xref: /freebsd/lib/libc/regex/regcomp.c (revision 4f0c9b76cf75724ef0b9c59bb8c182be24361d7c)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1992, 1993, 1994 Henry Spencer.
5  * Copyright (c) 1992, 1993, 1994
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * Copyright (c) 2011 The FreeBSD Foundation
9  *
10  * Portions of this software were developed by David Chisnall
11  * under sponsorship from the FreeBSD Foundation.
12  *
13  * This code is derived from software contributed to Berkeley by
14  * Henry Spencer.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *	@(#)regcomp.c	8.5 (Berkeley) 3/20/94
41  */
42 
43 #if defined(LIBC_SCCS) && !defined(lint)
44 static char sccsid[] = "@(#)regcomp.c	8.5 (Berkeley) 3/20/94";
45 #endif /* LIBC_SCCS and not lint */
46 #include <sys/cdefs.h>
47 __FBSDID("$FreeBSD$");
48 
49 #include <sys/types.h>
50 #include <stdio.h>
51 #include <string.h>
52 #include <ctype.h>
53 #include <limits.h>
54 #include <stdlib.h>
55 #include <regex.h>
56 #include <stdbool.h>
57 #include <wchar.h>
58 #include <wctype.h>
59 
60 #ifndef LIBREGEX
61 #include "collate.h"
62 #endif
63 
64 #include "utils.h"
65 #include "regex2.h"
66 
67 #include "cname.h"
68 
69 /*
70  * Branching context, used to keep track of branch state for all of the branch-
71  * aware functions. In addition to keeping track of branch positions for the
72  * p_branch_* functions, we use this to simplify some clumsiness in BREs for
73  * detection of whether ^ is acting as an anchor or being used erroneously and
74  * also for whether we're in a sub-expression or not.
75  */
76 struct branchc {
77 	sopno start;
78 	sopno back;
79 	sopno fwd;
80 
81 	int nbranch;
82 	int nchain;
83 	bool outer;
84 	bool terminate;
85 };
86 
87 /*
88  * parse structure, passed up and down to avoid global variables and
89  * other clumsinesses
90  */
91 struct parse {
92 	const char *next;	/* next character in RE */
93 	const char *end;	/* end of string (-> NUL normally) */
94 	int error;		/* has an error been seen? */
95 	int gnuext;
96 	sop *strip;		/* malloced strip */
97 	sopno ssize;		/* malloced strip size (allocated) */
98 	sopno slen;		/* malloced strip length (used) */
99 	int ncsalloc;		/* number of csets allocated */
100 	struct re_guts *g;
101 #	define	NPAREN	10	/* we need to remember () 1-9 for back refs */
102 	sopno pbegin[NPAREN];	/* -> ( ([0] unused) */
103 	sopno pend[NPAREN];	/* -> ) ([0] unused) */
104 	bool allowbranch;	/* can this expression branch? */
105 	bool bre;		/* convenience; is this a BRE? */
106 	int pflags;		/* other parsing flags -- legacy escapes? */
107 	bool (*parse_expr)(struct parse *, struct branchc *);
108 	void (*pre_parse)(struct parse *, struct branchc *);
109 	void (*post_parse)(struct parse *, struct branchc *);
110 };
111 
112 #define PFLAG_LEGACY_ESC	0x00000001
113 
114 /* ========= begin header generated by ./mkh ========= */
115 #ifdef __cplusplus
116 extern "C" {
117 #endif
118 
119 /* === regcomp.c === */
120 static bool p_ere_exp(struct parse *p, struct branchc *bc);
121 static void p_str(struct parse *p);
122 static int p_branch_eat_delim(struct parse *p, struct branchc *bc);
123 static void p_branch_ins_offset(struct parse *p, struct branchc *bc);
124 static void p_branch_fix_tail(struct parse *p, struct branchc *bc);
125 static bool p_branch_empty(struct parse *p, struct branchc *bc);
126 static bool p_branch_do(struct parse *p, struct branchc *bc);
127 static void p_bre_pre_parse(struct parse *p, struct branchc *bc);
128 static void p_bre_post_parse(struct parse *p, struct branchc *bc);
129 static void p_re(struct parse *p, int end1, int end2);
130 static bool p_simp_re(struct parse *p, struct branchc *bc);
131 static int p_count(struct parse *p);
132 static void p_bracket(struct parse *p);
133 static int p_range_cmp(wchar_t c1, wchar_t c2);
134 static void p_b_term(struct parse *p, cset *cs);
135 static int p_b_pseudoclass(struct parse *p, char c);
136 static void p_b_cclass(struct parse *p, cset *cs);
137 static void p_b_cclass_named(struct parse *p, cset *cs, const char[]);
138 static void p_b_eclass(struct parse *p, cset *cs);
139 static wint_t p_b_symbol(struct parse *p);
140 static wint_t p_b_coll_elem(struct parse *p, wint_t endc);
141 static bool may_escape(struct parse *p, const wint_t ch);
142 static wint_t othercase(wint_t ch);
143 static void bothcases(struct parse *p, wint_t ch);
144 static void ordinary(struct parse *p, wint_t ch);
145 static void nonnewline(struct parse *p);
146 static void repeat(struct parse *p, sopno start, int from, int to);
147 static int seterr(struct parse *p, int e);
148 static cset *allocset(struct parse *p);
149 static void freeset(struct parse *p, cset *cs);
150 static void CHadd(struct parse *p, cset *cs, wint_t ch);
151 static void CHaddrange(struct parse *p, cset *cs, wint_t min, wint_t max);
152 static void CHaddtype(struct parse *p, cset *cs, wctype_t wct);
153 static wint_t singleton(cset *cs);
154 static sopno dupl(struct parse *p, sopno start, sopno finish);
155 static void doemit(struct parse *p, sop op, size_t opnd);
156 static void doinsert(struct parse *p, sop op, size_t opnd, sopno pos);
157 static void dofwd(struct parse *p, sopno pos, sop value);
158 static int enlarge(struct parse *p, sopno size);
159 static void stripsnug(struct parse *p, struct re_guts *g);
160 static void findmust(struct parse *p, struct re_guts *g);
161 static int altoffset(sop *scan, int offset);
162 static void computejumps(struct parse *p, struct re_guts *g);
163 static void computematchjumps(struct parse *p, struct re_guts *g);
164 static sopno pluscount(struct parse *p, struct re_guts *g);
165 static wint_t wgetnext(struct parse *p);
166 
167 #ifdef __cplusplus
168 }
169 #endif
170 /* ========= end header generated by ./mkh ========= */
171 
172 static char nuls[10];		/* place to point scanner in event of error */
173 
174 /*
175  * macros for use with parse structure
176  * BEWARE:  these know that the parse structure is named `p' !!!
177  */
178 #define	PEEK()	(*p->next)
179 #define	PEEK2()	(*(p->next+1))
180 #define	MORE()	(p->end - p->next > 0)
181 #define	MORE2()	(p->end - p->next > 1)
182 #define	SEE(c)	(MORE() && PEEK() == (c))
183 #define	SEETWO(a, b)	(MORE2() && PEEK() == (a) && PEEK2() == (b))
184 #define	SEESPEC(a)	(p->bre ? SEETWO('\\', a) : SEE(a))
185 #define	EAT(c)	((SEE(c)) ? (NEXT(), 1) : 0)
186 #define	EATTWO(a, b)	((SEETWO(a, b)) ? (NEXT2(), 1) : 0)
187 #define	EATSPEC(a)	(p->bre ? EATTWO('\\', a) : EAT(a))
188 #define	NEXT()	(p->next++)
189 #define	NEXT2()	(p->next += 2)
190 #define	NEXTn(n)	(p->next += (n))
191 #define	GETNEXT()	(*p->next++)
192 #define	WGETNEXT()	wgetnext(p)
193 #define	SETERROR(e)	seterr(p, (e))
194 #define	REQUIRE(co, e)	((co) || SETERROR(e))
195 #define	MUSTSEE(c, e)	(REQUIRE(MORE() && PEEK() == (c), e))
196 #define	MUSTEAT(c, e)	(REQUIRE(MORE() && GETNEXT() == (c), e))
197 #define	MUSTNOTSEE(c, e)	(REQUIRE(!MORE() || PEEK() != (c), e))
198 #define	EMIT(op, sopnd)	doemit(p, (sop)(op), (size_t)(sopnd))
199 #define	INSERT(op, pos)	doinsert(p, (sop)(op), HERE()-(pos)+1, pos)
200 #define	AHEAD(pos)		dofwd(p, pos, HERE()-(pos))
201 #define	ASTERN(sop, pos)	EMIT(sop, HERE()-pos)
202 #define	HERE()		(p->slen)
203 #define	THERE()		(p->slen - 1)
204 #define	THERETHERE()	(p->slen - 2)
205 #define	DROP(n)	(p->slen -= (n))
206 
207 /* Macro used by computejump()/computematchjump() */
208 #define MIN(a,b)	((a)<(b)?(a):(b))
209 
210 static int				/* 0 success, otherwise REG_something */
211 regcomp_internal(regex_t * __restrict preg,
212 	const char * __restrict pattern,
213 	int cflags, int pflags)
214 {
215 	struct parse pa;
216 	struct re_guts *g;
217 	struct parse *p = &pa;
218 	int i;
219 	size_t len;
220 	size_t maxlen;
221 #ifdef REDEBUG
222 #	define	GOODFLAGS(f)	(f)
223 #else
224 #	define	GOODFLAGS(f)	((f)&~REG_DUMP)
225 #endif
226 
227 	cflags = GOODFLAGS(cflags);
228 	if ((cflags&REG_EXTENDED) && (cflags&REG_NOSPEC))
229 		return(REG_INVARG);
230 
231 	if (cflags&REG_PEND) {
232 		if (preg->re_endp < pattern)
233 			return(REG_INVARG);
234 		len = preg->re_endp - pattern;
235 	} else
236 		len = strlen(pattern);
237 
238 	/* do the mallocs early so failure handling is easy */
239 	g = (struct re_guts *)malloc(sizeof(struct re_guts));
240 	if (g == NULL)
241 		return(REG_ESPACE);
242 	/*
243 	 * Limit the pattern space to avoid a 32-bit overflow on buffer
244 	 * extension.  Also avoid any signed overflow in case of conversion
245 	 * so make the real limit based on a 31-bit overflow.
