615 			scan--;
1616 			do {
1617 				scan += OPND(s);
1618 				s = *scan;
1619 				/* assert() interferes w debug printouts */
1620 				if (OP(s) != O_QUEST && OP(s) != O_CH &&
1621 							OP(s) != OOR2) {
1622 					g->iflags |= BAD;
1623 					return;
1624 				}
1625 			} while (OP(s) != O_QUEST && OP(s) != O_CH);
1626 			/* FALLTHROUGH */
1627 		case OBOW:		/* things that break a sequence */
1628 		case OEOW:
1629 		case OBOL:
1630 		case OEOL:
1631 		case O_QUEST:
1632 		case O_CH:
1633 		case OEND:
1634 			if (newlen > g->mlen) {		/* ends one */
1635 				start = newstart;
1636 				g->mlen = newlen;
1637 				if (offset > -1) {
1638 					g->moffset += offset;
1639 					offset = newlen;
1640 				} else
1641 					g->moffset = offset;
1642 			} else {
1643 				if (offset > -1)
1644 					offset += newlen;
1645 			}
1646 			newlen = 0;
1647 			break;
1648 		case OANY:
1649 			if (newlen > g->mlen) {		/* ends one */
1650 				start = newstart;
1651 				g->mlen = newlen;
1652 				if (offset > -1) {
1653 					g->moffset += offset;
1654 					offset = newlen;
1655 				} else
1656 					g->moffset = offset;
1657 			} else {
1658 				if (offset > -1)
1659 					offset += newlen;
1660 			}
1661 			if (offset > -1)
1662 				offset++;
1663 			newlen = 0;
1664 			break;
1665 		case OANYOF:		/* may or may not invalidate offset */
1666 			/* First, everything as OANY */
1667 			if (newlen > g->mlen) {		/* ends one */
1668 				start = newstart;
1669 				g->mlen = newlen;
1670 				if (offset > -1) {
1671 					g->moffset += offset;
1672 					offset = newlen;
1673 				} else
1674 					g->moffset = offset;
1675 			} else {
1676 				if (offset > -1)
1677 					offset += newlen;
1678 			}
1679 			if (offset > -1)
1680 				offset++;
1681 			newlen = 0;
1682 			break;
1683 		toohard:
1684 		default:
1685 			/* Anything here makes it impossible or too hard
1686 			 * to calculate the offset -- so we give up;
1687 			 * save the last known good offset, in case the
1688 			 * must sequence doesn't occur later.
1689 			 */
1690 			if (newlen > g->mlen) {		/* ends one */
1691 				start = newstart;
1692 				g->mlen = newlen;
1693 				if (offset > -1)
1694 					g->moffset += offset;
1695 				else
1696 					g->moffset = offset;
1697 			}
1698 			offset = -1;
1699 			newlen = 0;
1700 			break;
1701 		}
1702 	} while (OP(s) != OEND);
1703 
1704 	if (g->mlen == 0) {		/* there isn't one */
1705 		g->moffset = -1;
1706 		return;
1707 	}
1708 
1709 	/* turn it into a character string */
1710 	g->must = malloc((size_t)g->mlen + 1);
1711 	if (g->must == NULL) {		/* argh; just forget it */
1712 		g->mlen = 0;
1713 		g->moffset = -1;
1714 		return;
1715 	}
1716 	cp = g->must;
1717 	scan = start;
1718 	memset(&mbs, 0, sizeof(mbs));
1719 	while (cp < g->must + g->mlen) {
1720 		while (OP(s = *scan++) != OCHAR)
1721 			continue;
1722 		clen = wcrtomb(cp, OPND(s), &mbs);
1723 		assert(clen != (size_t)-1);
1724 		cp += clen;
1725 	}
1726 	assert(cp == g->must + g->mlen);
1727 	*cp++ = '\0';		/* just on general principles */
1728 }
1729 
1730 /*
1731  - altoffset - choose biggest offset among multiple choices
1732  == static int altoffset(sop *scan, int offset);
1733  *
1734  * Compute, recursively if necessary, the largest offset among multiple
1735  * re paths.
