xref: /freebsd/lib/libc/regex/regcomp.c (revision ca53e5aedfebcc1b4091b68e01b2d5cae923f85e)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1992, 1993, 1994 Henry Spencer.
5  * Copyright (c) 1992, 1993, 1994
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * Copyright (c) 2011 The FreeBSD Foundation
9  * All rights reserved.
10  * Portions of this software were developed by David Chisnall
11  * under sponsorship from the FreeBSD Foundation.
12  *
13  * This code is derived from software contributed to Berkeley by
14  * Henry Spencer.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *	@(#)regcomp.c	8.5 (Berkeley) 3/20/94
41  */
42 
43 #if defined(LIBC_SCCS) && !defined(lint)
44 static char sccsid[] = "@(#)regcomp.c	8.5 (Berkeley) 3/20/94";
45 #endif /* LIBC_SCCS and not lint */
46 #include <sys/cdefs.h>
47 __FBSDID("$FreeBSD$");
48 
49 #include <sys/types.h>
50 #include <stdio.h>
51 #include <string.h>
52 #include <ctype.h>
53 #include <limits.h>
54 #include <stdlib.h>
55 #include <regex.h>
56 #include <stdbool.h>
57 #include <wchar.h>
58 #include <wctype.h>
59 
60 #ifndef LIBREGEX
61 #include "collate.h"
62 #endif
63 
64 #include "utils.h"
65 #include "regex2.h"
66 
67 #include "cname.h"
68 
69 /*
70  * Branching context, used to keep track of branch state for all of the branch-
71  * aware functions. In addition to keeping track of branch positions for the
72  * p_branch_* functions, we use this to simplify some clumsiness in BREs for
73  * detection of whether ^ is acting as an anchor or being used erroneously and
74  * also for whether we're in a sub-expression or not.
75  */
76 struct branchc {
77 	sopno start;
78 	sopno back;
79 	sopno fwd;
80 
81 	int nbranch;
82 	int nchain;
83 	bool outer;
84 	bool terminate;
85 };
86 
87 /*
88  * parse structure, passed up and down to avoid global variables and
89  * other clumsinesses
90  */
91 struct parse {
92 	const char *next;	/* next character in RE */
93 	const char *end;	/* end of string (-> NUL normally) */
94 	int error;		/* has an error been seen? */
95 	int gnuext;
96 	sop *strip;		/* malloced strip */
97 	sopno ssize;		/* malloced strip size (allocated) */
98 	sopno slen;		/* malloced strip length (used) */
99 	int ncsalloc;		/* number of csets allocated */
100 	struct re_guts *g;
101 #	define	NPAREN	10	/* we need to remember () 1-9 for back refs */
102 	sopno pbegin[NPAREN];	/* -> ( ([0] unused) */
103 	sopno pend[NPAREN];	/* -> ) ([0] unused) */
104 	bool allowbranch;	/* can this expression branch? */
105 	bool bre;		/* convenience; is this a BRE? */
106 	int pflags;		/* other parsing flags -- legacy escapes? */
107 	bool (*parse_expr)(struct parse *, struct branchc *);
108 	void (*pre_parse)(struct parse *, struct branchc *);
109 	void (*post_parse)(struct parse *, struct branchc *);
110 };
111 
112 #define PFLAG_LEGACY_ESC	0x00000001
113 
114 /* ========= begin header generated by ./mkh ========= */
115 #ifdef __cplusplus
116 extern "C" {
117 #endif
118 
119 /* === regcomp.c === */
120 static bool p_ere_exp(struct parse *p, struct branchc *bc);
121 static void p_str(struct parse *p);
122 static int p_branch_eat_delim(struct parse *p, struct branchc *bc);
123 static void p_branch_ins_offset(struct parse *p, struct branchc *bc);
124 static void p_branch_fix_tail(struct parse *p, struct branchc *bc);
125 static bool p_branch_empty(struct parse *p, struct branchc *bc);
126 static bool p_branch_do(struct parse *p, struct branchc *bc);
127 static void p_bre_pre_parse(struct parse *p, struct branchc *bc);
128 static void p_bre_post_parse(struct parse *p, struct branchc *bc);
129 static void p_re(struct parse *p, int end1, int end2);
130 static bool p_simp_re(struct parse *p, struct branchc *bc);
131 static int p_count(struct parse *p);
132 static void p_bracket(struct parse *p);
133 static int p_range_cmp(wchar_t c1, wchar_t c2);
134 static void p_b_term(struct parse *p, cset *cs);
135 static int p_b_pseudoclass(struct parse *p, char c);
136 static void p_b_cclass(struct parse *p, cset *cs);
137 static void p_b_cclass_named(struct parse *p, cset *cs, const char[]);
138 static void p_b_eclass(struct parse *p, cset *cs);
139 static wint_t p_b_symbol(struct parse *p);
140 static wint_t p_b_coll_elem(struct parse *p, wint_t endc);
141 static bool may_escape(struct parse *p, const wint_t ch);
142 static wint_t othercase(wint_t ch);
143 static void bothcases(struct parse *p, wint_t ch);
144 static void ordinary(struct parse *p, wint_t ch);
145 static void nonnewline(struct parse *p);
146 static void repeat(struct parse *p, sopno start, int from, int to);
147 static int seterr(struct parse *p, int e);
148 static cset *allocset(struct parse *p);
149 static void freeset(struct parse *p, cset *cs);
150 static void CHadd(struct parse *p, cset *cs, wint_t ch);
151 static void CHaddrange(struct parse *p, cset *cs, wint_t min, wint_t max);
152 static void CHaddtype(struct parse *p, cset *cs, wctype_t wct);
153 static wint_t singleton(cset *cs);
154 static sopno dupl(struct parse *p, sopno start, sopno finish);
155 static void doemit(struct parse *p, sop op, size_t opnd);
156 static void doinsert(struct parse *p, sop op, size_t opnd, sopno pos);
157 static void dofwd(struct parse *p, sopno pos, sop value);
158 static int enlarge(struct parse *p, sopno size);
159 static void stripsnug(struct parse *p, struct re_guts *g);
160 static void findmust(struct parse *p, struct re_guts *g);
161 static int altoffset(sop *scan, int offset);
162 static void computejumps(struct parse *p, struct re_guts *g);
163 static void computematchjumps(struct parse *p, struct re_guts *g);
164 static sopno pluscount(struct parse *p, struct re_guts *g);
165 static wint_t wgetnext(struct parse *p);
166 
167 #ifdef __cplusplus
168 }
169 #endif
170 /* ========= end header generated by ./mkh ========= */
171 
172 static char nuls[10];		/* place to point scanner in event of error */
173 
174 /*
175  * macros for use with parse structure
176  * BEWARE:  these know that the parse structure is named `p' !!!
177  */
178 #define	PEEK()	(*p->next)
179 #define	PEEK2()	(*(p->next+1))
180 #define	MORE()	(p->next < p->end)
181 #define	MORE2()	(p->next+1 < p->end)
182 #define	SEE(c)	(MORE() && PEEK() == (c))
183 #define	SEETWO(a, b)	(MORE() && MORE2() && PEEK() == (a) && PEEK2() == (b))
184 #define	SEESPEC(a)	(p->bre ? SEETWO('\\', a) : SEE(a))
185 #define	EAT(c)	((SEE(c)) ? (NEXT(), 1) : 0)
186 #define	EATTWO(a, b)	((SEETWO(a, b)) ? (NEXT2(), 1) : 0)
187 #define	EATSPEC(a)	(p->bre ? EATTWO('\\', a) : EAT(a))
188 #define	NEXT()	(p->next++)
189 #define	NEXT2()	(p->next += 2)
190 #define	NEXTn(n)	(p->next += (n))
191 #define	GETNEXT()	(*p->next++)
192 #define	WGETNEXT()	wgetnext(p)
193 #define	SETERROR(e)	seterr(p, (e))
194 #define	REQUIRE(co, e)	((co) || SETERROR(e))
195 #define	MUSTSEE(c, e)	(REQUIRE(MORE() && PEEK() == (c), e))
196 #define	MUSTEAT(c, e)	(REQUIRE(MORE() && GETNEXT() == (c), e))
197 #define	MUSTNOTSEE(c, e)	(REQUIRE(!MORE() || PEEK() != (c), e))
198 #define	EMIT(op, sopnd)	doemit(p, (sop)(op), (size_t)(sopnd))
199 #define	INSERT(op, pos)	doinsert(p, (sop)(op), HERE()-(pos)+1, pos)
200 #define	AHEAD(pos)		dofwd(p, pos, HERE()-(pos))
201 #define	ASTERN(sop, pos)	EMIT(sop, HERE()-pos)
202 #define	HERE()		(p->slen)
203 #define	THERE()		(p->slen - 1)
204 #define	THERETHERE()	(p->slen - 2)
205 #define	DROP(n)	(p->slen -= (n))
206 
207 /* Macro used by computejump()/computematchjump() */
208 #define MIN(a,b)	((a)<(b)?(a):(b))
209 
210 static int				/* 0 success, otherwise REG_something */
211 regcomp_internal(regex_t * __restrict preg,
212 	const char * __restrict pattern,
213 	int cflags, int pflags)
214 {
215 	struct parse pa;
216 	struct re_guts *g;
217 	struct parse *p = &pa;
218 	int i;
219 	size_t len;
220 	size_t maxlen;
221 #ifdef REDEBUG
222 #	define	GOODFLAGS(f)	(f)
223 #else
224 #	define	GOODFLAGS(f)	((f)&~REG_DUMP)
225 #endif
226 
227 	cflags = GOODFLAGS(cflags);
228 	if ((cflags&REG_EXTENDED) && (cflags&REG_NOSPEC))
229 		return(REG_INVARG);
230 
231 	if (cflags&REG_PEND) {
232 		if (preg->re_endp < pattern)
233 			return(REG_INVARG);
234 		len = preg->re_endp - pattern;
235 	} else
236 		len = strlen(pattern);
237 
238 	/* do the mallocs early so failure handling is easy */
239 	g = (struct re_guts *)malloc(sizeof(struct re_guts));
240 	if (g == NULL)
241 		return(REG_ESPACE);
242 	/*
243 	 * Limit the pattern space to avoid a 32-bit overflow on buffer
244 	 * extension.  Also avoid any signed overflow in case of conversion
245 	 * so make the real limit based on a 31-bit overflow.