246 	 *
247 	 * Likely not applicable on 64-bit systems but handle the case
248 	 * generically (who are we to stop people from using ~715MB+
249 	 * patterns?).
250 	 */
251 	maxlen = ((size_t)-1 >> 1) / sizeof(sop) * 2 / 3;
252 	if (len >= maxlen) {
253 		free((char *)g);
254 		return(REG_ESPACE);
255 	}
256 	p->ssize = len/(size_t)2*(size_t)3 + (size_t)1;	/* ugh */
257 	assert(p->ssize >= len);
258 
259 	p->strip = (sop *)malloc(p->ssize * sizeof(sop));
260 	p->slen = 0;
261 	if (p->strip == NULL) {
262 		free((char *)g);
263 		return(REG_ESPACE);
264 	}
265 
266 	/* set things up */
267 	p->g = g;
268 	p->next = pattern;	/* convenience; we do not modify it */
269 	p->end = p->next + len;
270 	p->error = 0;
271 	p->ncsalloc = 0;
272 	p->pflags = pflags;
273 	for (i = 0; i < NPAREN; i++) {
274 		p->pbegin[i] = 0;
275 		p->pend[i] = 0;
276 	}
277 #ifdef LIBREGEX
278 	if (cflags&REG_POSIX) {
279 		p->gnuext = false;
280 		p->allowbranch = (cflags & REG_EXTENDED) != 0;
281 	} else
282 		p->gnuext = p->allowbranch = true;
283 #else
284 	p->gnuext = false;
285 	p->allowbranch = (cflags & REG_EXTENDED) != 0;
286 #endif
287 	if (cflags & REG_EXTENDED) {
288 		p->bre = false;
289 		p->parse_expr = p_ere_exp;
290 		p->pre_parse = NULL;
291 		p->post_parse = NULL;
292 	} else {
293 		p->bre = true;
294 		p->parse_expr = p_simp_re;
295 		p->pre_parse = p_bre_pre_parse;
296 		p->post_parse = p_bre_post_parse;
297 	}
298 	g->sets = NULL;
299 	g->ncsets = 0;
300 	g->cflags = cflags;
301 	g->iflags = 0;
302 	g->nbol = 0;
303 	g->neol = 0;
304 	g->must = NULL;
305 	g->moffset = -1;
306 	g->charjump = NULL;
307 	g->matchjump = NULL;
308 	g->mlen = 0;
309 	g->nsub = 0;
310 	g->backrefs = 0;
311 
312 	/* do it */
313 	EMIT(OEND, 0);
314 	g->firststate = THERE();
315 	if (cflags & REG_NOSPEC)
316 		p_str(p);
317 	else
318 		p_re(p, OUT, OUT);
319 	EMIT(OEND, 0);
320 	g->laststate = THERE();
321 
322 	/* tidy up loose ends and fill things in */
323 	stripsnug(p, g);
324 	findmust(p, g);
325 	/* only use Boyer-Moore algorithm if the pattern is bigger
326 	 * than three characters
327 	 */
328 	if(g->mlen > 3) {
329 		computejumps(p, g);
330 		computematchjumps(p, g);
331 		if(g->matchjump == NULL && g->charjump != NULL) {
332 			free(g->charjump);
333 			g->charjump = NULL;
334 		}
335 	}
336 	g->nplus = pluscount(p, g);
337 	g->magic = MAGIC2;
338 	preg->re_nsub = g->nsub;
339 	preg->re_g = g;
340 	preg->re_magic = MAGIC1;
341 #ifndef REDEBUG
342 	/* not debugging, so can't rely on the assert() in regexec() */
343 	if (g->iflags&BAD)
344 		SETERROR(REG_ASSERT);
345 #endif
346 
347 	/* win or lose, we're done */
348 	if (p->error != 0)	/* lose */
349 		regfree(preg);
350 	return(p->error);
351 }
352 
353 /*
354  - regcomp - interface for parser and compilation
355  = extern int regcomp(regex_t *, const char *, int);
356  = #define	REG_BASIC	0000
357  = #define	REG_EXTENDED	0001
358  = #define	REG_ICASE	0002
359  = #define	REG_NOSUB	0004
360  = #define	REG_NEWLINE	0010
361  = #define	REG_NOSPEC	0020
362  = #define	REG_PEND	0040
363  = #define	REG_DUMP	0200
364  */
365 int				/* 0 success, otherwise REG_something */
366 regcomp(regex_t * __restrict preg,
367 	const char * __restrict pattern,
368 	int cflags)
369 {
370 
371 	return (regcomp_internal(preg, pattern, cflags, 0));
372 }
373 
374 #ifndef LIBREGEX
375 /*
376  * Legacy interface that requires more lax escaping behavior.
377  */
378 int
379 freebsd12_regcomp(regex_t * __restrict preg,
380 	const char * __restrict pattern,
381 	int cflags, int pflags)
382 {
383 
384 	return (regcomp_internal(preg, pattern, cflags, PFLAG_LEGACY_ESC));
385 }
386 
387 __sym_compat(regcomp, freebsd12_regcomp, FBSD_1.0);
388 #endif	/* !LIBREGEX */
389 
390 /*
391  - p_ere_exp - parse one subERE, an atom possibly followed by a repetition op,
392  - return whether we should terminate or not
393  == static bool p_ere_exp(struct parse *p);
394  */
395 static bool
396 p_ere_exp(struct parse *p, struct branchc *bc)
397 {
398 	char c;
399 	wint_t wc;
400 	sopno pos;
401 	int count;
402 	int count2;
403 #ifdef LIBREGEX
404 	int i;
405 	int handled;
406 #endif
407 	sopno subno;
408 	int wascaret = 0;
409 
410 	(void)bc;
411 	assert(MORE());		/* caller should have ensured this */
412 	c = GETNEXT();
413 
414 #ifdef LIBREGEX
415 	handled = 0;
416 #endif
417 	pos = HERE();
418 	switch (c) {
419 	case '(':
420 		(void)REQUIRE(MORE(), REG_EPAREN);
421 		p->g->nsub++;
422 		subno = p->g->nsub;
423 		if (subno < NPAREN)
424 			p->pbegin[subno] = HERE();
425 		EMIT(OLPAREN, subno);
426 		if (!SEE(')'))
427 			p_re(p, ')', IGN);
428 		if (subno < NPAREN) {
429 			p->pend[subno] = HERE();
430 			assert(p->pend[subno] != 0);
431 		}
432 		EMIT(ORPAREN, subno);
433 		(void)MUSTEAT(')', REG_EPAREN);
434 		break;
435 #ifndef POSIX_MISTAKE
436 	case ')':		/* happens only if no current unmatched ( */
437 		/*
438 		 * You may ask, why the ifndef?  Because I didn't notice
439 		 * this until slightly too late for 1003.2, and none of the
440 		 * other 1003.2 regular-expression reviewers noticed it at
441 		 * all.  So an unmatched ) is legal POSIX, at least until
442 		 * we can get it fixed.