1736  */
1737 static int
1738 altoffset(sop *scan, int offset)
1739 {
1740 	int largest;
1741 	int try;
1742 	sop s;
1743 
1744 	/* If we gave up already on offsets, return */
1745 	if (offset == -1)
1746 		return -1;
1747 
1748 	largest = 0;
1749 	try = 0;
1750 	s = *scan++;
1751 	while (OP(s) != O_QUEST && OP(s) != O_CH) {
1752 		switch (OP(s)) {
1753 		case OOR1:
1754 			if (try > largest)
1755 				largest = try;
1756 			try = 0;
1757 			break;
1758 		case OQUEST_:
1759 		case OCH_:
1760 			try = altoffset(scan, try);
1761 			if (try == -1)
1762 				return -1;
1763 			scan--;
1764 			do {
1765 				scan += OPND(s);
1766 				s = *scan;
1767 				if (OP(s) != O_QUEST && OP(s) != O_CH &&
1768 							OP(s) != OOR2)
1769 					return -1;
1770 			} while (OP(s) != O_QUEST && OP(s) != O_CH);
1771 			/* We must skip to the next position, or we'll
1772 			 * leave altoffset() too early.
1773 			 */
1774 			scan++;
1775 			break;
1776 		case OANYOF:
1777 		case OCHAR:
1778 		case OANY:
1779 			try++;
1780 		case OBOW:
1781 		case OEOW:
1782 		case OLPAREN:
1783 		case ORPAREN:
1784 		case OOR2:
1785 			break;
1786 		default:
1787 			try = -1;
1788 			break;
1789 		}
1790 		if (try == -1)
1791 			return -1;
1792 		s = *scan++;
1793 	}
1794 
1795 	if (try > largest)
1796 		largest = try;
1797 
1798 	return largest+offset;
1799 }
1800 
1801 /*
1802  - computejumps - compute char jumps for BM scan
1803  == static void computejumps(struct parse *p, struct re_guts *g);
1804  *
1805  * This algorithm assumes g->must exists and is has size greater than
1806  * zero. It's based on the algorithm found on Computer Algorithms by
1807  * Sara Baase.
1808  *
1809  * A char jump is the number of characters one needs to jump based on
1810  * the value of the character from the text that was mismatched.
1811  */
1812 static void
1813 computejumps(struct parse *p, struct re_guts *g)
1814 {
1815 	int ch;
1816 	int mindex;
1817 
1818 	/* Avoid making errors worse */
1819 	if (p->error != 0)
1820 		return;
1821 
1822 	g->charjump = (int*) malloc((NC + 1) * sizeof(int));
1823 	if (g->charjump == NULL)	/* Not a fatal error */
1824 		return;
1825 	/* Adjust for signed chars, if necessary */
1826 	g->charjump = &g->charjump[-(CHAR_MIN)];
1827 
1828 	/* If the character does not exist in the pattern, the jump
1829 	 * is equal to the number of characters in the pattern.
1830 	 */
1831 	for (ch = CHAR_MIN; ch < (CHAR_MAX + 1); ch++)
1832 		g->charjump[ch] = g->mlen;
1833 
1834 	/* If the character does exist, compute the jump that would
1835 	 * take us to the last character in the pattern equal to it
1836 	 * (notice that we match right to left, so that last character
1837 	 * is the first one that would be matched).
1838 	 */
1839 	for (mindex = 0; mindex < g->mlen; mindex++)
1840 		g->charjump[(int)g->must[mindex]] = g->mlen - mindex - 1;
1841 }
1842 
1843 /*
1844  - computematchjumps - compute match jumps for BM scan
1845  == static void computematchjumps(struct parse *p, struct re_guts *g);
1846  *
1847  * This algorithm assumes g->must exists and is has size greater than
1848  * zero. It's based on the algorithm found on Computer Algorithms by
1849  * Sara Baase.
1850  *
1851  * A match jump is the number of characters one needs to advance based
1852  * on the already-matched suffix.
1853  * Notice that all values here are minus (g->mlen-1), because of the way
1854  * the search algorithm works.
