xref: /freebsd/lib/libc/regex/regcomp.c (revision 25038e8de6b4e5f2ffca821565b50a633eea499a)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1992, 1993, 1994 Henry Spencer.
5  * Copyright (c) 1992, 1993, 1994
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * Copyright (c) 2011 The FreeBSD Foundation
9  *
10  * Portions of this software were developed by David Chisnall
11  * under sponsorship from the FreeBSD Foundation.
12  *
13  * This code is derived from software contributed to Berkeley by
14  * Henry Spencer.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  */
40 
41 #include <sys/types.h>
42 #include <stdio.h>
43 #include <string.h>
44 #include <ctype.h>
45 #include <limits.h>
46 #include <stdlib.h>
47 #include <regex.h>
48 #include <stdbool.h>
49 #include <wchar.h>
50 #include <wctype.h>
51 
52 #ifndef LIBREGEX
53 #include "collate.h"
54 #endif
55 
56 #include "utils.h"
57 #include "regex2.h"
58 
59 #include "cname.h"
60 
61 /*
62  * Branching context, used to keep track of branch state for all of the branch-
63  * aware functions. In addition to keeping track of branch positions for the
64  * p_branch_* functions, we use this to simplify some clumsiness in BREs for
65  * detection of whether ^ is acting as an anchor or being used erroneously and
66  * also for whether we're in a sub-expression or not.
67  */
68 struct branchc {
69 	sopno start;
70 	sopno back;
71 	sopno fwd;
72 
73 	int nbranch;
74 	int nchain;
75 	bool outer;
76 	bool terminate;
77 };
78 
79 /*
80  * parse structure, passed up and down to avoid global variables and
81  * other clumsinesses
82  */
83 struct parse {
84 	const char *next;	/* next character in RE */
85 	const char *end;	/* end of string (-> NUL normally) */
86 	int error;		/* has an error been seen? */
87 	int gnuext;
88 	sop *strip;		/* malloced strip */
89 	sopno ssize;		/* malloced strip size (allocated) */
90 	sopno slen;		/* malloced strip length (used) */
91 	int ncsalloc;		/* number of csets allocated */
92 	struct re_guts *g;
93 #	define	NPAREN	10	/* we need to remember () 1-9 for back refs */
94 	sopno pbegin[NPAREN];	/* -> ( ([0] unused) */
95 	sopno pend[NPAREN];	/* -> ) ([0] unused) */
96 	bool allowbranch;	/* can this expression branch? */
97 	bool bre;		/* convenience; is this a BRE? */
98 	int pflags;		/* other parsing flags -- legacy escapes? */
99 	bool (*parse_expr)(struct parse *, struct branchc *);
100 	void (*pre_parse)(struct parse *, struct branchc *);
101 	void (*post_parse)(struct parse *, struct branchc *);
102 };
103 
104 #define PFLAG_LEGACY_ESC	0x00000001
105 
106 /* ========= begin header generated by ./mkh ========= */
107 #ifdef __cplusplus
108 extern "C" {
109 #endif
110 
111 /* === regcomp.c === */
112 static bool p_ere_exp(struct parse *p, struct branchc *bc);
113 static void p_str(struct parse *p);
114 static int p_branch_eat_delim(struct parse *p, struct branchc *bc);
115 static void p_branch_ins_offset(struct parse *p, struct branchc *bc);
116 static void p_branch_fix_tail(struct parse *p, struct branchc *bc);
117 static bool p_branch_empty(struct parse *p, struct branchc *bc);
118 static bool p_branch_do(struct parse *p, struct branchc *bc);
119 static void p_bre_pre_parse(struct parse *p, struct branchc *bc);
120 static void p_bre_post_parse(struct parse *p, struct branchc *bc);
121 static void p_re(struct parse *p, int end1, int end2);
122 static bool p_simp_re(struct parse *p, struct branchc *bc);
123 static int p_count(struct parse *p);
124 static void p_bracket(struct parse *p);
125 static int p_range_cmp(wchar_t c1, wchar_t c2);
126 static void p_b_term(struct parse *p, cset *cs);
127 static int p_b_pseudoclass(struct parse *p, char c);
128 static void p_b_cclass(struct parse *p, cset *cs);
129 static void p_b_cclass_named(struct parse *p, cset *cs, const char[]);
130 static void p_b_eclass(struct parse *p, cset *cs);
131 static wint_t p_b_symbol(struct parse *p);
132 static wint_t p_b_coll_elem(struct parse *p, wint_t endc);
133 static bool may_escape(struct parse *p, const wint_t ch);
134 static wint_t othercase(wint_t ch);
135 static void bothcases(struct parse *p, wint_t ch);
136 static void ordinary(struct parse *p, wint_t ch);
137 static void nonnewline(struct parse *p);
138 static void repeat(struct parse *p, sopno start, int from, int to);
139 static int seterr(struct parse *p, int e);
140 static cset *allocset(struct parse *p);
141 static void freeset(struct parse *p, cset *cs);
142 static void CHadd(struct parse *p, cset *cs, wint_t ch);
143 static void CHaddrange(struct parse *p, cset *cs, wint_t min, wint_t max);
144 static void CHaddtype(struct parse *p, cset *cs, wctype_t wct);
145 static wint_t singleton(cset *cs);
146 static sopno dupl(struct parse *p, sopno start, sopno finish);
147 static void doemit(struct parse *p, sop op, size_t opnd);
148 static void doinsert(struct parse *p, sop op, size_t opnd, sopno pos);
149 static void dofwd(struct parse *p, sopno pos, sop value);
150 static int enlarge(struct parse *p, sopno size);
151 static void stripsnug(struct parse *p, struct re_guts *g);
152 static void findmust(struct parse *p, struct re_guts *g);
153 static int altoffset(sop *scan, int offset);
154 static void computejumps(struct parse *p, struct re_guts *g);
155 static void computematchjumps(struct parse *p, struct re_guts *g);
156 static sopno pluscount(struct parse *p, struct re_guts *g);
157 static wint_t wgetnext(struct parse *p);
158 
159 #ifdef __cplusplus
160 }
161 #endif
162 /* ========= end header generated by ./mkh ========= */
163 
164 static char nuls[10];		/* place to point scanner in event of error */
165 
166 /*
167  * macros for use with parse structure
168  * BEWARE:  these know that the parse structure is named `p' !!!
169  */
170 #define	PEEK()	(*p->next)
171 #define	PEEK2()	(*(p->next+1))
172 #define	MORE()	(p->end - p->next > 0)
173 #define	MORE2()	(p->end - p->next > 1)
174 #define	SEE(c)	(MORE() && PEEK() == (c))
175 #define	SEETWO(a, b)	(MORE2() && PEEK() == (a) && PEEK2() == (b))
176 #define	SEESPEC(a)	(p->bre ? SEETWO('\\', a) : SEE(a))
177 #define	EAT(c)	((SEE(c)) ? (NEXT(), 1) : 0)
178 #define	EATTWO(a, b)	((SEETWO(a, b)) ? (NEXT2(), 1) : 0)
179 #define	EATSPEC(a)	(p->bre ? EATTWO('\\', a) : EAT(a))
180 #define	NEXT()	(p->next++)
181 #define	NEXT2()	(p->next += 2)
182 #define	NEXTn(n)	(p->next += (n))
183 #define	GETNEXT()	(*p->next++)
184 #define	WGETNEXT()	wgetnext(p)
185 #define	SETERROR(e)	seterr(p, (e))
186 #define	REQUIRE(co, e)	((co) || SETERROR(e))
187 #define	MUSTSEE(c, e)	(REQUIRE(MORE() && PEEK() == (c), e))
188 #define	MUSTEAT(c, e)	(REQUIRE(MORE() && GETNEXT() == (c), e))
189 #define	MUSTNOTSEE(c, e)	(REQUIRE(!MORE() || PEEK() != (c), e))
190 #define	EMIT(op, sopnd)	doemit(p, (sop)(op), (size_t)(sopnd))
191 #define	INSERT(op, pos)	doinsert(p, (sop)(op), HERE()-(pos)+1, pos)
192 #define	AHEAD(pos)		dofwd(p, pos, HERE()-(pos))
193 #define	ASTERN(sop, pos)	EMIT(sop, HERE()-pos)
194 #define	HERE()		(p->slen)
195 #define	THERE()		(p->slen - 1)
196 #define	THERETHERE()	(p->slen - 2)
197 #define	DROP(n)	(p->slen -= (n))
198 
199 /* Macro used by computejump()/computematchjump() */
200 #define MIN(a,b)	((a)<(b)?(a):(b))
201 
202 static int				/* 0 success, otherwise REG_something */
203 regcomp_internal(regex_t * __restrict preg,
204 	const char * __restrict pattern,
205 	int cflags, int pflags)
206 {
207 	struct parse pa;
208 	struct re_guts *g;
209 	struct parse *p = &pa;
210 	int i;
211 	size_t len;
212 	size_t maxlen;
213 #ifdef REDEBUG
214 #	define	GOODFLAGS(f)	(f)
215 #else
216 #	define	GOODFLAGS(f)	((f)&~REG_DUMP)
217 #endif
218 
219 	cflags = GOODFLAGS(cflags);
220 	if ((cflags&REG_EXTENDED) && (cflags&REG_NOSPEC))
221 		return(REG_INVARG);
222 
223 	if (cflags&REG_PEND) {
224 		if (preg->re_endp < pattern)
225 			return(REG_INVARG);
226 		len = preg->re_endp - pattern;
227 	} else
228 		len = strlen(pattern);
229 
230 	/* do the mallocs early so failure handling is easy */
231 	g = (struct re_guts *)malloc(sizeof(struct re_guts));
232 	if (g == NULL)
233 		return(REG_ESPACE);
234 	/*
235 	 * Limit the pattern space to avoid a 32-bit overflow on buffer
236 	 * extension.  Also avoid any signed overflow in case of conversion
237 	 * so make the real limit based on a 31-bit overflow.
238 	 *
239 	 * Likely not applicable on 64-bit systems but handle the case
240 	 * generically (who are we to stop people from using ~715MB+
241 	 * patterns?).