443 		 */
444 		SETERROR(REG_EPAREN);
445 		break;
446 #endif
447 	case '^':
448 		EMIT(OBOL, 0);
449 		p->g->iflags |= USEBOL;
450 		p->g->nbol++;
451 		wascaret = 1;
452 		break;
453 	case '$':
454 		EMIT(OEOL, 0);
455 		p->g->iflags |= USEEOL;
456 		p->g->neol++;
457 		break;
458 	case '|':
459 		SETERROR(REG_EMPTY);
460 		break;
461 	case '*':
462 	case '+':
463 	case '?':
464 	case '{':
465 		SETERROR(REG_BADRPT);
466 		break;
467 	case '.':
468 		if (p->g->cflags&REG_NEWLINE)
469 			nonnewline(p);
470 		else
471 			EMIT(OANY, 0);
472 		break;
473 	case '[':
474 		p_bracket(p);
475 		break;
476 	case '\\':
477 		(void)REQUIRE(MORE(), REG_EESCAPE);
478 		wc = WGETNEXT();
479 #ifdef LIBREGEX
480 		if (p->gnuext) {
481 			handled = 1;
482 			switch (wc) {
483 			case '`':
484 				EMIT(OBOS, 0);
485 				break;
486 			case '\'':
487 				EMIT(OEOS, 0);
488 				break;
489 			case 'B':
490 				EMIT(ONWBND, 0);
491 				break;
492 			case 'b':
493 				EMIT(OWBND, 0);
494 				break;
495 			case 'W':
496 			case 'w':
497 			case 'S':
498 			case 's':
499 				p_b_pseudoclass(p, wc);
500 				break;
501 			case '1':
502 			case '2':
503 			case '3':
504 			case '4':
505 			case '5':
506 			case '6':
507 			case '7':
508 			case '8':
509 			case '9':
510 				i = wc - '0';
511 				assert(i < NPAREN);
512 				if (p->pend[i] != 0) {
513 					assert(i <= p->g->nsub);
514 					EMIT(OBACK_, i);
515 					assert(p->pbegin[i] != 0);
516 					assert(OP(p->strip[p->pbegin[i]]) == OLPAREN);
517 					assert(OP(p->strip[p->pend[i]]) == ORPAREN);
518 					(void) dupl(p, p->pbegin[i]+1, p->pend[i]);
519 					EMIT(O_BACK, i);
520 				} else
521 					SETERROR(REG_ESUBREG);
522 				p->g->backrefs = 1;
523 				break;
524 			default:
525 				handled = 0;
526 			}
527 			/* Don't proceed to the POSIX bits if we've already handled it */
528 			if (handled)
529 				break;
530 		}
531 #endif
532 		switch (wc) {
533 		case '<':
534 			EMIT(OBOW, 0);
535 			break;
536 		case '>':
537 			EMIT(OEOW, 0);
538 			break;
539 		default:
540 			if (may_escape(p, wc))
541 				ordinary(p, wc);
542 			else
543 				SETERROR(REG_EESCAPE);
544 			break;
545 		}
546 		break;
547 	default:
548 		if (p->error != 0)
549 			return (false);
550 		p->next--;
551 		wc = WGETNEXT();
552 		ordinary(p, wc);
553 		break;
554 	}
555 
556 	if (!MORE())
557 		return (false);
558 	c = PEEK();
559 	/* we call { a repetition if followed by a digit */
560 	if (!( c == '*' || c == '+' || c == '?' || c == '{'))
561 		return (false);		/* no repetition, we're done */
562 	else if (c == '{')
563 		(void)REQUIRE(MORE2() && \
564 		    (isdigit((uch)PEEK2()) || PEEK2() == ','), REG_BADRPT);
565 	NEXT();
566 
567 	(void)REQUIRE(!wascaret, REG_BADRPT);
568 	switch (c) {
569 	case '*':	/* implemented as +? */
570 		/* this case does not require the (y|) trick, noKLUDGE */
571 		INSERT(OPLUS_, pos);
572 		ASTERN(O_PLUS, pos);
573 		INSERT(OQUEST_, pos);
574 		ASTERN(O_QUEST, pos);
575 		break;
576 	case '+':
577 		INSERT(OPLUS_, pos);
578 		ASTERN(O_PLUS, pos);
579 		break;
580 	case '?':
581 		/* KLUDGE: emit y? as (y|) until subtle bug gets fixed */
582 		INSERT(OCH_, pos);		/* offset slightly wrong */
583 		ASTERN(OOR1, pos);		/* this one's right */
584 		AHEAD(pos);			/* fix the OCH_ */
585 		EMIT(OOR2, 0);			/* offset very wrong... */
586 		AHEAD(THERE());			/* ...so fix it */
587 		ASTERN(O_CH, THERETHERE());
588 		break;
589 	case '{':
590 		count = p_count(p);
591 		if (EAT(',')) {
592 			if (isdigit((uch)PEEK())) {
593 				count2 = p_count(p);
594 				(void)REQUIRE(count <= count2, REG_BADBR);
595 			} else		/* single number with comma */
596 				count2 = INFINITY;
597 		} else		/* just a single number */
598 			count2 = count;
599 		repeat(p, pos, count, count2);
600 		if (!EAT('}')) {	/* error heuristics */
601 			while (MORE() && PEEK() != '}')
602 				NEXT();
603 			(void)REQUIRE(MORE(), REG_EBRACE);
604 			SETERROR(REG_BADBR);
605 		}
606 		break;
607 	}
608 
609 	if (!MORE())
610 		return (false);
611 	c = PEEK();
612 	if (!( c == '*' || c == '+' || c == '?' ||
613 				(c == '{' && MORE2() && isdigit((uch)PEEK2())) ) )
614 		return (false);
615 	SETERROR(REG_BADRPT);
616 	return (false);
617 }
618 
619 /*
620  - p_str - string (no metacharacters) "parser"
621  == static void p_str(struct parse *p);
622  */
623 static void
624 p_str(struct parse *p)
625 {
626 	(void)REQUIRE(MORE(), REG_EMPTY);
627 	while (MORE())
628 		ordinary(p, WGETNEXT());
629 }
630 
631 /*
632  * Eat consecutive branch delimiters for the kind of expression that we are
633  * parsing, return the number of delimiters that we ate.
634  */
635 static int
636 p_branch_eat_delim(struct parse *p, struct branchc *bc)
637 {
638 	int nskip;
639 
640 	(void)bc;
641 	nskip = 0;
642 	while (EATSPEC('|'))
643 		++nskip;
644 	return (nskip);
645 }
646 
647 /*
648  * Insert necessary branch book-keeping operations. This emits a
649  * bogus 'next' offset, since we still have more to parse
650  */
651 static void
652 p_branch_ins_offset(struct parse *p, struct branchc *bc)
653 {
654 
655 	if (bc->nbranch == 0) {
656 		INSERT(OCH_, bc->start);	/* offset is wrong */
657 		bc->fwd = bc->start;
658 		bc->back = bc->start;
659 	}
660 
661 	ASTERN(OOR1, bc->back);
662 	bc->back = THERE();
663 	AHEAD(bc->fwd);			/* fix previous offset */
664 	bc->fwd = HERE();
665 	EMIT(OOR2, 0);			/* offset is very wrong */
666 	++bc->nbranch;
667 }
668 
669 /*
670  * Fix the offset of the tail branch, if we actually had any branches.
671  * This is to correct the bogus placeholder offset that we use.
672  */
673 static void
674 p_branch_fix_tail(struct parse *p, struct branchc *bc)
675 {
676 
677 	/* Fix bogus offset at the tail if we actually have branches */
678 	if (bc->nbranch > 0) {
679 		AHEAD(bc->fwd);
680 		ASTERN(O_CH, bc->back);
681 	}
682 }
683 
684 /*
685  * Signal to the parser that an empty branch has been encountered; this will,
686  * in the future, be used to allow for more permissive behavior with empty
687  * branches. The return value should indicate whether parsing may continue
688  * or not.
689  */
690 static bool
691 p_branch_empty(struct parse *p, struct branchc *bc)
692 {
693 
694 	(void)bc;
695 	SETERROR(REG_EMPTY);
696 	return (false);
697 }
698 
699 /*
700  * Take care of any branching requirements. This includes inserting the
701  * appropriate branching instructions as well as eating all of the branch
702  * delimiters until we either run out of pattern or need to parse more pattern.
703  */
704 static bool
705 p_branch_do(struct parse *p, struct branchc *bc)
706 {
707 	int ate = 0;
708 
709 	ate = p_branch_eat_delim(p, bc);
710 	if (ate == 0)
711 		return (false);
712 	else if ((ate > 1 || (bc->outer && !MORE())) && !p_branch_empty(p, bc))
713 		/*
714 		 * Halt parsing only if we have an empty branch and p_branch_empty
715 		 * indicates that we must not continue. In the future, this will not
716 		 * necessarily be an error.
717 		 */
718 		return (false);
719 	p_branch_ins_offset(p, bc);
720 
721 	return (true);
722 }
723 
724 static void
725 p_bre_pre_parse(struct parse *p, struct branchc *bc)
726 {
727 
728 	(void) bc;
729 	/*
730 	 * Does not move cleanly into expression parser because of
731 	 * ordinary interpration of * at the beginning position of
732 	 * an expression.
733 	 */
734 	if (EAT('^')) {
735 		EMIT(OBOL, 0);
736 		p->g->iflags |= USEBOL;
737 		p->g->nbol++;
738 	}
739 }
740 
741 static void
742 p_bre_post_parse(struct parse *p, struct branchc *bc)
743 {
744 
745 	/* Expression is terminating due to EOL token */
746 	if (bc->terminate) {
747 		DROP(1);
748 		EMIT(OEOL, 0);
749 		p->g->iflags |= USEEOL;
750 		p->g->neol++;
751 	}
752 }
753 
754 /*
755  - p_re - Top level parser, concatenation and BRE anchoring
756  == static void p_re(struct parse *p, int end1, int end2);
757  * Giving end1 as OUT essentially eliminates the end1/end2 check.
758  *
759  * This implementation is a bit of a kludge, in that a trailing $ is first
760  * taken as an ordinary character and then revised to be an anchor.
761  * The amount of lookahead needed to avoid this kludge is excessive.
762  */
763 static void
764 p_re(struct parse *p,
765 	int end1,	/* first terminating character */
766 	int end2)	/* second terminating character; ignored for EREs */
767 {
768 	struct branchc bc;
769 
770 	bc.nbranch = 0;
771 	if (end1 == OUT && end2 == OUT)
772 		bc.outer = true;
773 	else
774 		bc.outer = false;
775 #define	SEEEND()	(!p->bre ? SEE(end1) : SEETWO(end1, end2))
776 	for (;;) {
777 		bc.start = HERE();
778 		bc.nchain = 0;
779 		bc.terminate = false;
780 		if (p->pre_parse != NULL)
781 			p->pre_parse(p, &bc);
782 		while (MORE() && (!p->allowbranch || !SEESPEC('|')) && !SEEEND()) {
783 			bc.terminate = p->parse_expr(p, &bc);
784 			++bc.nchain;
785 		}
786 		if (p->post_parse != NULL)
787 			p->post_parse(p, &bc);
788 		(void) REQUIRE(p->gnuext || HERE() != bc.start, REG_EMPTY);
789 #ifdef LIBREGEX
790 		if (HERE() == bc.start && !p_branch_empty(p, &bc))
791 			break;
792 #endif
793 		if (!p->allowbranch)
794 			break;
795 		/*
796 		 * p_branch_do's return value indicates whether we should
797 		 * continue parsing or not. This is both for correctness and
798 		 * a slight optimization, because it will check if we've
799 		 * encountered an empty branch or the end of the string
800 		 * immediately following a branch delimiter.