246 	 *
247 	 * Likely not applicable on 64-bit systems but handle the case
248 	 * generically (who are we to stop people from using ~715MB+
249 	 * patterns?).
250 	 */
251 	maxlen = ((size_t)-1 >> 1) / sizeof(sop) * 2 / 3;
252 	if (len >= maxlen) {
253 		free((char *)g);
254 		return(REG_ESPACE);
255 	}
256 	p->ssize = len/(size_t)2*(size_t)3 + (size_t)1;	/* ugh */
257 	assert(p->ssize >= len);
258 
259 	p->strip = (sop *)malloc(p->ssize * sizeof(sop));
260 	p->slen = 0;
261 	if (p->strip == NULL) {
262 		free((char *)g);
263 		return(REG_ESPACE);
264 	}
265 
266 	/* set things up */
267 	p->g = g;
268 	p->next = pattern;	/* convenience; we do not modify it */
269 	p->end = p->next + len;
270 	p->error = 0;
271 	p->ncsalloc = 0;
272 	p->pflags = pflags;
273 	for (i = 0; i < NPAREN; i++) {
274 		p->pbegin[i] = 0;
275 		p->pend[i] = 0;
276 	}
277 #ifdef LIBREGEX
278 	if (cflags&REG_POSIX) {
279 		p->gnuext = false;
280 		p->allowbranch = (cflags & REG_EXTENDED) != 0;
281 	} else
282 		p->gnuext = p->allowbranch = true;
283 #else
284 	p->gnuext = false;
285 	p->allowbranch = (cflags & REG_EXTENDED) != 0;
286 #endif
287 	if (cflags & REG_EXTENDED) {
288 		p->bre = false;
289 		p->parse_expr = p_ere_exp;
290 		p->pre_parse = NULL;
291 		p->post_parse = NULL;
292 	} else {
293 		p->bre = true;
294 		p->parse_expr = p_simp_re;
295 		p->pre_parse = p_bre_pre_parse;
296 		p->post_parse = p_bre_post_parse;
297 	}
298 	g->sets = NULL;
299 	g->ncsets = 0;
300 	g->cflags = cflags;
301 	g->iflags = 0;
302 	g->nbol = 0;
303 	g->neol = 0;
304 	g->must = NULL;
305 	g->moffset = -1;
306 	g->charjump = NULL;
307 	g->matchjump = NULL;
308 	g->mlen = 0;
309 	g->nsub = 0;
310 	g->backrefs = 0;
311 
312 	/* do it */
313 	EMIT(OEND, 0);
314 	g->firststate = THERE();
315 	if (cflags & REG_NOSPEC)
316 		p_str(p);
317 	else
318 		p_re(p, OUT, OUT);
319 	EMIT(OEND, 0);
320 	g->laststate = THERE();
321 
322 	/* tidy up loose ends and fill things in */
323 	stripsnug(p, g);
324 	findmust(p, g);
325 	/* only use Boyer-Moore algorithm if the pattern is bigger
326 	 * than three characters
327 	 */
328 	if(g->mlen > 3) {
329 		computejumps(p, g);
330 		computematchjumps(p, g);
331 		if(g->matchjump == NULL && g->charjump != NULL) {
332 			free(g->charjump);
333 			g->charjump = NULL;
334 		}
335 	}
336 	g->nplus = pluscount(p, g);
337 	g->magic = MAGIC2;
338 	preg->re_nsub = g->nsub;
339 	preg->re_g = g;
340 	preg->re_magic = MAGIC1;
341 #ifndef REDEBUG
342 	/* not debugging, so can't rely on the assert() in regexec() */
343 	if (g->iflags&BAD)
344 		SETERROR(REG_ASSERT);
345 #endif
346 
347 	/* win or lose, we're done */
348 	if (p->error != 0)	/* lose */
349 		regfree(preg);
350 	return(p->error);
351 }
352 
353 /*
354  - regcomp - interface for parser and compilation
355  = extern int regcomp(regex_t *, const char *, int);
356  = #define	REG_BASIC	0000
357  = #define	REG_EXTENDED	0001
358  = #define	REG_ICASE	0002
359  = #define	REG_NOSUB	0004
360  = #define	REG_NEWLINE	0010
361  = #define	REG_NOSPEC	0020
362  = #define	REG_PEND	0040
363  = #define	REG_DUMP	0200
364  */
365 int				/* 0 success, otherwise REG_something */
366 regcomp(regex_t * __restrict preg,
367 	const char * __restrict pattern,
368 	int cflags)
369 {
370 
371 	return (regcomp_internal(preg, pattern, cflags, 0));
372 }
373 
374 #ifndef LIBREGEX
375 /*
376  * Legacy interface that requires more lax escaping behavior.
377  */
378 int
379 freebsd12_regcomp(regex_t * __restrict preg,
380 	const char * __restrict pattern,
381 	int cflags, int pflags)
382 {
383 
384 	return (regcomp_internal(preg, pattern, cflags, PFLAG_LEGACY_ESC));
385 }
386 
387 __sym_compat(regcomp, freebsd12_regcomp, FBSD_1.0);
388 #endif	/* !LIBREGEX */
389 
390 /*
391  - p_ere_exp - parse one subERE, an atom possibly followed by a repetition op,
392  - return whether we should terminate or not
393  == static bool p_ere_exp(struct parse *p);
394  */
395 static bool
396 p_ere_exp(struct parse *p, struct branchc *bc)
397 {
398 	char c;
399 	wint_t wc;
400 	sopno pos;
401 	int count;
402 	int count2;
403 #ifdef LIBREGEX
404 	int i;
405 	int handled;
406 #endif
407 	sopno subno;
408 	int wascaret = 0;
409 
410 	(void)bc;
411 	assert(MORE());		/* caller should have ensured this */
412 	c = GETNEXT();
413 
414 #ifdef LIBREGEX
415 	handled = 0;
416 #endif
417 	pos = HERE();
418 	switch (c) {
419 	case '(':
420 		(void)REQUIRE(MORE(), REG_EPAREN);
421 		p->g->nsub++;
422 		subno = p->g->nsub;
423 		if (subno < NPAREN)
424 			p->pbegin[subno] = HERE();
425 		EMIT(OLPAREN, subno);
426 		if (!SEE(')'))
427 			p_re(p, ')', IGN);
428 		if (subno < NPAREN) {
429 			p->pend[subno] = HERE();
430 			assert(p->pend[subno] != 0);
431 		}
432 		EMIT(ORPAREN, subno);
433 		(void)MUSTEAT(')', REG_EPAREN);
434 		break;
435 #ifndef POSIX_MISTAKE
436 	case ')':		/* happens only if no current unmatched ( */
437 		/*
438 		 * You may ask, why the ifndef?  Because I didn't notice
439 		 * this until slightly too late for 1003.2, and none of the
440 		 * other 1003.2 regular-expression reviewers noticed it at
441 		 * all.  So an unmatched ) is legal POSIX, at least until
442 		 * we can get it fixed.