242 	 */
243 	maxlen = ((size_t)-1 >> 1) / sizeof(sop) * 2 / 3;
244 	if (len >= maxlen) {
245 		free((char *)g);
246 		return(REG_ESPACE);
247 	}
248 	p->ssize = len/(size_t)2*(size_t)3 + (size_t)1;	/* ugh */
249 	assert(p->ssize >= len);
250 
251 	p->strip = (sop *)malloc(p->ssize * sizeof(sop));
252 	p->slen = 0;
253 	if (p->strip == NULL) {
254 		free((char *)g);
255 		return(REG_ESPACE);
256 	}
257 
258 	/* set things up */
259 	p->g = g;
260 	p->next = pattern;	/* convenience; we do not modify it */
261 	p->end = p->next + len;
262 	p->error = 0;
263 	p->ncsalloc = 0;
264 	p->pflags = pflags;
265 	for (i = 0; i < NPAREN; i++) {
266 		p->pbegin[i] = 0;
267 		p->pend[i] = 0;
268 	}
269 #ifdef LIBREGEX
270 	if (cflags&REG_POSIX) {
271 		p->gnuext = false;
272 		p->allowbranch = (cflags & REG_EXTENDED) != 0;
273 	} else
274 		p->gnuext = p->allowbranch = true;
275 #else
276 	p->gnuext = false;
277 	p->allowbranch = (cflags & REG_EXTENDED) != 0;
278 #endif
279 	if (cflags & REG_EXTENDED) {
280 		p->bre = false;
281 		p->parse_expr = p_ere_exp;
282 		p->pre_parse = NULL;
283 		p->post_parse = NULL;
284 	} else {
285 		p->bre = true;
286 		p->parse_expr = p_simp_re;
287 		p->pre_parse = p_bre_pre_parse;
288 		p->post_parse = p_bre_post_parse;
289 	}
290 	g->sets = NULL;
291 	g->ncsets = 0;
292 	g->cflags = cflags;
293 	g->iflags = 0;
294 	g->nbol = 0;
295 	g->neol = 0;
296 	g->must = NULL;
297 	g->moffset = -1;
298 	g->charjump = NULL;
299 	g->matchjump = NULL;
300 	g->mlen = 0;
301 	g->nsub = 0;
302 	g->backrefs = 0;
303 
304 	/* do it */
305 	EMIT(OEND, 0);
306 	g->firststate = THERE();
307 	if (cflags & REG_NOSPEC)
308 		p_str(p);
309 	else
310 		p_re(p, OUT, OUT);
311 	EMIT(OEND, 0);
312 	g->laststate = THERE();
313 
314 	/* tidy up loose ends and fill things in */
315 	stripsnug(p, g);
316 	findmust(p, g);
317 	/* only use Boyer-Moore algorithm if the pattern is bigger
318 	 * than three characters
319 	 */
320 	if(g->mlen > 3) {
321 		computejumps(p, g);
322 		computematchjumps(p, g);
323 		if(g->matchjump == NULL && g->charjump != NULL) {
324 			free(&g->charjump[CHAR_MIN]);
325 			g->charjump = NULL;
326 		}
327 	}
328 	g->nplus = pluscount(p, g);
329 	g->magic = MAGIC2;
330 	preg->re_nsub = g->nsub;
331 	preg->re_g = g;
332 	preg->re_magic = MAGIC1;
333 #ifndef REDEBUG
334 	/* not debugging, so can't rely on the assert() in regexec() */
335 	if (g->iflags&BAD)
336 		SETERROR(REG_ASSERT);
337 #endif
338 
339 	/* win or lose, we're done */
340 	if (p->error != 0)	/* lose */
341 		regfree(preg);
342 	return(p->error);
343 }
344 
345 /*
346  - regcomp - interface for parser and compilation
347  = extern int regcomp(regex_t *, const char *, int);
348  = #define	REG_BASIC	0000
349  = #define	REG_EXTENDED	0001
350  = #define	REG_ICASE	0002
351  = #define	REG_NOSUB	0004
352  = #define	REG_NEWLINE	0010
353  = #define	REG_NOSPEC	0020
354  = #define	REG_PEND	0040
355  = #define	REG_DUMP	0200
356  */
357 int				/* 0 success, otherwise REG_something */
358 regcomp(regex_t * __restrict preg,
359 	const char * __restrict pattern,
360 	int cflags)
361 {
362 
363 	return (regcomp_internal(preg, pattern, cflags, 0));
364 }
365 
366 #ifndef LIBREGEX
367 /*
368  * Legacy interface that requires more lax escaping behavior.
369  */
370 int
371 freebsd12_regcomp(regex_t * __restrict preg,
372 	const char * __restrict pattern,
373 	int cflags, int pflags)
374 {
375 
376 	return (regcomp_internal(preg, pattern, cflags, PFLAG_LEGACY_ESC));
377 }
378 
379 __sym_compat(regcomp, freebsd12_regcomp, FBSD_1.0);
380 #endif	/* !LIBREGEX */
381 
382 /*
383  - p_ere_exp - parse one subERE, an atom possibly followed by a repetition op,
384  - return whether we should terminate or not
385  == static bool p_ere_exp(struct parse *p);
386  */
387 static bool
388 p_ere_exp(struct parse *p, struct branchc *bc)
389 {
390 	char c;
391 	wint_t wc;
392 	sopno pos;
393 	int count;
394 	int count2;
395 #ifdef LIBREGEX
396 	int i;
397 	int handled;
398 #endif
399 	sopno subno;
400 	int wascaret = 0;
401 
402 	(void)bc;
403 	assert(MORE());		/* caller should have ensured this */
404 	c = GETNEXT();
405 
406 #ifdef LIBREGEX
407 	handled = 0;
408 #endif
409 	pos = HERE();
410 	switch (c) {
411 	case '(':
412 		(void)REQUIRE(MORE(), REG_EPAREN);
413 		p->g->nsub++;
414 		subno = p->g->nsub;
415 		if (subno < NPAREN)
416 			p->pbegin[subno] = HERE();
417 		EMIT(OLPAREN, subno);
418 		if (!SEE(')'))
419 			p_re(p, ')', IGN);
420 		if (subno < NPAREN) {
421 			p->pend[subno] = HERE();
422 			assert(p->pend[subno] != 0);
423 		}
424 		EMIT(ORPAREN, subno);
425 		(void)MUSTEAT(')', REG_EPAREN);
426 		break;
427 #ifndef POSIX_MISTAKE
428 	case ')':		/* happens only if no current unmatched ( */
429 		/*
430 		 * You may ask, why the ifndef?  Because I didn't notice
431 		 * this until slightly too late for 1003.2, and none of the
432 		 * other 1003.2 regular-expression reviewers noticed it at
433 		 * all.  So an unmatched ) is legal POSIX, at least until
434 		 * we can get it fixed.
435 		 */
436 		SETERROR(REG_EPAREN);
437 		break;
438 #endif
439 	case '^':
440 		EMIT(OBOL, 0);
441 		p->g->iflags |= USEBOL;
442 		p->g->nbol++;
443 		wascaret = 1;
444 		break;
445 	case '$':
446 		EMIT(OEOL, 0);
447 		p->g->iflags |= USEEOL;
448 		p->g->neol++;
449 		break;
450 	case '|':
451 		SETERROR(REG_EMPTY);
452 		break;
453 	case '*':
454 	case '+':
455 	case '?':
456 	case '{':
457 		SETERROR(REG_BADRPT);
458 		break;
459 	case '.':
460 		if (p->g->cflags&REG_NEWLINE)
461 			nonnewline(p);
462 		else
463 			EMIT(OANY, 0);
464 		break;
465 	case '[':
466 		p_bracket(p);
467 		break;
468 	case '\\':
469 		(void)REQUIRE(MORE(), REG_EESCAPE);
470 		wc = WGETNEXT();
471 #ifdef LIBREGEX
472 		if (p->gnuext) {
473 			handled = 1;
474 			switch (wc) {
475 			case '`':
476 				EMIT(OBOS, 0);
477 				break;
478 			case '\'':
479 				EMIT(OEOS, 0);
480 				break;
481 			case 'B':
482 				EMIT(ONWBND, 0);
483 				break;
484 			case 'b':
485 				EMIT(OWBND, 0);
486 				break;
487 			case 'W':
488 			case 'w':
489 			case 'S':
490 			case 's':
491 				p_b_pseudoclass(p, wc);
492 				break;
493 			case '1':
494 			case '2':
495 			case '3':
496 			case '4':
497 			case '5':
498 			case '6':
499 			case '7':
500 			case '8':
501 			case '9':
502 				i = wc - '0';
503 				assert(i < NPAREN);
504 				if (p->pend[i] != 0) {
505 					assert(i <= p->g->nsub);
506 					EMIT(OBACK_, i);
507 					assert(p->pbegin[i] != 0);
508 					assert(OP(p->strip[p->pbegin[i]]) == OLPAREN);
509 					assert(OP(p->strip[p->pend[i]]) == ORPAREN);
510 					(void) dupl(p, p->pbegin[i]+1, p->pend[i]);
511 					EMIT(O_BACK, i);
512 				} else
513 					SETERROR(REG_ESUBREG);
514 				p->g->backrefs = 1;
515 				break;
516 			default:
517 				handled = 0;
518 			}
519 			/* Don't proceed to the POSIX bits if we've already handled it */
520 			if (handled)
521 				break;
522 		}
523 #endif
524 		switch (wc) {
525 		case '<':
526 			EMIT(OBOW, 0);
527 			break;
528 		case '>':
529 			EMIT(OEOW, 0);
530 			break;
531 		default:
532 			if (may_escape(p, wc))
533 				ordinary(p, wc);
534 			else
535 				SETERROR(REG_EESCAPE);
536 			break;
537 		}
538 		break;
539 	default:
540 		if (p->error != 0)
541 			return (false);
542 		p->next--;
543 		wc = WGETNEXT();
544 		ordinary(p, wc);
545 		break;
546 	}
547 
548 	if (!MORE())
549 		return (false);
550 	c = PEEK();
551 	/* we call { a repetition if followed by a digit */
552 	if (!( c == '*' || c == '+' || c == '?' || c == '{'))
553 		return (false);		/* no repetition, we're done */
554 	else if (c == '{')
555 		(void)REQUIRE(MORE2() && \
556 		    (isdigit((uch)PEEK2()) || PEEK2() == ','), REG_BADRPT);
557 	NEXT();
558 
559 	(void)REQUIRE(!wascaret, REG_BADRPT);
560 	switch (c) {
561 	case '*':	/* implemented as +? */
562 		/* this case does not require the (y|) trick, noKLUDGE */
563 		INSERT(OPLUS_, pos);
564 		ASTERN(O_PLUS, pos);
565 		INSERT(OQUEST_, pos);
566 		ASTERN(O_QUEST, pos);
567 		break;
568 	case '+':
569 		INSERT(OPLUS_, pos);
570 		ASTERN(O_PLUS, pos);
571 		break;
572 	case '?':
573 		/* KLUDGE: emit y? as (y|) until subtle bug gets fixed */
574 		INSERT(OCH_, pos);		/* offset slightly wrong */
575 		ASTERN(OOR1, pos);		/* this one's right */
576 		AHEAD(pos);			/* fix the OCH_ */
577 		EMIT(OOR2, 0);			/* offset very wrong... */
578 		AHEAD(THERE());			/* ...so fix it */
579 		ASTERN(O_CH, THERETHERE());
580 		break;
581 	case '{':
582 		count = p_count(p);
583 		if (EAT(',')) {
584 			if (isdigit((uch)PEEK())) {
585 				count2 = p_count(p);
586 				(void)REQUIRE(count <= count2, REG_BADBR);
587 			} else		/* single number with comma */
588 				count2 = INFINITY;
589 		} else		/* just a single number */
590 			count2 = count;
591 		repeat(p, pos, count, count2);
592 		if (!EAT('}')) {	/* error heuristics */
593 			while (MORE() && PEEK() != '}')
594 				NEXT();
595 			(void)REQUIRE(MORE(), REG_EBRACE);
596 			SETERROR(REG_BADBR);
597 		}
598 		break;
599 	}
600 
601 	if (!MORE())
602 		return (false);
603 	c = PEEK();
604 	if (!( c == '*' || c == '+' || c == '?' ||
605 				(c == '{' && MORE2() && isdigit((uch)PEEK2())) ) )
606 		return (false);
607 	SETERROR(REG_BADRPT);
608 	return (false);
609 }
610 
611 /*
612  - p_str - string (no metacharacters) "parser"
613  == static void p_str(struct parse *p);
614  */
615 static void
616 p_str(struct parse *p)
617 {
618 	(void)REQUIRE(MORE(), REG_EMPTY);
619 	while (MORE())
620 		ordinary(p, WGETNEXT());
621 }
622 
623 /*
624  * Eat consecutive branch delimiters for the kind of expression that we are
625  * parsing, return the number of delimiters that we ate.