1855  */
1856 static void
1857 computematchjumps(struct parse *p, struct re_guts *g)
1858 {
1859 	int mindex;		/* General "must" iterator */
1860 	int suffix;		/* Keeps track of matching suffix */
1861 	int ssuffix;		/* Keeps track of suffixes' suffix */
1862 	int* pmatches;		/* pmatches[k] points to the next i
1863 				 * such that i+1...mlen is a substring
1864 				 * of k+1...k+mlen-i-1
1865 				 */
1866 
1867 	/* Avoid making errors worse */
1868 	if (p->error != 0)
1869 		return;
1870 
1871 	pmatches = (int*) malloc(g->mlen * sizeof(int));
1872 	if (pmatches == NULL) {
1873 		g->matchjump = NULL;
1874 		return;
1875 	}
1876 
1877 	g->matchjump = (int*) malloc(g->mlen * sizeof(int));
1878 	if (g->matchjump == NULL) {	/* Not a fatal error */
1879 		free(pmatches);
1880 		return;
1881 	}
1882 
1883 	/* Set maximum possible jump for each character in the pattern */
1884 	for (mindex = 0; mindex < g->mlen; mindex++)
1885 		g->matchjump[mindex] = 2*g->mlen - mindex - 1;
1886 
1887 	/* Compute pmatches[] */
1888 	for (mindex = g->mlen - 1, suffix = g->mlen; mindex >= 0;
1889 	    mindex--, suffix--) {
1890 		pmatches[mindex] = suffix;
1891 
1892 		/* If a mismatch is found, interrupting the substring,
1893 		 * compute the matchjump for that position. If no
1894 		 * mismatch is found, then a text substring mismatched
1895 		 * against the suffix will also mismatch against the
1896 		 * substring.
1897 		 */
1898 		while (suffix < g->mlen
1899 		    && g->must[mindex] != g->must[suffix]) {
1900 			g->matchjump[suffix] = MIN(g->matchjump[suffix],
1901 			    g->mlen - mindex - 1);
1902 			suffix = pmatches[suffix];
1903 		}
1904 	}
1905 
1906 	/* Compute the matchjump up to the last substring found to jump
1907 	 * to the beginning of the largest must pattern prefix matching
1908 	 * it's own suffix.
1909 	 */
1910 	for (mindex = 0; mindex <= suffix; mindex++)
1911 		g->matchjump[mindex] = MIN(g->matchjump[mindex],
1912 		    g->mlen + suffix - mindex);
1913 
1914         ssuffix = pmatches[suffix];
1915         while (suffix < g->mlen) {
1916                 while (suffix <= ssuffix && suffix < g->mlen) {
1917                         g->matchjump[suffix] = MIN(g->matchjump[suffix],
1918 			    g->mlen + ssuffix - suffix);
1919                         suffix++;
1920                 }
1921 		if (suffix < g->mlen)
1922                 	ssuffix = pmatches[ssuffix];
1923         }
1924 
1925 	free(pmatches);
1926 }
1927 
1928 /*
1929  - pluscount - count + nesting
1930  == static sopno pluscount(struct parse *p, struct re_guts *g);
1931  */
1932 static sopno			/* nesting depth */
1933 pluscount(struct parse *p, struct re_guts *g)
1934 {
1935 	sop *scan;
1936 	sop s;
1937 	sopno plusnest = 0;
1938 	sopno maxnest = 0;
1939 
1940 	if (p->error != 0)
1941 		return(0);	/* there may not be an OEND */
1942 
1943 	scan = g->strip + 1;
1944 	do {
1945 		s = *scan++;
1946 		switch (OP(s)) {
1947 		case OPLUS_:
1948 			plusnest++;
1949 			break;
1950 		case O_PLUS:
1951 			if (plusnest > maxnest)
1952 				maxnest = plusnest;
1953 			plusnest--;
1954 			break;
1955 		}
1956 	} while (OP(s) != OEND);
1957 	if (plusnest != 0)
1958 		g->iflags |= BAD;
1959 	return(maxnest);
1960 }
1961