443 		 */
444 		SETERROR(REG_EPAREN);
445 		break;
446 #endif
447 	case '^':
448 		EMIT(OBOL, 0);
449 		p->g->iflags |= USEBOL;
450 		p->g->nbol++;
451 		wascaret = 1;
452 		break;
453 	case '$':
454 		EMIT(OEOL, 0);
455 		p->g->iflags |= USEEOL;
456 		p->g->neol++;
457 		break;
458 	case '|':
459 		SETERROR(REG_EMPTY);
460 		break;
461 	case '*':
462 	case '+':
463 	case '?':
464 	case '{':
465 		SETERROR(REG_BADRPT);
466 		break;
467 	case '.':
468 		if (p->g->cflags&REG_NEWLINE)
469 			nonnewline(p);
470 		else
471 			EMIT(OANY, 0);
472 		break;
473 	case '[':
474 		p_bracket(p);
475 		break;
476 	case '\\':
477 		(void)REQUIRE(MORE(), REG_EESCAPE);
478 		wc = WGETNEXT();
479 #ifdef LIBREGEX
480 		if (p->gnuext) {
481 			handled = 1;
482 			switch (wc) {
483 			case '`':
484 				EMIT(OBOS, 0);
485 				break;
486 			case '\'':
487 				EMIT(OEOS, 0);
488 				break;
489 			case 'W':
490 			case 'w':
491 			case 'S':
492 			case 's':
493 				p_b_pseudoclass(p, wc);
494 				break;
495 			case '1':
496 			case '2':
497 			case '3':
498 			case '4':
499 			case '5':
500 			case '6':
501 			case '7':
502 			case '8':
503 			case '9':
504 				i = wc - '0';
505 				assert(i < NPAREN);
506 				if (p->pend[i] != 0) {
507 					assert(i <= p->g->nsub);
508 					EMIT(OBACK_, i);
509 					assert(p->pbegin[i] != 0);
510 					assert(OP(p->strip[p->pbegin[i]]) == OLPAREN);
511 					assert(OP(p->strip[p->pend[i]]) == ORPAREN);
512 					(void) dupl(p, p->pbegin[i]+1, p->pend[i]);
513 					EMIT(O_BACK, i);
514 				} else
515 					SETERROR(REG_ESUBREG);
516 				p->g->backrefs = 1;
517 				break;
518 			default:
519 				handled = 0;
520 			}
521 			/* Don't proceed to the POSIX bits if we've already handled it */
522 			if (handled)
523 				break;
524 		}
525 #endif
526 		switch (wc) {
527 		case '<':
528 			EMIT(OBOW, 0);
529 			break;
530 		case '>':
531 			EMIT(OEOW, 0);
532 			break;
533 		default:
534 			if (may_escape(p, wc))
535 				ordinary(p, wc);
536 			else
537 				SETERROR(REG_EESCAPE);
538 			break;
539 		}
540 		break;
541 	default:
542 		if (p->error != 0)
543 			return (false);
544 		p->next--;
545 		wc = WGETNEXT();
546 		ordinary(p, wc);
547 		break;
548 	}
549 
550 	if (!MORE())
551 		return (false);
552 	c = PEEK();
553 	/* we call { a repetition if followed by a digit */
554 	if (!( c == '*' || c == '+' || c == '?' || c == '{'))
555 		return (false);		/* no repetition, we're done */
556 	else if (c == '{')
557 		(void)REQUIRE(MORE2() && \
558 		    (isdigit((uch)PEEK2()) || PEEK2() == ','), REG_BADRPT);
559 	NEXT();
560 
561 	(void)REQUIRE(!wascaret, REG_BADRPT);
562 	switch (c) {
563 	case '*':	/* implemented as +? */
564 		/* this case does not require the (y|) trick, noKLUDGE */
565 		INSERT(OPLUS_, pos);
566 		ASTERN(O_PLUS, pos);
567 		INSERT(OQUEST_, pos);
568 		ASTERN(O_QUEST, pos);
569 		break;
570 	case '+':
571 		INSERT(OPLUS_, pos);
572 		ASTERN(O_PLUS, pos);
573 		break;
574 	case '?':
575 		/* KLUDGE: emit y? as (y|) until subtle bug gets fixed */
576 		INSERT(OCH_, pos);		/* offset slightly wrong */
577 		ASTERN(OOR1, pos);		/* this one's right */
578 		AHEAD(pos);			/* fix the OCH_ */
579 		EMIT(OOR2, 0);			/* offset very wrong... */
580 		AHEAD(THERE());			/* ...so fix it */
581 		ASTERN(O_CH, THERETHERE());
582 		break;
583 	case '{':
584 		count = p_count(p);
585 		if (EAT(',')) {
586 			if (isdigit((uch)PEEK())) {
587 				count2 = p_count(p);
588 				(void)REQUIRE(count <= count2, REG_BADBR);
589 			} else		/* single number with comma */
590 				count2 = INFINITY;
591 		} else		/* just a single number */
592 			count2 = count;
593 		repeat(p, pos, count, count2);
594 		if (!EAT('}')) {	/* error heuristics */
595 			while (MORE() && PEEK() != '}')
596 				NEXT();
597 			(void)REQUIRE(MORE(), REG_EBRACE);
598 			SETERROR(REG_BADBR);
599 		}
600 		break;
601 	}
602 
603 	if (!MORE())
604 		return (false);
605 	c = PEEK();
606 	if (!( c == '*' || c == '+' || c == '?' ||
607 				(c == '{' && MORE2() && isdigit((uch)PEEK2())) ) )
608 		return (false);
609 	SETERROR(REG_BADRPT);
610 	return (false);
611 }
612 
613 /*
614  - p_str - string (no metacharacters) "parser"
615  == static void p_str(struct parse *p);
616  */
617 static void
618 p_str(struct parse *p)
619 {
620 	(void)REQUIRE(MORE(), REG_EMPTY);
621 	while (MORE())
622 		ordinary(p, WGETNEXT());
623 }
624 
625 /*
626  * Eat consecutive branch delimiters for the kind of expression that we are
627  * parsing, return the number of delimiters that we ate.
628  */
629 static int
630 p_branch_eat_delim(struct parse *p, struct branchc *bc)
631 {
632 	int nskip;
633 
634 	(void)bc;
635 	nskip = 0;
636 	while (EATSPEC('|'))
637 		++nskip;
638 	return (nskip);
639 }
640 
641 /*
642  * Insert necessary branch book-keeping operations. This emits a
643  * bogus 'next' offset, since we still have more to parse
644  */
645 static void
646 p_branch_ins_offset(struct parse *p, struct branchc *bc)
647 {
648 
649 	if (bc->nbranch == 0) {
650 		INSERT(OCH_, bc->start);	/* offset is wrong */
651 		bc->fwd = bc->start;
652 		bc->back = bc->start;
653 	}
654 
655 	ASTERN(OOR1, bc->back);
656 	bc->back = THERE();
657 	AHEAD(bc->fwd);			/* fix previous offset */
658 	bc->fwd = HERE();
659 	EMIT(OOR2, 0);			/* offset is very wrong */
660 	++bc->nbranch;
661 }
662 
663 /*
664  * Fix the offset of the tail branch, if we actually had any branches.
665  * This is to correct the bogus placeholder offset that we use.
666  */
667 static void
668 p_branch_fix_tail(struct parse *p, struct branchc *bc)
669 {
670 
671 	/* Fix bogus offset at the tail if we actually have branches */
672 	if (bc->nbranch > 0) {
673 		AHEAD(bc->fwd);
674 		ASTERN(O_CH, bc->back);
675 	}
676 }
677 
678 /*
679  * Signal to the parser that an empty branch has been encountered; this will,
680  * in the future, be used to allow for more permissive behavior with empty
681  * branches. The return value should indicate whether parsing may continue
682  * or not.
683  */
684 static bool
685 p_branch_empty(struct parse *p, struct branchc *bc)
686 {
687 
688 #if defined(LIBREGEX) && defined(NOTYET)
689 	if (bc->outer)
690 		p->g->iflags |= EMPTBR;
691 	return (true);
692 #else
693 	(void)bc;
694 	SETERROR(REG_EMPTY);
695 	return (false);
696 #endif
697 }
698 
699 /*
700  * Take care of any branching requirements. This includes inserting the
701  * appropriate branching instructions as well as eating all of the branch
702  * delimiters until we either run out of pattern or need to parse more pattern.
703  */
704 static bool
705 p_branch_do(struct parse *p, struct branchc *bc)
706 {
707 	int ate = 0;
708 
709 	ate = p_branch_eat_delim(p, bc);
710 	if (ate == 0)
711 		return (false);
712 	else if ((ate > 1 || (bc->outer && !MORE())) && !p_branch_empty(p, bc))
713 		/*
714 		 * Halt parsing only if we have an empty branch and p_branch_empty
715 		 * indicates that we must not continue. In the future, this will not
716 		 * necessarily be an error.
717 		 */
718 		return (false);
719 	p_branch_ins_offset(p, bc);
720 
721 	return (true);
722 }
723 
724 static void
725 p_bre_pre_parse(struct parse *p, struct branchc *bc)
726 {
727 
728 	(void) bc;
729 	/*
730 	 * Does not move cleanly into expression parser because of
731 	 * ordinary interpration of * at the beginning position of
732 	 * an expression.
733 	 */
734 	if (EAT('^')) {
735 		EMIT(OBOL, 0);
736 		p->g->iflags |= USEBOL;
737 		p->g->nbol++;
738 	}
739 }
740 
741 static void
742 p_bre_post_parse(struct parse *p, struct branchc *bc)
743 {
744 
745 	/* Expression is terminating due to EOL token */
746 	if (bc->terminate) {
747 		DROP(1);
748 		EMIT(OEOL, 0);
749 		p->g->iflags |= USEEOL;
750 		p->g->neol++;
751 	}
752 }
753 
754 /*
755  - p_re - Top level parser, concatenation and BRE anchoring
756  == static void p_re(struct parse *p, int end1, int end2);
757  * Giving end1 as OUT essentially eliminates the end1/end2 check.
758  *
759  * This implementation is a bit of a kludge, in that a trailing $ is first
760  * taken as an ordinary character and then revised to be an anchor.
761  * The amount of lookahead needed to avoid this kludge is excessive.
762  */
763 static void
764 p_re(struct parse *p,
765 	int end1,	/* first terminating character */
766 	int end2)	/* second terminating character; ignored for EREs */
767 {
768 	struct branchc bc;
769 
770 	bc.nbranch = 0;
771 	if (end1 == OUT && end2 == OUT)
772 		bc.outer = true;
773 	else
774 		bc.outer = false;
775 #define	SEEEND()	(!p->bre ? SEE(end1) : SEETWO(end1, end2))
776 	for (;;) {
777 		bc.start = HERE();
778 		bc.nchain = 0;
779 		bc.terminate = false;
780 		if (p->pre_parse != NULL)
781 			p->pre_parse(p, &bc);
782 		while (MORE() && (!p->allowbranch || !SEESPEC('|')) && !SEEEND()) {
783 			bc.terminate = p->parse_expr(p, &bc);
784 			++bc.nchain;
785 		}
786 		if (p->post_parse != NULL)
787 			p->post_parse(p, &bc);
788 		(void) REQUIRE(p->gnuext || HERE() != bc.start, REG_EMPTY);
789 #ifdef LIBREGEX
790 		if (HERE() == bc.start && !p_branch_empty(p, &bc))
791 			break;
792 #endif
793 		if (!p->allowbranch)
794 			break;
795 		/*
796 		 * p_branch_do's return value indicates whether we should
797 		 * continue parsing or not. This is both for correctness and
798 		 * a slight optimization, because it will check if we've
799 		 * encountered an empty branch or the end of the string
800 		 * immediately following a branch delimiter.