626  */
627 static int
628 p_branch_eat_delim(struct parse *p, struct branchc *bc)
629 {
630 	int nskip;
631 
632 	(void)bc;
633 	nskip = 0;
634 	while (EATSPEC('|'))
635 		++nskip;
636 	return (nskip);
637 }
638 
639 /*
640  * Insert necessary branch book-keeping operations. This emits a
641  * bogus 'next' offset, since we still have more to parse
642  */
643 static void
644 p_branch_ins_offset(struct parse *p, struct branchc *bc)
645 {
646 
647 	if (bc->nbranch == 0) {
648 		INSERT(OCH_, bc->start);	/* offset is wrong */
649 		bc->fwd = bc->start;
650 		bc->back = bc->start;
651 	}
652 
653 	ASTERN(OOR1, bc->back);
654 	bc->back = THERE();
655 	AHEAD(bc->fwd);			/* fix previous offset */
656 	bc->fwd = HERE();
657 	EMIT(OOR2, 0);			/* offset is very wrong */
658 	++bc->nbranch;
659 }
660 
661 /*
662  * Fix the offset of the tail branch, if we actually had any branches.
663  * This is to correct the bogus placeholder offset that we use.
664  */
665 static void
666 p_branch_fix_tail(struct parse *p, struct branchc *bc)
667 {
668 
669 	/* Fix bogus offset at the tail if we actually have branches */
670 	if (bc->nbranch > 0) {
671 		AHEAD(bc->fwd);
672 		ASTERN(O_CH, bc->back);
673 	}
674 }
675 
676 /*
677  * Signal to the parser that an empty branch has been encountered; this will,
678  * in the future, be used to allow for more permissive behavior with empty
679  * branches. The return value should indicate whether parsing may continue
680  * or not.
681  */
682 static bool
683 p_branch_empty(struct parse *p, struct branchc *bc)
684 {
685 
686 	(void)bc;
687 	SETERROR(REG_EMPTY);
688 	return (false);
689 }
690 
691 /*
692  * Take care of any branching requirements. This includes inserting the
693  * appropriate branching instructions as well as eating all of the branch
694  * delimiters until we either run out of pattern or need to parse more pattern.
695  */
696 static bool
697 p_branch_do(struct parse *p, struct branchc *bc)
698 {
699 	int ate = 0;
700 
701 	ate = p_branch_eat_delim(p, bc);
702 	if (ate == 0)
703 		return (false);
704 	else if ((ate > 1 || (bc->outer && !MORE())) && !p_branch_empty(p, bc))
705 		/*
706 		 * Halt parsing only if we have an empty branch and p_branch_empty
707 		 * indicates that we must not continue. In the future, this will not
708 		 * necessarily be an error.
709 		 */
710 		return (false);
711 	p_branch_ins_offset(p, bc);
712 
713 	return (true);
714 }
715 
716 static void
717 p_bre_pre_parse(struct parse *p, struct branchc *bc)
718 {
719 
720 	(void) bc;
721 	/*
722 	 * Does not move cleanly into expression parser because of
723 	 * ordinary interpration of * at the beginning position of
724 	 * an expression.
725 	 */
726 	if (EAT('^')) {
727 		EMIT(OBOL, 0);
728 		p->g->iflags |= USEBOL;
729 		p->g->nbol++;
730 	}
731 }
732 
733 static void
734 p_bre_post_parse(struct parse *p, struct branchc *bc)
735 {
736 
737 	/* Expression is terminating due to EOL token */
738 	if (bc->terminate) {
739 		DROP(1);
740 		EMIT(OEOL, 0);
741 		p->g->iflags |= USEEOL;
742 		p->g->neol++;
743 	}
744 }
745 
746 /*
747  - p_re - Top level parser, concatenation and BRE anchoring
748  == static void p_re(struct parse *p, int end1, int end2);
749  * Giving end1 as OUT essentially eliminates the end1/end2 check.
750  *
751  * This implementation is a bit of a kludge, in that a trailing $ is first
752  * taken as an ordinary character and then revised to be an anchor.
753  * The amount of lookahead needed to avoid this kludge is excessive.
754  */
755 static void
756 p_re(struct parse *p,
757 	int end1,	/* first terminating character */
758 	int end2)	/* second terminating character; ignored for EREs */
759 {
760 	struct branchc bc;
761 
762 	bc.nbranch = 0;
763 	if (end1 == OUT && end2 == OUT)
764 		bc.outer = true;
765 	else
766 		bc.outer = false;
767 #define	SEEEND()	(!p->bre ? SEE(end1) : SEETWO(end1, end2))
768 	for (;;) {
769 		bc.start = HERE();
770 		bc.nchain = 0;
771 		bc.terminate = false;
772 		if (p->pre_parse != NULL)
773 			p->pre_parse(p, &bc);
774 		while (MORE() && (!p->allowbranch || !SEESPEC('|')) && !SEEEND()) {
775 			bc.terminate = p->parse_expr(p, &bc);
776 			++bc.nchain;
777 		}
778 		if (p->post_parse != NULL)
779 			p->post_parse(p, &bc);
780 		(void) REQUIRE(p->gnuext || HERE() != bc.start, REG_EMPTY);
781 #ifdef LIBREGEX
782 		if (HERE() == bc.start && !p_branch_empty(p, &bc))
783 			break;
784 #endif
785 		if (!p->allowbranch)
786 			break;
787 		/*
788 		 * p_branch_do's return value indicates whether we should
789 		 * continue parsing or not. This is both for correctness and
790 		 * a slight optimization, because it will check if we've
791 		 * encountered an empty branch or the end of the string
792 		 * immediately following a branch delimiter.
