xref: /freebsd/lib/libc/regex/regcomp.c (revision 1251590741d28695f233a1798cfc8428e78ff991)
1 /*-
2  * Copyright (c) 1992, 1993, 1994 Henry Spencer.
3  * Copyright (c) 1992, 1993, 1994
4  *	The Regents of the University of California.  All rights reserved.
5  *
6  * Copyright (c) 2011 The FreeBSD Foundation
7  * All rights reserved.
8  * Portions of this software were developed by David Chisnall
9  * under sponsorship from the FreeBSD Foundation.
10  *
11  * This code is derived from software contributed to Berkeley by
12  * Henry Spencer.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)regcomp.c	8.5 (Berkeley) 3/20/94
39  */
40 
41 #if defined(LIBC_SCCS) && !defined(lint)
42 static char sccsid[] = "@(#)regcomp.c	8.5 (Berkeley) 3/20/94";
43 #endif /* LIBC_SCCS and not lint */
44 #include <sys/cdefs.h>
45 __FBSDID("$FreeBSD$");
46 
47 #include <sys/types.h>
48 #include <stdio.h>
49 #include <string.h>
50 #include <ctype.h>
51 #include <limits.h>
52 #include <stdlib.h>
53 #include <regex.h>
54 #include <stdbool.h>
55 #include <wchar.h>
56 #include <wctype.h>
57 
58 #include "collate.h"
59 
60 #include "utils.h"
61 #include "regex2.h"
62 
63 #include "cname.h"
64 
65 /*
66  * Branching context, used to keep track of branch state for all of the branch-
67  * aware functions. In addition to keeping track of branch positions for the
68  * p_branch_* functions, we use this to simplify some clumsiness in BREs for
69  * detection of whether ^ is acting as an anchor or being used erroneously and
70  * also for whether we're in a sub-expression or not.
71  */
72 struct branchc {
73 	sopno start;
74 	sopno back;
75 	sopno fwd;
76 
77 	int nbranch;
78 	int nchain;
79 	bool outer;
80 	bool terminate;
81 };
82 
83 /*
84  * parse structure, passed up and down to avoid global variables and
85  * other clumsinesses
86  */
87 struct parse {
88 	const char *next;	/* next character in RE */
89 	const char *end;	/* end of string (-> NUL normally) */
90 	int error;		/* has an error been seen? */
91 	sop *strip;		/* malloced strip */
92 	sopno ssize;		/* malloced strip size (allocated) */
93 	sopno slen;		/* malloced strip length (used) */
94 	int ncsalloc;		/* number of csets allocated */
95 	struct re_guts *g;
96 #	define	NPAREN	10	/* we need to remember () 1-9 for back refs */
97 	sopno pbegin[NPAREN];	/* -> ( ([0] unused) */
98 	sopno pend[NPAREN];	/* -> ) ([0] unused) */
99 	bool allowbranch;	/* can this expression branch? */
100 	bool bre;		/* convenience; is this a BRE? */
101 	bool (*parse_expr)(struct parse *, struct branchc *);
102 	void (*pre_parse)(struct parse *, struct branchc *);
103 	void (*post_parse)(struct parse *, struct branchc *);
104 };
105 
106 /* ========= begin header generated by ./mkh ========= */
107 #ifdef __cplusplus
108 extern "C" {
109 #endif
110 
111 /* === regcomp.c === */
112 static bool p_ere_exp(struct parse *p, struct branchc *bc);
113 static void p_str(struct parse *p);
114 static int p_branch_eat_delim(struct parse *p, struct branchc *bc);
115 static void p_branch_ins_offset(struct parse *p, struct branchc *bc);
116 static void p_branch_fix_tail(struct parse *p, struct branchc *bc);
117 static bool p_branch_empty(struct parse *p, struct branchc *bc);
118 static bool p_branch_do(struct parse *p, struct branchc *bc);
119 static void p_bre_pre_parse(struct parse *p, struct branchc *bc);
120 static void p_bre_post_parse(struct parse *p, struct branchc *bc);
121 static void p_re(struct parse *p, int end1, int end2);
122 static bool p_simp_re(struct parse *p, struct branchc *bc);
123 static int p_count(struct parse *p);
124 static void p_bracket(struct parse *p);
125 static void p_b_term(struct parse *p, cset *cs);
126 static void p_b_cclass(struct parse *p, cset *cs);
127 static void p_b_eclass(struct parse *p, cset *cs);
128 static wint_t p_b_symbol(struct parse *p);
129 static wint_t p_b_coll_elem(struct parse *p, wint_t endc);
130 static wint_t othercase(wint_t ch);
131 static void bothcases(struct parse *p, wint_t ch);
132 static void ordinary(struct parse *p, wint_t ch);
133 static void nonnewline(struct parse *p);
134 static void repeat(struct parse *p, sopno start, int from, int to);
135 static int seterr(struct parse *p, int e);
136 static cset *allocset(struct parse *p);
137 static void freeset(struct parse *p, cset *cs);
138 static void CHadd(struct parse *p, cset *cs, wint_t ch);
139 static void CHaddrange(struct parse *p, cset *cs, wint_t min, wint_t max);
140 static void CHaddtype(struct parse *p, cset *cs, wctype_t wct);
141 static wint_t singleton(cset *cs);
142 static sopno dupl(struct parse *p, sopno start, sopno finish);
143 static void doemit(struct parse *p, sop op, size_t opnd);
144 static void doinsert(struct parse *p, sop op, size_t opnd, sopno pos);
145 static void dofwd(struct parse *p, sopno pos, sop value);
146 static int enlarge(struct parse *p, sopno size);
147 static void stripsnug(struct parse *p, struct re_guts *g);
148 static void findmust(struct parse *p, struct re_guts *g);
149 static int altoffset(sop *scan, int offset);
150 static void computejumps(struct parse *p, struct re_guts *g);
151 static void computematchjumps(struct parse *p, struct re_guts *g);
152 static sopno pluscount(struct parse *p, struct re_guts *g);
153 static wint_t wgetnext(struct parse *p);
154 
155 #ifdef __cplusplus
156 }
157 #endif
158 /* ========= end header generated by ./mkh ========= */
159 
160 static char nuls[10];		/* place to point scanner in event of error */
161 
162 /*
163  * macros for use with parse structure
164  * BEWARE:  these know that the parse structure is named `p' !!!
165  */
166 #define	PEEK()	(*p->next)
167 #define	PEEK2()	(*(p->next+1))
168 #define	MORE()	(p->next < p->end)
169 #define	MORE2()	(p->next+1 < p->end)
170 #define	SEE(c)	(MORE() && PEEK() == (c))
171 #define	SEETWO(a, b)	(MORE() && MORE2() && PEEK() == (a) && PEEK2() == (b))
172 #define	SEESPEC(a)	(p->bre ? SEETWO('\\', a) : SEE(a))
173 #define	EAT(c)	((SEE(c)) ? (NEXT(), 1) : 0)
174 #define	EATTWO(a, b)	((SEETWO(a, b)) ? (NEXT2(), 1) : 0)
175 #define	NEXT()	(p->next++)
176 #define	NEXT2()	(p->next += 2)
177 #define	NEXTn(n)	(p->next += (n))
178 #define	GETNEXT()	(*p->next++)
179 #define	WGETNEXT()	wgetnext(p)
180 #define	SETERROR(e)	seterr(p, (e))
181 #define	REQUIRE(co, e)	((co) || SETERROR(e))
182 #define	MUSTSEE(c, e)	(REQUIRE(MORE() && PEEK() == (c), e))
183 #define	MUSTEAT(c, e)	(REQUIRE(MORE() && GETNEXT() == (c), e))
184 #define	MUSTNOTSEE(c, e)	(REQUIRE(!MORE() || PEEK() != (c), e))
185 #define	EMIT(op, sopnd)	doemit(p, (sop)(op), (size_t)(sopnd))
186 #define	INSERT(op, pos)	doinsert(p, (sop)(op), HERE()-(pos)+1, pos)
187 #define	AHEAD(pos)		dofwd(p, pos, HERE()-(pos))
188 #define	ASTERN(sop, pos)	EMIT(sop, HERE()-pos)
189 #define	HERE()		(p->slen)
190 #define	THERE()		(p->slen - 1)
191 #define	THERETHERE()	(p->slen - 2)
192 #define	DROP(n)	(p->slen -= (n))
193 
194 #ifndef NDEBUG
195 static int never = 0;		/* for use in asserts; shuts lint up */
196 #else
197 #define	never	0		/* some <assert.h>s have bugs too */
198 #endif
199 
200 /* Macro used by computejump()/computematchjump() */
201 #define MIN(a,b)	((a)<(b)?(a):(b))
202 
203 /*
204  - regcomp - interface for parser and compilation
205  = extern int regcomp(regex_t *, const char *, int);
206  = #define	REG_BASIC	0000
207  = #define	REG_EXTENDED	0001
208  = #define	REG_ICASE	0002
209  = #define	REG_NOSUB	0004
210  = #define	REG_NEWLINE	0010
211  = #define	REG_NOSPEC	0020
212  = #define	REG_PEND	0040
213  = #define	REG_DUMP	0200
214  */
215 int				/* 0 success, otherwise REG_something */
216 regcomp(regex_t * __restrict preg,
217 	const char * __restrict pattern,
218 	int cflags)
219 {
220 	struct parse pa;
221 	struct re_guts *g;
222 	struct parse *p = &pa;
223 	int i;
224 	size_t len;
225 	size_t maxlen;
226 #ifdef REDEBUG
227 #	define	GOODFLAGS(f)	(f)
228 #else
229 #	define	GOODFLAGS(f)	((f)&~REG_DUMP)
230 #endif
231 
232 	cflags = GOODFLAGS(cflags);
233 	if ((cflags&REG_EXTENDED) && (cflags&REG_NOSPEC))
234 		return(REG_INVARG);
235 
236 	if (cflags&REG_PEND) {
237 		if (preg->re_endp < pattern)
238 			return(REG_INVARG);
239 		len = preg->re_endp - pattern;
240 	} else
241 		len = strlen(pattern);
242 
243 	/* do the mallocs early so failure handling is easy */
244 	g = (struct re_guts *)malloc(sizeof(struct re_guts));
245 	if (g == NULL)
246 		return(REG_ESPACE);
247 	/*
248 	 * Limit the pattern space to avoid a 32-bit overflow on buffer
249 	 * extension.  Also avoid any signed overflow in case of conversion
250 	 * so make the real limit based on a 31-bit overflow.