801 		 */
802 		if (!p_branch_do(p, &bc))
803 			break;
804 	}
805 #undef SEE_END
806 	if (p->allowbranch)
807 		p_branch_fix_tail(p, &bc);
808 	assert(!MORE() || SEE(end1));
809 }
810 
811 /*
812  - p_simp_re - parse a simple RE, an atom possibly followed by a repetition
813  == static bool p_simp_re(struct parse *p, struct branchc *bc);
814  */
815 static bool			/* was the simple RE an unbackslashed $? */
816 p_simp_re(struct parse *p, struct branchc *bc)
817 {
818 	int c;
819 	int cc;			/* convenient/control character */
820 	int count;
821 	int count2;
822 	sopno pos;
823 	bool handled;
824 	int i;
825 	wint_t wc;
826 	sopno subno;
827 #	define	BACKSL	(1<<CHAR_BIT)
828 
829 	pos = HERE();		/* repetition op, if any, covers from here */
830 	handled = false;
831 
832 	assert(MORE());		/* caller should have ensured this */
833 	c = GETNEXT();
834 	if (c == '\\') {
835 		(void)REQUIRE(MORE(), REG_EESCAPE);
836 		cc = GETNEXT();
837 		c = BACKSL | cc;
838 #ifdef LIBREGEX
839 		if (p->gnuext) {
840 			handled = true;
841 			switch (c) {
842 			case BACKSL|'`':
843 				EMIT(OBOS, 0);
844 				break;
845 			case BACKSL|'\'':
846 				EMIT(OEOS, 0);
847 				break;
848 			case BACKSL|'W':
849 			case BACKSL|'w':
850 			case BACKSL|'S':
851 			case BACKSL|'s':
852 				p_b_pseudoclass(p, cc);
853 				break;
854 			default:
855 				handled = false;
856 			}
857 		}
858 #endif
859 	}
860 	if (!handled) {
861 		switch (c) {
862 		case '.':
863 			if (p->g->cflags&REG_NEWLINE)
864 				nonnewline(p);
865 			else
866 				EMIT(OANY, 0);
867 			break;
868 		case '[':
869 			p_bracket(p);
870 			break;
871 		case BACKSL|'<':
872 			EMIT(OBOW, 0);
873 			break;
874 		case BACKSL|'>':
875 			EMIT(OEOW, 0);
876 			break;
877 		case BACKSL|'{':
878 			SETERROR(REG_BADRPT);
879 			break;
880 		case BACKSL|'(':
881 			p->g->nsub++;
882 			subno = p->g->nsub;
883 			if (subno < NPAREN)
884 				p->pbegin[subno] = HERE();
885 			EMIT(OLPAREN, subno);
886 			/* the MORE here is an error heuristic */
887 			if (MORE() && !SEETWO('\\', ')'))
888 				p_re(p, '\\', ')');
889 			if (subno < NPAREN) {
890 				p->pend[subno] = HERE();
891 				assert(p->pend[subno] != 0);
892 			}
893 			EMIT(ORPAREN, subno);
894 			(void)REQUIRE(EATTWO('\\', ')'), REG_EPAREN);
895 			break;
896 		case BACKSL|')':	/* should not get here -- must be user */
897 			SETERROR(REG_EPAREN);
898 			break;
899 		case BACKSL|'1':
900 		case BACKSL|'2':
901 		case BACKSL|'3':
902 		case BACKSL|'4':
903 		case BACKSL|'5':
904 		case BACKSL|'6':
905 		case BACKSL|'7':
906 		case BACKSL|'8':
907 		case BACKSL|'9':
908 			i = (c&~BACKSL) - '0';
909 			assert(i < NPAREN);
910 			if (p->pend[i] != 0) {
911 				assert(i <= p->g->nsub);
912 				EMIT(OBACK_, i);
913 				assert(p->pbegin[i] != 0);
914 				assert(OP(p->strip[p->pbegin[i]]) == OLPAREN);
915 				assert(OP(p->strip[p->pend[i]]) == ORPAREN);
916 				(void) dupl(p, p->pbegin[i]+1, p->pend[i]);
917 				EMIT(O_BACK, i);
918 			} else
919 				SETERROR(REG_ESUBREG);
920 			p->g->backrefs = 1;
921 			break;
922 		case '*':
923 			/*
924 			 * Ordinary if used as the first character beyond BOL anchor of
925 			 * a (sub-)expression, counts as a bad repetition operator if it
926 			 * appears otherwise.
927 			 */
928 			(void)REQUIRE(bc->nchain == 0, REG_BADRPT);
929 			/* FALLTHROUGH */
930 		default:
931 			if (p->error != 0)
932 				return (false);	/* Definitely not $... */
933 			p->next--;
934 			wc = WGETNEXT();
935 			if ((c & BACKSL) == 0 || may_escape(p, wc))
936 				ordinary(p, wc);
937 			else
938 				SETERROR(REG_EESCAPE);
939 			break;
940 		}
941 	}
942 
943 	if (EAT('*')) {		/* implemented as +? */
944 		/* this case does not require the (y|) trick, noKLUDGE */
945 		INSERT(OPLUS_, pos);
946 		ASTERN(O_PLUS, pos);
947 		INSERT(OQUEST_, pos);
948 		ASTERN(O_QUEST, pos);
949 #ifdef LIBREGEX
950 	} else if (p->gnuext && EATTWO('\\', '?')) {
951 		INSERT(OQUEST_, pos);
952 		ASTERN(O_QUEST, pos);
953 	} else if (p->gnuext && EATTWO('\\', '+')) {
954 		INSERT(OPLUS_, pos);
955 		ASTERN(O_PLUS, pos);
956 #endif
957 	} else if (EATTWO('\\', '{')) {
958 		count = p_count(p);
959 		if (EAT(',')) {
960 			if (MORE() && isdigit((uch)PEEK())) {
961 				count2 = p_count(p);
962 				(void)REQUIRE(count <= count2, REG_BADBR);
963 			} else		/* single number with comma */
964 				count2 = INFINITY;
965 		} else		/* just a single number */
966 			count2 = count;
967 		repeat(p, pos, count, count2);
968 		if (!EATTWO('\\', '}')) {	/* error heuristics */
969 			while (MORE() && !SEETWO('\\', '}'))
970 				NEXT();
971 			(void)REQUIRE(MORE(), REG_EBRACE);
972 			SETERROR(REG_BADBR);
973 		}
974 	} else if (c == '$')     /* $ (but not \$) ends it */
975 		return (true);
976 
977 	return (false);
978 }
979 
980 /*
981  - p_count - parse a repetition count
982  == static int p_count(struct parse *p);
983  */
984 static int			/* the value */
985 p_count(struct parse *p)
986 {
987 	int count = 0;
988 	int ndigits = 0;
989 
990 	while (MORE() && isdigit((uch)PEEK()) && count <= DUPMAX) {
991 		count = count*10 + (GETNEXT() - '0');
992 		ndigits++;
993 	}
994 
995 	(void)REQUIRE(ndigits > 0 && count <= DUPMAX, REG_BADBR);
996 	return(count);
997 }
998 
999 /*
1000  - p_bracket - parse a bracketed character list
1001  == static void p_bracket(struct parse *p);
1002  */
1003 static void
1004 p_bracket(struct parse *p)
1005 {
1006 	cset *cs;
1007 	wint_t ch;
1008 
1009 	/* Dept of Truly Sickening Special-Case Kludges */
1010 	if (p->next + 5 < p->end && strncmp(p->next, "[:<:]]", 6) == 0) {
1011 		EMIT(OBOW, 0);
1012 		NEXTn(6);
1013 		return;
1014 	}
1015 	if (p->next + 5 < p->end && strncmp(p->next, "[:>:]]", 6) == 0) {
1016 		EMIT(OEOW, 0);
1017 		NEXTn(6);
1018 		return;
1019 	}
1020 
1021 	if ((cs = allocset(p)) == NULL)
1022 		return;
1023 
1024 	if (p->g->cflags&REG_ICASE)
1025 		cs->icase = 1;
1026 	if (EAT('^'))
1027 		cs->invert = 1;
1028 	if (EAT(']'))
1029 		CHadd(p, cs, ']');
1030 	else if (EAT('-'))
1031 		CHadd(p, cs, '-');
1032 	while (MORE() && PEEK() != ']' && !SEETWO('-', ']'))
1033 		p_b_term(p, cs);
1034 	if (EAT('-'))
1035 		CHadd(p, cs, '-');
1036 	(void)MUSTEAT(']', REG_EBRACK);
1037 
1038 	if (p->error != 0)	/* don't mess things up further */
1039 		return;
1040 
1041 	if (cs->invert && p->g->cflags&REG_NEWLINE)
1042 		cs->bmp['\n' >> 3] |= 1 << ('\n' & 7);
1043 
1044 	if ((ch = singleton(cs)) != OUT) {	/* optimize singleton sets */
1045 		ordinary(p, ch);
1046 		freeset(p, cs);
1047 	} else
1048 		EMIT(OANYOF, (int)(cs - p->g->sets));
1049 }
1050 
1051 static int
1052 p_range_cmp(wchar_t c1, wchar_t c2)
1053 {
1054 #ifndef LIBREGEX
1055 	return __wcollate_range_cmp(c1, c2);
1056 #else
1057 	/* Copied from libc/collate __wcollate_range_cmp */
1058 	wchar_t s1[2], s2[2];
1059 
1060 	s1[0] = c1;
1061 	s1[1] = L'\0';
1062 	s2[0] = c2;
1063 	s2[1] = L'\0';
1064 	return (wcscoll(s1, s2));
1065 #endif
1066 }
1067 
1068 /*
1069  - p_b_term - parse one term of a bracketed character list
1070  == static void p_b_term(struct parse *p, cset *cs);
1071  */
1072 static void
1073 p_b_term(struct parse *p, cset *cs)
1074 {
1075 	char c;
1076 	wint_t start, finish;
1077 	wint_t i;
1078 #ifndef LIBREGEX
1079 	struct xlocale_collate *table =
1080 		(struct xlocale_collate*)__get_locale()->components[XLC_COLLATE];
1081 #endif
1082 	/* classify what we've got */
1083 	switch ((MORE()) ? PEEK() : '\0') {
1084 	case '[':
1085 		c = (MORE2()) ? PEEK2() : '\0';
1086 		break;
1087 	case '-':
1088 		SETERROR(REG_ERANGE);
1089 		return;			/* NOTE RETURN */
1090 	default:
1091 		c = '\0';
1092 		break;
1093 	}
1094 
1095 	switch (c) {
1096 	case ':':		/* character class */
1097 		NEXT2();
1098 		(void)REQUIRE(MORE(), REG_EBRACK);
1099 		c = PEEK();
1100 		(void)REQUIRE(c != '-' && c != ']', REG_ECTYPE);
1101 		p_b_cclass(p, cs);
1102 		(void)REQUIRE(MORE(), REG_EBRACK);
1103 		(void)REQUIRE(EATTWO(':', ']'), REG_ECTYPE);
1104 		break;
1105 	case '=':		/* equivalence class */
1106 		NEXT2();