793 		 */
794 		if (!p_branch_do(p, &bc))
795 			break;
796 	}
797 #undef SEE_END
798 	if (p->allowbranch)
799 		p_branch_fix_tail(p, &bc);
800 	assert(!MORE() || SEE(end1));
801 }
802 
803 /*
804  - p_simp_re - parse a simple RE, an atom possibly followed by a repetition
805  == static bool p_simp_re(struct parse *p, struct branchc *bc);
806  */
807 static bool			/* was the simple RE an unbackslashed $? */
808 p_simp_re(struct parse *p, struct branchc *bc)
809 {
810 	int c;
811 	int cc;			/* convenient/control character */
812 	int count;
813 	int count2;
814 	sopno pos;
815 	bool handled;
816 	int i;
817 	wint_t wc;
818 	sopno subno;
819 #	define	BACKSL	(1<<CHAR_BIT)
820 
821 	pos = HERE();		/* repetition op, if any, covers from here */
822 	handled = false;
823 
824 	assert(MORE());		/* caller should have ensured this */
825 	c = (uch)GETNEXT();
826 	if (c == '\\') {
827 		(void)REQUIRE(MORE(), REG_EESCAPE);
828 		cc = (uch)GETNEXT();
829 		c = BACKSL | cc;
830 #ifdef LIBREGEX
831 		if (p->gnuext) {
832 			handled = true;
833 			switch (c) {
834 			case BACKSL|'`':
835 				EMIT(OBOS, 0);
836 				break;
837 			case BACKSL|'\'':
838 				EMIT(OEOS, 0);
839 				break;
840 			case BACKSL|'B':
841 				EMIT(ONWBND, 0);
842 				break;
843 			case BACKSL|'b':
844 				EMIT(OWBND, 0);
845 				break;
846 			case BACKSL|'W':
847 			case BACKSL|'w':
848 			case BACKSL|'S':
849 			case BACKSL|'s':
850 				p_b_pseudoclass(p, cc);
851 				break;
852 			default:
853 				handled = false;
854 			}
855 		}
856 #endif
857 	}
858 	if (!handled) {
859 		switch (c) {
860 		case '.':
861 			if (p->g->cflags&REG_NEWLINE)
862 				nonnewline(p);
863 			else
864 				EMIT(OANY, 0);
865 			break;
866 		case '[':
867 			p_bracket(p);
868 			break;
869 		case BACKSL|'<':
870 			EMIT(OBOW, 0);
871 			break;
872 		case BACKSL|'>':
873 			EMIT(OEOW, 0);
874 			break;
875 		case BACKSL|'{':
876 			SETERROR(REG_BADRPT);
877 			break;
878 		case BACKSL|'(':
879 			p->g->nsub++;
880 			subno = p->g->nsub;
881 			if (subno < NPAREN)
882 				p->pbegin[subno] = HERE();
883 			EMIT(OLPAREN, subno);
884 			/* the MORE here is an error heuristic */
885 			if (MORE() && !SEETWO('\\', ')'))
886 				p_re(p, '\\', ')');
887 			if (subno < NPAREN) {
888 				p->pend[subno] = HERE();
889 				assert(p->pend[subno] != 0);
890 			}
891 			EMIT(ORPAREN, subno);
892 			(void)REQUIRE(EATTWO('\\', ')'), REG_EPAREN);
893 			break;
894 		case BACKSL|')':	/* should not get here -- must be user */
895 			SETERROR(REG_EPAREN);
896 			break;
897 		case BACKSL|'1':
898 		case BACKSL|'2':
899 		case BACKSL|'3':
900 		case BACKSL|'4':
901 		case BACKSL|'5':
902 		case BACKSL|'6':
903 		case BACKSL|'7':
904 		case BACKSL|'8':
905 		case BACKSL|'9':
906 			i = (c&~BACKSL) - '0';
907 			assert(i < NPAREN);
908 			if (p->pend[i] != 0) {
909 				assert(i <= p->g->nsub);
910 				EMIT(OBACK_, i);
911 				assert(p->pbegin[i] != 0);
912 				assert(OP(p->strip[p->pbegin[i]]) == OLPAREN);
913 				assert(OP(p->strip[p->pend[i]]) == ORPAREN);
914 				(void) dupl(p, p->pbegin[i]+1, p->pend[i]);
915 				EMIT(O_BACK, i);
916 			} else
917 				SETERROR(REG_ESUBREG);
918 			p->g->backrefs = 1;
919 			break;
920 		case '*':
921 			/*
922 			 * Ordinary if used as the first character beyond BOL anchor of
923 			 * a (sub-)expression, counts as a bad repetition operator if it
924 			 * appears otherwise.
925 			 */
926 			(void)REQUIRE(bc->nchain == 0, REG_BADRPT);
927 			/* FALLTHROUGH */
928 		default:
929 			if (p->error != 0)
930 				return (false);	/* Definitely not $... */
931 			p->next--;
932 			wc = WGETNEXT();
933 			if ((c & BACKSL) == 0 || may_escape(p, wc))
934 				ordinary(p, wc);
935 			else
936 				SETERROR(REG_EESCAPE);
937 			break;
938 		}
939 	}
940 
941 	if (EAT('*')) {		/* implemented as +? */
942 		/* this case does not require the (y|) trick, noKLUDGE */
943 		INSERT(OPLUS_, pos);
944 		ASTERN(O_PLUS, pos);
945 		INSERT(OQUEST_, pos);
946 		ASTERN(O_QUEST, pos);
947 #ifdef LIBREGEX
948 	} else if (p->gnuext && EATTWO('\\', '?')) {
949 		INSERT(OQUEST_, pos);
950 		ASTERN(O_QUEST, pos);
951 	} else if (p->gnuext && EATTWO('\\', '+')) {
952 		INSERT(OPLUS_, pos);
953 		ASTERN(O_PLUS, pos);
954 #endif
955 	} else if (EATTWO('\\', '{')) {
956 		count = p_count(p);
957 		if (EAT(',')) {
958 			if (MORE() && isdigit((uch)PEEK())) {
959 				count2 = p_count(p);
960 				(void)REQUIRE(count <= count2, REG_BADBR);
961 			} else		/* single number with comma */
962 				count2 = INFINITY;
963 		} else		/* just a single number */
964 			count2 = count;
965 		repeat(p, pos, count, count2);
966 		if (!EATTWO('\\', '}')) {	/* error heuristics */
967 			while (MORE() && !SEETWO('\\', '}'))
968 				NEXT();
969 			(void)REQUIRE(MORE(), REG_EBRACE);
970 			SETERROR(REG_BADBR);
971 		}
972 	} else if (c == '$')     /* $ (but not \$) ends it */
973 		return (true);
974 
975 	return (false);
976 }
977 
978 /*
979  - p_count - parse a repetition count
980  == static int p_count(struct parse *p);
981  */
982 static int			/* the value */
983 p_count(struct parse *p)
984 {
985 	int count = 0;
986 	int ndigits = 0;
987 
988 	while (MORE() && isdigit((uch)PEEK()) && count <= DUPMAX) {
989 		count = count*10 + ((uch)GETNEXT() - '0');
990 		ndigits++;
991 	}
992 
993 	(void)REQUIRE(ndigits > 0 && count <= DUPMAX, REG_BADBR);
994 	return(count);
995 }
996 
997 /*
998  - p_bracket - parse a bracketed character list
999  == static void p_bracket(struct parse *p);
1000  */
1001 static void
1002 p_bracket(struct parse *p)
1003 {
1004 	cset *cs;
1005 	wint_t ch;
1006 
1007 	/* Dept of Truly Sickening Special-Case Kludges */
1008 	if (p->end - p->next > 5) {
1009 		if (strncmp(p->next, "[:<:]]", 6) == 0) {
1010 			EMIT(OBOW, 0);
1011 			NEXTn(6);
1012 			return;
1013 		}
1014 		if (strncmp(p->next, "[:>:]]", 6) == 0) {
1015 			EMIT(OEOW, 0);
1016 			NEXTn(6);
1017 			return;
1018 		}
1019 	}
1020 
1021 	if ((cs = allocset(p)) == NULL)
1022 		return;
1023 
1024 	if (p->g->cflags&REG_ICASE)
1025 		cs->icase = 1;
1026 	if (EAT('^'))
1027 		cs->invert = 1;
1028 	if (EAT(']'))
1029 		CHadd(p, cs, ']');
1030 	else if (EAT('-'))
1031 		CHadd(p, cs, '-');
1032 	while (MORE() && PEEK() != ']' && !SEETWO('-', ']'))
1033 		p_b_term(p, cs);
1034 	if (EAT('-'))
1035 		CHadd(p, cs, '-');
1036 	(void)MUSTEAT(']', REG_EBRACK);
1037 
1038 	if (p->error != 0)	/* don't mess things up further */
1039 		return;
1040 
1041 	if (cs->invert && p->g->cflags&REG_NEWLINE)
1042 		cs->bmp['\n' >> 3] |= 1 << ('\n' & 7);
1043 
1044 	if ((ch = singleton(cs)) != OUT) {	/* optimize singleton sets */
1045 		ordinary(p, ch);
1046 		freeset(p, cs);
1047 	} else
1048 		EMIT(OANYOF, (int)(cs - p->g->sets));
1049 }
1050 
1051 static int
1052 p_range_cmp(wchar_t c1, wchar_t c2)
1053 {
1054 #ifndef LIBREGEX
1055 	return __wcollate_range_cmp(c1, c2);
1056 #else
1057 	/* Copied from libc/collate __wcollate_range_cmp */
1058 	wchar_t s1[2], s2[2];
1059 
1060 	s1[0] = c1;
1061 	s1[1] = L'\0';
1062 	s2[0] = c2;
1063 	s2[1] = L'\0';
1064 	return (wcscoll(s1, s2));
1065 #endif
1066 }
1067 
1068 /*
1069  - p_b_term - parse one term of a bracketed character list
1070  == static void p_b_term(struct parse *p, cset *cs);
1071  */
1072 static void
1073 p_b_term(struct parse *p, cset *cs)
1074 {
1075 	char c;
1076 	wint_t start, finish;
1077 	wint_t i;
1078 #ifndef LIBREGEX
1079 	struct xlocale_collate *table =
1080 		(struct xlocale_collate*)__get_locale()->components[XLC_COLLATE];
1081 #endif
1082 	/* classify what we've got */
1083 	switch ((MORE()) ? PEEK() : '\0') {
1084 	case '[':
1085 		c = (MORE2()) ? PEEK2() : '\0';
1086 		break;
1087 	case '-':
1088 		SETERROR(REG_ERANGE);
1089 		return;			/* NOTE RETURN */
1090 	default:
1091 		c = '\0';
1092 		break;
1093 	}
1094 
1095 	switch (c) {
1096 	case ':':		/* character class */
1097 		NEXT2();
1098 		(void)REQUIRE(MORE(), REG_EBRACK);
1099 		c = PEEK();
1100 		(void)REQUIRE(c != '-' && c != ']', REG_ECTYPE);
1101 		p_b_cclass(p, cs);
1102 		(void)REQUIRE(MORE(), REG_EBRACK);
1103 		(void)REQUIRE(EATTWO(':', ']'), REG_ECTYPE);
