xref: /freebsd/lib/libc/quad/qdivrem.c (revision fbbd9655e5107c68e4e0146ff22b73d7350475bc)
158f0484fSRodney W. Grimes /*-
258f0484fSRodney W. Grimes  * Copyright (c) 1992, 1993
358f0484fSRodney W. Grimes  *	The Regents of the University of California.  All rights reserved.
458f0484fSRodney W. Grimes  *
558f0484fSRodney W. Grimes  * This software was developed by the Computer Systems Engineering group
658f0484fSRodney W. Grimes  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
758f0484fSRodney W. Grimes  * contributed to Berkeley.
858f0484fSRodney W. Grimes  *
958f0484fSRodney W. Grimes  * Redistribution and use in source and binary forms, with or without
1058f0484fSRodney W. Grimes  * modification, are permitted provided that the following conditions
1158f0484fSRodney W. Grimes  * are met:
1258f0484fSRodney W. Grimes  * 1. Redistributions of source code must retain the above copyright
1358f0484fSRodney W. Grimes  *    notice, this list of conditions and the following disclaimer.
1458f0484fSRodney W. Grimes  * 2. Redistributions in binary form must reproduce the above copyright
1558f0484fSRodney W. Grimes  *    notice, this list of conditions and the following disclaimer in the
1658f0484fSRodney W. Grimes  *    documentation and/or other materials provided with the distribution.
17*fbbd9655SWarner Losh  * 3. Neither the name of the University nor the names of its contributors
1858f0484fSRodney W. Grimes  *    may be used to endorse or promote products derived from this software
1958f0484fSRodney W. Grimes  *    without specific prior written permission.
2058f0484fSRodney W. Grimes  *
2158f0484fSRodney W. Grimes  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
2258f0484fSRodney W. Grimes  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
2358f0484fSRodney W. Grimes  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
2458f0484fSRodney W. Grimes  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
2558f0484fSRodney W. Grimes  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
2658f0484fSRodney W. Grimes  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
2758f0484fSRodney W. Grimes  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
2858f0484fSRodney W. Grimes  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
2958f0484fSRodney W. Grimes  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
3058f0484fSRodney W. Grimes  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
3158f0484fSRodney W. Grimes  * SUCH DAMAGE.
3258f0484fSRodney W. Grimes  */
3358f0484fSRodney W. Grimes 
3458f0484fSRodney W. Grimes #if defined(LIBC_SCCS) && !defined(lint)
3558f0484fSRodney W. Grimes static char sccsid[] = "@(#)qdivrem.c	8.1 (Berkeley) 6/4/93";
3658f0484fSRodney W. Grimes #endif /* LIBC_SCCS and not lint */
378fb3f3f6SDavid E. O'Brien #include <sys/cdefs.h>
388fb3f3f6SDavid E. O'Brien __FBSDID("$FreeBSD$");
3958f0484fSRodney W. Grimes 
4058f0484fSRodney W. Grimes /*
4158f0484fSRodney W. Grimes  * Multiprecision divide.  This algorithm is from Knuth vol. 2 (2nd ed),
4258f0484fSRodney W. Grimes  * section 4.3.1, pp. 257--259.
4358f0484fSRodney W. Grimes  */
4458f0484fSRodney W. Grimes 
4558f0484fSRodney W. Grimes #include "quad.h"
4658f0484fSRodney W. Grimes 
4758f0484fSRodney W. Grimes #define	B	(1 << HALF_BITS)	/* digit base */
4858f0484fSRodney W. Grimes 
4958f0484fSRodney W. Grimes /* Combine two `digits' to make a single two-digit number. */
5058f0484fSRodney W. Grimes #define	COMBINE(a, b) (((u_long)(a) << HALF_BITS) | (b))
5158f0484fSRodney W. Grimes 
5258f0484fSRodney W. Grimes /* select a type for digits in base B: use unsigned short if they fit */
5358f0484fSRodney W. Grimes #if ULONG_MAX == 0xffffffff && USHRT_MAX >= 0xffff
5458f0484fSRodney W. Grimes typedef unsigned short digit;
5558f0484fSRodney W. Grimes #else
5658f0484fSRodney W. Grimes typedef u_long digit;
5758f0484fSRodney W. Grimes #endif
5858f0484fSRodney W. Grimes 
5958f0484fSRodney W. Grimes /*
6058f0484fSRodney W. Grimes  * Shift p[0]..p[len] left `sh' bits, ignoring any bits that
6158f0484fSRodney W. Grimes  * `fall out' the left (there never will be any such anyway).