1107 		(void)REQUIRE(MORE(), REG_EBRACK);
1108 		c = PEEK();
1109 		(void)REQUIRE(c != '-' && c != ']', REG_ECOLLATE);
1110 		p_b_eclass(p, cs);
1111 		(void)REQUIRE(MORE(), REG_EBRACK);
1112 		(void)REQUIRE(EATTWO('=', ']'), REG_ECOLLATE);
1113 		break;
1114 	default:		/* symbol, ordinary character, or range */
1115 		start = p_b_symbol(p);
1116 		if (SEE('-') && MORE2() && PEEK2() != ']') {
1117 			/* range */
1118 			NEXT();
1119 			if (EAT('-'))
1120 				finish = '-';
1121 			else
1122 				finish = p_b_symbol(p);
1123 		} else
1124 			finish = start;
1125 		if (start == finish)
1126 			CHadd(p, cs, start);
1127 		else {
1128 #ifndef LIBREGEX
1129 			if (table->__collate_load_error || MB_CUR_MAX > 1) {
1130 #else
1131 			if (MB_CUR_MAX > 1) {
1132 #endif
1133 				(void)REQUIRE(start <= finish, REG_ERANGE);
1134 				CHaddrange(p, cs, start, finish);
1135 			} else {
1136 				(void)REQUIRE(p_range_cmp(start, finish) <= 0, REG_ERANGE);
1137 				for (i = 0; i <= UCHAR_MAX; i++) {
1138 					if (p_range_cmp(start, i) <= 0 &&
1139 					    p_range_cmp(i, finish) <= 0 )
1140 						CHadd(p, cs, i);
1141 				}
1142 			}
1143 		}
1144 		break;
1145 	}
1146 }
1147 
1148 /*
1149  - p_b_pseudoclass - parse a pseudo-class (\w, \W, \s, \S)
1150  == static int p_b_pseudoclass(struct parse *p, char c)
1151  */
1152 static int
1153 p_b_pseudoclass(struct parse *p, char c) {
1154 	cset *cs;
1155 
1156 	if ((cs = allocset(p)) == NULL)
1157 		return(0);
1158 
1159 	if (p->g->cflags&REG_ICASE)
1160 		cs->icase = 1;
1161 
1162 	switch (c) {
1163 	case 'W':
1164 		cs->invert = 1;
1165 		/* PASSTHROUGH */
1166 	case 'w':
1167 		p_b_cclass_named(p, cs, "alnum");
1168 		break;
1169 	case 'S':
1170 		cs->invert = 1;
1171 		/* PASSTHROUGH */
1172 	case 's':
1173 		p_b_cclass_named(p, cs, "space");
1174 		break;
1175 	default:
1176 		return(0);
1177 	}
1178 
1179 	EMIT(OANYOF, (int)(cs - p->g->sets));
1180 	return(1);
1181 }
1182 
1183 /*
1184  - p_b_cclass - parse a character-class name and deal with it
1185  == static void p_b_cclass(struct parse *p, cset *cs);
1186  */
1187 static void
1188 p_b_cclass(struct parse *p, cset *cs)
1189 {
1190 	const char *sp = p->next;
1191 	size_t len;
1192 	char clname[16];
1193 
1194 	while (MORE() && isalpha((uch)PEEK()))
1195 		NEXT();
1196 	len = p->next - sp;
1197 	if (len >= sizeof(clname) - 1) {
1198 		SETERROR(REG_ECTYPE);
1199 		return;
1200 	}
1201 	memcpy(clname, sp, len);
1202 	clname[len] = '\0';
1203 
1204 	p_b_cclass_named(p, cs, clname);
1205 }
1206 /*
1207  - p_b_cclass_named - deal with a named character class
1208  == static void p_b_cclass_named(struct parse *p, cset *cs, const char []);
1209  */
1210 static void
1211 p_b_cclass_named(struct parse *p, cset *cs, const char clname[]) {
1212 	wctype_t wct;
1213 
1214 	if ((wct = wctype(clname)) == 0) {
1215 		SETERROR(REG_ECTYPE);
1216 		return;
1217 	}
1218 	CHaddtype(p, cs, wct);
1219 }
1220 
1221 /*
1222  - p_b_eclass - parse an equivalence-class name and deal with it
1223  == static void p_b_eclass(struct parse *p, cset *cs);
1224  *
1225  * This implementation is incomplete. xxx
1226  */
1227 static void
1228 p_b_eclass(struct parse *p, cset *cs)
1229 {
1230 	wint_t c;
1231 
1232 	c = p_b_coll_elem(p, '=');
1233 	CHadd(p, cs, c);
1234 }
1235 
1236 /*
1237  - p_b_symbol - parse a character or [..]ed multicharacter collating symbol
1238  == static wint_t p_b_symbol(struct parse *p);
1239  */
1240 static wint_t			/* value of symbol */
1241 p_b_symbol(struct parse *p)
1242 {
1243 	wint_t value;
1244 
1245 	(void)REQUIRE(MORE(), REG_EBRACK);
1246 	if (!EATTWO('[', '.'))
1247 		return(WGETNEXT());
1248 
1249 	/* collating symbol */
1250 	value = p_b_coll_elem(p, '.');
1251 	(void)REQUIRE(EATTWO('.', ']'), REG_ECOLLATE);
1252 	return(value);
1253 }
1254 
1255 /*
1256  - p_b_coll_elem - parse a collating-element name and look it up
1257  == static wint_t p_b_coll_elem(struct parse *p, wint_t endc);
1258  */
1259 static wint_t			/* value of collating element */
1260 p_b_coll_elem(struct parse *p,
1261 	wint_t endc)		/* name ended by endc,']' */
1262 {
1263 	const char *sp = p->next;
1264 	struct cname *cp;
1265 	mbstate_t mbs;
1266 	wchar_t wc;
1267 	size_t clen, len;
1268 
1269 	while (MORE() && !SEETWO(endc, ']'))
1270 		NEXT();
1271 	if (!MORE()) {
1272 		SETERROR(REG_EBRACK);
1273 		return(0);
1274 	}
1275 	len = p->next - sp;
1276 	for (cp = cnames; cp->name != NULL; cp++)
1277 		if (strncmp(cp->name, sp, len) == 0 && strlen(cp->name) == len)
1278 			return(cp->code);	/* known name */
1279 	memset(&mbs, 0, sizeof(mbs));
1280 	if ((clen = mbrtowc(&wc, sp, len, &mbs)) == len)
1281 		return (wc);			/* single character */
1282 	else if (clen == (size_t)-1 || clen == (size_t)-2)
1283 		SETERROR(REG_ILLSEQ);
1284 	else
1285 		SETERROR(REG_ECOLLATE);		/* neither */
1286 	return(0);
1287 }
1288 
1289 /*
1290  - may_escape - determine whether 'ch' is escape-able in the current context
1291  == static int may_escape(struct parse *p, const wint_t ch)
1292  */
1293 static bool
1294 may_escape(struct parse *p, const wint_t ch)
1295 {
1296 
1297 	if ((p->pflags & PFLAG_LEGACY_ESC) != 0)
1298 		return (true);
1299 	if (isalpha(ch) || ch == '\'' || ch == '`')
1300 		return (false);
1301 	return (true);
1302 #ifdef NOTYET
1303 	/*
1304 	 * Build a whitelist of characters that may be escaped to produce an
1305 	 * ordinary in the current context. This assumes that these have not
1306 	 * been otherwise interpreted as a special character. Escaping an
1307 	 * ordinary character yields undefined results according to
1308 	 * IEEE 1003.1-2008. Some extensions (notably, some GNU extensions) take
1309 	 * advantage of this and use escaped ordinary characters to provide
1310 	 * special meaning, e.g. \b, \B, \w, \W, \s, \S.
1311 	 */
1312 	switch(ch) {
1313 	case '|':
1314 	case '+':
1315 	case '?':
1316 		/* The above characters may not be escaped in BREs */
1317 		if (!(p->g->cflags&REG_EXTENDED))
1318 			return (false);
1319 		/* Fallthrough */
1320 	case '(':
1321 	case ')':
1322 	case '{':
1323 	case '}':
1324 	case '.':
1325 	case '[':
1326 	case ']':
1327 	case '\\':
1328 	case '*':
1329 	case '^':
1330 	case '$':
1331 		return (true);
1332 	default:
1333 		return (false);
1334 	}
1335 #endif
1336 }
1337 
1338 /*
1339  - othercase - return the case counterpart of an alphabetic
1340  == static wint_t othercase(wint_t ch);
1341  */
1342 static wint_t			/* if no counterpart, return ch */
1343 othercase(wint_t ch)
1344 {
1345 	assert(iswalpha(ch));
1346 	if (iswupper(ch))
1347 		return(towlower(ch));
1348 	else if (iswlower(ch))
1349 		return(towupper(ch));
1350 	else			/* peculiar, but could happen */
1351 		return(ch);
1352 }
1353 
1354 /*
1355  - bothcases - emit a dualcase version of a two-case character
1356  == static void bothcases(struct parse *p, wint_t ch);
1357  *
1358  * Boy, is this implementation ever a kludge...
1359  */
1360 static void
1361 bothcases(struct parse *p, wint_t ch)
1362 {
1363 	const char *oldnext = p->next;
1364 	const char *oldend = p->end;
1365 	char bracket[3 + MB_LEN_MAX];
1366 	size_t n;
1367 	mbstate_t mbs;
1368 
1369 	assert(othercase(ch) != ch);	/* p_bracket() would recurse */
1370 	p->next = bracket;
1371 	memset(&mbs, 0, sizeof(mbs));
1372 	n = wcrtomb(bracket, ch, &mbs);
1373 	assert(n != (size_t)-1);
1374 	bracket[n] = ']';
1375 	bracket[n + 1] = '\0';
1376 	p->end = bracket+n+1;
1377 	p_bracket(p);
1378 	assert(p->next == p->end);
1379 	p->next = oldnext;
1380 	p->end = oldend;
1381 }
1382 
1383 /*
1384  - ordinary - emit an ordinary character
1385  == static void ordinary(struct parse *p, wint_t ch);
1386  */
1387 static void
1388 ordinary(struct parse *p, wint_t ch)
1389 {
1390 	cset *cs;
1391 
1392 	if ((p->g->cflags&REG_ICASE) && iswalpha(ch) && othercase(ch) != ch)
1393 		bothcases(p, ch);
1394 	else if ((ch & OPDMASK) == ch)
1395 		EMIT(OCHAR, ch);
1396 	else {
1397 		/*
1398 		 * Kludge: character is too big to fit into an OCHAR operand.