1104 		break;
1105 	case '=':		/* equivalence class */
1106 		NEXT2();
1107 		(void)REQUIRE(MORE(), REG_EBRACK);
1108 		c = PEEK();
1109 		(void)REQUIRE(c != '-' && c != ']', REG_ECOLLATE);
1110 		p_b_eclass(p, cs);
1111 		(void)REQUIRE(MORE(), REG_EBRACK);
1112 		(void)REQUIRE(EATTWO('=', ']'), REG_ECOLLATE);
1113 		break;
1114 	default:		/* symbol, ordinary character, or range */
1115 		start = p_b_symbol(p);
1116 		if (SEE('-') && MORE2() && PEEK2() != ']') {
1117 			/* range */
1118 			NEXT();
1119 			if (EAT('-'))
1120 				finish = '-';
1121 			else
1122 				finish = p_b_symbol(p);
1123 		} else
1124 			finish = start;
1125 		if (start == finish)
1126 			CHadd(p, cs, start);
1127 		else {
1128 #ifndef LIBREGEX
1129 			if (table->__collate_load_error || MB_CUR_MAX > 1) {
1130 #else
1131 			if (MB_CUR_MAX > 1) {
1132 #endif
1133 				(void)REQUIRE(start <= finish, REG_ERANGE);
1134 				CHaddrange(p, cs, start, finish);
1135 			} else {
1136 				(void)REQUIRE(p_range_cmp(start, finish) <= 0, REG_ERANGE);
1137 				for (i = 0; i <= UCHAR_MAX; i++) {
1138 					if (p_range_cmp(start, i) <= 0 &&
1139 					    p_range_cmp(i, finish) <= 0 )
1140 						CHadd(p, cs, i);
1141 				}
1142 			}
1143 		}
1144 		break;
1145 	}
1146 }
1147 
1148 /*
1149  - p_b_pseudoclass - parse a pseudo-class (\w, \W, \s, \S)
1150  == static int p_b_pseudoclass(struct parse *p, char c)
1151  */
1152 static int
1153 p_b_pseudoclass(struct parse *p, char c) {
1154 	cset *cs;
1155 
1156 	if ((cs = allocset(p)) == NULL)
1157 		return(0);
1158 
1159 	if (p->g->cflags&REG_ICASE)
1160 		cs->icase = 1;
1161 
1162 	switch (c) {
1163 	case 'W':
1164 		cs->invert = 1;
1165 		/* PASSTHROUGH */
1166 	case 'w':
1167 		p_b_cclass_named(p, cs, "alnum");
1168 		break;
1169 	case 'S':
1170 		cs->invert = 1;
1171 		/* PASSTHROUGH */
1172 	case 's':
1173 		p_b_cclass_named(p, cs, "space");
1174 		break;
1175 	default:
1176 		return(0);
1177 	}
1178 
1179 	EMIT(OANYOF, (int)(cs - p->g->sets));
1180 	return(1);
1181 }
1182 
1183 /*
1184  - p_b_cclass - parse a character-class name and deal with it
1185  == static void p_b_cclass(struct parse *p, cset *cs);
1186  */
1187 static void
1188 p_b_cclass(struct parse *p, cset *cs)
1189 {
1190 	const char *sp = p->next;
1191 	size_t len;
1192 	char clname[16];
1193 
1194 	while (MORE() && isalpha((uch)PEEK()))
1195 		NEXT();
1196 	len = p->next - sp;
1197 	if (len >= sizeof(clname) - 1) {
1198 		SETERROR(REG_ECTYPE);
1199 		return;
1200 	}
1201 	memcpy(clname, sp, len);
1202 	clname[len] = '\0';
1203 
1204 	p_b_cclass_named(p, cs, clname);
1205 }
1206 /*
1207  - p_b_cclass_named - deal with a named character class
1208  == static void p_b_cclass_named(struct parse *p, cset *cs, const char []);
1209  */
1210 static void
1211 p_b_cclass_named(struct parse *p, cset *cs, const char clname[]) {
1212 	wctype_t wct;
1213 
1214 	if ((wct = wctype(clname)) == 0) {
1215 		SETERROR(REG_ECTYPE);
1216 		return;
1217 	}
1218 	CHaddtype(p, cs, wct);
1219 }
1220 
1221 /*
1222  - p_b_eclass - parse an equivalence-class name and deal with it
1223  == static void p_b_eclass(struct parse *p, cset *cs);
1224  *
1225  * This implementation is incomplete. xxx
1226  */
1227 static void
1228 p_b_eclass(struct parse *p, cset *cs)
1229 {
1230 	wint_t c;
1231 
1232 	c = p_b_coll_elem(p, '=');
1233 	CHadd(p, cs, c);
1234 }
1235 
1236 /*
1237  - p_b_symbol - parse a character or [..]ed multicharacter collating symbol
1238  == static wint_t p_b_symbol(struct parse *p);
1239  */
1240 static wint_t			/* value of symbol */
1241 p_b_symbol(struct parse *p)
1242 {
1243 	wint_t value;
1244 
1245 	(void)REQUIRE(MORE(), REG_EBRACK);
1246 	if (!EATTWO('[', '.'))
1247 		return(WGETNEXT());
1248 
1249 	/* collating symbol */
1250 	value = p_b_coll_elem(p, '.');
1251 	(void)REQUIRE(EATTWO('.', ']'), REG_ECOLLATE);
1252 	return(value);
1253 }
1254 
1255 /*
1256  - p_b_coll_elem - parse a collating-element name and look it up
1257  == static wint_t p_b_coll_elem(struct parse *p, wint_t endc);
1258  */
1259 static wint_t			/* value of collating element */
1260 p_b_coll_elem(struct parse *p,
1261 	wint_t endc)		/* name ended by endc,']' */
1262 {
1263 	const char *sp = p->next;
1264 	struct cname *cp;
1265 	mbstate_t mbs;
1266 	wchar_t wc;
1267 	size_t clen, len;
1268 
1269 	while (MORE() && !SEETWO(endc, ']'))
1270 		NEXT();
1271 	if (!MORE()) {
1272 		SETERROR(REG_EBRACK);
1273 		return(0);
1274 	}
1275 	len = p->next - sp;
1276 	for (cp = cnames; cp->name != NULL; cp++)
1277 		if (strncmp(cp->name, sp, len) == 0 && strlen(cp->name) == len)
1278 			return(cp->code);	/* known name */
1279 	memset(&mbs, 0, sizeof(mbs));
1280 	if ((clen = mbrtowc(&wc, sp, len, &mbs)) == len)
1281 		return (wc);			/* single character */
1282 	else if (clen == (size_t)-1 || clen == (size_t)-2)
1283 		SETERROR(REG_ILLSEQ);
1284 	else
1285 		SETERROR(REG_ECOLLATE);		/* neither */
1286 	return(0);
1287 }
1288 
1289 /*
1290  - may_escape - determine whether 'ch' is escape-able in the current context
1291  == static int may_escape(struct parse *p, const wint_t ch)
1292  */
1293 static bool
1294 may_escape(struct parse *p, const wint_t ch)
1295 {
1296 
1297 	if ((p->pflags & PFLAG_LEGACY_ESC) != 0)
1298 		return (true);
1299 	if (iswalpha(ch) || ch == '\'' || ch == '`')
1300 		return (false);
1301 	return (true);
1302 #ifdef NOTYET
1303 	/*
1304 	 * Build a whitelist of characters that may be escaped to produce an
1305 	 * ordinary in the current context. This assumes that these have not
1306 	 * been otherwise interpreted as a special character. Escaping an
1307 	 * ordinary character yields undefined results according to
1308 	 * IEEE 1003.1-2008. Some extensions (notably, some GNU extensions) take
1309 	 * advantage of this and use escaped ordinary characters to provide
1310 	 * special meaning, e.g. \b, \B, \w, \W, \s, \S.
1311 	 */
1312 	switch(ch) {
1313 	case '|':
1314 	case '+':
1315 	case '?':
1316 		/* The above characters may not be escaped in BREs */
1317 		if (!(p->g->cflags&REG_EXTENDED))
1318 			return (false);
1319 		/* Fallthrough */
1320 	case '(':
1321 	case ')':
1322 	case '{':
1323 	case '}':
1324 	case '.':
1325 	case '[':
1326 	case ']':
1327 	case '\\':
1328 	case '*':
1329 	case '^':
1330 	case '$':
1331 		return (true);
1332 	default:
1333 		return (false);
1334 	}
1335 #endif
1336 }
1337 
1338 /*
1339  - othercase - return the case counterpart of an alphabetic
1340  == static wint_t othercase(wint_t ch);
1341  */
1342 static wint_t			/* if no counterpart, return ch */
1343 othercase(wint_t ch)
1344 {
1345 	assert(iswalpha(ch));
1346 	if (iswupper(ch))
1347 		return(towlower(ch));
1348 	else if (iswlower(ch))
1349 		return(towupper(ch));
1350 	else			/* peculiar, but could happen */
1351 		return(ch);
1352 }
1353 
1354 /*
1355  - bothcases - emit a dualcase version of a two-case character
1356  == static void bothcases(struct parse *p, wint_t ch);
1357  *
1358  * Boy, is this implementation ever a kludge...
1359  */
1360 static void
1361 bothcases(struct parse *p, wint_t ch)
1362 {
1363 	const char *oldnext = p->next;
1364 	const char *oldend = p->end;
1365 	char bracket[3 + MB_LEN_MAX];
1366 	size_t n;
1367 	mbstate_t mbs;
1368 
1369 	assert(othercase(ch) != ch);	/* p_bracket() would recurse */
1370 	p->next = bracket;
1371 	memset(&mbs, 0, sizeof(mbs));
1372 	n = wcrtomb(bracket, ch, &mbs);
1373 	assert(n != (size_t)-1);
1374 	bracket[n] = ']';
1375 	bracket[n + 1] = '\0';
1376 	p->end = bracket+n+1;
1377 	p_bracket(p);
1378 	assert(p->next == p->end);
1379 	p->next = oldnext;
1380 	p->end = oldend;
1381 }
1382 
1383 /*
1384  - ordinary - emit an ordinary character
1385  == static void ordinary(struct parse *p, wint_t ch);
1386  */
1387 static void
1388 ordinary(struct parse *p, wint_t ch)
1389 {
1390 	cset *cs;
1391 
1392 	if ((p->g->cflags&REG_ICASE) && iswalpha(ch) && othercase(ch) != ch)
1393 		bothcases(p, ch);
1394 	else if ((ch & OPDMASK) == ch)
1395 		EMIT(OCHAR, ch);
1396 	else {
1397 		/*
1398 		 * Kludge: character is too big to fit into an OCHAR operand.