251 	 *
252 	 * Likely not applicable on 64-bit systems but handle the case
253 	 * generically (who are we to stop people from using ~715MB+
254 	 * patterns?).
255 	 */
256 	maxlen = ((size_t)-1 >> 1) / sizeof(sop) * 2 / 3;
257 	if (len >= maxlen) {
258 		free((char *)g);
259 		return(REG_ESPACE);
260 	}
261 	p->ssize = len/(size_t)2*(size_t)3 + (size_t)1;	/* ugh */
262 	assert(p->ssize >= len);
263 
264 	p->strip = (sop *)malloc(p->ssize * sizeof(sop));
265 	p->slen = 0;
266 	if (p->strip == NULL) {
267 		free((char *)g);
268 		return(REG_ESPACE);
269 	}
270 
271 	/* set things up */
272 	p->g = g;
273 	p->next = pattern;	/* convenience; we do not modify it */
274 	p->end = p->next + len;
275 	p->error = 0;
276 	p->ncsalloc = 0;
277 	for (i = 0; i < NPAREN; i++) {
278 		p->pbegin[i] = 0;
279 		p->pend[i] = 0;
280 	}
281 	if (cflags & REG_EXTENDED) {
282 		p->allowbranch = true;
283 		p->bre = false;
284 		p->parse_expr = p_ere_exp;
285 		p->pre_parse = NULL;
286 		p->post_parse = NULL;
287 	} else {
288 		p->allowbranch = false;
289 		p->bre = true;
290 		p->parse_expr = p_simp_re;
291 		p->pre_parse = p_bre_pre_parse;
292 		p->post_parse = p_bre_post_parse;
293 	}
294 	g->sets = NULL;
295 	g->ncsets = 0;
296 	g->cflags = cflags;
297 	g->iflags = 0;
298 	g->nbol = 0;
299 	g->neol = 0;
300 	g->must = NULL;
301 	g->moffset = -1;
302 	g->charjump = NULL;
303 	g->matchjump = NULL;
304 	g->mlen = 0;
305 	g->nsub = 0;
306 	g->backrefs = 0;
307 
308 	/* do it */
309 	EMIT(OEND, 0);
310 	g->firststate = THERE();
311 	if (cflags & REG_NOSPEC)
312 		p_str(p);
313 	else
314 		p_re(p, OUT, OUT);
315 	EMIT(OEND, 0);
316 	g->laststate = THERE();
317 
318 	/* tidy up loose ends and fill things in */
319 	stripsnug(p, g);
320 	findmust(p, g);
321 	/* only use Boyer-Moore algorithm if the pattern is bigger
322 	 * than three characters
323 	 */
324 	if(g->mlen > 3) {
325 		computejumps(p, g);
326 		computematchjumps(p, g);
327 		if(g->matchjump == NULL && g->charjump != NULL) {
328 			free(g->charjump);
329 			g->charjump = NULL;
330 		}
331 	}
332 	g->nplus = pluscount(p, g);
333 	g->magic = MAGIC2;
334 	preg->re_nsub = g->nsub;
335 	preg->re_g = g;
336 	preg->re_magic = MAGIC1;
337 #ifndef REDEBUG
338 	/* not debugging, so can't rely on the assert() in regexec() */
339 	if (g->iflags&BAD)
340 		SETERROR(REG_ASSERT);
341 #endif
342 
343 	/* win or lose, we're done */
344 	if (p->error != 0)	/* lose */
345 		regfree(preg);
346 	return(p->error);
347 }
348 
349 /*
350  - p_ere_exp - parse one subERE, an atom possibly followed by a repetition op,
351  - return whether we should terminate or not
352  == static bool p_ere_exp(struct parse *p);
353  */
354 static bool
355 p_ere_exp(struct parse *p, struct branchc *bc)
356 {
357 	char c;
358 	wint_t wc;
359 	sopno pos;
360 	int count;
361 	int count2;
362 	sopno subno;
363 	int wascaret = 0;
364 
365 	assert(MORE());		/* caller should have ensured this */
366 	c = GETNEXT();
367 
368 	pos = HERE();
369 	switch (c) {
370 	case '(':
371 		(void)REQUIRE(MORE(), REG_EPAREN);
372 		p->g->nsub++;
373 		subno = p->g->nsub;
374 		if (subno < NPAREN)
375 			p->pbegin[subno] = HERE();
376 		EMIT(OLPAREN, subno);
377 		if (!SEE(')'))
378 			p_re(p, ')', IGN);
379 		if (subno < NPAREN) {
380 			p->pend[subno] = HERE();
381 			assert(p->pend[subno] != 0);
382 		}
383 		EMIT(ORPAREN, subno);
384 		(void)MUSTEAT(')', REG_EPAREN);
385 		break;
386 #ifndef POSIX_MISTAKE
387 	case ')':		/* happens only if no current unmatched ( */
388 		/*
389 		 * You may ask, why the ifndef?  Because I didn't notice
390 		 * this until slightly too late for 1003.2, and none of the
391 		 * other 1003.2 regular-expression reviewers noticed it at
392 		 * all.  So an unmatched ) is legal POSIX, at least until
393 		 * we can get it fixed.