1399 		 * Emit a singleton set.
1400 		 */
1401 		if ((cs = allocset(p)) == NULL)
1402 			return;
1403 		CHadd(p, cs, ch);
1404 		EMIT(OANYOF, (int)(cs - p->g->sets));
1405 	}
1406 }
1407 
1408 /*
1409  - nonnewline - emit REG_NEWLINE version of OANY
1410  == static void nonnewline(struct parse *p);
1411  *
1412  * Boy, is this implementation ever a kludge...
1413  */
1414 static void
1415 nonnewline(struct parse *p)
1416 {
1417 	const char *oldnext = p->next;
1418 	const char *oldend = p->end;
1419 	char bracket[4];
1420 
1421 	p->next = bracket;
1422 	p->end = bracket+3;
1423 	bracket[0] = '^';
1424 	bracket[1] = '\n';
1425 	bracket[2] = ']';
1426 	bracket[3] = '\0';
1427 	p_bracket(p);
1428 	assert(p->next == bracket+3);
1429 	p->next = oldnext;
1430 	p->end = oldend;
1431 }
1432 
1433 /*
1434  - repeat - generate code for a bounded repetition, recursively if needed
1435  == static void repeat(struct parse *p, sopno start, int from, int to);
1436  */
1437 static void
1438 repeat(struct parse *p,
1439 	sopno start,		/* operand from here to end of strip */
1440 	int from,		/* repeated from this number */
1441 	int to)			/* to this number of times (maybe INFINITY) */
1442 {
1443 	sopno finish = HERE();
1444 #	define	N	2
1445 #	define	INF	3
1446 #	define	REP(f, t)	((f)*8 + (t))
1447 #	define	MAP(n)	(((n) <= 1) ? (n) : ((n) == INFINITY) ? INF : N)
1448 	sopno copy;
1449 
1450 	if (p->error != 0)	/* head off possible runaway recursion */
1451 		return;
1452 
1453 	assert(from <= to);
1454 
1455 	switch (REP(MAP(from), MAP(to))) {
1456 	case REP(0, 0):			/* must be user doing this */
1457 		DROP(finish-start);	/* drop the operand */
1458 		break;
1459 	case REP(0, 1):			/* as x{1,1}? */
1460 	case REP(0, N):			/* as x{1,n}? */
1461 	case REP(0, INF):		/* as x{1,}? */
1462 		/* KLUDGE: emit y? as (y|) until subtle bug gets fixed */
1463 		INSERT(OCH_, start);		/* offset is wrong... */
1464 		repeat(p, start+1, 1, to);
1465 		ASTERN(OOR1, start);
1466 		AHEAD(start);			/* ... fix it */
1467 		EMIT(OOR2, 0);
1468 		AHEAD(THERE());
1469 		ASTERN(O_CH, THERETHERE());
1470 		break;
1471 	case REP(1, 1):			/* trivial case */
1472 		/* done */
1473 		break;
1474 	case REP(1, N):			/* as x?x{1,n-1} */
1475 		/* KLUDGE: emit y? as (y|) until subtle bug gets fixed */
1476 		INSERT(OCH_, start);
1477 		ASTERN(OOR1, start);
1478 		AHEAD(start);
1479 		EMIT(OOR2, 0);			/* offset very wrong... */
1480 		AHEAD(THERE());			/* ...so fix it */
1481 		ASTERN(O_CH, THERETHERE());
1482 		copy = dupl(p, start+1, finish+1);
1483 		assert(copy == finish+4);
1484 		repeat(p, copy, 1, to-1);
1485 		break;
1486 	case REP(1, INF):		/* as x+ */
1487 		INSERT(OPLUS_, start);
1488 		ASTERN(O_PLUS, start);
1489 		break;
1490 	case REP(N, N):			/* as xx{m-1,n-1} */
1491 		copy = dupl(p, start, finish);
1492 		repeat(p, copy, from-1, to-1);
1493 		break;
1494 	case REP(N, INF):		/* as xx{n-1,INF} */
1495 		copy = dupl(p, start, finish);
1496 		repeat(p, copy, from-1, to);
1497 		break;
1498 	default:			/* "can't happen" */
1499 		SETERROR(REG_ASSERT);	/* just in case */
1500 		break;
1501 	}
1502 }
1503 
1504 /*
1505  - wgetnext - helper function for WGETNEXT() macro. Gets the next wide
1506  - character from the parse struct, signals a REG_ILLSEQ error if the
1507  - character can't be converted. Returns the number of bytes consumed.
1508  */
1509 static wint_t
1510 wgetnext(struct parse *p)
1511 {
1512 	mbstate_t mbs;
1513 	wchar_t wc;
1514 	size_t n;
1515 
1516 	memset(&mbs, 0, sizeof(mbs));
1517 	n = mbrtowc(&wc, p->next, p->end - p->next, &mbs);
1518 	if (n == (size_t)-1 || n == (size_t)-2) {
1519 		SETERROR(REG_ILLSEQ);
1520 		return (0);
1521 	}
1522 	if (n == 0)
1523 		n = 1;
1524 	p->next += n;
1525 	return (wc);
1526 }
1527 
1528 /*
1529  - seterr - set an error condition
1530  == static int seterr(struct parse *p, int e);
1531  */
1532 static int			/* useless but makes type checking happy */
1533 seterr(struct parse *p, int e)
1534 {
1535 	if (p->error == 0)	/* keep earliest error condition */
1536 		p->error = e;
1537 	p->next = nuls;		/* try to bring things to a halt */
1538 	p->end = nuls;
1539 	return(0);		/* make the return value well-defined */
1540 }
1541 
1542 /*
1543  - allocset - allocate a set of characters for []
1544  == static cset *allocset(struct parse *p);
1545  */
1546 static cset *
1547 allocset(struct parse *p)
1548 {
1549 	cset *cs, *ncs;
1550 
1551 	ncs = reallocarray(p->g->sets, p->g->ncsets + 1, sizeof(*ncs));
1552 	if (ncs == NULL) {
1553 		SETERROR(REG_ESPACE);
1554 		return (NULL);
1555 	}
1556 	p->g->sets = ncs;
1557 	cs = &p->g->sets[p->g->ncsets++];
1558 	memset(cs, 0, sizeof(*cs));
1559 
1560 	return(cs);
1561 }
1562 
1563 /*
1564  - freeset - free a now-unused set
1565  == static void freeset(struct parse *p, cset *cs);
1566  */
1567 static void
1568 freeset(struct parse *p, cset *cs)
1569 {
1570 	cset *top = &p->g->sets[p->g->ncsets];
1571 
1572 	free(cs->wides);
1573 	free(cs->ranges);
1574 	free(cs->types);
1575 	memset(cs, 0, sizeof(*cs));
1576 	if (cs == top-1)	/* recover only the easy case */
1577 		p->g->ncsets--;
1578 }
1579 
1580 /*
1581  - singleton - Determine whether a set contains only one character,
1582  - returning it if so, otherwise returning OUT.
1583  */
1584 static wint_t
1585 singleton(cset *cs)
1586 {
1587 	wint_t i, s, n;
1588 
1589 	for (i = n = 0; i < NC; i++)
1590 		if (CHIN(cs, i)) {
1591 			n++;
1592 			s = i;
1593 		}
1594 	if (n == 1)
1595 		return (s);
1596 	if (cs->nwides == 1 && cs->nranges == 0 && cs->ntypes == 0 &&
1597 	    cs->icase == 0)
1598 		return (cs->wides[0]);
1599 	/* Don't bother handling the other cases. */
1600 	return (OUT);
1601 }
1602 
1603 /*
1604  - CHadd - add character to character set.
1605  */
1606 static void
1607 CHadd(struct parse *p, cset *cs, wint_t ch)
1608 {
1609 	wint_t nch, *newwides;
1610 	assert(ch >= 0);
1611 	if (ch < NC)
1612 		cs->bmp[ch >> 3] |= 1 << (ch & 7);
1613 	else {
1614 		newwides = reallocarray(cs->wides, cs->nwides + 1,
1615 		    sizeof(*cs->wides));
1616 		if (newwides == NULL) {
1617 			SETERROR(REG_ESPACE);
1618 			return;
1619 		}
1620 		cs->wides = newwides;
1621 		cs->wides[cs->nwides++] = ch;
1622 	}
1623 	if (cs->icase) {
1624 		if ((nch = towlower(ch)) < NC)
1625 			cs->bmp[nch >> 3] |= 1 << (nch & 7);
1626 		if ((nch = towupper(ch)) < NC)
1627 			cs->bmp[nch >> 3] |= 1 << (nch & 7);
1628 	}
1629 }
1630 
1631 /*
1632  - CHaddrange - add all characters in the range [min,max] to a character set.
1633  */
1634 static void
1635 CHaddrange(struct parse *p, cset *cs, wint_t min, wint_t max)
1636 {
1637 	crange *newranges;
1638 
1639 	for (; min < NC && min <= max; min++)
1640 		CHadd(p, cs, min);
1641 	if (min >= max)
1642 		return;
1643 	newranges = reallocarray(cs->ranges, cs->nranges + 1,
1644 	    sizeof(*cs->ranges));
1645 	if (newranges == NULL) {
1646 		SETERROR(REG_ESPACE);
1647 		return;
1648 	}
1649 	cs->ranges = newranges;
1650 	cs->ranges[cs->nranges].min = min;
1651 	cs->ranges[cs->nranges].max = max;
1652 	cs->nranges++;
1653 }
1654 
1655 /*
1656  - CHaddtype - add all characters of a certain type to a character set.