801 		 */
802 		if (!p_branch_do(p, &bc))
803 			break;
804 	}
805 #undef SEE_END
806 	if (p->allowbranch)
807 		p_branch_fix_tail(p, &bc);
808 	assert(!MORE() || SEE(end1));
809 }
810 
811 /*
812  - p_simp_re - parse a simple RE, an atom possibly followed by a repetition
813  == static bool p_simp_re(struct parse *p, struct branchc *bc);
814  */
815 static bool			/* was the simple RE an unbackslashed $? */
816 p_simp_re(struct parse *p, struct branchc *bc)
817 {
818 	int c;
819 	int cc;			/* convenient/control character */
820 	int count;
821 	int count2;
822 	sopno pos;
823 	bool handled;
824 	int i;
825 	wint_t wc;
826 	sopno subno;
827 #	define	BACKSL	(1<<CHAR_BIT)
828 
829 	pos = HERE();		/* repetition op, if any, covers from here */
830 	handled = false;
831 
832 	assert(MORE());		/* caller should have ensured this */
833 	c = GETNEXT();
834 	if (c == '\\') {
835 		(void)REQUIRE(MORE(), REG_EESCAPE);
836 		cc = GETNEXT();
837 		c = BACKSL | cc;
838 #ifdef LIBREGEX
839 		if (p->gnuext) {
840 			handled = true;
841 			switch (c) {
842 			case BACKSL|'`':
843 				EMIT(OBOS, 0);
844 				break;
845 			case BACKSL|'\'':
846 				EMIT(OEOS, 0);
847 				break;
848 			case BACKSL|'B':
849 				EMIT(ONWBND, 0);
850 				break;
851 			case BACKSL|'b':
852 				EMIT(OWBND, 0);
853 				break;
854 			case BACKSL|'W':
855 			case BACKSL|'w':
856 			case BACKSL|'S':
857 			case BACKSL|'s':
858 				p_b_pseudoclass(p, cc);
859 				break;
860 			default:
861 				handled = false;
862 			}
863 		}
864 #endif
865 	}
866 	if (!handled) {
867 		switch (c) {
868 		case '.':
869 			if (p->g->cflags&REG_NEWLINE)
870 				nonnewline(p);
871 			else
872 				EMIT(OANY, 0);
873 			break;
874 		case '[':
875 			p_bracket(p);
876 			break;
877 		case BACKSL|'<':
878 			EMIT(OBOW, 0);
879 			break;
880 		case BACKSL|'>':
881 			EMIT(OEOW, 0);
882 			break;
883 		case BACKSL|'{':
884 			SETERROR(REG_BADRPT);
885 			break;
886 		case BACKSL|'(':
887 			p->g->nsub++;
888 			subno = p->g->nsub;
889 			if (subno < NPAREN)
890 				p->pbegin[subno] = HERE();
891 			EMIT(OLPAREN, subno);
892 			/* the MORE here is an error heuristic */
893 			if (MORE() && !SEETWO('\\', ')'))
894 				p_re(p, '\\', ')');
895 			if (subno < NPAREN) {
896 				p->pend[subno] = HERE();
897 				assert(p->pend[subno] != 0);
898 			}
899 			EMIT(ORPAREN, subno);
900 			(void)REQUIRE(EATTWO('\\', ')'), REG_EPAREN);
901 			break;
902 		case BACKSL|')':	/* should not get here -- must be user */
903 			SETERROR(REG_EPAREN);
904 			break;
905 		case BACKSL|'1':
906 		case BACKSL|'2':
907 		case BACKSL|'3':
908 		case BACKSL|'4':
909 		case BACKSL|'5':
910 		case BACKSL|'6':
911 		case BACKSL|'7':
912 		case BACKSL|'8':
913 		case BACKSL|'9':
914 			i = (c&~BACKSL) - '0';
915 			assert(i < NPAREN);
916 			if (p->pend[i] != 0) {
917 				assert(i <= p->g->nsub);
918 				EMIT(OBACK_, i);
919 				assert(p->pbegin[i] != 0);
920 				assert(OP(p->strip[p->pbegin[i]]) == OLPAREN);
921 				assert(OP(p->strip[p->pend[i]]) == ORPAREN);
922 				(void) dupl(p, p->pbegin[i]+1, p->pend[i]);
923 				EMIT(O_BACK, i);
924 			} else
925 				SETERROR(REG_ESUBREG);
926 			p->g->backrefs = 1;
927 			break;
928 		case '*':
929 			/*
930 			 * Ordinary if used as the first character beyond BOL anchor of
931 			 * a (sub-)expression, counts as a bad repetition operator if it
932 			 * appears otherwise.
933 			 */
934 			(void)REQUIRE(bc->nchain == 0, REG_BADRPT);
935 			/* FALLTHROUGH */
936 		default:
937 			if (p->error != 0)
938 				return (false);	/* Definitely not $... */
939 			p->next--;
940 			wc = WGETNEXT();
941 			if ((c & BACKSL) == 0 || may_escape(p, wc))
942 				ordinary(p, wc);
943 			else
944 				SETERROR(REG_EESCAPE);
945 			break;
946 		}
947 	}
948 
949 	if (EAT('*')) {		/* implemented as +? */
950 		/* this case does not require the (y|) trick, noKLUDGE */
951 		INSERT(OPLUS_, pos);
952 		ASTERN(O_PLUS, pos);
953 		INSERT(OQUEST_, pos);
954 		ASTERN(O_QUEST, pos);
955 #ifdef LIBREGEX
956 	} else if (p->gnuext && EATTWO('\\', '?')) {
957 		INSERT(OQUEST_, pos);
958 		ASTERN(O_QUEST, pos);
959 	} else if (p->gnuext && EATTWO('\\', '+')) {
960 		INSERT(OPLUS_, pos);
961 		ASTERN(O_PLUS, pos);
962 #endif
963 	} else if (EATTWO('\\', '{')) {
964 		count = p_count(p);
965 		if (EAT(',')) {
966 			if (MORE() && isdigit((uch)PEEK())) {
967 				count2 = p_count(p);
968 				(void)REQUIRE(count <= count2, REG_BADBR);
969 			} else		/* single number with comma */
970 				count2 = INFINITY;
971 		} else		/* just a single number */
972 			count2 = count;
973 		repeat(p, pos, count, count2);
974 		if (!EATTWO('\\', '}')) {	/* error heuristics */
975 			while (MORE() && !SEETWO('\\', '}'))
976 				NEXT();
977 			(void)REQUIRE(MORE(), REG_EBRACE);
978 			SETERROR(REG_BADBR);
979 		}
980 	} else if (c == '$')     /* $ (but not \$) ends it */
981 		return (true);
982 
983 	return (false);
984 }
985 
986 /*
987  - p_count - parse a repetition count
988  == static int p_count(struct parse *p);
989  */
990 static int			/* the value */
991 p_count(struct parse *p)
992 {
993 	int count = 0;
994 	int ndigits = 0;
995 
996 	while (MORE() && isdigit((uch)PEEK()) && count <= DUPMAX) {
997 		count = count*10 + (GETNEXT() - '0');
998 		ndigits++;
999 	}
1000 
1001 	(void)REQUIRE(ndigits > 0 && count <= DUPMAX, REG_BADBR);
1002 	return(count);
1003 }
1004 
1005 /*
1006  - p_bracket - parse a bracketed character list
1007  == static void p_bracket(struct parse *p);
1008  */
1009 static void
1010 p_bracket(struct parse *p)
1011 {
1012 	cset *cs;
1013 	wint_t ch;
1014 
1015 	/* Dept of Truly Sickening Special-Case Kludges */
1016 	if (p->end - p->next > 5) {
1017 		if (strncmp(p->next, "[:<:]]", 6) == 0) {
1018 			EMIT(OBOW, 0);
1019 			NEXTn(6);
1020 			return;
1021 		}
1022 		if (strncmp(p->next, "[:>:]]", 6) == 0) {
1023 			EMIT(OEOW, 0);
1024 			NEXTn(6);
1025 			return;
1026 		}
1027 	}
1028 
1029 	if ((cs = allocset(p)) == NULL)
1030 		return;
1031 
1032 	if (p->g->cflags&REG_ICASE)
1033 		cs->icase = 1;
1034 	if (EAT('^'))
1035 		cs->invert = 1;
1036 	if (EAT(']'))
1037 		CHadd(p, cs, ']');
1038 	else if (EAT('-'))
1039 		CHadd(p, cs, '-');
1040 	while (MORE() && PEEK() != ']' && !SEETWO('-', ']'))
1041 		p_b_term(p, cs);
1042 	if (EAT('-'))
1043 		CHadd(p, cs, '-');
1044 	(void)MUSTEAT(']', REG_EBRACK);
1045 
1046 	if (p->error != 0)	/* don't mess things up further */
1047 		return;
1048 
1049 	if (cs->invert && p->g->cflags&REG_NEWLINE)
1050 		cs->bmp['\n' >> 3] |= 1 << ('\n' & 7);
1051 
1052 	if ((ch = singleton(cs)) != OUT) {	/* optimize singleton sets */
1053 		ordinary(p, ch);
1054 		freeset(p, cs);
1055 	} else
1056 		EMIT(OANYOF, (int)(cs - p->g->sets));
1057 }
1058 
1059 static int
1060 p_range_cmp(wchar_t c1, wchar_t c2)
1061 {
1062 #ifndef LIBREGEX
1063 	return __wcollate_range_cmp(c1, c2);
1064 #else
1065 	/* Copied from libc/collate __wcollate_range_cmp */
1066 	wchar_t s1[2], s2[2];
1067 
1068 	s1[0] = c1;
1069 	s1[1] = L'\0';
1070 	s2[0] = c2;
1071 	s2[1] = L'\0';
1072 	return (wcscoll(s1, s2));
1073 #endif
1074 }
1075 
1076 /*
1077  - p_b_term - parse one term of a bracketed character list
1078  == static void p_b_term(struct parse *p, cset *cs);
1079  */
1080 static void
1081 p_b_term(struct parse *p, cset *cs)
1082 {
1083 	char c;
1084 	wint_t start, finish;
1085 	wint_t i;
1086 #ifndef LIBREGEX
1087 	struct xlocale_collate *table =
1088 		(struct xlocale_collate*)__get_locale()->components[XLC_COLLATE];
1089 #endif
1090 	/* classify what we've got */
1091 	switch ((MORE()) ? PEEK() : '\0') {
1092 	case '[':
1093 		c = (MORE2()) ? PEEK2() : '\0';
1094 		break;
1095 	case '-':
1096 		SETERROR(REG_ERANGE);
1097 		return;			/* NOTE RETURN */
1098 	default:
1099 		c = '\0';
1100 		break;
1101 	}
1102 
1103 	switch (c) {
1104 	case ':':		/* character class */
1105 		NEXT2();
1106 		(void)REQUIRE(MORE(), REG_EBRACK);
1107 		c = PEEK();
1108 		(void)REQUIRE(c != '-' && c != ']', REG_ECTYPE);
1109 		p_b_cclass(p, cs);
1110 		(void)REQUIRE(MORE(), REG_EBRACK);
1111 		(void)REQUIRE(EATTWO(':', ']'), REG_ECTYPE);