394 		 */
395 		SETERROR(REG_EPAREN);
396 		break;
397 #endif
398 	case '^':
399 		EMIT(OBOL, 0);
400 		p->g->iflags |= USEBOL;
401 		p->g->nbol++;
402 		wascaret = 1;
403 		break;
404 	case '$':
405 		EMIT(OEOL, 0);
406 		p->g->iflags |= USEEOL;
407 		p->g->neol++;
408 		break;
409 	case '|':
410 		SETERROR(REG_EMPTY);
411 		break;
412 	case '*':
413 	case '+':
414 	case '?':
415 	case '{':
416 		SETERROR(REG_BADRPT);
417 		break;
418 	case '.':
419 		if (p->g->cflags&REG_NEWLINE)
420 			nonnewline(p);
421 		else
422 			EMIT(OANY, 0);
423 		break;
424 	case '[':
425 		p_bracket(p);
426 		break;
427 	case '\\':
428 		(void)REQUIRE(MORE(), REG_EESCAPE);
429 		wc = WGETNEXT();
430 		switch (wc) {
431 		case '<':
432 			EMIT(OBOW, 0);
433 			break;
434 		case '>':
435 			EMIT(OEOW, 0);
436 			break;
437 		default:
438 			ordinary(p, wc);
439 			break;
440 		}
441 		break;
442 	default:
443 		if (p->error != 0)
444 			return (false);
445 		p->next--;
446 		wc = WGETNEXT();
447 		ordinary(p, wc);
448 		break;
449 	}
450 
451 	if (!MORE())
452 		return (false);
453 	c = PEEK();
454 	/* we call { a repetition if followed by a digit */
455 	if (!( c == '*' || c == '+' || c == '?' || c == '{'))
456 		return (false);		/* no repetition, we're done */
457 	else if (c == '{')
458 		(void)REQUIRE(MORE2() && \
459 		    (isdigit((uch)PEEK2()) || PEEK2() == ','), REG_BADRPT);
460 	NEXT();
461 
462 	(void)REQUIRE(!wascaret, REG_BADRPT);
463 	switch (c) {
464 	case '*':	/* implemented as +? */
465 		/* this case does not require the (y|) trick, noKLUDGE */
466 		INSERT(OPLUS_, pos);
467 		ASTERN(O_PLUS, pos);
468 		INSERT(OQUEST_, pos);
469 		ASTERN(O_QUEST, pos);
470 		break;
471 	case '+':
472 		INSERT(OPLUS_, pos);
473 		ASTERN(O_PLUS, pos);
474 		break;
475 	case '?':
476 		/* KLUDGE: emit y? as (y|) until subtle bug gets fixed */
477 		INSERT(OCH_, pos);		/* offset slightly wrong */
478 		ASTERN(OOR1, pos);		/* this one's right */
479 		AHEAD(pos);			/* fix the OCH_ */
480 		EMIT(OOR2, 0);			/* offset very wrong... */
481 		AHEAD(THERE());			/* ...so fix it */
482 		ASTERN(O_CH, THERETHERE());
483 		break;
484 	case '{':
485 		count = p_count(p);
486 		if (EAT(',')) {
487 			if (isdigit((uch)PEEK())) {
488 				count2 = p_count(p);
489 				(void)REQUIRE(count <= count2, REG_BADBR);
490 			} else		/* single number with comma */
491 				count2 = INFINITY;
492 		} else		/* just a single number */
493 			count2 = count;
494 		repeat(p, pos, count, count2);
495 		if (!EAT('}')) {	/* error heuristics */
496 			while (MORE() && PEEK() != '}')
497 				NEXT();
498 			(void)REQUIRE(MORE(), REG_EBRACE);
499 			SETERROR(REG_BADBR);
500 		}
501 		break;
502 	}
503 
504 	if (!MORE())
505 		return (false);
506 	c = PEEK();
507 	if (!( c == '*' || c == '+' || c == '?' ||
508 				(c == '{' && MORE2() && isdigit((uch)PEEK2())) ) )
509 		return (false);
510 	SETERROR(REG_BADRPT);
511 	return (false);
512 }
513 
514 /*
515  - p_str - string (no metacharacters) "parser"
516  == static void p_str(struct parse *p);
517  */
518 static void
519 p_str(struct parse *p)
520 {
521 	(void)REQUIRE(MORE(), REG_EMPTY);
522 	while (MORE())
523 		ordinary(p, WGETNEXT());
524 }
525 
526 /*
527  * Eat consecutive branch delimiters for the kind of expression that we are
528  * parsing, return the number of delimiters that we ate.
529  */
530 static int
531 p_branch_eat_delim(struct parse *p, struct branchc *bc)
532 {
533 	int nskip;
534 
535 	nskip = 0;
536 	while (EAT('|'))
537 		++nskip;
538 	return (nskip);
539 }
540 
541 /*
542  * Insert necessary branch book-keeping operations. This emits a
543  * bogus 'next' offset, since we still have more to parse
544  */
545 static void
546 p_branch_ins_offset(struct parse *p, struct branchc *bc)
547 {
548 
549 	if (bc->nbranch == 0) {
550 		INSERT(OCH_, bc->start);	/* offset is wrong */
551 		bc->fwd = bc->start;
552 		bc->back = bc->start;
553 	}
554 
555 	ASTERN(OOR1, bc->back);
556 	bc->back = THERE();
557 	AHEAD(bc->fwd);			/* fix previous offset */
558 	bc->fwd = HERE();
559 	EMIT(OOR2, 0);			/* offset is very wrong */
560 	++bc->nbranch;
561 }
562 
563 /*
564  * Fix the offset of the tail branch, if we actually had any branches.
565  * This is to correct the bogus placeholder offset that we use.
566  */
567 static void
568 p_branch_fix_tail(struct parse *p, struct branchc *bc)
569 {
570 
571 	/* Fix bogus offset at the tail if we actually have branches */
572 	if (bc->nbranch > 0) {
573 		AHEAD(bc->fwd);
574 		ASTERN(O_CH, bc->back);
575 	}
576 }
577 
578 /*
579  * Signal to the parser that an empty branch has been encountered; this will,
580  * in the future, be used to allow for more permissive behavior with empty
581  * branches. The return value should indicate whether parsing may continue
582  * or not.
583  */
584 static bool
585 p_branch_empty(struct parse *p, struct branchc *bc)
586 {
587 
588 	SETERROR(REG_EMPTY);
589 	return (false);
590 }
591 
592 /*
593  * Take care of any branching requirements. This includes inserting the
594  * appropriate branching instructions as well as eating all of the branch
595  * delimiters until we either run out of pattern or need to parse more pattern.
596  */
597 static bool
598 p_branch_do(struct parse *p, struct branchc *bc)
599 {
600 	int ate = 0;
601 
602 	ate = p_branch_eat_delim(p, bc);
603 	if (ate == 0)
604 		return (false);
605 	else if ((ate > 1 || (bc->outer && !MORE())) && !p_branch_empty(p, bc))
606 		/*
607 		 * Halt parsing only if we have an empty branch and p_branch_empty
608 		 * indicates that we must not continue. In the future, this will not
609 		 * necessarily be an error.
610 		 */
611 		return (false);
612 	p_branch_ins_offset(p, bc);
613 
614 	return (true);
615 }
616 
617 static void
618 p_bre_pre_parse(struct parse *p, struct branchc *bc)
619 {
620 
621 	(void) bc;
622 	/*
623 	 * Does not move cleanly into expression parser because of
624 	 * ordinary interpration of * at the beginning position of
625 	 * an expression.
626 	 */
627 	if (EAT('^')) {
628 		EMIT(OBOL, 0);
629 		p->g->iflags |= USEBOL;
630 		p->g->nbol++;
631 	}
632 }
633 
634 static void
635 p_bre_post_parse(struct parse *p, struct branchc *bc)
636 {
637 
638 	/* Expression is terminating due to EOL token */
639 	if (bc->terminate) {
640 		DROP(1);
641 		EMIT(OEOL, 0);
642 		p->g->iflags |= USEEOL;
643 		p->g->neol++;
644 	}
645 }
646 
647 /*
648  - p_re - Top level parser, concatenation and BRE anchoring
649  == static void p_re(struct parse *p, int end1, int end2);
650  * Giving end1 as OUT essentially eliminates the end1/end2 check.
651  *
652  * This implementation is a bit of a kludge, in that a trailing $ is first
653  * taken as an ordinary character and then revised to be an anchor.
654  * The amount of lookahead needed to avoid this kludge is excessive.
655  */
656 static void
657 p_re(struct parse *p,
658 	int end1,	/* first terminating character */
659 	int end2)	/* second terminating character; ignored for EREs */
660 {
661 	struct branchc bc;
662 
663 	bc.nbranch = 0;
664 	if (end1 == OUT && end2 == OUT)
665 		bc.outer = true;
666 	else
667 		bc.outer = false;
668 #define	SEEEND()	(!p->bre ? SEE(end1) : SEETWO(end1, end2))
669 	for (;;) {
670 		bc.start = HERE();
671 		bc.nchain = 0;
672 		bc.terminate = false;
673 		if (p->pre_parse != NULL)
674 			p->pre_parse(p, &bc);
675 		while (MORE() && (!p->allowbranch || !SEESPEC('|')) && !SEEEND()) {
676 			bc.terminate = p->parse_expr(p, &bc);
677 			++bc.nchain;
678 		}
679 		if (p->post_parse != NULL)
680 			p->post_parse(p, &bc);
681 		(void) REQUIRE(HERE() != bc.start, REG_EMPTY);
682 		if (!p->allowbranch)
683 			break;
684 		/*
685 		 * p_branch_do's return value indicates whether we should
686 		 * continue parsing or not. This is both for correctness and
687 		 * a slight optimization, because it will check if we've
688 		 * encountered an empty branch or the end of the string
689 		 * immediately following a branch delimiter.