6258f0484fSRodney W. Grimes  * We may assume len >= 0.  NOTE THAT THIS WRITES len+1 DIGITS.
6358f0484fSRodney W. Grimes  */
6458f0484fSRodney W. Grimes static void
658fb3f3f6SDavid E. O'Brien shl(digit *p, int len, int sh)
6658f0484fSRodney W. Grimes {
678fb3f3f6SDavid E. O'Brien 	int i;
6858f0484fSRodney W. Grimes 
6958f0484fSRodney W. Grimes 	for (i = 0; i < len; i++)
7058f0484fSRodney W. Grimes 		p[i] = LHALF(p[i] << sh) | (p[i + 1] >> (HALF_BITS - sh));
7158f0484fSRodney W. Grimes 	p[i] = LHALF(p[i] << sh);
7258f0484fSRodney W. Grimes }
7358f0484fSRodney W. Grimes 
7458f0484fSRodney W. Grimes /*
7558f0484fSRodney W. Grimes  * __qdivrem(u, v, rem) returns u/v and, optionally, sets *rem to u%v.
7658f0484fSRodney W. Grimes  *
7758f0484fSRodney W. Grimes  * We do this in base 2-sup-HALF_BITS, so that all intermediate products
7858f0484fSRodney W. Grimes  * fit within u_long.  As a consequence, the maximum length dividend and
7958f0484fSRodney W. Grimes  * divisor are 4 `digits' in this base (they are shorter if they have
8058f0484fSRodney W. Grimes  * leading zeros).
8158f0484fSRodney W. Grimes  */
8258f0484fSRodney W. Grimes u_quad_t
8358f0484fSRodney W. Grimes __qdivrem(uq, vq, arq)
8458f0484fSRodney W. Grimes 	u_quad_t uq, vq, *arq;
8558f0484fSRodney W. Grimes {
8658f0484fSRodney W. Grimes 	union uu tmp;
8758f0484fSRodney W. Grimes 	digit *u, *v, *q;
888fb3f3f6SDavid E. O'Brien 	digit v1, v2;
8958f0484fSRodney W. Grimes 	u_long qhat, rhat, t;
9058f0484fSRodney W. Grimes 	int m, n, d, j, i;
9158f0484fSRodney W. Grimes 	digit uspace[5], vspace[5], qspace[5];
9258f0484fSRodney W. Grimes 
9358f0484fSRodney W. Grimes 	/*
9458f0484fSRodney W. Grimes 	 * Take care of special cases: divide by zero, and u < v.
9558f0484fSRodney W. Grimes 	 */
9658f0484fSRodney W. Grimes 	if (vq == 0) {
9758f0484fSRodney W. Grimes 		/* divide by zero. */
9858f0484fSRodney W. Grimes 		static volatile const unsigned int zero = 0;
9958f0484fSRodney W. Grimes 
10058f0484fSRodney W. Grimes 		tmp.ul[H] = tmp.ul[L] = 1 / zero;
10158f0484fSRodney W. Grimes 		if (arq)
10258f0484fSRodney W. Grimes 			*arq = uq;
10358f0484fSRodney W. Grimes 		return (tmp.q);
10458f0484fSRodney W. Grimes 	}
10558f0484fSRodney W. Grimes 	if (uq < vq) {
10658f0484fSRodney W. Grimes 		if (arq)
10758f0484fSRodney W. Grimes 			*arq = uq;
10858f0484fSRodney W. Grimes 		return (0);
10958f0484fSRodney W. Grimes 	}
11058f0484fSRodney W. Grimes 	u = &uspace[0];
11158f0484fSRodney W. Grimes 	v = &vspace[0];
11258f0484fSRodney W. Grimes 	q = &qspace[0];
11358f0484fSRodney W. Grimes 
11458f0484fSRodney W. Grimes 	/*
11558f0484fSRodney W. Grimes 	 * Break dividend and divisor into digits in base B, then
11658f0484fSRodney W. Grimes 	 * count leading zeros to determine m and n.  When done, we
11758f0484fSRodney W. Grimes 	 * will have:
11858f0484fSRodney W. Grimes 	 *	u = (u[1]u[2]...u[m+n]) sub B
11958f0484fSRodney W. Grimes 	 *	v = (v[1]v[2]...v[n]) sub B
12058f0484fSRodney W. Grimes 	 *	v[1] != 0
12158f0484fSRodney W. Grimes 	 *	1 < n <= 4 (if n = 1, we use a different division algorithm)
12258f0484fSRodney W. Grimes 	 *	m >= 0 (otherwise u < v, which we already checked)
12358f0484fSRodney W. Grimes 	 *	m + n = 4
12458f0484fSRodney W. Grimes 	 * and thus
12558f0484fSRodney W. Grimes 	 *	m = 4 - n <= 2
12658f0484fSRodney W. Grimes 	 */
12758f0484fSRodney W. Grimes 	tmp.uq = uq;
12858f0484fSRodney W. Grimes 	u[0] = 0;
12958f0484fSRodney W. Grimes 	u[1] = HHALF(tmp.ul[H]);
13058f0484fSRodney W. Grimes 	u[2] = LHALF(tmp.ul[H]);
13158f0484fSRodney W. Grimes 	u[3] = HHALF(tmp.ul[L]);
13258f0484fSRodney W. Grimes 	u[4] = LHALF(tmp.ul[L]);
13358f0484fSRodney W. Grimes 	tmp.uq = vq;
13458f0484fSRodney W. Grimes 	v[1] = HHALF(tmp.ul[H]);
13558f0484fSRodney W. Grimes 	v[2] = LHALF(tmp.ul[H]);
13658f0484fSRodney W. Grimes 	v[3] = HHALF(tmp.ul[L]);
13758f0484fSRodney W. Grimes 	v[4] = LHALF(tmp.ul[L]);
13858f0484fSRodney W. Grimes 	for (n = 4; v[1] == 0; v++) {
13958f0484fSRodney W. Grimes 		if (--n == 1) {
14058f0484fSRodney W. Grimes 			u_long rbj;	/* r*B+u[j] (not root boy jim) */
14158f0484fSRodney W. Grimes 			digit q1, q2, q3, q4;
14258f0484fSRodney W. Grimes 
14358f0484fSRodney W. Grimes 			/*
14458f0484fSRodney W. Grimes 			 * Change of plan, per exercise 16.
14558f0484fSRodney W. Grimes 			 *	r = 0;
14658f0484fSRodney W. Grimes 			 *	for j = 1..4:
14758f0484fSRodney W. Grimes 			 *		q[j] = floor((r*B + u[j]) / v),
14858f0484fSRodney W. Grimes 			 *		r = (r*B + u[j]) % v;
14958f0484fSRodney W. Grimes 			 * We unroll this completely here.
15058f0484fSRodney W. Grimes 			 */
15158f0484fSRodney W. Grimes 			t = v[2];	/* nonzero, by definition */
15258f0484fSRodney W. Grimes 			q1 = u[1] / t;
15358f0484fSRodney W. Grimes 			rbj = COMBINE(u[1] % t, u[2]);
15458f0484fSRodney W. Grimes 			q2 = rbj / t;
15558f0484fSRodney W. Grimes 			rbj = COMBINE(rbj % t, u[3]);
15658f0484fSRodney W. Grimes 			q3 = rbj / t;
15758f0484fSRodney W. Grimes 			rbj = COMBINE(rbj % t, u[4]);
15858f0484fSRodney W. Grimes 			q4 = rbj / t;
15958f0484fSRodney W. Grimes 			if (arq)
16058f0484fSRodney W. Grimes 				*arq = rbj % t;
16158f0484fSRodney W. Grimes 			tmp.ul[H] = COMBINE(q1, q2);
16258f0484fSRodney W. Grimes 			tmp.ul[L] = COMBINE(q3, q4);
16358f0484fSRodney W. Grimes 			return (tmp.q);
16458f0484fSRodney W. Grimes 		}
16558f0484fSRodney W. Grimes 	}
16658f0484fSRodney W. Grimes 
16758f0484fSRodney W. Grimes 	/*
16858f0484fSRodney W. Grimes 	 * By adjusting q once we determine m, we can guarantee that
16958f0484fSRodney W. Grimes 	 * there is a complete four-digit quotient at &qspace[1] when
17058f0484fSRodney W. Grimes 	 * we finally stop.