1112 		break;
1113 	case '=':		/* equivalence class */
1114 		NEXT2();
1115 		(void)REQUIRE(MORE(), REG_EBRACK);
1116 		c = PEEK();
1117 		(void)REQUIRE(c != '-' && c != ']', REG_ECOLLATE);
1118 		p_b_eclass(p, cs);
1119 		(void)REQUIRE(MORE(), REG_EBRACK);
1120 		(void)REQUIRE(EATTWO('=', ']'), REG_ECOLLATE);
1121 		break;
1122 	default:		/* symbol, ordinary character, or range */
1123 		start = p_b_symbol(p);
1124 		if (SEE('-') && MORE2() && PEEK2() != ']') {
1125 			/* range */
1126 			NEXT();
1127 			if (EAT('-'))
1128 				finish = '-';
1129 			else
1130 				finish = p_b_symbol(p);
1131 		} else
1132 			finish = start;
1133 		if (start == finish)
1134 			CHadd(p, cs, start);
1135 		else {
1136 #ifndef LIBREGEX
1137 			if (table->__collate_load_error || MB_CUR_MAX > 1) {
1138 #else
1139 			if (MB_CUR_MAX > 1) {
1140 #endif
1141 				(void)REQUIRE(start <= finish, REG_ERANGE);
1142 				CHaddrange(p, cs, start, finish);
1143 			} else {
1144 				(void)REQUIRE(p_range_cmp(start, finish) <= 0, REG_ERANGE);
1145 				for (i = 0; i <= UCHAR_MAX; i++) {
1146 					if (p_range_cmp(start, i) <= 0 &&
1147 					    p_range_cmp(i, finish) <= 0 )
1148 						CHadd(p, cs, i);
1149 				}
1150 			}
1151 		}
1152 		break;
1153 	}
1154 }
1155 
1156 /*
1157  - p_b_pseudoclass - parse a pseudo-class (\w, \W, \s, \S)
1158  == static int p_b_pseudoclass(struct parse *p, char c)
1159  */
1160 static int
1161 p_b_pseudoclass(struct parse *p, char c) {
1162 	cset *cs;
1163 
1164 	if ((cs = allocset(p)) == NULL)
1165 		return(0);
1166 
1167 	if (p->g->cflags&REG_ICASE)
1168 		cs->icase = 1;
1169 
1170 	switch (c) {
1171 	case 'W':
1172 		cs->invert = 1;
1173 		/* PASSTHROUGH */
1174 	case 'w':
1175 		p_b_cclass_named(p, cs, "alnum");
1176 		break;
1177 	case 'S':
1178 		cs->invert = 1;
1179 		/* PASSTHROUGH */
1180 	case 's':
1181 		p_b_cclass_named(p, cs, "space");
1182 		break;
1183 	default:
1184 		return(0);
1185 	}
1186 
1187 	EMIT(OANYOF, (int)(cs - p->g->sets));
1188 	return(1);
1189 }
1190 
1191 /*
1192  - p_b_cclass - parse a character-class name and deal with it
1193  == static void p_b_cclass(struct parse *p, cset *cs);
1194  */
1195 static void
1196 p_b_cclass(struct parse *p, cset *cs)
1197 {
1198 	const char *sp = p->next;
1199 	size_t len;
1200 	char clname[16];
1201 
1202 	while (MORE() && isalpha((uch)PEEK()))
1203 		NEXT();
1204 	len = p->next - sp;
1205 	if (len >= sizeof(clname) - 1) {
1206 		SETERROR(REG_ECTYPE);
1207 		return;
1208 	}
1209 	memcpy(clname, sp, len);
1210 	clname[len] = '\0';
1211 
1212 	p_b_cclass_named(p, cs, clname);
1213 }
1214 /*
1215  - p_b_cclass_named - deal with a named character class
1216  == static void p_b_cclass_named(struct parse *p, cset *cs, const char []);
1217  */
1218 static void
1219 p_b_cclass_named(struct parse *p, cset *cs, const char clname[]) {
1220 	wctype_t wct;
1221 
1222 	if ((wct = wctype(clname)) == 0) {
1223 		SETERROR(REG_ECTYPE);
1224 		return;
1225 	}
1226 	CHaddtype(p, cs, wct);
1227 }
1228 
1229 /*
1230  - p_b_eclass - parse an equivalence-class name and deal with it
1231  == static void p_b_eclass(struct parse *p, cset *cs);
1232  *
1233  * This implementation is incomplete. xxx
1234  */
1235 static void
1236 p_b_eclass(struct parse *p, cset *cs)
1237 {
1238 	wint_t c;
1239 
1240 	c = p_b_coll_elem(p, '=');
1241 	CHadd(p, cs, c);
1242 }
1243 
1244 /*
1245  - p_b_symbol - parse a character or [..]ed multicharacter collating symbol
1246  == static wint_t p_b_symbol(struct parse *p);
1247  */
1248 static wint_t			/* value of symbol */
1249 p_b_symbol(struct parse *p)
1250 {
1251 	wint_t value;
1252 
1253 	(void)REQUIRE(MORE(), REG_EBRACK);
1254 	if (!EATTWO('[', '.'))
1255 		return(WGETNEXT());
1256 
1257 	/* collating symbol */
1258 	value = p_b_coll_elem(p, '.');
1259 	(void)REQUIRE(EATTWO('.', ']'), REG_ECOLLATE);
1260 	return(value);
1261 }
1262 
1263 /*
1264  - p_b_coll_elem - parse a collating-element name and look it up
1265  == static wint_t p_b_coll_elem(struct parse *p, wint_t endc);
1266  */
1267 static wint_t			/* value of collating element */
1268 p_b_coll_elem(struct parse *p,
1269 	wint_t endc)		/* name ended by endc,']' */
1270 {
1271 	const char *sp = p->next;
1272 	struct cname *cp;
1273 	mbstate_t mbs;
1274 	wchar_t wc;
1275 	size_t clen, len;
1276 
1277 	while (MORE() && !SEETWO(endc, ']'))
1278 		NEXT();
1279 	if (!MORE()) {
1280 		SETERROR(REG_EBRACK);
1281 		return(0);
1282 	}
1283 	len = p->next - sp;
1284 	for (cp = cnames; cp->name != NULL; cp++)
1285 		if (strncmp(cp->name, sp, len) == 0 && strlen(cp->name) == len)
1286 			return(cp->code);	/* known name */
1287 	memset(&mbs, 0, sizeof(mbs));
1288 	if ((clen = mbrtowc(&wc, sp, len, &mbs)) == len)
1289 		return (wc);			/* single character */
1290 	else if (clen == (size_t)-1 || clen == (size_t)-2)
1291 		SETERROR(REG_ILLSEQ);
1292 	else
1293 		SETERROR(REG_ECOLLATE);		/* neither */
1294 	return(0);
1295 }
1296 
1297 /*
1298  - may_escape - determine whether 'ch' is escape-able in the current context
1299  == static int may_escape(struct parse *p, const wint_t ch)
1300  */
1301 static bool
1302 may_escape(struct parse *p, const wint_t ch)
1303 {
1304 
1305 	if ((p->pflags & PFLAG_LEGACY_ESC) != 0)
1306 		return (true);
1307 	if (isalpha(ch) || ch == '\'' || ch == '`')
1308 		return (false);
1309 	return (true);
1310 #ifdef NOTYET
1311 	/*
1312 	 * Build a whitelist of characters that may be escaped to produce an
1313 	 * ordinary in the current context. This assumes that these have not
1314 	 * been otherwise interpreted as a special character. Escaping an
1315 	 * ordinary character yields undefined results according to
1316 	 * IEEE 1003.1-2008. Some extensions (notably, some GNU extensions) take
1317 	 * advantage of this and use escaped ordinary characters to provide
1318 	 * special meaning, e.g. \b, \B, \w, \W, \s, \S.
1319 	 */
1320 	switch(ch) {
1321 	case '|':
1322 	case '+':
1323 	case '?':
1324 		/* The above characters may not be escaped in BREs */
1325 		if (!(p->g->cflags&REG_EXTENDED))
1326 			return (false);
1327 		/* Fallthrough */
1328 	case '(':
1329 	case ')':
1330 	case '{':
1331 	case '}':
1332 	case '.':
1333 	case '[':
1334 	case ']':
1335 	case '\\':
1336 	case '*':
1337 	case '^':
1338 	case '$':
1339 		return (true);
1340 	default:
1341 		return (false);
1342 	}
1343 #endif
1344 }
1345 
1346 /*
1347  - othercase - return the case counterpart of an alphabetic
1348  == static wint_t othercase(wint_t ch);
1349  */
1350 static wint_t			/* if no counterpart, return ch */
1351 othercase(wint_t ch)
1352 {
1353 	assert(iswalpha(ch));
1354 	if (iswupper(ch))
1355 		return(towlower(ch));
1356 	else if (iswlower(ch))
1357 		return(towupper(ch));
1358 	else			/* peculiar, but could happen */
1359 		return(ch);
1360 }
1361 
1362 /*
1363  - bothcases - emit a dualcase version of a two-case character
1364  == static void bothcases(struct parse *p, wint_t ch);
1365  *
1366  * Boy, is this implementation ever a kludge...
1367  */
1368 static void
1369 bothcases(struct parse *p, wint_t ch)
1370 {
1371 	const char *oldnext = p->next;
1372 	const char *oldend = p->end;
1373 	char bracket[3 + MB_LEN_MAX];
1374 	size_t n;
1375 	mbstate_t mbs;
1376 
1377 	assert(othercase(ch) != ch);	/* p_bracket() would recurse */
1378 	p->next = bracket;
1379 	memset(&mbs, 0, sizeof(mbs));
1380 	n = wcrtomb(bracket, ch, &mbs);
1381 	assert(n != (size_t)-1);
1382 	bracket[n] = ']';
1383 	bracket[n + 1] = '\0';
1384 	p->end = bracket+n+1;
1385 	p_bracket(p);
1386 	assert(p->next == p->end);
1387 	p->next = oldnext;
1388 	p->end = oldend;
1389 }
1390 
1391 /*
1392  - ordinary - emit an ordinary character
1393  == static void ordinary(struct parse *p, wint_t ch);
1394  */
1395 static void
1396 ordinary(struct parse *p, wint_t ch)
1397 {
1398 	cset *cs;
1399 
1400 	if ((p->g->cflags&REG_ICASE) && iswalpha(ch) && othercase(ch) != ch)
1401 		bothcases(p, ch);
1402 	else if ((ch & OPDMASK) == ch)
1403 		EMIT(OCHAR, ch);
1404 	else {
1405 		/*
1406 		 * Kludge: character is too big to fit into an OCHAR operand.
