xref: /freebsd/lib/libc/db/hash/hash_page.c (revision c17d43407fe04133a94055b0dbc7ea8965654a9f)
1 /*-
2  * Copyright (c) 1990, 1993, 1994
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Margo Seltzer.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  */
36 
37 #if defined(LIBC_SCCS) && !defined(lint)
38 static char sccsid[] = "@(#)hash_page.c	8.7 (Berkeley) 8/16/94";
39 #endif /* LIBC_SCCS and not lint */
40 #include <sys/cdefs.h>
41 __FBSDID("$FreeBSD$");
42 
43 /*
44  * PACKAGE:  hashing
45  *
46  * DESCRIPTION:
47  *	Page manipulation for hashing package.
48  *
49  * ROUTINES:
50  *
51  * External
52  *	__get_page
53  *	__add_ovflpage
54  * Internal
55  *	overflow_page
56  *	open_temp
57  */
58 
59 #include "namespace.h"
60 #include <sys/types.h>
61 
62 #include <errno.h>
63 #include <fcntl.h>
64 #include <signal.h>
65 #include <stdio.h>
66 #include <stdlib.h>
67 #include <string.h>
68 #include <unistd.h>
69 #ifdef DEBUG
70 #include <assert.h>
71 #endif
72 #include "un-namespace.h"
73 
74 #include <db.h>
75 #include "hash.h"
76 #include "page.h"
77 #include "extern.h"
78 
79 static u_int32_t	*fetch_bitmap(HTAB *, int);
80 static u_int32_t	 first_free(u_int32_t);
81 static int	 open_temp(HTAB *);
82 static u_int16_t	 overflow_page(HTAB *);
83 static void	 putpair(char *, const DBT *, const DBT *);
84 static void	 squeeze_key(u_int16_t *, const DBT *, const DBT *);
85 static int	 ugly_split
86 (HTAB *, u_int32_t, BUFHEAD *, BUFHEAD *, int, int);
87 
88 #define	PAGE_INIT(P) { \
89 	((u_int16_t *)(P))[0] = 0; \
90 	((u_int16_t *)(P))[1] = hashp->BSIZE - 3 * sizeof(u_int16_t); \
91 	((u_int16_t *)(P))[2] = hashp->BSIZE; \
92 }
93 
94 /*
95  * This is called AFTER we have verified that there is room on the page for
96  * the pair (PAIRFITS has returned true) so we go right ahead and start moving
97  * stuff on.
98  */
99 static void
100 putpair(p, key, val)
101 	char *p;
102 	const DBT *key, *val;
103 {
104 	u_int16_t *bp, n, off;
105 
106 	bp = (u_int16_t *)p;
107 
108 	/* Enter the key first. */
109 	n = bp[0];
110 
111 	off = OFFSET(bp) - key->size;
112 	memmove(p + off, key->data, key->size);
113 	bp[++n] = off;
114 
115 	/* Now the data. */
116 	off -= val->size;
117 	memmove(p + off, val->data, val->size);
118 	bp[++n] = off;
119 
120 	/* Adjust page info. */
121 	bp[0] = n;
122 	bp[n + 1] = off - ((n + 3) * sizeof(u_int16_t));
123 	bp[n + 2] = off;
124 }
125 
126 /*
127  * Returns:
128  *	 0 OK
129  *	-1 error
130  */
131 extern int
132 __delpair(hashp, bufp, ndx)
133 	HTAB *hashp;
134 	BUFHEAD *bufp;
135 	int ndx;
136 {
137 	u_int16_t *bp, newoff;
138 	int n;
139 	u_int16_t pairlen;
140 
141 	bp = (u_int16_t *)bufp->page;
142 	n = bp[0];
143 
144 	if (bp[ndx + 1] < REAL_KEY)
145 		return (__big_delete(hashp, bufp));
146 	if (ndx != 1)
147 		newoff = bp[ndx - 1];
148 	else
149 		newoff = hashp->BSIZE;
150 	pairlen = newoff - bp[ndx + 1];
151 
152 	if (ndx != (n - 1)) {
153 		/* Hard Case -- need to shuffle keys */
154 		int i;
155 		char *src = bufp->page + (int)OFFSET(bp);
156 		char *dst = src + (int)pairlen;
157 		memmove(dst, src, bp[ndx + 1] - OFFSET(bp));
158 
159 		/* Now adjust the pointers */
160 		for (i = ndx + 2; i <= n; i += 2) {
161 			if (bp[i + 1] == OVFLPAGE) {
162 				bp[i - 2] = bp[i];
163 				bp[i - 1] = bp[i + 1];
164 			} else {
165 				bp[i - 2] = bp[i] + pairlen;
166 				bp[i - 1] = bp[i + 1] + pairlen;
167 			}
168 		}
169 	}
170 	/* Finally adjust the page data */
171 	bp[n] = OFFSET(bp) + pairlen;
172 	bp[n - 1] = bp[n + 1] + pairlen + 2 * sizeof(u_int16_t);
173 	bp[0] = n - 2;
174 	hashp->NKEYS--;
175 
176 	bufp->flags |= BUF_MOD;
177 	return (0);
178 }
179 /*