1399 		 * Emit a singleton set.
1400 		 */
1401 		if ((cs = allocset(p)) == NULL)
1402 			return;
1403 		CHadd(p, cs, ch);
1404 		EMIT(OANYOF, (int)(cs - p->g->sets));
1405 	}
1406 }
1407 
1408 /*
1409  - nonnewline - emit REG_NEWLINE version of OANY
1410  == static void nonnewline(struct parse *p);
1411  *
1412  * Boy, is this implementation ever a kludge...
1413  */
1414 static void
1415 nonnewline(struct parse *p)
1416 {
1417 	const char *oldnext = p->next;
1418 	const char *oldend = p->end;
1419 	char bracket[4];
1420 
1421 	p->next = bracket;
1422 	p->end = bracket+3;
1423 	bracket[0] = '^';
1424 	bracket[1] = '\n';
1425 	bracket[2] = ']';
1426 	bracket[3] = '\0';
1427 	p_bracket(p);
1428 	assert(p->next == bracket+3);
1429 	p->next = oldnext;
1430 	p->end = oldend;
1431 }
1432 
1433 /*
1434  - repeat - generate code for a bounded repetition, recursively if needed
1435  == static void repeat(struct parse *p, sopno start, int from, int to);
1436  */
1437 static void
1438 repeat(struct parse *p,
1439 	sopno start,		/* operand from here to end of strip */
1440 	int from,		/* repeated from this number */
1441 	int to)			/* to this number of times (maybe INFINITY) */
1442 {
1443 	sopno finish = HERE();
1444 #	define	N	2
1445 #	define	INF	3
1446 #	define	REP(f, t)	((f)*8 + (t))
1447 #	define	MAP(n)	(((n) <= 1) ? (n) : ((n) == INFINITY) ? INF : N)
1448 	sopno copy;
1449 
1450 	if (p->error != 0)	/* head off possible runaway recursion */
1451 		return;
1452 
1453 	assert(from <= to);
1454 
1455 	switch (REP(MAP(from), MAP(to))) {
1456 	case REP(0, 0):			/* must be user doing this */
1457 		DROP(finish-start);	/* drop the operand */
1458 		break;
1459 	case REP(0, 1):			/* as x{1,1}? */
1460 	case REP(0, N):			/* as x{1,n}? */
1461 	case REP(0, INF):		/* as x{1,}? */
1462 		/* KLUDGE: emit y? as (y|) until subtle bug gets fixed */
1463 		INSERT(OCH_, start);		/* offset is wrong... */
1464 		repeat(p, start+1, 1, to);
1465 		ASTERN(OOR1, start);
1466 		AHEAD(start);			/* ... fix it */
1467 		EMIT(OOR2, 0);
1468 		AHEAD(THERE());
1469 		ASTERN(O_CH, THERETHERE());
1470 		break;
1471 	case REP(1, 1):			/* trivial case */
1472 		/* done */
1473 		break;
1474 	case REP(1, N):			/* as x?x{1,n-1} */
1475 		/* KLUDGE: emit y? as (y|) until subtle bug gets fixed */
1476 		INSERT(OCH_, start);
1477 		ASTERN(OOR1, start);
1478 		AHEAD(start);
1479 		EMIT(OOR2, 0);			/* offset very wrong... */
1480 		AHEAD(THERE());			/* ...so fix it */
1481 		ASTERN(O_CH, THERETHERE());
1482 		copy = dupl(p, start+1, finish+1);
1483 		assert(copy == finish+4);
1484 		repeat(p, copy, 1, to-1);
1485 		break;
1486 	case REP(1, INF):		/* as x+ */
1487 		INSERT(OPLUS_, start);
1488 		ASTERN(O_PLUS, start);
1489 		break;
1490 	case REP(N, N):			/* as xx{m-1,n-1} */
1491 		copy = dupl(p, start, finish);
1492 		repeat(p, copy, from-1, to-1);
1493 		break;
1494 	case REP(N, INF):		/* as xx{n-1,INF} */
1495 		copy = dupl(p, start, finish);
1496 		repeat(p, copy, from-1, to);
1497 		break;
1498 	default:			/* "can't happen" */
1499 		SETERROR(REG_ASSERT);	/* just in case */
1500 		break;
1501 	}
1502 }
1503 
1504 /*
1505  - wgetnext - helper function for WGETNEXT() macro. Gets the next wide
1506  - character from the parse struct, signals a REG_ILLSEQ error if the
1507  - character can't be converted. Returns the number of bytes consumed.
1508  */
1509 static wint_t
1510 wgetnext(struct parse *p)
1511 {
1512 	mbstate_t mbs;
1513 	wchar_t wc;
1514 	size_t n;
1515 
1516 	memset(&mbs, 0, sizeof(mbs));
1517 	n = mbrtowc(&wc, p->next, p->end - p->next, &mbs);
1518 	if (n == (size_t)-1 || n == (size_t)-2) {
1519 		SETERROR(REG_ILLSEQ);
1520 		return (0);
1521 	}
1522 	if (n == 0)
1523 		n = 1;
1524 	p->next += n;
1525 	return (wc);
1526 }
1527 
1528 /*
1529  - seterr - set an error condition
1530  == static int seterr(struct parse *p, int e);
1531  */
1532 static int			/* useless but makes type checking happy */
1533 seterr(struct parse *p, int e)
1534 {
1535 	if (p->error == 0)	/* keep earliest error condition */
1536 		p->error = e;
1537 	p->next = nuls;		/* try to bring things to a halt */
1538 	p->end = nuls;
1539 	return(0);		/* make the return value well-defined */
1540 }
1541 
1542 /*
1543  - allocset - allocate a set of characters for []
1544  == static cset *allocset(struct parse *p);
1545  */
1546 static cset *
1547 allocset(struct parse *p)
1548 {
1549 	cset *cs, *ncs;
1550 
1551 	ncs = reallocarray(p->g->sets, p->g->ncsets + 1, sizeof(*ncs));
1552 	if (ncs == NULL) {
1553 		SETERROR(REG_ESPACE);
1554 		return (NULL);
1555 	}
1556 	p->g->sets = ncs;
1557 	cs = &p->g->sets[p->g->ncsets++];
1558 	memset(cs, 0, sizeof(*cs));
1559 
1560 	return(cs);
1561 }
1562 
1563 /*
1564  - freeset - free a now-unused set
1565  == static void freeset(struct parse *p, cset *cs);
1566  */
1567 static void
1568 freeset(struct parse *p, cset *cs)
1569 {
1570 	cset *top = &p->g->sets[p->g->ncsets];
1571 
1572 	free(cs->wides);
1573 	free(cs->ranges);
1574 	free(cs->types);
1575 	memset(cs, 0, sizeof(*cs));
1576 	if (cs == top-1)	/* recover only the easy case */
1577 		p->g->ncsets--;
1578 }
1579 
1580 /*
1581  - singleton - Determine whether a set contains only one character,
1582  - returning it if so, otherwise returning OUT.
1583  */
1584 static wint_t
1585 singleton(cset *cs)
1586 {
1587 	wint_t i, s, n;
1588 
1589 	/* Exclude the complicated cases we don't want to deal with */
1590 	if (cs->nranges != 0 || cs->ntypes != 0 || cs->icase != 0)
1591 		return (OUT);
1592 
1593 	if (cs->nwides > 1)
1594 		return (OUT);
1595 
1596 	/* Count the number of characters present in the bitmap */
1597 	for (i = n = 0; i < NC; i++)
1598 		if (CHIN(cs, i)) {
1599 			n++;
1600 			s = i;
1601 		}
1602 
1603 	if (n > 1)
1604 		return (OUT);
1605 
1606 	if (n == 1) {
1607 		if (cs->nwides == 0)
1608 			return (s);
1609 		else
1610 			return (OUT);
1611 	}
1612 	if (cs->nwides == 1)
1613 		return (cs->wides[0]);
1614 
1615 	return (OUT);
1616 }
1617 
1618 /*
1619  - CHadd - add character to character set.
1620  */
1621 static void
1622 CHadd(struct parse *p, cset *cs, wint_t ch)
1623 {
1624 	wint_t nch, *newwides;
1625 	assert(ch >= 0);
1626 	if (ch < NC)
1627 		cs->bmp[ch >> 3] |= 1 << (ch & 7);
1628 	else {
1629 		newwides = reallocarray(cs->wides, cs->nwides + 1,
1630 		    sizeof(*cs->wides));
1631 		if (newwides == NULL) {
1632 			SETERROR(REG_ESPACE);
1633 			return;
1634 		}
1635 		cs->wides = newwides;
1636 		cs->wides[cs->nwides++] = ch;
1637 	}
1638 	if (cs->icase) {
1639 		if ((nch = towlower(ch)) < NC)
1640 			cs->bmp[nch >> 3] |= 1 << (nch & 7);
1641 		if ((nch = towupper(ch)) < NC)
1642 			cs->bmp[nch >> 3] |= 1 << (nch & 7);
1643 	}
1644 }
1645 
1646 /*
1647  - CHaddrange - add all characters in the range [min,max] to a character set.
1648  */
1649 static void
1650 CHaddrange(struct parse *p, cset *cs, wint_t min, wint_t max)
1651 {
1652 	crange *newranges;
1653 
1654 	for (; min < NC && min <= max; min++)
1655 		CHadd(p, cs, min);
1656 	if (min >= max)
1657 		return;
1658 	newranges = reallocarray(cs->ranges, cs->nranges + 1,
1659 	    sizeof(*cs->ranges));
1660 	if (newranges == NULL) {
1661 		SETERROR(REG_ESPACE);
1662 		return;
1663 	}
1664 	cs->ranges = newranges;
1665 	cs->ranges[cs->nranges].min = min;
1666 	cs->ranges[cs->nranges].max = max;
1667 	cs->nranges++;
1668 }
1669 
1670 /*
1671  - CHaddtype - add all characters of a certain type to a character set.