690 		 */
691 		if (!p_branch_do(p, &bc))
692 			break;
693 	}
694 #undef SEE_END
695 	if (p->allowbranch)
696 		p_branch_fix_tail(p, &bc);
697 	assert(!MORE() || SEE(end1));
698 }
699 
700 /*
701  - p_simp_re - parse a simple RE, an atom possibly followed by a repetition
702  == static bool p_simp_re(struct parse *p, struct branchc *bc);
703  */
704 static bool			/* was the simple RE an unbackslashed $? */
705 p_simp_re(struct parse *p, struct branchc *bc)
706 {
707 	int c;
708 	int count;
709 	int count2;
710 	sopno pos;
711 	int i;
712 	wint_t wc;
713 	sopno subno;
714 #	define	BACKSL	(1<<CHAR_BIT)
715 
716 	pos = HERE();		/* repetition op, if any, covers from here */
717 
718 	assert(MORE());		/* caller should have ensured this */
719 	c = GETNEXT();
720 	if (c == '\\') {
721 		(void)REQUIRE(MORE(), REG_EESCAPE);
722 		c = BACKSL | GETNEXT();
723 	}
724 	switch (c) {
725 	case '.':
726 		if (p->g->cflags&REG_NEWLINE)
727 			nonnewline(p);
728 		else
729 			EMIT(OANY, 0);
730 		break;
731 	case '[':
732 		p_bracket(p);
733 		break;
734 	case BACKSL|'<':
735 		EMIT(OBOW, 0);
736 		break;
737 	case BACKSL|'>':
738 		EMIT(OEOW, 0);
739 		break;
740 	case BACKSL|'{':
741 		SETERROR(REG_BADRPT);
742 		break;
743 	case BACKSL|'(':
744 		p->g->nsub++;
745 		subno = p->g->nsub;
746 		if (subno < NPAREN)
747 			p->pbegin[subno] = HERE();
748 		EMIT(OLPAREN, subno);
749 		/* the MORE here is an error heuristic */
750 		if (MORE() && !SEETWO('\\', ')'))
751 			p_re(p, '\\', ')');
752 		if (subno < NPAREN) {
753 			p->pend[subno] = HERE();
754 			assert(p->pend[subno] != 0);
755 		}
756 		EMIT(ORPAREN, subno);
757 		(void)REQUIRE(EATTWO('\\', ')'), REG_EPAREN);
758 		break;
759 	case BACKSL|')':	/* should not get here -- must be user */
760 		SETERROR(REG_EPAREN);
761 		break;
762 	case BACKSL|'1':
763 	case BACKSL|'2':
764 	case BACKSL|'3':
765 	case BACKSL|'4':
766 	case BACKSL|'5':
767 	case BACKSL|'6':
768 	case BACKSL|'7':
769 	case BACKSL|'8':
770 	case BACKSL|'9':
771 		i = (c&~BACKSL) - '0';
772 		assert(i < NPAREN);
773 		if (p->pend[i] != 0) {
774 			assert(i <= p->g->nsub);
775 			EMIT(OBACK_, i);
776 			assert(p->pbegin[i] != 0);
777 			assert(OP(p->strip[p->pbegin[i]]) == OLPAREN);
778 			assert(OP(p->strip[p->pend[i]]) == ORPAREN);
779 			(void) dupl(p, p->pbegin[i]+1, p->pend[i]);
780 			EMIT(O_BACK, i);
781 		} else
782 			SETERROR(REG_ESUBREG);
783 		p->g->backrefs = 1;
784 		break;
785 	case '*':
786 		/*
787 		 * Ordinary if used as the first character beyond BOL anchor of
788 		 * a (sub-)expression, counts as a bad repetition operator if it
789 		 * appears otherwise.
790 		 */
791 		(void)REQUIRE(bc->nchain == 0, REG_BADRPT);
792 		/* FALLTHROUGH */
793 	default:
794 		if (p->error != 0)
795 			return (false);	/* Definitely not $... */
796 		p->next--;
797 		wc = WGETNEXT();
798 		ordinary(p, wc);
799 		break;
800 	}
801 
802 	if (EAT('*')) {		/* implemented as +? */
803 		/* this case does not require the (y|) trick, noKLUDGE */
804 		INSERT(OPLUS_, pos);
805 		ASTERN(O_PLUS, pos);
806 		INSERT(OQUEST_, pos);
807 		ASTERN(O_QUEST, pos);
808 	} else if (EATTWO('\\', '{')) {
809 		count = p_count(p);
810 		if (EAT(',')) {
811 			if (MORE() && isdigit((uch)PEEK())) {
812 				count2 = p_count(p);
813 				(void)REQUIRE(count <= count2, REG_BADBR);
814 			} else		/* single number with comma */
815 				count2 = INFINITY;
816 		} else		/* just a single number */
817 			count2 = count;
818 		repeat(p, pos, count, count2);
819 		if (!EATTWO('\\', '}')) {	/* error heuristics */
820 			while (MORE() && !SEETWO('\\', '}'))
821 				NEXT();
822 			(void)REQUIRE(MORE(), REG_EBRACE);
823 			SETERROR(REG_BADBR);
824 		}
825 	} else if (c == '$')     /* $ (but not \$) ends it */
826 		return (true);
827 
828 	return (false);
829 }
830 
831 /*
832  - p_count - parse a repetition count
833  == static int p_count(struct parse *p);
834  */
835 static int			/* the value */
836 p_count(struct parse *p)
837 {
838 	int count = 0;
839 	int ndigits = 0;
840 
841 	while (MORE() && isdigit((uch)PEEK()) && count <= DUPMAX) {
842 		count = count*10 + (GETNEXT() - '0');
843 		ndigits++;
844 	}
845 
846 	(void)REQUIRE(ndigits > 0 && count <= DUPMAX, REG_BADBR);
847 	return(count);
848 }
849 
850 /*
851  - p_bracket - parse a bracketed character list
852  == static void p_bracket(struct parse *p);
853  */
854 static void
855 p_bracket(struct parse *p)
856 {
857 	cset *cs;
858 	wint_t ch;
859 
860 	/* Dept of Truly Sickening Special-Case Kludges */
861 	if (p->next + 5 < p->end && strncmp(p->next, "[:<:]]", 6) == 0) {
862 		EMIT(OBOW, 0);
863 		NEXTn(6);
864 		return;
865 	}
866 	if (p->next + 5 < p->end && strncmp(p->next, "[:>:]]", 6) == 0) {
867 		EMIT(OEOW, 0);
868 		NEXTn(6);
869 		return;
870 	}
871 
872 	if ((cs = allocset(p)) == NULL)
873 		return;
874 
875 	if (p->g->cflags&REG_ICASE)
876 		cs->icase = 1;
877 	if (EAT('^'))
878 		cs->invert = 1;
879 	if (EAT(']'))
880 		CHadd(p, cs, ']');
881 	else if (EAT('-'))
882 		CHadd(p, cs, '-');
883 	while (MORE() && PEEK() != ']' && !SEETWO('-', ']'))
884 		p_b_term(p, cs);
885 	if (EAT('-'))
886 		CHadd(p, cs, '-');
887 	(void)MUSTEAT(']', REG_EBRACK);
888 
889 	if (p->error != 0)	/* don't mess things up further */
890 		return;
891 
892 	if (cs->invert && p->g->cflags&REG_NEWLINE)
893 		cs->bmp['\n' >> 3] |= 1 << ('\n' & 7);
894 
895 	if ((ch = singleton(cs)) != OUT) {	/* optimize singleton sets */
896 		ordinary(p, ch);
897 		freeset(p, cs);
898 	} else
899 		EMIT(OANYOF, (int)(cs - p->g->sets));
900 }
901 
902 /*
903  - p_b_term - parse one term of a bracketed character list
904  == static void p_b_term(struct parse *p, cset *cs);
905  */
906 static void
907 p_b_term(struct parse *p, cset *cs)
908 {
909 	char c;
910 	wint_t start, finish;
911 	wint_t i;
912 	struct xlocale_collate *table =
913 		(struct xlocale_collate*)__get_locale()->components[XLC_COLLATE];
914 
915 	/* classify what we've got */
916 	switch ((MORE()) ? PEEK() : '\0') {
917 	case '[':
918 		c = (MORE2()) ? PEEK2() : '\0';
919 		break;
920 	case '-':
921 		SETERROR(REG_ERANGE);
922 		return;			/* NOTE RETURN */
923 	default:
924 		c = '\0';
925 		break;
926 	}
927 
928 	switch (c) {
929 	case ':':		/* character class */
930 		NEXT2();
931 		(void)REQUIRE(MORE(), REG_EBRACK);
932 		c = PEEK();
933 		(void)REQUIRE(c != '-' && c != ']', REG_ECTYPE);
934 		p_b_cclass(p, cs);
935 		(void)REQUIRE(MORE(), REG_EBRACK);
936 		(void)REQUIRE(EATTWO(':', ']'), REG_ECTYPE);
937 		break;
938 	case '=':		/* equivalence class */
939 		NEXT2();
940 		(void)REQUIRE(MORE(), REG_EBRACK);
941 		c = PEEK();
942 		(void)REQUIRE(c != '-' && c != ']', REG_ECOLLATE);
943 		p_b_eclass(p, cs);
944 		(void)REQUIRE(MORE(), REG_EBRACK);
945 		(void)REQUIRE(EATTWO('=', ']'), REG_ECOLLATE);
946 		break;
947 	default:		/* symbol, ordinary character, or range */
948 		start = p_b_symbol(p);
949 		if (SEE('-') && MORE2() && PEEK2() != ']') {
950 			/* range */
951 			NEXT();
952 			if (EAT('-'))
953 				finish = '-';
954 			else
955 				finish = p_b_symbol(p);
956 		} else
957 			finish = start;
958 		if (start == finish)
959 			CHadd(p, cs, start);
960 		else {
961 			if (table->__collate_load_error || MB_CUR_MAX > 1) {
962 				(void)REQUIRE(start <= finish, REG_ERANGE);
963 				CHaddrange(p, cs, start, finish);
964 			} else {
965 				(void)REQUIRE(__wcollate_range_cmp(start, finish) <= 0, REG_ERANGE);
966 				for (i = 0; i <= UCHAR_MAX; i++) {
967 					if (   __wcollate_range_cmp(start, i) <= 0
968 					    && __wcollate_range_cmp(i, finish) <= 0
969 					   )
970 						CHadd(p, cs, i);
971 				}
972 			}
973 		}
974 		break;
975 	}
976 }
977 
978 /*
979  - p_b_cclass - parse a character-class name and deal with it
980  == static void p_b_cclass(struct parse *p, cset *cs);
981  */
982 static void
983 p_b_cclass(struct parse *p, cset *cs)
984 {
985 	const char *sp = p->next;
986 	size_t len;
987 	wctype_t wct;
988 	char clname[16];
989 
990 	while (MORE() && isalpha((uch)PEEK()))
991 		NEXT();
992 	len = p->next - sp;
993 	if (len >= sizeof(clname) - 1) {
994 		SETERROR(REG_ECTYPE);
995 		return;
996 	}
997 	memcpy(clname, sp, len);
998 	clname[len] = '\0';
999 	if ((wct = wctype(clname)) == 0) {
1000 		SETERROR(REG_ECTYPE);
1001 		return;
1002 	}
1003 	CHaddtype(p, cs, wct);
1004 }
1005 
1006 /*
1007  - p_b_eclass - parse an equivalence-class name and deal with it
1008  == static void p_b_eclass(struct parse *p, cset *cs);
1009  *
1010  * This implementation is incomplete. xxx
1011  */
1012 static void
1013 p_b_eclass(struct parse *p, cset *cs)
1014 {
1015 	wint_t c;
1016 
1017 	c = p_b_coll_elem(p, '=');
1018 	CHadd(p, cs, c);
1019 }
1020 
1021 /*
1022  - p_b_symbol - parse a character or [..]ed multicharacter collating symbol
1023  == static wint_t p_b_symbol(struct parse *p);
1024  */
1025 static wint_t			/* value of symbol */
1026 p_b_symbol(struct parse *p)
1027 {
1028 	wint_t value;
1029 
1030 	(void)REQUIRE(MORE(), REG_EBRACK);
1031 	if (!EATTWO('[', '.'))