17158f0484fSRodney W. Grimes 	 */
17258f0484fSRodney W. Grimes 	for (m = 4 - n; u[1] == 0; u++)
17358f0484fSRodney W. Grimes 		m--;
17458f0484fSRodney W. Grimes 	for (i = 4 - m; --i >= 0;)
17558f0484fSRodney W. Grimes 		q[i] = 0;
17658f0484fSRodney W. Grimes 	q += 4 - m;
17758f0484fSRodney W. Grimes 
17858f0484fSRodney W. Grimes 	/*
17958f0484fSRodney W. Grimes 	 * Here we run Program D, translated from MIX to C and acquiring
18058f0484fSRodney W. Grimes 	 * a few minor changes.
18158f0484fSRodney W. Grimes 	 *
18258f0484fSRodney W. Grimes 	 * D1: choose multiplier 1 << d to ensure v[1] >= B/2.
18358f0484fSRodney W. Grimes 	 */
18458f0484fSRodney W. Grimes 	d = 0;
18558f0484fSRodney W. Grimes 	for (t = v[1]; t < B / 2; t <<= 1)
18658f0484fSRodney W. Grimes 		d++;
18758f0484fSRodney W. Grimes 	if (d > 0) {
18858f0484fSRodney W. Grimes 		shl(&u[0], m + n, d);		/* u <<= d */
18958f0484fSRodney W. Grimes 		shl(&v[1], n - 1, d);		/* v <<= d */
19058f0484fSRodney W. Grimes 	}
19158f0484fSRodney W. Grimes 	/*
19258f0484fSRodney W. Grimes 	 * D2: j = 0.
19358f0484fSRodney W. Grimes 	 */
19458f0484fSRodney W. Grimes 	j = 0;
19558f0484fSRodney W. Grimes 	v1 = v[1];	/* for D3 -- note that v[1..n] are constant */
19658f0484fSRodney W. Grimes 	v2 = v[2];	/* for D3 */
19758f0484fSRodney W. Grimes 	do {
1988fb3f3f6SDavid E. O'Brien 		digit uj0, uj1, uj2;
19958f0484fSRodney W. Grimes 
20058f0484fSRodney W. Grimes 		/*
20158f0484fSRodney W. Grimes 		 * D3: Calculate qhat (\^q, in TeX notation).
20258f0484fSRodney W. Grimes 		 * Let qhat = min((u[j]*B + u[j+1])/v[1], B-1), and
20358f0484fSRodney W. Grimes 		 * let rhat = (u[j]*B + u[j+1]) mod v[1].
20458f0484fSRodney W. Grimes 		 * While rhat < B and v[2]*qhat > rhat*B+u[j+2],
20558f0484fSRodney W. Grimes 		 * decrement qhat and increase rhat correspondingly.
20658f0484fSRodney W. Grimes 		 * Note that if rhat >= B, v[2]*qhat < rhat*B.
20758f0484fSRodney W. Grimes 		 */
20858f0484fSRodney W. Grimes 		uj0 = u[j + 0];	/* for D3 only -- note that u[j+...] change */
20958f0484fSRodney W. Grimes 		uj1 = u[j + 1];	/* for D3 only */
21058f0484fSRodney W. Grimes 		uj2 = u[j + 2];	/* for D3 only */
21158f0484fSRodney W. Grimes 		if (uj0 == v1) {
21258f0484fSRodney W. Grimes 			qhat = B;
21358f0484fSRodney W. Grimes 			rhat = uj1;
21458f0484fSRodney W. Grimes 			goto qhat_too_big;
21558f0484fSRodney W. Grimes 		} else {
21658f0484fSRodney W. Grimes 			u_long n = COMBINE(uj0, uj1);
21758f0484fSRodney W. Grimes 			qhat = n / v1;
21858f0484fSRodney W. Grimes 			rhat = n % v1;
21958f0484fSRodney W. Grimes 		}
22058f0484fSRodney W. Grimes 		while (v2 * qhat > COMBINE(rhat, uj2)) {
22158f0484fSRodney W. Grimes 	qhat_too_big:
22258f0484fSRodney W. Grimes 			qhat--;
22358f0484fSRodney W. Grimes 			if ((rhat += v1) >= B)
22458f0484fSRodney W. Grimes 				break;
22558f0484fSRodney W. Grimes 		}
22658f0484fSRodney W. Grimes 		/*
22758f0484fSRodney W. Grimes 		 * D4: Multiply and subtract.