1657  */
1658 static void
1659 CHaddtype(struct parse *p, cset *cs, wctype_t wct)
1660 {
1661 	wint_t i;
1662 	wctype_t *newtypes;
1663 
1664 	for (i = 0; i < NC; i++)
1665 		if (iswctype(i, wct))
1666 			CHadd(p, cs, i);
1667 	newtypes = reallocarray(cs->types, cs->ntypes + 1,
1668 	    sizeof(*cs->types));
1669 	if (newtypes == NULL) {
1670 		SETERROR(REG_ESPACE);
1671 		return;
1672 	}
1673 	cs->types = newtypes;
1674 	cs->types[cs->ntypes++] = wct;
1675 }
1676 
1677 /*
1678  - dupl - emit a duplicate of a bunch of sops
1679  == static sopno dupl(struct parse *p, sopno start, sopno finish);
1680  */
1681 static sopno			/* start of duplicate */
1682 dupl(struct parse *p,
1683 	sopno start,		/* from here */
1684 	sopno finish)		/* to this less one */
1685 {
1686 	sopno ret = HERE();
1687 	sopno len = finish - start;
1688 
1689 	assert(finish >= start);
1690 	if (len == 0)
1691 		return(ret);
1692 	if (!enlarge(p, p->ssize + len)) /* this many unexpected additions */
1693 		return(ret);
1694 	(void) memcpy((char *)(p->strip + p->slen),
1695 		(char *)(p->strip + start), (size_t)len*sizeof(sop));
1696 	p->slen += len;
1697 	return(ret);
1698 }
1699 
1700 /*
1701  - doemit - emit a strip operator
1702  == static void doemit(struct parse *p, sop op, size_t opnd);
1703  *
1704  * It might seem better to implement this as a macro with a function as
1705  * hard-case backup, but it's just too big and messy unless there are
1706  * some changes to the data structures.  Maybe later.
1707  */
1708 static void
1709 doemit(struct parse *p, sop op, size_t opnd)
1710 {
1711 	/* avoid making error situations worse */
1712 	if (p->error != 0)
1713 		return;
1714 
1715 	/* deal with oversize operands ("can't happen", more or less) */
1716 	assert(opnd < 1<<OPSHIFT);
1717 
1718 	/* deal with undersized strip */
1719 	if (p->slen >= p->ssize)
1720 		if (!enlarge(p, (p->ssize+1) / 2 * 3))	/* +50% */
1721 			return;
1722 
1723 	/* finally, it's all reduced to the easy case */
1724 	p->strip[p->slen++] = SOP(op, opnd);
1725 }
1726 
1727 /*
1728  - doinsert - insert a sop into the strip
1729  == static void doinsert(struct parse *p, sop op, size_t opnd, sopno pos);
1730  */
1731 static void
1732 doinsert(struct parse *p, sop op, size_t opnd, sopno pos)
1733 {
1734 	sopno sn;
1735 	sop s;
1736 	int i;
1737 
1738 	/* avoid making error situations worse */
1739 	if (p->error != 0)
1740 		return;
1741 
1742 	sn = HERE();
1743 	EMIT(op, opnd);		/* do checks, ensure space */
1744 	assert(HERE() == sn+1);
1745 	s = p->strip[sn];
1746 
1747 	/* adjust paren pointers */
1748 	assert(pos > 0);
1749 	for (i = 1; i < NPAREN; i++) {
1750 		if (p->pbegin[i] >= pos) {
1751 			p->pbegin[i]++;
1752 		}
1753 		if (p->pend[i] >= pos) {
1754 			p->pend[i]++;
1755 		}
1756 	}
1757 
1758 	memmove((char *)&p->strip[pos+1], (char *)&p->strip[pos],
1759 						(HERE()-pos-1)*sizeof(sop));
1760 	p->strip[pos] = s;
1761 }
1762 
1763 /*
1764  - dofwd - complete a forward reference
1765  == static void dofwd(struct parse *p, sopno pos, sop value);
1766  */
1767 static void
1768 dofwd(struct parse *p, sopno pos, sop value)
1769 {
1770 	/* avoid making error situations worse */
1771 	if (p->error != 0)
1772 		return;
1773 
1774 	assert(value < 1<<OPSHIFT);
1775 	p->strip[pos] = OP(p->strip[pos]) | value;
1776 }
1777 
1778 /*
1779  - enlarge - enlarge the strip
1780  == static int enlarge(struct parse *p, sopno size);
1781  */
1782 static int
1783 enlarge(struct parse *p, sopno size)
1784 {
1785 	sop *sp;
1786 
1787 	if (p->ssize >= size)
1788 		return 1;
1789 
1790 	sp = reallocarray(p->strip, size, sizeof(sop));
1791 	if (sp == NULL) {
1792 		SETERROR(REG_ESPACE);
1793 		return 0;
1794 	}
1795 	p->strip = sp;
1796 	p->ssize = size;
1797 	return 1;
1798 }
1799 
1800 /*
1801  - stripsnug - compact the strip
1802  == static void stripsnug(struct parse *p, struct re_guts *g);
1803  */
1804 static void
1805 stripsnug(struct parse *p, struct re_guts *g)
1806 {
1807 	g->nstates = p->slen;
1808 	g->strip = reallocarray((char *)p->strip, p->slen, sizeof(sop));
1809 	if (g->strip == NULL) {
1810 		SETERROR(REG_ESPACE);
1811 		g->strip = p->strip;
1812 	}
1813 }
1814 
1815 /*
1816  - findmust - fill in must and mlen with longest mandatory literal string
1817  == static void findmust(struct parse *p, struct re_guts *g);
1818  *
1819  * This algorithm could do fancy things like analyzing the operands of |
1820  * for common subsequences.  Someday.  This code is simple and finds most
1821  * of the interesting cases.
1822  *
1823  * Note that must and mlen got initialized during setup.
1824  */
1825 static void
1826 findmust(struct parse *p, struct re_guts *g)
1827 {
1828 	sop *scan;
1829 	sop *start = NULL;
1830 	sop *newstart = NULL;
1831 	sopno newlen;
1832 	sop s;
1833 	char *cp;
1834 	int offset;
1835 	char buf[MB_LEN_MAX];
1836 	size_t clen;
1837 	mbstate_t mbs;
1838 
1839 	/* avoid making error situations worse */
1840 	if (p->error != 0)
1841 		return;
1842 
1843 	/*
1844 	 * It's not generally safe to do a ``char'' substring search on
1845 	 * multibyte character strings, but it's safe for at least
1846 	 * UTF-8 (see RFC 3629).
1847 	 */
1848 	if (MB_CUR_MAX > 1 &&
1849 	    strcmp(_CurrentRuneLocale->__encoding, "UTF-8") != 0)
1850 		return;
1851 
1852 	/* find the longest OCHAR sequence in strip */
1853 	newlen = 0;
1854 	offset = 0;
1855 	g->moffset = 0;
1856 	scan = g->strip + 1;
1857 	do {
1858 		s = *scan++;
1859 		switch (OP(s)) {
1860 		case OCHAR:		/* sequence member */
1861 			if (newlen == 0) {		/* new sequence */
1862 				memset(&mbs, 0, sizeof(mbs));
1863 				newstart = scan - 1;
1864 			}
1865 			clen = wcrtomb(buf, OPND(s), &mbs);
1866 			if (clen == (size_t)-1)
1867 				goto toohard;
1868 			newlen += clen;
1869 			break;
1870 		case OPLUS_:		/* things that don't break one */
1871 		case OLPAREN:
1872 		case ORPAREN:
1873 			break;
1874 		case OQUEST_:		/* things that must be skipped */
1875 		case OCH_:
1876 			offset = altoffset(scan, offset);
1877 			scan--;
1878 			do {
1879 				scan += OPND(s);
1880 				s = *scan;
1881 				/* assert() interferes w debug printouts */
1882 				if (OP(s) != (sop)O_QUEST &&
1883 				    OP(s) != (sop)O_CH && OP(s) != (sop)OOR2) {
1884 					g->iflags |= BAD;
1885 					return;
1886 				}
1887 			} while (OP(s) != (sop)O_QUEST && OP(s) != (sop)O_CH);
1888 			/* FALLTHROUGH */
1889 		case OBOW:		/* things that break a sequence */
1890 		case OEOW:
1891 		case OBOL:
1892 		case OEOL:
1893 		case OBOS:
1894 		case OEOS:
1895 		case O_QUEST:
1896 		case O_CH:
1897 		case OEND:
1898 			if (newlen > (sopno)g->mlen) {		/* ends one */
1899 				start = newstart;
1900 				g->mlen = newlen;
1901 				if (offset > -1) {
1902 					g->moffset += offset;
1903 					offset = newlen;
1904 				} else
1905 					g->moffset = offset;
1906 			} else {
1907 				if (offset > -1)
1908 					offset += newlen;
1909 			}
1910 			newlen = 0;
1911 			break;
1912 		case OANY:
1913 			if (newlen > (sopno)g->mlen) {		/* ends one */
1914 				start = newstart;
1915 				g->mlen = newlen;
1916 				if (offset > -1) {
1917 					g->moffset += offset;
1918 					offset = newlen;
1919 				} else
1920 					g->moffset = offset;
1921 			} else {
1922 				if (offset > -1)
1923 					offset += newlen;
1924 			}
1925 			if (offset > -1)
1926 				offset++;
1927 			newlen = 0;
1928 			break;
1929 		case OANYOF:		/* may or may not invalidate offset */
1930 			/* First, everything as OANY */
1931 			if (newlen > (sopno)g->mlen) {		/* ends one */
1932 				start = newstart;
1933 				g->mlen = newlen;
1934 				if (offset > -1) {
1935 					g->moffset += offset;
1936 					offset = newlen;
1937 				} else
1938 					g->moffset = offset;
1939 			} else {
1940 				if (offset > -1)
1941 					offset += newlen;
1942 			}
1943 			if (offset > -1)
1944 				offset++;
1945 			newlen = 0;
1946 			break;
1947 		toohard:
1948 		default:
1949 			/* Anything here makes it impossible or too hard
1950 			 * to calculate the offset -- so we give up;
1951 			 * save the last known good offset, in case the
1952 			 * must sequence doesn't occur later.