1672  */
1673 static void
1674 CHaddtype(struct parse *p, cset *cs, wctype_t wct)
1675 {
1676 	wint_t i;
1677 	wctype_t *newtypes;
1678 
1679 	for (i = 0; i < NC; i++)
1680 		if (iswctype(i, wct))
1681 			CHadd(p, cs, i);
1682 	newtypes = reallocarray(cs->types, cs->ntypes + 1,
1683 	    sizeof(*cs->types));
1684 	if (newtypes == NULL) {
1685 		SETERROR(REG_ESPACE);
1686 		return;
1687 	}
1688 	cs->types = newtypes;
1689 	cs->types[cs->ntypes++] = wct;
1690 }
1691 
1692 /*
1693  - dupl - emit a duplicate of a bunch of sops
1694  == static sopno dupl(struct parse *p, sopno start, sopno finish);
1695  */
1696 static sopno			/* start of duplicate */
1697 dupl(struct parse *p,
1698 	sopno start,		/* from here */
1699 	sopno finish)		/* to this less one */
1700 {
1701 	sopno ret = HERE();
1702 	sopno len = finish - start;
1703 
1704 	assert(finish >= start);
1705 	if (len == 0)
1706 		return(ret);
1707 	if (!enlarge(p, p->ssize + len)) /* this many unexpected additions */
1708 		return(ret);
1709 	(void) memcpy((char *)(p->strip + p->slen),
1710 		(char *)(p->strip + start), (size_t)len*sizeof(sop));
1711 	p->slen += len;
1712 	return(ret);
1713 }
1714 
1715 /*
1716  - doemit - emit a strip operator
1717  == static void doemit(struct parse *p, sop op, size_t opnd);
1718  *
1719  * It might seem better to implement this as a macro with a function as
1720  * hard-case backup, but it's just too big and messy unless there are
1721  * some changes to the data structures.  Maybe later.
1722  */
1723 static void
1724 doemit(struct parse *p, sop op, size_t opnd)
1725 {
1726 	/* avoid making error situations worse */
1727 	if (p->error != 0)
1728 		return;
1729 
1730 	/* deal with oversize operands ("can't happen", more or less) */
1731 	assert(opnd < 1<<OPSHIFT);
1732 
1733 	/* deal with undersized strip */
1734 	if (p->slen >= p->ssize)
1735 		if (!enlarge(p, (p->ssize+1) / 2 * 3))	/* +50% */
1736 			return;
1737 
1738 	/* finally, it's all reduced to the easy case */
1739 	p->strip[p->slen++] = SOP(op, opnd);
1740 }
1741 
1742 /*
1743  - doinsert - insert a sop into the strip
1744  == static void doinsert(struct parse *p, sop op, size_t opnd, sopno pos);
1745  */
1746 static void
1747 doinsert(struct parse *p, sop op, size_t opnd, sopno pos)
1748 {
1749 	sopno sn;
1750 	sop s;
1751 	int i;
1752 
1753 	/* avoid making error situations worse */
1754 	if (p->error != 0)
1755 		return;
1756 
1757 	sn = HERE();
1758 	EMIT(op, opnd);		/* do checks, ensure space */
1759 	assert(HERE() == sn+1);
1760 	s = p->strip[sn];
1761 
1762 	/* adjust paren pointers */
1763 	assert(pos > 0);
1764 	for (i = 1; i < NPAREN; i++) {
1765 		if (p->pbegin[i] >= pos) {
1766 			p->pbegin[i]++;
1767 		}
1768 		if (p->pend[i] >= pos) {
1769 			p->pend[i]++;
1770 		}
1771 	}
1772 
1773 	memmove((char *)&p->strip[pos+1], (char *)&p->strip[pos],
1774 						(HERE()-pos-1)*sizeof(sop));
1775 	p->strip[pos] = s;
1776 }
1777 
1778 /*
1779  - dofwd - complete a forward reference
1780  == static void dofwd(struct parse *p, sopno pos, sop value);
1781  */
1782 static void
1783 dofwd(struct parse *p, sopno pos, sop value)
1784 {
1785 	/* avoid making error situations worse */
1786 	if (p->error != 0)
1787 		return;
1788 
1789 	assert(value < 1<<OPSHIFT);
1790 	p->strip[pos] = OP(p->strip[pos]) | value;
1791 }
1792 
1793 /*
1794  - enlarge - enlarge the strip
1795  == static int enlarge(struct parse *p, sopno size);
1796  */
1797 static int
1798 enlarge(struct parse *p, sopno size)
1799 {
1800 	sop *sp;
1801 
1802 	if (p->ssize >= size)
1803 		return 1;
1804 
1805 	sp = reallocarray(p->strip, size, sizeof(sop));
1806 	if (sp == NULL) {
1807 		SETERROR(REG_ESPACE);
1808 		return 0;
1809 	}
1810 	p->strip = sp;
1811 	p->ssize = size;
1812 	return 1;
1813 }
1814 
1815 /*
1816  - stripsnug - compact the strip
1817  == static void stripsnug(struct parse *p, struct re_guts *g);
1818  */
1819 static void
1820 stripsnug(struct parse *p, struct re_guts *g)
1821 {
1822 	g->nstates = p->slen;
1823 	g->strip = reallocarray((char *)p->strip, p->slen, sizeof(sop));
1824 	if (g->strip == NULL) {
1825 		SETERROR(REG_ESPACE);
1826 		g->strip = p->strip;
1827 	}
1828 }
1829 
1830 /*
1831  - findmust - fill in must and mlen with longest mandatory literal string
1832  == static void findmust(struct parse *p, struct re_guts *g);
1833  *
1834  * This algorithm could do fancy things like analyzing the operands of |
1835  * for common subsequences.  Someday.  This code is simple and finds most
1836  * of the interesting cases.
1837  *
1838  * Note that must and mlen got initialized during setup.
1839  */
1840 static void
1841 findmust(struct parse *p, struct re_guts *g)
1842 {
1843 	sop *scan;
1844 	sop *start = NULL;
1845 	sop *newstart = NULL;
1846 	sopno newlen;
1847 	sop s;
1848 	char *cp;
1849 	int offset;
1850 	char buf[MB_LEN_MAX];
1851 	size_t clen;
1852 	mbstate_t mbs;
1853 
1854 	/* avoid making error situations worse */
1855 	if (p->error != 0)
1856 		return;
1857 
1858 	/*
1859 	 * It's not generally safe to do a ``char'' substring search on
1860 	 * multibyte character strings, but it's safe for at least
1861 	 * UTF-8 (see RFC 3629).
1862 	 */
1863 	if (MB_CUR_MAX > 1 &&
1864 	    strcmp(_CurrentRuneLocale->__encoding, "UTF-8") != 0)
1865 		return;
1866 
1867 	/* find the longest OCHAR sequence in strip */
1868 	newlen = 0;
1869 	offset = 0;
1870 	g->moffset = 0;
1871 	scan = g->strip + 1;
1872 	do {
1873 		s = *scan++;
1874 		switch (OP(s)) {
1875 		case OCHAR:		/* sequence member */
1876 			if (newlen == 0) {		/* new sequence */
1877 				memset(&mbs, 0, sizeof(mbs));
1878 				newstart = scan - 1;
1879 			}
1880 			clen = wcrtomb(buf, OPND(s), &mbs);
1881 			if (clen == (size_t)-1)
1882 				goto toohard;
1883 			newlen += clen;
1884 			break;
1885 		case OPLUS_:		/* things that don't break one */
1886 		case OLPAREN:
1887 		case ORPAREN:
1888 			break;
1889 		case OQUEST_:		/* things that must be skipped */
1890 		case OCH_:
1891 			offset = altoffset(scan, offset);
1892 			scan--;
1893 			do {
1894 				scan += OPND(s);
1895 				s = *scan;
1896 				/* assert() interferes w debug printouts */
1897 				if (OP(s) != (sop)O_QUEST &&
1898 				    OP(s) != (sop)O_CH && OP(s) != (sop)OOR2) {
1899 					g->iflags |= BAD;
1900 					return;
1901 				}
1902 			} while (OP(s) != (sop)O_QUEST && OP(s) != (sop)O_CH);
1903 			/* FALLTHROUGH */
1904 		case OBOW:		/* things that break a sequence */
1905 		case OEOW:
1906 		case OBOL:
1907 		case OEOL:
1908 		case OBOS:
1909 		case OEOS:
1910 		case OWBND:
1911 		case ONWBND:
1912 		case O_QUEST:
1913 		case O_CH:
1914 		case OEND:
1915 			if (newlen > (sopno)g->mlen) {		/* ends one */
1916 				start = newstart;
1917 				g->mlen = newlen;
1918 				if (offset > -1) {
1919 					g->moffset += offset;
1920 					offset = newlen;
1921 				} else
1922 					g->moffset = offset;
1923 			} else {
1924 				if (offset > -1)
1925 					offset += newlen;
1926 			}
1927 			newlen = 0;
1928 			break;
1929 		case OANY:
1930 			if (newlen > (sopno)g->mlen) {		/* ends one */
1931 				start = newstart;
1932 				g->mlen = newlen;
1933 				if (offset > -1) {
1934 					g->moffset += offset;
1935 					offset = newlen;
1936 				} else
1937 					g->moffset = offset;
1938 			} else {
1939 				if (offset > -1)
1940 					offset += newlen;
1941 			}
1942 			if (offset > -1)
1943 				offset++;
1944 			newlen = 0;
1945 			break;
1946 		case OANYOF:		/* may or may not invalidate offset */
1947 			/* First, everything as OANY */
1948 			if (newlen > (sopno)g->mlen) {		/* ends one */
1949 				start = newstart;
1950 				g->mlen = newlen;
1951 				if (offset > -1) {
1952 					g->moffset += offset;
1953 					offset = newlen;
1954 				} else
1955 					g->moffset = offset;
1956 			} else {
1957 				if (offset > -1)
1958 					offset += newlen;
1959 			}
1960 			if (offset > -1)
1961 				offset++;
1962 			newlen = 0;
1963 			break;
1964 		toohard:
1965 		default:
1966 			/* Anything here makes it impossible or too hard
1967 			 * to calculate the offset -- so we give up;
1968 			 * save the last known good offset, in case the
1969 			 * must sequence doesn't occur later.