1407 		 * Emit a singleton set.
1408 		 */
1409 		if ((cs = allocset(p)) == NULL)
1410 			return;
1411 		CHadd(p, cs, ch);
1412 		EMIT(OANYOF, (int)(cs - p->g->sets));
1413 	}
1414 }
1415 
1416 /*
1417  - nonnewline - emit REG_NEWLINE version of OANY
1418  == static void nonnewline(struct parse *p);
1419  *
1420  * Boy, is this implementation ever a kludge...
1421  */
1422 static void
1423 nonnewline(struct parse *p)
1424 {
1425 	const char *oldnext = p->next;
1426 	const char *oldend = p->end;
1427 	char bracket[4];
1428 
1429 	p->next = bracket;
1430 	p->end = bracket+3;
1431 	bracket[0] = '^';
1432 	bracket[1] = '\n';
1433 	bracket[2] = ']';
1434 	bracket[3] = '\0';
1435 	p_bracket(p);
1436 	assert(p->next == bracket+3);
1437 	p->next = oldnext;
1438 	p->end = oldend;
1439 }
1440 
1441 /*
1442  - repeat - generate code for a bounded repetition, recursively if needed
1443  == static void repeat(struct parse *p, sopno start, int from, int to);
1444  */
1445 static void
1446 repeat(struct parse *p,
1447 	sopno start,		/* operand from here to end of strip */
1448 	int from,		/* repeated from this number */
1449 	int to)			/* to this number of times (maybe INFINITY) */
1450 {
1451 	sopno finish = HERE();
1452 #	define	N	2
1453 #	define	INF	3
1454 #	define	REP(f, t)	((f)*8 + (t))
1455 #	define	MAP(n)	(((n) <= 1) ? (n) : ((n) == INFINITY) ? INF : N)
1456 	sopno copy;
1457 
1458 	if (p->error != 0)	/* head off possible runaway recursion */
1459 		return;
1460 
1461 	assert(from <= to);
1462 
1463 	switch (REP(MAP(from), MAP(to))) {
1464 	case REP(0, 0):			/* must be user doing this */
1465 		DROP(finish-start);	/* drop the operand */
1466 		break;
1467 	case REP(0, 1):			/* as x{1,1}? */
1468 	case REP(0, N):			/* as x{1,n}? */
1469 	case REP(0, INF):		/* as x{1,}? */
1470 		/* KLUDGE: emit y? as (y|) until subtle bug gets fixed */
1471 		INSERT(OCH_, start);		/* offset is wrong... */
1472 		repeat(p, start+1, 1, to);
1473 		ASTERN(OOR1, start);
1474 		AHEAD(start);			/* ... fix it */
1475 		EMIT(OOR2, 0);
1476 		AHEAD(THERE());
1477 		ASTERN(O_CH, THERETHERE());
1478 		break;
1479 	case REP(1, 1):			/* trivial case */
1480 		/* done */
1481 		break;
1482 	case REP(1, N):			/* as x?x{1,n-1} */
1483 		/* KLUDGE: emit y? as (y|) until subtle bug gets fixed */
1484 		INSERT(OCH_, start);
1485 		ASTERN(OOR1, start);
1486 		AHEAD(start);
1487 		EMIT(OOR2, 0);			/* offset very wrong... */
1488 		AHEAD(THERE());			/* ...so fix it */
1489 		ASTERN(O_CH, THERETHERE());
1490 		copy = dupl(p, start+1, finish+1);
1491 		assert(copy == finish+4);
1492 		repeat(p, copy, 1, to-1);
1493 		break;
1494 	case REP(1, INF):		/* as x+ */
1495 		INSERT(OPLUS_, start);
1496 		ASTERN(O_PLUS, start);
1497 		break;
1498 	case REP(N, N):			/* as xx{m-1,n-1} */
1499 		copy = dupl(p, start, finish);
1500 		repeat(p, copy, from-1, to-1);
1501 		break;
1502 	case REP(N, INF):		/* as xx{n-1,INF} */
1503 		copy = dupl(p, start, finish);
1504 		repeat(p, copy, from-1, to);
1505 		break;
1506 	default:			/* "can't happen" */
1507 		SETERROR(REG_ASSERT);	/* just in case */
1508 		break;
1509 	}
1510 }
1511 
1512 /*
1513  - wgetnext - helper function for WGETNEXT() macro. Gets the next wide
1514  - character from the parse struct, signals a REG_ILLSEQ error if the
1515  - character can't be converted. Returns the number of bytes consumed.
1516  */
1517 static wint_t
1518 wgetnext(struct parse *p)
1519 {
1520 	mbstate_t mbs;
1521 	wchar_t wc;
1522 	size_t n;
1523 
1524 	memset(&mbs, 0, sizeof(mbs));
1525 	n = mbrtowc(&wc, p->next, p->end - p->next, &mbs);
1526 	if (n == (size_t)-1 || n == (size_t)-2) {
1527 		SETERROR(REG_ILLSEQ);
1528 		return (0);
1529 	}
1530 	if (n == 0)
1531 		n = 1;
1532 	p->next += n;
1533 	return (wc);
1534 }
1535 
1536 /*
1537  - seterr - set an error condition
1538  == static int seterr(struct parse *p, int e);
1539  */
1540 static int			/* useless but makes type checking happy */
1541 seterr(struct parse *p, int e)
1542 {
1543 	if (p->error == 0)	/* keep earliest error condition */
1544 		p->error = e;
1545 	p->next = nuls;		/* try to bring things to a halt */
1546 	p->end = nuls;
1547 	return(0);		/* make the return value well-defined */
1548 }
1549 
1550 /*
1551  - allocset - allocate a set of characters for []
1552  == static cset *allocset(struct parse *p);
1553  */
1554 static cset *
1555 allocset(struct parse *p)
1556 {
1557 	cset *cs, *ncs;
1558 
1559 	ncs = reallocarray(p->g->sets, p->g->ncsets + 1, sizeof(*ncs));
1560 	if (ncs == NULL) {
1561 		SETERROR(REG_ESPACE);
1562 		return (NULL);
1563 	}
1564 	p->g->sets = ncs;
1565 	cs = &p->g->sets[p->g->ncsets++];
1566 	memset(cs, 0, sizeof(*cs));
1567 
1568 	return(cs);
1569 }
1570 
1571 /*
1572  - freeset - free a now-unused set
1573  == static void freeset(struct parse *p, cset *cs);
1574  */
1575 static void
1576 freeset(struct parse *p, cset *cs)
1577 {
1578 	cset *top = &p->g->sets[p->g->ncsets];
1579 
1580 	free(cs->wides);
1581 	free(cs->ranges);
1582 	free(cs->types);
1583 	memset(cs, 0, sizeof(*cs));
1584 	if (cs == top-1)	/* recover only the easy case */
1585 		p->g->ncsets--;
1586 }
1587 
1588 /*
1589  - singleton - Determine whether a set contains only one character,
1590  - returning it if so, otherwise returning OUT.
1591  */
1592 static wint_t
1593 singleton(cset *cs)
1594 {
1595 	wint_t i, s, n;
1596 
1597 	for (i = n = 0; i < NC; i++)
1598 		if (CHIN(cs, i)) {
1599 			n++;
1600 			s = i;
1601 		}
1602 	if (n == 1)
1603 		return (s);
1604 	if (cs->nwides == 1 && cs->nranges == 0 && cs->ntypes == 0 &&
1605 	    cs->icase == 0)
1606 		return (cs->wides[0]);
1607 	/* Don't bother handling the other cases. */
1608 	return (OUT);
1609 }
1610 
1611 /*
1612  - CHadd - add character to character set.
1613  */
1614 static void
1615 CHadd(struct parse *p, cset *cs, wint_t ch)
1616 {
1617 	wint_t nch, *newwides;
1618 	assert(ch >= 0);
1619 	if (ch < NC)
1620 		cs->bmp[ch >> 3] |= 1 << (ch & 7);
1621 	else {
1622 		newwides = reallocarray(cs->wides, cs->nwides + 1,
1623 		    sizeof(*cs->wides));
1624 		if (newwides == NULL) {
1625 			SETERROR(REG_ESPACE);
1626 			return;
1627 		}
1628 		cs->wides = newwides;
1629 		cs->wides[cs->nwides++] = ch;
1630 	}
1631 	if (cs->icase) {
1632 		if ((nch = towlower(ch)) < NC)
1633 			cs->bmp[nch >> 3] |= 1 << (nch & 7);
1634 		if ((nch = towupper(ch)) < NC)
1635 			cs->bmp[nch >> 3] |= 1 << (nch & 7);
1636 	}
1637 }
1638 
1639 /*
1640  - CHaddrange - add all characters in the range [min,max] to a character set.
1641  */
1642 static void
1643 CHaddrange(struct parse *p, cset *cs, wint_t min, wint_t max)
1644 {
1645 	crange *newranges;
1646 
1647 	for (; min < NC && min <= max; min++)
1648 		CHadd(p, cs, min);
1649 	if (min >= max)
1650 		return;
1651 	newranges = reallocarray(cs->ranges, cs->nranges + 1,
1652 	    sizeof(*cs->ranges));
1653 	if (newranges == NULL) {
1654 		SETERROR(REG_ESPACE);
1655 		return;
1656 	}
1657 	cs->ranges = newranges;
1658 	cs->ranges[cs->nranges].min = min;
1659 	cs->ranges[cs->nranges].max = max;
1660 	cs->nranges++;
1661 }
1662 
1663 /*
1664  - CHaddtype - add all characters of a certain type to a character set.