1953 			 */
1954 			if (newlen > (sopno)g->mlen) {		/* ends one */
1955 				start = newstart;
1956 				g->mlen = newlen;
1957 				if (offset > -1)
1958 					g->moffset += offset;
1959 				else
1960 					g->moffset = offset;
1961 			}
1962 			offset = -1;
1963 			newlen = 0;
1964 			break;
1965 		}
1966 	} while (OP(s) != OEND);
1967 
1968 	if (g->mlen == 0) {		/* there isn't one */
1969 		g->moffset = -1;
1970 		return;
1971 	}
1972 
1973 	/* turn it into a character string */
1974 	g->must = malloc((size_t)g->mlen + 1);
1975 	if (g->must == NULL) {		/* argh; just forget it */
1976 		g->mlen = 0;
1977 		g->moffset = -1;
1978 		return;
1979 	}
1980 	cp = g->must;
1981 	scan = start;
1982 	memset(&mbs, 0, sizeof(mbs));
1983 	while (cp < g->must + g->mlen) {
1984 		while (OP(s = *scan++) != OCHAR)
1985 			continue;
1986 		clen = wcrtomb(cp, OPND(s), &mbs);
1987 		assert(clen != (size_t)-1);
1988 		cp += clen;
1989 	}
1990 	assert(cp == g->must + g->mlen);
1991 	*cp++ = '\0';		/* just on general principles */
1992 }
1993 
1994 /*
1995  - altoffset - choose biggest offset among multiple choices
1996  == static int altoffset(sop *scan, int offset);
1997  *
1998  * Compute, recursively if necessary, the largest offset among multiple
1999  * re paths.
2000  */
2001 static int
2002 altoffset(sop *scan, int offset)
2003 {
2004 	int largest;
2005 	int try;
2006 	sop s;
2007 
2008 	/* If we gave up already on offsets, return */
2009 	if (offset == -1)
2010 		return -1;
2011 
2012 	largest = 0;
2013 	try = 0;
2014 	s = *scan++;
2015 	while (OP(s) != (sop)O_QUEST && OP(s) != (sop)O_CH) {
2016 		switch (OP(s)) {
2017 		case OOR1:
2018 			if (try > largest)
2019 				largest = try;
2020 			try = 0;
2021 			break;
2022 		case OQUEST_:
2023 		case OCH_:
2024 			try = altoffset(scan, try);
2025 			if (try == -1)
2026 				return -1;
2027 			scan--;
2028 			do {
2029 				scan += OPND(s);
2030 				s = *scan;
2031 				if (OP(s) != (sop)O_QUEST &&
2032 				    OP(s) != (sop)O_CH && OP(s) != (sop)OOR2)
2033 					return -1;
2034 			} while (OP(s) != (sop)O_QUEST && OP(s) != (sop)O_CH);
2035 			/* We must skip to the next position, or we'll
2036 			 * leave altoffset() too early.
2037 			 */
2038 			scan++;
2039 			break;
2040 		case OANYOF:
2041 		case OCHAR:
2042 		case OANY:
2043 			try++;
2044 		case OBOW:
2045 		case OEOW:
2046 		case OLPAREN:
2047 		case ORPAREN:
2048 		case OOR2:
2049 			break;
2050 		default:
2051 			try = -1;
2052 			break;
2053 		}
2054 		if (try == -1)
2055 			return -1;
2056 		s = *scan++;
2057 	}
2058 
2059 	if (try > largest)
2060 		largest = try;
2061 
2062 	return largest+offset;
2063 }
2064 
2065 /*
2066  - computejumps - compute char jumps for BM scan
2067  == static void computejumps(struct parse *p, struct re_guts *g);
2068  *
2069  * This algorithm assumes g->must exists and is has size greater than
2070  * zero. It's based on the algorithm found on Computer Algorithms by
2071  * Sara Baase.
2072  *
2073  * A char jump is the number of characters one needs to jump based on
2074  * the value of the character from the text that was mismatched.
2075  */
2076 static void
2077 computejumps(struct parse *p, struct re_guts *g)
2078 {
2079 	int ch;
2080 	int mindex;
2081 
2082 	/* Avoid making errors worse */
2083 	if (p->error != 0)
2084 		return;
2085 
2086 	g->charjump = (int *)malloc((NC_MAX + 1) * sizeof(int));
2087 	if (g->charjump == NULL)	/* Not a fatal error */
2088 		return;
2089 	/* Adjust for signed chars, if necessary */
2090 	g->charjump = &g->charjump[-(CHAR_MIN)];
2091 
2092 	/* If the character does not exist in the pattern, the jump
2093 	 * is equal to the number of characters in the pattern.
2094 	 */
2095 	for (ch = CHAR_MIN; ch < (CHAR_MAX + 1); ch++)
2096 		g->charjump[ch] = g->mlen;
2097 
2098 	/* If the character does exist, compute the jump that would
2099 	 * take us to the last character in the pattern equal to it
2100 	 * (notice that we match right to left, so that last character
2101 	 * is the first one that would be matched).
2102 	 */
2103 	for (mindex = 0; mindex < g->mlen; mindex++)
2104 		g->charjump[(int)g->must[mindex]] = g->mlen - mindex - 1;
2105 }
2106 
2107 /*
2108  - computematchjumps - compute match jumps for BM scan
2109  == static void computematchjumps(struct parse *p, struct re_guts *g);
2110  *
2111  * This algorithm assumes g->must exists and is has size greater than
2112  * zero. It's based on the algorithm found on Computer Algorithms by
2113  * Sara Baase.
2114  *
2115  * A match jump is the number of characters one needs to advance based
2116  * on the already-matched suffix.
2117  * Notice that all values here are minus (g->mlen-1), because of the way
2118  * the search algorithm works.
2119  */
2120 static void
2121 computematchjumps(struct parse *p, struct re_guts *g)
2122 {
2123 	int mindex;		/* General "must" iterator */
2124 	int suffix;		/* Keeps track of matching suffix */
2125 	int ssuffix;		/* Keeps track of suffixes' suffix */
2126 	int* pmatches;		/* pmatches[k] points to the next i
2127 				 * such that i+1...mlen is a substring
2128 				 * of k+1...k+mlen-i-1
2129 				 */
2130 
2131 	/* Avoid making errors worse */
2132 	if (p->error != 0)
2133 		return;
2134 
2135 	pmatches = (int*) malloc(g->mlen * sizeof(int));
2136 	if (pmatches == NULL) {
2137 		g->matchjump = NULL;
2138 		return;
2139 	}
2140 
2141 	g->matchjump = (int*) malloc(g->mlen * sizeof(int));
2142 	if (g->matchjump == NULL) {	/* Not a fatal error */
2143 		free(pmatches);
2144 		return;
2145 	}
2146 
2147 	/* Set maximum possible jump for each character in the pattern */
2148 	for (mindex = 0; mindex < g->mlen; mindex++)
2149 		g->matchjump[mindex] = 2*g->mlen - mindex - 1;
2150 
2151 	/* Compute pmatches[] */
2152 	for (mindex = g->mlen - 1, suffix = g->mlen; mindex >= 0;
2153 	    mindex--, suffix--) {
2154 		pmatches[mindex] = suffix;
2155 
2156 		/* If a mismatch is found, interrupting the substring,
2157 		 * compute the matchjump for that position. If no
2158 		 * mismatch is found, then a text substring mismatched
2159 		 * against the suffix will also mismatch against the
2160 		 * substring.
2161 		 */
2162 		while (suffix < g->mlen
2163 		    && g->must[mindex] != g->must[suffix]) {
2164 			g->matchjump[suffix] = MIN(g->matchjump[suffix],
2165 			    g->mlen - mindex - 1);
2166 			suffix = pmatches[suffix];
2167 		}
2168 	}
2169 
2170 	/* Compute the matchjump up to the last substring found to jump
2171 	 * to the beginning of the largest must pattern prefix matching
2172 	 * it's own suffix.
2173 	 */
2174 	for (mindex = 0; mindex <= suffix; mindex++)
2175 		g->matchjump[mindex] = MIN(g->matchjump[mindex],
2176 		    g->mlen + suffix - mindex);
2177 
2178         ssuffix = pmatches[suffix];
2179         while (suffix < g->mlen) {
2180                 while (suffix <= ssuffix && suffix < g->mlen) {
2181                         g->matchjump[suffix] = MIN(g->matchjump[suffix],
2182 			    g->mlen + ssuffix - suffix);
2183                         suffix++;
2184                 }
2185 		if (suffix < g->mlen)
2186                 	ssuffix = pmatches[ssuffix];
2187         }
2188 
2189 	free(pmatches);
2190 }
2191 
2192 /*
2193  - pluscount - count + nesting
2194  == static sopno pluscount(struct parse *p, struct re_guts *g);
2195  */
2196 static sopno			/* nesting depth */
2197 pluscount(struct parse *p, struct re_guts *g)
2198 {
2199 	sop *scan;
2200 	sop s;
2201 	sopno plusnest = 0;
2202 	sopno maxnest = 0;
2203 
2204 	if (p->error != 0)
2205 		return(0);	/* there may not be an OEND */
2206 
2207 	scan = g->strip + 1;
2208 	do {
2209 		s = *scan++;
2210 		switch (OP(s)) {
2211 		case OPLUS_:
2212 			plusnest++;
2213 			break;
2214 		case O_PLUS:
2215 			if (plusnest > maxnest)
2216 				maxnest = plusnest;
2217 			plusnest--;
2218 			break;
2219 		}
2220 	} while (OP(s) != OEND);
2221 	if (plusnest != 0)
2222 		g->iflags |= BAD;
2223 	return(maxnest);
2224 }
2225