1032 		return(WGETNEXT());
1033 
1034 	/* collating symbol */
1035 	value = p_b_coll_elem(p, '.');
1036 	(void)REQUIRE(EATTWO('.', ']'), REG_ECOLLATE);
1037 	return(value);
1038 }
1039 
1040 /*
1041  - p_b_coll_elem - parse a collating-element name and look it up
1042  == static wint_t p_b_coll_elem(struct parse *p, wint_t endc);
1043  */
1044 static wint_t			/* value of collating element */
1045 p_b_coll_elem(struct parse *p,
1046 	wint_t endc)		/* name ended by endc,']' */
1047 {
1048 	const char *sp = p->next;
1049 	struct cname *cp;
1050 	mbstate_t mbs;
1051 	wchar_t wc;
1052 	size_t clen, len;
1053 
1054 	while (MORE() && !SEETWO(endc, ']'))
1055 		NEXT();
1056 	if (!MORE()) {
1057 		SETERROR(REG_EBRACK);
1058 		return(0);
1059 	}
1060 	len = p->next - sp;
1061 	for (cp = cnames; cp->name != NULL; cp++)
1062 		if (strncmp(cp->name, sp, len) == 0 && cp->name[len] == '\0')
1063 			return(cp->code);	/* known name */
1064 	memset(&mbs, 0, sizeof(mbs));
1065 	if ((clen = mbrtowc(&wc, sp, len, &mbs)) == len)
1066 		return (wc);			/* single character */
1067 	else if (clen == (size_t)-1 || clen == (size_t)-2)
1068 		SETERROR(REG_ILLSEQ);
1069 	else
1070 		SETERROR(REG_ECOLLATE);		/* neither */
1071 	return(0);
1072 }
1073 
1074 /*
1075  - othercase - return the case counterpart of an alphabetic
1076  == static wint_t othercase(wint_t ch);
1077  */
1078 static wint_t			/* if no counterpart, return ch */
1079 othercase(wint_t ch)
1080 {
1081 	assert(iswalpha(ch));
1082 	if (iswupper(ch))
1083 		return(towlower(ch));
1084 	else if (iswlower(ch))
1085 		return(towupper(ch));
1086 	else			/* peculiar, but could happen */
1087 		return(ch);
1088 }
1089 
1090 /*
1091  - bothcases - emit a dualcase version of a two-case character
1092  == static void bothcases(struct parse *p, wint_t ch);
1093  *
1094  * Boy, is this implementation ever a kludge...
1095  */
1096 static void
1097 bothcases(struct parse *p, wint_t ch)
1098 {
1099 	const char *oldnext = p->next;
1100 	const char *oldend = p->end;
1101 	char bracket[3 + MB_LEN_MAX];
1102 	size_t n;
1103 	mbstate_t mbs;
1104 
1105 	assert(othercase(ch) != ch);	/* p_bracket() would recurse */
1106 	p->next = bracket;
1107 	memset(&mbs, 0, sizeof(mbs));
1108 	n = wcrtomb(bracket, ch, &mbs);
1109 	assert(n != (size_t)-1);
1110 	bracket[n] = ']';
1111 	bracket[n + 1] = '\0';
1112 	p->end = bracket+n+1;
1113 	p_bracket(p);
1114 	assert(p->next == p->end);
1115 	p->next = oldnext;
1116 	p->end = oldend;
1117 }
1118 
1119 /*
1120  - ordinary - emit an ordinary character
1121  == static void ordinary(struct parse *p, wint_t ch);
1122  */
1123 static void
1124 ordinary(struct parse *p, wint_t ch)
1125 {
1126 	cset *cs;
1127 
1128 	if ((p->g->cflags&REG_ICASE) && iswalpha(ch) && othercase(ch) != ch)
1129 		bothcases(p, ch);
1130 	else if ((ch & OPDMASK) == ch)
1131 		EMIT(OCHAR, ch);
1132 	else {
1133 		/*
1134 		 * Kludge: character is too big to fit into an OCHAR operand.
1135 		 * Emit a singleton set.
1136 		 */
1137 		if ((cs = allocset(p)) == NULL)
1138 			return;
1139 		CHadd(p, cs, ch);
1140 		EMIT(OANYOF, (int)(cs - p->g->sets));
1141 	}
1142 }
1143 
1144 /*
1145  - nonnewline - emit REG_NEWLINE version of OANY
1146  == static void nonnewline(struct parse *p);
1147  *
1148  * Boy, is this implementation ever a kludge...
1149  */
1150 static void
1151 nonnewline(struct parse *p)
1152 {
1153 	const char *oldnext = p->next;
1154 	const char *oldend = p->end;
1155 	char bracket[4];
1156 
1157 	p->next = bracket;
1158 	p->end = bracket+3;
1159 	bracket[0] = '^';
1160 	bracket[1] = '\n';
1161 	bracket[2] = ']';
1162 	bracket[3] = '\0';
1163 	p_bracket(p);
1164 	assert(p->next == bracket+3);
1165 	p->next = oldnext;
1166 	p->end = oldend;
1167 }
1168 
1169 /*
1170  - repeat - generate code for a bounded repetition, recursively if needed
1171  == static void repeat(struct parse *p, sopno start, int from, int to);
1172  */
1173 static void
1174 repeat(struct parse *p,
1175 	sopno start,		/* operand from here to end of strip */
1176 	int from,		/* repeated from this number */
1177 	int to)			/* to this number of times (maybe INFINITY) */
1178 {
1179 	sopno finish = HERE();
1180 #	define	N	2
1181 #	define	INF	3
1182 #	define	REP(f, t)	((f)*8 + (t))
1183 #	define	MAP(n)	(((n) <= 1) ? (n) : ((n) == INFINITY) ? INF : N)
1184 	sopno copy;
1185 
1186 	if (p->error != 0)	/* head off possible runaway recursion */
1187 		return;
1188 
1189 	assert(from <= to);
1190 
1191 	switch (REP(MAP(from), MAP(to))) {
1192 	case REP(0, 0):			/* must be user doing this */
1193 		DROP(finish-start);	/* drop the operand */
1194 		break;
1195 	case REP(0, 1):			/* as x{1,1}? */
1196 	case REP(0, N):			/* as x{1,n}? */
1197 	case REP(0, INF):		/* as x{1,}? */
1198 		/* KLUDGE: emit y? as (y|) until subtle bug gets fixed */
1199 		INSERT(OCH_, start);		/* offset is wrong... */
1200 		repeat(p, start+1, 1, to);
1201 		ASTERN(OOR1, start);
1202 		AHEAD(start);			/* ... fix it */
1203 		EMIT(OOR2, 0);
1204 		AHEAD(THERE());
1205 		ASTERN(O_CH, THERETHERE());
1206 		break;
1207 	case REP(1, 1):			/* trivial case */
1208 		/* done */
1209 		break;
1210 	case REP(1, N):			/* as x?x{1,n-1} */
1211 		/* KLUDGE: emit y? as (y|) until subtle bug gets fixed */
1212 		INSERT(OCH_, start);
1213 		ASTERN(OOR1, start);
1214 		AHEAD(start);
1215 		EMIT(OOR2, 0);			/* offset very wrong... */
1216 		AHEAD(THERE());			/* ...so fix it */
1217 		ASTERN(O_CH, THERETHERE());
1218 		copy = dupl(p, start+1, finish+1);
1219 		assert(copy == finish+4);
1220 		repeat(p, copy, 1, to-1);
1221 		break;
1222 	case REP(1, INF):		/* as x+ */
1223 		INSERT(OPLUS_, start);
1224 		ASTERN(O_PLUS, start);
1225 		break;
1226 	case REP(N, N):			/* as xx{m-1,n-1} */
1227 		copy = dupl(p, start, finish);
1228 		repeat(p, copy, from-1, to-1);
1229 		break;
1230 	case REP(N, INF):		/* as xx{n-1,INF} */
1231 		copy = dupl(p, start, finish);
1232 		repeat(p, copy, from-1, to);
1233 		break;
1234 	default:			/* "can't happen" */
1235 		SETERROR(REG_ASSERT);	/* just in case */
1236 		break;
1237 	}
1238 }
1239 
1240 /*
1241  - wgetnext - helper function for WGETNEXT() macro. Gets the next wide
1242  - character from the parse struct, signals a REG_ILLSEQ error if the
1243  - character can't be converted. Returns the number of bytes consumed.