1970 			 */
1971 			if (newlen > (sopno)g->mlen) {		/* ends one */
1972 				start = newstart;
1973 				g->mlen = newlen;
1974 				if (offset > -1)
1975 					g->moffset += offset;
1976 				else
1977 					g->moffset = offset;
1978 			}
1979 			offset = -1;
1980 			newlen = 0;
1981 			break;
1982 		}
1983 	} while (OP(s) != OEND);
1984 
1985 	if (g->mlen == 0) {		/* there isn't one */
1986 		g->moffset = -1;
1987 		return;
1988 	}
1989 
1990 	/* turn it into a character string */
1991 	g->must = malloc((size_t)g->mlen + 1);
1992 	if (g->must == NULL) {		/* argh; just forget it */
1993 		g->mlen = 0;
1994 		g->moffset = -1;
1995 		return;
1996 	}
1997 	cp = g->must;
1998 	scan = start;
1999 	memset(&mbs, 0, sizeof(mbs));
2000 	while (cp < g->must + g->mlen) {
2001 		while (OP(s = *scan++) != OCHAR)
2002 			continue;
2003 		clen = wcrtomb(cp, OPND(s), &mbs);
2004 		assert(clen != (size_t)-1);
2005 		cp += clen;
2006 	}
2007 	assert(cp == g->must + g->mlen);
2008 	*cp++ = '\0';		/* just on general principles */
2009 }
2010 
2011 /*
2012  - altoffset - choose biggest offset among multiple choices
2013  == static int altoffset(sop *scan, int offset);
2014  *
2015  * Compute, recursively if necessary, the largest offset among multiple
2016  * re paths.
2017  */
2018 static int
2019 altoffset(sop *scan, int offset)
2020 {
2021 	int largest;
2022 	int try;
2023 	sop s;
2024 
2025 	/* If we gave up already on offsets, return */
2026 	if (offset == -1)
2027 		return -1;
2028 
2029 	largest = 0;
2030 	try = 0;
2031 	s = *scan++;
2032 	while (OP(s) != (sop)O_QUEST && OP(s) != (sop)O_CH) {
2033 		switch (OP(s)) {
2034 		case OOR1:
2035 			if (try > largest)
2036 				largest = try;
2037 			try = 0;
2038 			break;
2039 		case OQUEST_:
2040 		case OCH_:
2041 			try = altoffset(scan, try);
2042 			if (try == -1)
2043 				return -1;
2044 			scan--;
2045 			do {
2046 				scan += OPND(s);
2047 				s = *scan;
2048 				if (OP(s) != (sop)O_QUEST &&
2049 				    OP(s) != (sop)O_CH && OP(s) != (sop)OOR2)
2050 					return -1;
2051 			} while (OP(s) != (sop)O_QUEST && OP(s) != (sop)O_CH);
2052 			/* We must skip to the next position, or we'll
2053 			 * leave altoffset() too early.
2054 			 */
2055 			scan++;
2056 			break;
2057 		case OANYOF:
2058 		case OCHAR:
2059 		case OANY:
2060 			try++;
2061 		case OBOW:
2062 		case OEOW:
2063 		case OWBND:
2064 		case ONWBND:
2065 		case OLPAREN:
2066 		case ORPAREN:
2067 		case OOR2:
2068 			break;
2069 		default:
2070 			try = -1;
2071 			break;
2072 		}
2073 		if (try == -1)
2074 			return -1;
2075 		s = *scan++;
2076 	}
2077 
2078 	if (try > largest)
2079 		largest = try;
2080 
2081 	return largest+offset;
2082 }
2083 
2084 /*
2085  - computejumps - compute char jumps for BM scan
2086  == static void computejumps(struct parse *p, struct re_guts *g);
2087  *
2088  * This algorithm assumes g->must exists and is has size greater than
2089  * zero. It's based on the algorithm found on Computer Algorithms by
2090  * Sara Baase.
2091  *
2092  * A char jump is the number of characters one needs to jump based on
2093  * the value of the character from the text that was mismatched.
2094  */
2095 static void
2096 computejumps(struct parse *p, struct re_guts *g)
2097 {
2098 	int ch;
2099 	int mindex;
2100 
2101 	/* Avoid making errors worse */
2102 	if (p->error != 0)
2103 		return;
2104 
2105 	g->charjump = (int *)malloc((NC_MAX + 1) * sizeof(int));
2106 	if (g->charjump == NULL)	/* Not a fatal error */
2107 		return;
2108 	/* Adjust for signed chars, if necessary */
2109 	g->charjump = &g->charjump[-(CHAR_MIN)];
2110 
2111 	/* If the character does not exist in the pattern, the jump
2112 	 * is equal to the number of characters in the pattern.
2113 	 */
2114 	for (ch = CHAR_MIN; ch < (CHAR_MAX + 1); ch++)
2115 		g->charjump[ch] = g->mlen;
2116 
2117 	/* If the character does exist, compute the jump that would
2118 	 * take us to the last character in the pattern equal to it
2119 	 * (notice that we match right to left, so that last character
2120 	 * is the first one that would be matched).
2121 	 */
2122 	for (mindex = 0; mindex < g->mlen; mindex++)
2123 		g->charjump[(int)g->must[mindex]] = g->mlen - mindex - 1;
2124 }
2125 
2126 /*
2127  - computematchjumps - compute match jumps for BM scan
2128  == static void computematchjumps(struct parse *p, struct re_guts *g);
2129  *
2130  * This algorithm assumes g->must exists and is has size greater than
2131  * zero. It's based on the algorithm found on Computer Algorithms by
2132  * Sara Baase.
2133  *
2134  * A match jump is the number of characters one needs to advance based
2135  * on the already-matched suffix.
2136  * Notice that all values here are minus (g->mlen-1), because of the way
2137  * the search algorithm works.
2138  */
2139 static void
2140 computematchjumps(struct parse *p, struct re_guts *g)
2141 {
2142 	int mindex;		/* General "must" iterator */
2143 	int suffix;		/* Keeps track of matching suffix */
2144 	int ssuffix;		/* Keeps track of suffixes' suffix */
2145 	int* pmatches;		/* pmatches[k] points to the next i
2146 				 * such that i+1...mlen is a substring
2147 				 * of k+1...k+mlen-i-1
2148 				 */
2149 
2150 	/* Avoid making errors worse */
2151 	if (p->error != 0)
2152 		return;
2153 
2154 	pmatches = (int*) malloc(g->mlen * sizeof(int));
2155 	if (pmatches == NULL) {
2156 		g->matchjump = NULL;
2157 		return;
2158 	}
2159 
2160 	g->matchjump = (int*) malloc(g->mlen * sizeof(int));
2161 	if (g->matchjump == NULL) {	/* Not a fatal error */
2162 		free(pmatches);
2163 		return;
2164 	}
2165 
2166 	/* Set maximum possible jump for each character in the pattern */
2167 	for (mindex = 0; mindex < g->mlen; mindex++)
2168 		g->matchjump[mindex] = 2*g->mlen - mindex - 1;
2169 
2170 	/* Compute pmatches[] */
2171 	for (mindex = g->mlen - 1, suffix = g->mlen; mindex >= 0;
2172 	    mindex--, suffix--) {
2173 		pmatches[mindex] = suffix;
2174 
2175 		/* If a mismatch is found, interrupting the substring,
2176 		 * compute the matchjump for that position. If no
2177 		 * mismatch is found, then a text substring mismatched
2178 		 * against the suffix will also mismatch against the
2179 		 * substring.
2180 		 */
2181 		while (suffix < g->mlen
2182 		    && g->must[mindex] != g->must[suffix]) {
2183 			g->matchjump[suffix] = MIN(g->matchjump[suffix],
2184 			    g->mlen - mindex - 1);
2185 			suffix = pmatches[suffix];
2186 		}
2187 	}
2188 
2189 	/* Compute the matchjump up to the last substring found to jump
2190 	 * to the beginning of the largest must pattern prefix matching
2191 	 * it's own suffix.
2192 	 */
2193 	for (mindex = 0; mindex <= suffix; mindex++)
2194 		g->matchjump[mindex] = MIN(g->matchjump[mindex],
2195 		    g->mlen + suffix - mindex);
2196 
2197         ssuffix = pmatches[suffix];
2198         while (suffix < g->mlen) {
2199                 while (suffix <= ssuffix && suffix < g->mlen) {
2200                         g->matchjump[suffix] = MIN(g->matchjump[suffix],
2201 			    g->mlen + ssuffix - suffix);
2202                         suffix++;
2203                 }
2204 		if (suffix < g->mlen)
2205                 	ssuffix = pmatches[ssuffix];
2206         }
2207 
2208 	free(pmatches);
2209 }
2210 
2211 /*
2212  - pluscount - count + nesting
2213  == static sopno pluscount(struct parse *p, struct re_guts *g);
2214  */
2215 static sopno			/* nesting depth */
2216 pluscount(struct parse *p, struct re_guts *g)
2217 {
2218 	sop *scan;
2219 	sop s;
2220 	sopno plusnest = 0;
2221 	sopno maxnest = 0;
2222 
2223 	if (p->error != 0)
2224 		return(0);	/* there may not be an OEND */
2225 
2226 	scan = g->strip + 1;
2227 	do {
2228 		s = *scan++;
2229 		switch (OP(s)) {
2230 		case OPLUS_:
2231 			plusnest++;
2232 			break;
2233 		case O_PLUS:
2234 			if (plusnest > maxnest)
2235 				maxnest = plusnest;
2236 			plusnest--;
2237 			break;
2238 		}
2239 	} while (OP(s) != OEND);
2240 	if (plusnest != 0)
2241 		g->iflags |= BAD;
2242 	return(maxnest);
2243 }
2244