22858f0484fSRodney W. Grimes 		 * The variable `t' holds any borrows across the loop.
22958f0484fSRodney W. Grimes 		 * We split this up so that we do not require v[0] = 0,
23058f0484fSRodney W. Grimes 		 * and to eliminate a final special case.
23158f0484fSRodney W. Grimes 		 */
23258f0484fSRodney W. Grimes 		for (t = 0, i = n; i > 0; i--) {
23358f0484fSRodney W. Grimes 			t = u[i + j] - v[i] * qhat - t;
23458f0484fSRodney W. Grimes 			u[i + j] = LHALF(t);
23558f0484fSRodney W. Grimes 			t = (B - HHALF(t)) & (B - 1);
23658f0484fSRodney W. Grimes 		}
23758f0484fSRodney W. Grimes 		t = u[j] - t;
23858f0484fSRodney W. Grimes 		u[j] = LHALF(t);
23958f0484fSRodney W. Grimes 		/*
24058f0484fSRodney W. Grimes 		 * D5: test remainder.
24158f0484fSRodney W. Grimes 		 * There is a borrow if and only if HHALF(t) is nonzero;
24258f0484fSRodney W. Grimes 		 * in that (rare) case, qhat was too large (by exactly 1).
24358f0484fSRodney W. Grimes 		 * Fix it by adding v[1..n] to u[j..j+n].
24458f0484fSRodney W. Grimes 		 */
24558f0484fSRodney W. Grimes 		if (HHALF(t)) {
24658f0484fSRodney W. Grimes 			qhat--;
24758f0484fSRodney W. Grimes 			for (t = 0, i = n; i > 0; i--) { /* D6: add back. */
24858f0484fSRodney W. Grimes 				t += u[i + j] + v[i];
24958f0484fSRodney W. Grimes 				u[i + j] = LHALF(t);
25058f0484fSRodney W. Grimes 				t = HHALF(t);
25158f0484fSRodney W. Grimes 			}
25258f0484fSRodney W. Grimes 			u[j] = LHALF(u[j] + t);
25358f0484fSRodney W. Grimes 		}
25458f0484fSRodney W. Grimes 		q[j] = qhat;
25558f0484fSRodney W. Grimes 	} while (++j <= m);		/* D7: loop on j. */
25658f0484fSRodney W. Grimes 
25758f0484fSRodney W. Grimes 	/*
25858f0484fSRodney W. Grimes 	 * If caller wants the remainder, we have to calculate it as
25958f0484fSRodney W. Grimes 	 * u[m..m+n] >> d (this is at most n digits and thus fits in
26058f0484fSRodney W. Grimes 	 * u[m+1..m+n], but we may need more source digits).
26158f0484fSRodney W. Grimes 	 */
26258f0484fSRodney W. Grimes 	if (arq) {
26358f0484fSRodney W. Grimes 		if (d) {
26458f0484fSRodney W. Grimes 			for (i = m + n; i > m; --i)
26558f0484fSRodney W. Grimes 				u[i] = (u[i] >> d) |
26658f0484fSRodney W. Grimes 				    LHALF(u[i - 1] << (HALF_BITS - d));
26758f0484fSRodney W. Grimes 			u[i] = 0;
26858f0484fSRodney W. Grimes 		}
26958f0484fSRodney W. Grimes 		tmp.ul[H] = COMBINE(uspace[1], uspace[2]);
27058f0484fSRodney W. Grimes 		tmp.ul[L] = COMBINE(uspace[3], uspace[4]);
27158f0484fSRodney W. Grimes 		*arq = tmp.q;
27258f0484fSRodney W. Grimes 	}
27358f0484fSRodney W. Grimes 
27458f0484fSRodney W. Grimes 	tmp.ul[H] = COMBINE(qspace[1], qspace[2]);
27558f0484fSRodney W. Grimes 	tmp.ul[L] = COMBINE(qspace[3], qspace[4]);
27658f0484fSRodney W. Grimes 	return (tmp.q);
27758f0484fSRodney W. Grimes }
278