1244  */
1245 static wint_t
1246 wgetnext(struct parse *p)
1247 {
1248 	mbstate_t mbs;
1249 	wchar_t wc;
1250 	size_t n;
1251 
1252 	memset(&mbs, 0, sizeof(mbs));
1253 	n = mbrtowc(&wc, p->next, p->end - p->next, &mbs);
1254 	if (n == (size_t)-1 || n == (size_t)-2) {
1255 		SETERROR(REG_ILLSEQ);
1256 		return (0);
1257 	}
1258 	if (n == 0)
1259 		n = 1;
1260 	p->next += n;
1261 	return (wc);
1262 }
1263 
1264 /*
1265  - seterr - set an error condition
1266  == static int seterr(struct parse *p, int e);
1267  */
1268 static int			/* useless but makes type checking happy */
1269 seterr(struct parse *p, int e)
1270 {
1271 	if (p->error == 0)	/* keep earliest error condition */
1272 		p->error = e;
1273 	p->next = nuls;		/* try to bring things to a halt */
1274 	p->end = nuls;
1275 	return(0);		/* make the return value well-defined */
1276 }
1277 
1278 /*
1279  - allocset - allocate a set of characters for []
1280  == static cset *allocset(struct parse *p);
1281  */
1282 static cset *
1283 allocset(struct parse *p)
1284 {
1285 	cset *cs, *ncs;
1286 
1287 	ncs = reallocarray(p->g->sets, p->g->ncsets + 1, sizeof(*ncs));
1288 	if (ncs == NULL) {
1289 		SETERROR(REG_ESPACE);
1290 		return (NULL);
1291 	}
1292 	p->g->sets = ncs;
1293 	cs = &p->g->sets[p->g->ncsets++];
1294 	memset(cs, 0, sizeof(*cs));
1295 
1296 	return(cs);
1297 }
1298 
1299 /*
1300  - freeset - free a now-unused set
1301  == static void freeset(struct parse *p, cset *cs);
1302  */
1303 static void
1304 freeset(struct parse *p, cset *cs)
1305 {
1306 	cset *top = &p->g->sets[p->g->ncsets];
1307 
1308 	free(cs->wides);
1309 	free(cs->ranges);
1310 	free(cs->types);
1311 	memset(cs, 0, sizeof(*cs));
1312 	if (cs == top-1)	/* recover only the easy case */
1313 		p->g->ncsets--;
1314 }
1315 
1316 /*
1317  - singleton - Determine whether a set contains only one character,
1318  - returning it if so, otherwise returning OUT.
1319  */
1320 static wint_t
1321 singleton(cset *cs)
1322 {
1323 	wint_t i, s, n;
1324 
1325 	for (i = n = 0; i < NC; i++)
1326 		if (CHIN(cs, i)) {
1327 			n++;
1328 			s = i;
1329 		}
1330 	if (n == 1)
1331 		return (s);
1332 	if (cs->nwides == 1 && cs->nranges == 0 && cs->ntypes == 0 &&
1333 	    cs->icase == 0)
1334 		return (cs->wides[0]);
1335 	/* Don't bother handling the other cases. */
1336 	return (OUT);
1337 }
1338 
1339 /*
1340  - CHadd - add character to character set.
1341  */
1342 static void
1343 CHadd(struct parse *p, cset *cs, wint_t ch)
1344 {
1345 	wint_t nch, *newwides;
1346 	assert(ch >= 0);
1347 	if (ch < NC)
1348 		cs->bmp[ch >> 3] |= 1 << (ch & 7);
1349 	else {
1350 		newwides = reallocarray(cs->wides, cs->nwides + 1,
1351 		    sizeof(*cs->wides));
1352 		if (newwides == NULL) {
1353 			SETERROR(REG_ESPACE);
1354 			return;
1355 		}
1356 		cs->wides = newwides;
1357 		cs->wides[cs->nwides++] = ch;
1358 	}
1359 	if (cs->icase) {
1360 		if ((nch = towlower(ch)) < NC)
1361 			cs->bmp[nch >> 3] |= 1 << (nch & 7);
1362 		if ((nch = towupper(ch)) < NC)
1363 			cs->bmp[nch >> 3] |= 1 << (nch & 7);
1364 	}
1365 }
1366 
1367 /*
1368  - CHaddrange - add all characters in the range [min,max] to a character set.
1369  */
1370 static void
1371 CHaddrange(struct parse *p, cset *cs, wint_t min, wint_t max)
1372 {
1373 	crange *newranges;
1374 
1375 	for (; min < NC && min <= max; min++)
1376 		CHadd(p, cs, min);
1377 	if (min >= max)
1378 		return;
1379 	newranges = reallocarray(cs->ranges, cs->nranges + 1,
1380 	    sizeof(*cs->ranges));
1381 	if (newranges == NULL) {
1382 		SETERROR(REG_ESPACE);
1383 		return;
1384 	}
1385 	cs->ranges = newranges;
1386 	cs->ranges[cs->nranges].min = min;
1387 	cs->ranges[cs->nranges].max = max;
1388 	cs->nranges++;
1389 }
1390 
1391 /*
1392  - CHaddtype - add all characters of a certain type to a character set.
1393  */
1394 static void
1395 CHaddtype(struct parse *p, cset *cs, wctype_t wct)
1396 {
1397 	wint_t i;
1398 	wctype_t *newtypes;
1399 
1400 	for (i = 0; i < NC; i++)
1401 		if (iswctype(i, wct))
1402 			CHadd(p, cs, i);
1403 	newtypes = reallocarray(cs->types, cs->ntypes + 1,
1404 	    sizeof(*cs->types));
1405 	if (newtypes == NULL) {
1406 		SETERROR(REG_ESPACE);
1407 		return;
1408 	}
1409 	cs->types = newtypes;
1410 	cs->types[cs->ntypes++] = wct;
1411 }
1412 
1413 /*
1414  - dupl - emit a duplicate of a bunch of sops
1415  == static sopno dupl(struct parse *p, sopno start, sopno finish);
1416  */
1417 static sopno			/* start of duplicate */
1418 dupl(struct parse *p,
1419 	sopno start,		/* from here */
1420 	sopno finish)		/* to this less one */
1421 {
1422 	sopno ret = HERE();
1423 	sopno len = finish - start;
1424 
1425 	assert(finish >= start);
1426 	if (len == 0)
1427 		return(ret);
1428 	if (!enlarge(p, p->ssize + len)) /* this many unexpected additions */
1429 		return(ret);
1430 	(void) memcpy((char *)(p->strip + p->slen),
1431 		(char *)(p->strip + start), (size_t)len*sizeof(sop));
1432 	p->slen += len;
1433 	return(ret);
1434 }
1435 
1436 /*
1437  - doemit - emit a strip operator
1438  == static void doemit(struct parse *p, sop op, size_t opnd);
1439  *
1440  * It might seem better to implement this as a macro with a function as
1441  * hard-case backup, but it's just too big and messy unless there are
1442  * some changes to the data structures.  Maybe later.