1665  */
1666 static void
1667 CHaddtype(struct parse *p, cset *cs, wctype_t wct)
1668 {
1669 	wint_t i;
1670 	wctype_t *newtypes;
1671 
1672 	for (i = 0; i < NC; i++)
1673 		if (iswctype(i, wct))
1674 			CHadd(p, cs, i);
1675 	newtypes = reallocarray(cs->types, cs->ntypes + 1,
1676 	    sizeof(*cs->types));
1677 	if (newtypes == NULL) {
1678 		SETERROR(REG_ESPACE);
1679 		return;
1680 	}
1681 	cs->types = newtypes;
1682 	cs->types[cs->ntypes++] = wct;
1683 }
1684 
1685 /*
1686  - dupl - emit a duplicate of a bunch of sops
1687  == static sopno dupl(struct parse *p, sopno start, sopno finish);
1688  */
1689 static sopno			/* start of duplicate */
1690 dupl(struct parse *p,
1691 	sopno start,		/* from here */
1692 	sopno finish)		/* to this less one */
1693 {
1694 	sopno ret = HERE();
1695 	sopno len = finish - start;
1696 
1697 	assert(finish >= start);
1698 	if (len == 0)
1699 		return(ret);
1700 	if (!enlarge(p, p->ssize + len)) /* this many unexpected additions */
1701 		return(ret);
1702 	(void) memcpy((char *)(p->strip + p->slen),
1703 		(char *)(p->strip + start), (size_t)len*sizeof(sop));
1704 	p->slen += len;
1705 	return(ret);
1706 }
1707 
1708 /*
1709  - doemit - emit a strip operator
1710  == static void doemit(struct parse *p, sop op, size_t opnd);
1711  *
1712  * It might seem better to implement this as a macro with a function as
1713  * hard-case backup, but it's just too big and messy unless there are
1714  * some changes to the data structures.  Maybe later.
1715  */
1716 static void
1717 doemit(struct parse *p, sop op, size_t opnd)
1718 {
1719 	/* avoid making error situations worse */
1720 	if (p->error != 0)
1721 		return;
1722 
1723 	/* deal with oversize operands ("can't happen", more or less) */
1724 	assert(opnd < 1<<OPSHIFT);
1725 
1726 	/* deal with undersized strip */
1727 	if (p->slen >= p->ssize)
1728 		if (!enlarge(p, (p->ssize+1) / 2 * 3))	/* +50% */
1729 			return;
1730 
1731 	/* finally, it's all reduced to the easy case */
1732 	p->strip[p->slen++] = SOP(op, opnd);
1733 }
1734 
1735 /*
1736  - doinsert - insert a sop into the strip
1737  == static void doinsert(struct parse *p, sop op, size_t opnd, sopno pos);
1738  */
1739 static void
1740 doinsert(struct parse *p, sop op, size_t opnd, sopno pos)
1741 {
1742 	sopno sn;
1743 	sop s;
1744 	int i;
1745 
1746 	/* avoid making error situations worse */
1747 	if (p->error != 0)
1748 		return;
1749 
1750 	sn = HERE();
1751 	EMIT(op, opnd);		/* do checks, ensure space */
1752 	assert(HERE() == sn+1);
1753 	s = p->strip[sn];
1754 
1755 	/* adjust paren pointers */
1756 	assert(pos > 0);
1757 	for (i = 1; i < NPAREN; i++) {
1758 		if (p->pbegin[i] >= pos) {
1759 			p->pbegin[i]++;
1760 		}
1761 		if (p->pend[i] >= pos) {
1762 			p->pend[i]++;
1763 		}
1764 	}
1765 
1766 	memmove((char *)&p->strip[pos+1], (char *)&p->strip[pos],
1767 						(HERE()-pos-1)*sizeof(sop));
1768 	p->strip[pos] = s;
1769 }
1770 
1771 /*
1772  - dofwd - complete a forward reference
1773  == static void dofwd(struct parse *p, sopno pos, sop value);
1774  */
1775 static void
1776 dofwd(struct parse *p, sopno pos, sop value)
1777 {
1778 	/* avoid making error situations worse */
1779 	if (p->error != 0)
1780 		return;
1781 
1782 	assert(value < 1<<OPSHIFT);
1783 	p->strip[pos] = OP(p->strip[pos]) | value;
1784 }
1785 
1786 /*
1787  - enlarge - enlarge the strip
1788  == static int enlarge(struct parse *p, sopno size);
1789  */
1790 static int
1791 enlarge(struct parse *p, sopno size)
1792 {
1793 	sop *sp;
1794 
1795 	if (p->ssize >= size)
1796 		return 1;
1797 
1798 	sp = reallocarray(p->strip, size, sizeof(sop));
1799 	if (sp == NULL) {
1800 		SETERROR(REG_ESPACE);
1801 		return 0;
1802 	}
1803 	p->strip = sp;
1804 	p->ssize = size;
1805 	return 1;
1806 }
1807 
1808 /*
1809  - stripsnug - compact the strip
1810  == static void stripsnug(struct parse *p, struct re_guts *g);
1811  */
1812 static void
1813 stripsnug(struct parse *p, struct re_guts *g)
1814 {
1815 	g->nstates = p->slen;
1816 	g->strip = reallocarray((char *)p->strip, p->slen, sizeof(sop));
1817 	if (g->strip == NULL) {
1818 		SETERROR(REG_ESPACE);
1819 		g->strip = p->strip;
1820 	}
1821 }
1822 
1823 /*
1824  - findmust - fill in must and mlen with longest mandatory literal string
1825  == static void findmust(struct parse *p, struct re_guts *g);
1826  *
1827  * This algorithm could do fancy things like analyzing the operands of |
1828  * for common subsequences.  Someday.  This code is simple and finds most
1829  * of the interesting cases.
1830  *
1831  * Note that must and mlen got initialized during setup.
1832  */
1833 static void
1834 findmust(struct parse *p, struct re_guts *g)
1835 {
1836 	sop *scan;
1837 	sop *start = NULL;
1838 	sop *newstart = NULL;
1839 	sopno newlen;
1840 	sop s;
1841 	char *cp;
1842 	int offset;
1843 	char buf[MB_LEN_MAX];
1844 	size_t clen;
1845 	mbstate_t mbs;
1846 
1847 	/* avoid making error situations worse */
1848 	if (p->error != 0)
1849 		return;
1850 
1851 	/*
1852 	 * It's not generally safe to do a ``char'' substring search on
1853 	 * multibyte character strings, but it's safe for at least
1854 	 * UTF-8 (see RFC 3629).
1855 	 */
1856 	if (MB_CUR_MAX > 1 &&
1857 	    strcmp(_CurrentRuneLocale->__encoding, "UTF-8") != 0)
1858 		return;
1859 
1860 	/* find the longest OCHAR sequence in strip */
1861 	newlen = 0;
1862 	offset = 0;
1863 	g->moffset = 0;
1864 	scan = g->strip + 1;
1865 	do {
1866 		s = *scan++;
1867 		switch (OP(s)) {
1868 		case OCHAR:		/* sequence member */
1869 			if (newlen == 0) {		/* new sequence */
1870 				memset(&mbs, 0, sizeof(mbs));
1871 				newstart = scan - 1;
1872 			}
1873 			clen = wcrtomb(buf, OPND(s), &mbs);
1874 			if (clen == (size_t)-1)
1875 				goto toohard;
1876 			newlen += clen;
1877 			break;
1878 		case OPLUS_:		/* things that don't break one */
1879 		case OLPAREN:
1880 		case ORPAREN:
1881 			break;
1882 		case OQUEST_:		/* things that must be skipped */
1883 		case OCH_:
1884 			offset = altoffset(scan, offset);
1885 			scan--;
1886 			do {
1887 				scan += OPND(s);
1888 				s = *scan;
1889 				/* assert() interferes w debug printouts */
1890 				if (OP(s) != (sop)O_QUEST &&
1891 				    OP(s) != (sop)O_CH && OP(s) != (sop)OOR2) {
1892 					g->iflags |= BAD;
1893 					return;
1894 				}
1895 			} while (OP(s) != (sop)O_QUEST && OP(s) != (sop)O_CH);
1896 			/* FALLTHROUGH */
1897 		case OBOW:		/* things that break a sequence */
1898 		case OEOW:
1899 		case OBOL:
1900 		case OEOL:
1901 		case OBOS:
1902 		case OEOS:
1903 		case OWBND:
1904 		case ONWBND:
1905 		case O_QUEST:
1906 		case O_CH:
1907 		case OEND:
1908 			if (newlen > (sopno)g->mlen) {		/* ends one */
1909 				start = newstart;
1910 				g->mlen = newlen;
1911 				if (offset > -1) {
1912 					g->moffset += offset;
1913 					offset = newlen;
1914 				} else
1915 					g->moffset = offset;
1916 			} else {
1917 				if (offset > -1)
1918 					offset += newlen;
1919 			}
1920 			newlen = 0;
1921 			break;
1922 		case OANY:
1923 			if (newlen > (sopno)g->mlen) {		/* ends one */
1924 				start = newstart;
1925 				g->mlen = newlen;
1926 				if (offset > -1) {
1927 					g->moffset += offset;
1928 					offset = newlen;
1929 				} else
1930 					g->moffset = offset;
1931 			} else {
1932 				if (offset > -1)
1933 					offset += newlen;
1934 			}
1935 			if (offset > -1)
1936 				offset++;
1937 			newlen = 0;
1938 			break;
1939 		case OANYOF:		/* may or may not invalidate offset */
1940 			/* First, everything as OANY */
1941 			if (newlen > (sopno)g->mlen) {		/* ends one */
1942 				start = newstart;
1943 				g->mlen = newlen;
1944 				if (offset > -1) {
1945 					g->moffset += offset;
1946 					offset = newlen;
1947 				} else
1948 					g->moffset = offset;
1949 			} else {
1950 				if (offset > -1)
1951 					offset += newlen;
1952 			}
1953 			if (offset > -1)
1954 				offset++;
1955 			newlen = 0;
1956 			break;
1957 		toohard:
1958 		default:
1959 			/* Anything here makes it impossible or too hard
1960 			 * to calculate the offset -- so we give up;
1961 			 * save the last known good offset, in case the
1962 			 * must sequence doesn't occur later.