1443  */
1444 static void
1445 doemit(struct parse *p, sop op, size_t opnd)
1446 {
1447 	/* avoid making error situations worse */
1448 	if (p->error != 0)
1449 		return;
1450 
1451 	/* deal with oversize operands ("can't happen", more or less) */
1452 	assert(opnd < 1<<OPSHIFT);
1453 
1454 	/* deal with undersized strip */
1455 	if (p->slen >= p->ssize)
1456 		if (!enlarge(p, (p->ssize+1) / 2 * 3))	/* +50% */
1457 			return;
1458 
1459 	/* finally, it's all reduced to the easy case */
1460 	p->strip[p->slen++] = SOP(op, opnd);
1461 }
1462 
1463 /*
1464  - doinsert - insert a sop into the strip
1465  == static void doinsert(struct parse *p, sop op, size_t opnd, sopno pos);
1466  */
1467 static void
1468 doinsert(struct parse *p, sop op, size_t opnd, sopno pos)
1469 {
1470 	sopno sn;
1471 	sop s;
1472 	int i;
1473 
1474 	/* avoid making error situations worse */
1475 	if (p->error != 0)
1476 		return;
1477 
1478 	sn = HERE();
1479 	EMIT(op, opnd);		/* do checks, ensure space */
1480 	assert(HERE() == sn+1);
1481 	s = p->strip[sn];
1482 
1483 	/* adjust paren pointers */
1484 	assert(pos > 0);
1485 	for (i = 1; i < NPAREN; i++) {
1486 		if (p->pbegin[i] >= pos) {
1487 			p->pbegin[i]++;
1488 		}
1489 		if (p->pend[i] >= pos) {
1490 			p->pend[i]++;
1491 		}
1492 	}
1493 
1494 	memmove((char *)&p->strip[pos+1], (char *)&p->strip[pos],
1495 						(HERE()-pos-1)*sizeof(sop));
1496 	p->strip[pos] = s;
1497 }
1498 
1499 /*
1500  - dofwd - complete a forward reference
1501  == static void dofwd(struct parse *p, sopno pos, sop value);
1502  */
1503 static void
1504 dofwd(struct parse *p, sopno pos, sop value)
1505 {
1506 	/* avoid making error situations worse */
1507 	if (p->error != 0)
1508 		return;
1509 
1510 	assert(value < 1<<OPSHIFT);
1511 	p->strip[pos] = OP(p->strip[pos]) | value;
1512 }
1513 
1514 /*
1515  - enlarge - enlarge the strip
1516  == static int enlarge(struct parse *p, sopno size);
1517  */
1518 static int
1519 enlarge(struct parse *p, sopno size)
1520 {
1521 	sop *sp;
1522 
1523 	if (p->ssize >= size)
1524 		return 1;
1525 
1526 	sp = reallocarray(p->strip, size, sizeof(sop));
1527 	if (sp == NULL) {
1528 		SETERROR(REG_ESPACE);
1529 		return 0;
1530 	}
1531 	p->strip = sp;
1532 	p->ssize = size;
1533 	return 1;
1534 }
1535 
1536 /*
1537  - stripsnug - compact the strip
1538  == static void stripsnug(struct parse *p, struct re_guts *g);
1539  */
1540 static void
1541 stripsnug(struct parse *p, struct re_guts *g)
1542 {
1543 	g->nstates = p->slen;
1544 	g->strip = reallocarray((char *)p->strip, p->slen, sizeof(sop));
1545 	if (g->strip == NULL) {
1546 		SETERROR(REG_ESPACE);
1547 		g->strip = p->strip;
1548 	}
1549 }
1550 
1551 /*
1552  - findmust - fill in must and mlen with longest mandatory literal string
1553  == static void findmust(struct parse *p, struct re_guts *g);
1554  *
1555  * This algorithm could do fancy things like analyzing the operands of |
1556  * for common subsequences.  Someday.  This code is simple and finds most
1557  * of the interesting cases.
1558  *
1559  * Note that must and mlen got initialized during setup.
1560  */
1561 static void
1562 findmust(struct parse *p, struct re_guts *g)
1563 {
1564 	sop *scan;
1565 	sop *start = NULL;
1566 	sop *newstart = NULL;
1567 	sopno newlen;
1568 	sop s;
1569 	char *cp;
1570 	int offset;
1571 	char buf[MB_LEN_MAX];
1572 	size_t clen;
1573 	mbstate_t mbs;
1574 
1575 	/* avoid making error situations worse */
1576 	if (p->error != 0)
1577 		return;
1578 
1579 	/*
1580 	 * It's not generally safe to do a ``char'' substring search on
1581 	 * multibyte character strings, but it's safe for at least
1582 	 * UTF-8 (see RFC 3629).
1583 	 */
1584 	if (MB_CUR_MAX > 1 &&
1585 	    strcmp(_CurrentRuneLocale->__encoding, "UTF-8") != 0)
1586 		return;
1587 
1588 	/* find the longest OCHAR sequence in strip */
1589 	newlen = 0;
1590 	offset = 0;
1591 	g->moffset = 0;
1592 	scan = g->strip + 1;
1593 	do {
1594 		s = *scan++;
1595 		switch (OP(s)) {
1596 		case OCHAR:		/* sequence member */
1597 			if (newlen == 0) {		/* new sequence */
1598 				memset(&mbs, 0, sizeof(mbs));
1599 				newstart = scan - 1;
1600 			}
1601 			clen = wcrtomb(buf, OPND(s), &mbs);
1602 			if (clen == (size_t)-1)
1603 				goto toohard;
1604 			newlen += clen;
1605 			break;
1606 		case OPLUS_:		/* things that don't break one */
1607 		case OLPAREN:
1608 		case ORPAREN:
1609 			break;
1610 		case OQUEST_:		/* things that must be skipped */
1611 		case OCH_:
1612 			offset = altoffset(scan, offset);
1613 			scan--;
1614 			do {
1615 				scan += OPND(s);
1616 				s = *scan;
1617 				/* assert() interferes w debug printouts */
1618 				if (OP(s) != O_QUEST && OP(s) != O_CH &&
1619 							OP(s) != OOR2) {
1620 					g->iflags |= BAD;
1621 					return;
1622 				}
1623 			} while (OP(s) != O_QUEST && OP(s) != O_CH);
1624 			/* FALLTHROUGH */
1625 		case OBOW:		/* things that break a sequence */
1626 		case OEOW:
1627 		case OBOL:
1628 		case OEOL:
1629 		case O_QUEST:
1630 		case O_CH:
1631 		case OEND:
1632 			if (newlen > g->mlen) {		/* ends one */
1633 				start = newstart;
1634 				g->mlen = newlen;
1635 				if (offset > -1) {
1636 					g->moffset += offset;
1637 					offset = newlen;
1638 				} else
1639 					g->moffset = offset;
1640 			} else {
1641 				if (offset > -1)
1642 					offset += newlen;
1643 			}
1644 			newlen = 0;
1645 			break;
1646 		case OANY:
1647 			if (newlen > g->mlen) {		/* ends one */
1648 				start = newstart;
1649 				g->mlen = newlen;
1650 				if (offset > -1) {
1651 					g->moffset += offset;
1652 					offset = newlen;
1653 				} else
1654 					g->moffset = offset;
1655 			} else {
1656 				if (offset > -1)
1657 					offset += newlen;
1658 			}
1659 			if (offset > -1)
1660 				offset++;
1661 			newlen = 0;
1662 			break;
1663 		case OANYOF:		/* may or may not invalidate offset */
1664 			/* First, everything as OANY */
1665 			if (newlen > g->mlen) {		/* ends one */
1666 				start = newstart;
1667 				g->mlen = newlen;
1668 				if (offset > -1) {
1669 					g->moffset += offset;
1670 					offset = newlen;
1671 				} else
1672 					g->moffset = offset;
1673 			} else {
1674 				if (offset > -1)
1675 					offset += newlen;
1676 			}
1677 			if (offset > -1)
1678 				offset++;
1679 			newlen = 0;
1680 			break;
1681 		toohard:
1682 		default:
1683 			/* Anything here makes it impossible or too hard
1684 			 * to calculate the offset -- so we give up;
1685 			 * save the last known good offset, in case the
1686 			 * must sequence doesn't occur later.