1963 			 */
1964 			if (newlen > (sopno)g->mlen) {		/* ends one */
1965 				start = newstart;
1966 				g->mlen = newlen;
1967 				if (offset > -1)
1968 					g->moffset += offset;
1969 				else
1970 					g->moffset = offset;
1971 			}
1972 			offset = -1;
1973 			newlen = 0;
1974 			break;
1975 		}
1976 	} while (OP(s) != OEND);
1977 
1978 	if (g->mlen == 0) {		/* there isn't one */
1979 		g->moffset = -1;
1980 		return;
1981 	}
1982 
1983 	/* turn it into a character string */
1984 	g->must = malloc((size_t)g->mlen + 1);
1985 	if (g->must == NULL) {		/* argh; just forget it */
1986 		g->mlen = 0;
1987 		g->moffset = -1;
1988 		return;
1989 	}
1990 	cp = g->must;
1991 	scan = start;
1992 	memset(&mbs, 0, sizeof(mbs));
1993 	while (cp < g->must + g->mlen) {
1994 		while (OP(s = *scan++) != OCHAR)
1995 			continue;
1996 		clen = wcrtomb(cp, OPND(s), &mbs);
1997 		assert(clen != (size_t)-1);
1998 		cp += clen;
1999 	}
2000 	assert(cp == g->must + g->mlen);
2001 	*cp++ = '\0';		/* just on general principles */
2002 }
2003 
2004 /*
2005  - altoffset - choose biggest offset among multiple choices
2006  == static int altoffset(sop *scan, int offset);
2007  *
2008  * Compute, recursively if necessary, the largest offset among multiple
2009  * re paths.
2010  */
2011 static int
2012 altoffset(sop *scan, int offset)
2013 {
2014 	int largest;
2015 	int try;
2016 	sop s;
2017 
2018 	/* If we gave up already on offsets, return */
2019 	if (offset == -1)
2020 		return -1;
2021 
2022 	largest = 0;
2023 	try = 0;
2024 	s = *scan++;
2025 	while (OP(s) != (sop)O_QUEST && OP(s) != (sop)O_CH) {
2026 		switch (OP(s)) {
2027 		case OOR1:
2028 			if (try > largest)
2029 				largest = try;
2030 			try = 0;
2031 			break;
2032 		case OQUEST_:
2033 		case OCH_:
2034 			try = altoffset(scan, try);
2035 			if (try == -1)
2036 				return -1;
2037 			scan--;
2038 			do {
2039 				scan += OPND(s);
2040 				s = *scan;
2041 				if (OP(s) != (sop)O_QUEST &&
2042 				    OP(s) != (sop)O_CH && OP(s) != (sop)OOR2)
2043 					return -1;
2044 			} while (OP(s) != (sop)O_QUEST && OP(s) != (sop)O_CH);
2045 			/* We must skip to the next position, or we'll
2046 			 * leave altoffset() too early.
2047 			 */
2048 			scan++;
2049 			break;
2050 		case OANYOF:
2051 		case OCHAR:
2052 		case OANY:
2053 			try++;
2054 		case OBOW:
2055 		case OEOW:
2056 		case OWBND:
2057 		case ONWBND:
2058 		case OLPAREN:
2059 		case ORPAREN:
2060 		case OOR2:
2061 			break;
2062 		default:
2063 			try = -1;
2064 			break;
2065 		}
2066 		if (try == -1)
2067 			return -1;
2068 		s = *scan++;
2069 	}
2070 
2071 	if (try > largest)
2072 		largest = try;
2073 
2074 	return largest+offset;
2075 }
2076 
2077 /*
2078  - computejumps - compute char jumps for BM scan
2079  == static void computejumps(struct parse *p, struct re_guts *g);
2080  *
2081  * This algorithm assumes g->must exists and is has size greater than
2082  * zero. It's based on the algorithm found on Computer Algorithms by
2083  * Sara Baase.
2084  *
2085  * A char jump is the number of characters one needs to jump based on
2086  * the value of the character from the text that was mismatched.
2087  */
2088 static void
2089 computejumps(struct parse *p, struct re_guts *g)
2090 {
2091 	int ch;
2092 	int mindex;
2093 
2094 	/* Avoid making errors worse */
2095 	if (p->error != 0)
2096 		return;
2097 
2098 	g->charjump = (int *)malloc((NC_MAX + 1) * sizeof(int));
2099 	if (g->charjump == NULL)	/* Not a fatal error */
2100 		return;
2101 	/* Adjust for signed chars, if necessary */
2102 	g->charjump = &g->charjump[-(CHAR_MIN)];
2103 
2104 	/* If the character does not exist in the pattern, the jump
2105 	 * is equal to the number of characters in the pattern.
2106 	 */
2107 	for (ch = CHAR_MIN; ch < (CHAR_MAX + 1); ch++)
2108 		g->charjump[ch] = g->mlen;
2109 
2110 	/* If the character does exist, compute the jump that would
2111 	 * take us to the last character in the pattern equal to it
2112 	 * (notice that we match right to left, so that last character
2113 	 * is the first one that would be matched).
2114 	 */
2115 	for (mindex = 0; mindex < g->mlen; mindex++)
2116 		g->charjump[(int)g->must[mindex]] = g->mlen - mindex - 1;
2117 }
2118 
2119 /*
2120  - computematchjumps - compute match jumps for BM scan
2121  == static void computematchjumps(struct parse *p, struct re_guts *g);
2122  *
2123  * This algorithm assumes g->must exists and is has size greater than
2124  * zero. It's based on the algorithm found on Computer Algorithms by
2125  * Sara Baase.
2126  *
2127  * A match jump is the number of characters one needs to advance based
2128  * on the already-matched suffix.
2129  * Notice that all values here are minus (g->mlen-1), because of the way
2130  * the search algorithm works.
2131  */
2132 static void
2133 computematchjumps(struct parse *p, struct re_guts *g)
2134 {
2135 	int mindex;		/* General "must" iterator */
2136 	int suffix;		/* Keeps track of matching suffix */
2137 	int ssuffix;		/* Keeps track of suffixes' suffix */
2138 	int* pmatches;		/* pmatches[k] points to the next i
2139 				 * such that i+1...mlen is a substring
2140 				 * of k+1...k+mlen-i-1
2141 				 */
2142 
2143 	/* Avoid making errors worse */
2144 	if (p->error != 0)
2145 		return;
2146 
2147 	pmatches = (int*) malloc(g->mlen * sizeof(int));
2148 	if (pmatches == NULL) {
2149 		g->matchjump = NULL;
2150 		return;
2151 	}
2152 
2153 	g->matchjump = (int*) malloc(g->mlen * sizeof(int));
2154 	if (g->matchjump == NULL) {	/* Not a fatal error */
2155 		free(pmatches);
2156 		return;
2157 	}
2158 
2159 	/* Set maximum possible jump for each character in the pattern */
2160 	for (mindex = 0; mindex < g->mlen; mindex++)
2161 		g->matchjump[mindex] = 2*g->mlen - mindex - 1;
2162 
2163 	/* Compute pmatches[] */
2164 	for (mindex = g->mlen - 1, suffix = g->mlen; mindex >= 0;
2165 	    mindex--, suffix--) {
2166 		pmatches[mindex] = suffix;
2167 
2168 		/* If a mismatch is found, interrupting the substring,
2169 		 * compute the matchjump for that position. If no
2170 		 * mismatch is found, then a text substring mismatched
2171 		 * against the suffix will also mismatch against the
2172 		 * substring.
2173 		 */
2174 		while (suffix < g->mlen
2175 		    && g->must[mindex] != g->must[suffix]) {
2176 			g->matchjump[suffix] = MIN(g->matchjump[suffix],
2177 			    g->mlen - mindex - 1);
2178 			suffix = pmatches[suffix];
2179 		}
2180 	}
2181 
2182 	/* Compute the matchjump up to the last substring found to jump
2183 	 * to the beginning of the largest must pattern prefix matching
2184 	 * it's own suffix.
2185 	 */
2186 	for (mindex = 0; mindex <= suffix; mindex++)
2187 		g->matchjump[mindex] = MIN(g->matchjump[mindex],
2188 		    g->mlen + suffix - mindex);
2189 
2190         ssuffix = pmatches[suffix];
2191         while (suffix < g->mlen) {
2192                 while (suffix <= ssuffix && suffix < g->mlen) {
2193                         g->matchjump[suffix] = MIN(g->matchjump[suffix],
2194 			    g->mlen + ssuffix - suffix);
2195                         suffix++;
2196                 }
2197 		if (suffix < g->mlen)
2198                 	ssuffix = pmatches[ssuffix];
2199         }
2200 
2201 	free(pmatches);
2202 }
2203 
2204 /*
2205  - pluscount - count + nesting
2206  == static sopno pluscount(struct parse *p, struct re_guts *g);
2207  */
2208 static sopno			/* nesting depth */
2209 pluscount(struct parse *p, struct re_guts *g)
2210 {
2211 	sop *scan;
2212 	sop s;
2213 	sopno plusnest = 0;
2214 	sopno maxnest = 0;
2215 
2216 	if (p->error != 0)
2217 		return(0);	/* there may not be an OEND */
2218 
2219 	scan = g->strip + 1;
2220 	do {
2221 		s = *scan++;
2222 		switch (OP(s)) {
2223 		case OPLUS_:
2224 			plusnest++;
2225 			break;
2226 		case O_PLUS:
2227 			if (plusnest > maxnest)
2228 				maxnest = plusnest;
2229 			plusnest--;
2230 			break;
2231 		}
2232 	} while (OP(s) != OEND);
2233 	if (plusnest != 0)
2234 		g->iflags |= BAD;
2235 	return(maxnest);
2236 }
2237