1687 			 */
1688 			if (newlen > g->mlen) {		/* ends one */
1689 				start = newstart;
1690 				g->mlen = newlen;
1691 				if (offset > -1)
1692 					g->moffset += offset;
1693 				else
1694 					g->moffset = offset;
1695 			}
1696 			offset = -1;
1697 			newlen = 0;
1698 			break;
1699 		}
1700 	} while (OP(s) != OEND);
1701 
1702 	if (g->mlen == 0) {		/* there isn't one */
1703 		g->moffset = -1;
1704 		return;
1705 	}
1706 
1707 	/* turn it into a character string */
1708 	g->must = malloc((size_t)g->mlen + 1);
1709 	if (g->must == NULL) {		/* argh; just forget it */
1710 		g->mlen = 0;
1711 		g->moffset = -1;
1712 		return;
1713 	}
1714 	cp = g->must;
1715 	scan = start;
1716 	memset(&mbs, 0, sizeof(mbs));
1717 	while (cp < g->must + g->mlen) {
1718 		while (OP(s = *scan++) != OCHAR)
1719 			continue;
1720 		clen = wcrtomb(cp, OPND(s), &mbs);
1721 		assert(clen != (size_t)-1);
1722 		cp += clen;
1723 	}
1724 	assert(cp == g->must + g->mlen);
1725 	*cp++ = '\0';		/* just on general principles */
1726 }
1727 
1728 /*
1729  - altoffset - choose biggest offset among multiple choices
1730  == static int altoffset(sop *scan, int offset);
1731  *
1732  * Compute, recursively if necessary, the largest offset among multiple
1733  * re paths.
1734  */
1735 static int
1736 altoffset(sop *scan, int offset)
1737 {
1738 	int largest;
1739 	int try;
1740 	sop s;
1741 
1742 	/* If we gave up already on offsets, return */
1743 	if (offset == -1)
1744 		return -1;
1745 
1746 	largest = 0;
1747 	try = 0;
1748 	s = *scan++;
1749 	while (OP(s) != O_QUEST && OP(s) != O_CH) {
1750 		switch (OP(s)) {
1751 		case OOR1:
1752 			if (try > largest)
1753 				largest = try;
1754 			try = 0;
1755 			break;
1756 		case OQUEST_:
1757 		case OCH_:
1758 			try = altoffset(scan, try);
1759 			if (try == -1)
1760 				return -1;
1761 			scan--;
1762 			do {
1763 				scan += OPND(s);
1764 				s = *scan;
1765 				if (OP(s) != O_QUEST && OP(s) != O_CH &&
1766 							OP(s) != OOR2)
1767 					return -1;
1768 			} while (OP(s) != O_QUEST && OP(s) != O_CH);
1769 			/* We must skip to the next position, or we'll
1770 			 * leave altoffset() too early.
1771 			 */
1772 			scan++;
1773 			break;
1774 		case OANYOF:
1775 		case OCHAR:
1776 		case OANY:
1777 			try++;
1778 		case OBOW:
1779 		case OEOW:
1780 		case OLPAREN:
1781 		case ORPAREN:
1782 		case OOR2:
1783 			break;
1784 		default:
1785 			try = -1;
1786 			break;
1787 		}
1788 		if (try == -1)
1789 			return -1;
1790 		s = *scan++;
1791 	}
1792 
1793 	if (try > largest)
1794 		largest = try;
1795 
1796 	return largest+offset;
1797 }
1798 
1799 /*
1800  - computejumps - compute char jumps for BM scan
1801  == static void computejumps(struct parse *p, struct re_guts *g);
1802  *
1803  * This algorithm assumes g->must exists and is has size greater than
1804  * zero. It's based on the algorithm found on Computer Algorithms by
1805  * Sara Baase.
1806  *
1807  * A char jump is the number of characters one needs to jump based on
1808  * the value of the character from the text that was mismatched.
1809  */
1810 static void
1811 computejumps(struct parse *p, struct re_guts *g)
1812 {
1813 	int ch;
1814 	int mindex;
1815 
1816 	/* Avoid making errors worse */
1817 	if (p->error != 0)
1818 		return;
1819 
1820 	g->charjump = (int*) malloc((NC + 1) * sizeof(int));
1821 	if (g->charjump == NULL)	/* Not a fatal error */
1822 		return;
1823 	/* Adjust for signed chars, if necessary */
1824 	g->charjump = &g->charjump[-(CHAR_MIN)];
1825 
1826 	/* If the character does not exist in the pattern, the jump
1827 	 * is equal to the number of characters in the pattern.
1828 	 */
1829 	for (ch = CHAR_MIN; ch < (CHAR_MAX + 1); ch++)
1830 		g->charjump[ch] = g->mlen;
1831 
1832 	/* If the character does exist, compute the jump that would
1833 	 * take us to the last character in the pattern equal to it
1834 	 * (notice that we match right to left, so that last character
1835 	 * is the first one that would be matched).
1836 	 */
1837 	for (mindex = 0; mindex < g->mlen; mindex++)
1838 		g->charjump[(int)g->must[mindex]] = g->mlen - mindex - 1;
1839 }
1840 
1841 /*
1842  - computematchjumps - compute match jumps for BM scan
1843  == static void computematchjumps(struct parse *p, struct re_guts *g);
1844  *
1845  * This algorithm assumes g->must exists and is has size greater than
1846  * zero. It's based on the algorithm found on Computer Algorithms by
1847  * Sara Baase.
1848  *
1849  * A match jump is the number of characters one needs to advance based
1850  * on the already-matched suffix.
1851  * Notice that all values here are minus (g->mlen-1), because of the way
1852  * the search algorithm works.
1853  */
1854 static void
1855 computematchjumps(struct parse *p, struct re_guts *g)
1856 {
1857 	int mindex;		/* General "must" iterator */
1858 	int suffix;		/* Keeps track of matching suffix */
1859 	int ssuffix;		/* Keeps track of suffixes' suffix */
1860 	int* pmatches;		/* pmatches[k] points to the next i
1861 				 * such that i+1...mlen is a substring
1862 				 * of k+1...k+mlen-i-1
1863 				 */
1864 
1865 	/* Avoid making errors worse */
1866 	if (p->error != 0)
1867 		return;
1868 
1869 	pmatches = (int*) malloc(g->mlen * sizeof(int));
1870 	if (pmatches == NULL) {
1871 		g->matchjump = NULL;
1872 		return;
1873 	}
1874 
1875 	g->matchjump = (int*) malloc(g->mlen * sizeof(int));
1876 	if (g->matchjump == NULL) {	/* Not a fatal error */
1877 		free(pmatches);
1878 		return;
1879 	}
1880 
1881 	/* Set maximum possible jump for each character in the pattern */
1882 	for (mindex = 0; mindex < g->mlen; mindex++)
1883 		g->matchjump[mindex] = 2*g->mlen - mindex - 1;
1884 
1885 	/* Compute pmatches[] */
1886 	for (mindex = g->mlen - 1, suffix = g->mlen; mindex >= 0;
1887 	    mindex--, suffix--) {
1888 		pmatches[mindex] = suffix;
1889 
1890 		/* If a mismatch is found, interrupting the substring,
1891 		 * compute the matchjump for that position. If no
1892 		 * mismatch is found, then a text substring mismatched
1893 		 * against the suffix will also mismatch against the
1894 		 * substring.
1895 		 */
1896 		while (suffix < g->mlen
1897 		    && g->must[mindex] != g->must[suffix]) {
1898 			g->matchjump[suffix] = MIN(g->matchjump[suffix],
1899 			    g->mlen - mindex - 1);
1900 			suffix = pmatches[suffix];
1901 		}
1902 	}
1903 
1904 	/* Compute the matchjump up to the last substring found to jump
1905 	 * to the beginning of the largest must pattern prefix matching
1906 	 * it's own suffix.
1907 	 */
1908 	for (mindex = 0; mindex <= suffix; mindex++)
1909 		g->matchjump[mindex] = MIN(g->matchjump[mindex],
1910 		    g->mlen + suffix - mindex);
1911 
1912         ssuffix = pmatches[suffix];
1913         while (suffix < g->mlen) {
1914                 while (suffix <= ssuffix && suffix < g->mlen) {
1915                         g->matchjump[suffix] = MIN(g->matchjump[suffix],
1916 			    g->mlen + ssuffix - suffix);
1917                         suffix++;
1918                 }
1919 		if (suffix < g->mlen)
1920                 	ssuffix = pmatches[ssuffix];
1921         }
1922 
1923 	free(pmatches);
1924 }
1925 
1926 /*
1927  - pluscount - count + nesting
1928  == static sopno pluscount(struct parse *p, struct re_guts *g);
1929  */
1930 static sopno			/* nesting depth */
1931 pluscount(struct parse *p, struct re_guts *g)
1932 {
1933 	sop *scan;
1934 	sop s;
1935 	sopno plusnest = 0;
1936 	sopno maxnest = 0;
1937 
1938 	if (p->error != 0)
1939 		return(0);	/* there may not be an OEND */
1940 
1941 	scan = g->strip + 1;
1942 	do {
1943 		s = *scan++;
1944 		switch (OP(s)) {
1945 		case OPLUS_:
1946 			plusnest++;
1947 			break;
1948 		case O_PLUS:
1949 			if (plusnest > maxnest)
1950 				maxnest = plusnest;
1951 			plusnest--;
1952 			break;
1953 		}
1954 	} while (OP(s) != OEND);
1955 	if (plusnest != 0)
1956 		g->iflags |= BAD;
1957 	return(maxnest);
1958 }
1959