180  * Returns:
181  *	 0 ==> OK
182  *	-1 ==> Error
183  */
184 extern int
185 __split_page(hashp, obucket, nbucket)
186 	HTAB *hashp;
187 	u_int32_t obucket, nbucket;
188 {
189 	BUFHEAD *new_bufp, *old_bufp;
190 	u_int16_t *ino;
191 	char *np;
192 	DBT key, val;
193 	int n, ndx, retval;
194 	u_int16_t copyto, diff, off, moved;
195 	char *op;
196 
197 	copyto = (u_int16_t)hashp->BSIZE;
198 	off = (u_int16_t)hashp->BSIZE;
199 	old_bufp = __get_buf(hashp, obucket, NULL, 0);
200 	if (old_bufp == NULL)
201 		return (-1);
202 	new_bufp = __get_buf(hashp, nbucket, NULL, 0);
203 	if (new_bufp == NULL)
204 		return (-1);
205 
206 	old_bufp->flags |= (BUF_MOD | BUF_PIN);
207 	new_bufp->flags |= (BUF_MOD | BUF_PIN);
208 
209 	ino = (u_int16_t *)(op = old_bufp->page);
210 	np = new_bufp->page;
211 
212 	moved = 0;
213 
214 	for (n = 1, ndx = 1; n < ino[0]; n += 2) {
215 		if (ino[n + 1] < REAL_KEY) {
216 			retval = ugly_split(hashp, obucket, old_bufp, new_bufp,
217 			    (int)copyto, (int)moved);
218 			old_bufp->flags &= ~BUF_PIN;
219 			new_bufp->flags &= ~BUF_PIN;
220 			return (retval);
221 
222 		}
223 		key.data = (u_char *)op + ino[n];
224 		key.size = off - ino[n];
225 
226 		if (__call_hash(hashp, key.data, key.size) == obucket) {
227 			/* Don't switch page */
228 			diff = copyto - off;
229 			if (diff) {
230 				copyto = ino[n + 1] + diff;
231 				memmove(op + copyto, op + ino[n + 1],
232 				    off - ino[n + 1]);
233 				ino[ndx] = copyto + ino[n] - ino[n + 1];
234 				ino[ndx + 1] = copyto;
235 			} else
236 				copyto = ino[n + 1];
237 			ndx += 2;
238 		} else {
239 			/* Switch page */
240 			val.data = (u_char *)op + ino[n + 1];
241 			val.size = ino[n] - ino[n + 1];
242 			putpair(np, &key, &val);
243 			moved += 2;
244 		}
245 
246 		off = ino[n + 1];
247 	}
248 
249 	/* Now clean up the page */
250 	ino[0] -= moved;
251 	FREESPACE(ino) = copyto - sizeof(u_int16_t) * (ino[0] + 3);
252 	OFFSET(ino) = copyto;
253 
254 #ifdef DEBUG3
255 	(void)fprintf(stderr, "split %d/%d\n",
256 	    ((u_int16_t *)np)[0] / 2,
257 	    ((u_int16_t *)op)[0] / 2);
258 #endif
259 	/* unpin both pages */
260 	old_bufp->flags &= ~BUF_PIN;
261 	new_bufp->flags &= ~BUF_PIN;
262 	return (0);
263 }
264 
265 /*
266  * Called when we encounter an overflow or big key/data page during split
267  * handling.  This is special cased since we have to begin checking whether
268  * the key/data pairs fit on their respective pages and because we may need
269  * overflow pages for both the old and new pages.
270  *
271  * The first page might be a page with regular key/data pairs in which case
272  * we have a regular overflow condition and just need to go on to the next
273  * page or it might be a big key/data pair in which case we need to fix the
274  * big key/data pair.
275  *
276  * Returns:
277  *	 0 ==> success
278  *	-1 ==> failure
279  */
280 static int
281 ugly_split(hashp, obucket, old_bufp, new_bufp, copyto, moved)
282 	HTAB *hashp;
283 	u_int32_t obucket;	/* Same as __split_page. */
284 	BUFHEAD *old_bufp, *new_bufp;
285 	int copyto;	/* First byte on page which contains key/data values. */
286 	int moved;		/* Number of pairs moved to new page. */
287 {
288 	BUFHEAD *bufp;		/* Buffer header for ino */
289 	u_int16_t *ino;		/* Page keys come off of */
290 	u_int16_t *np;		/* New page */
291 	u_int16_t *op;		/* Page keys go on to if they aren't moving */
292 
293 	BUFHEAD *last_bfp;	/* Last buf header OVFL needing to be freed */
294 	DBT key, val;
295 	SPLIT_RETURN ret;
296 	u_int16_t n, off, ov_addr, scopyto;
297 	char *cino;		/* Character value of ino */
298 
299 	bufp = old_bufp;
300 	ino = (u_int16_t *)old_bufp->page;
301 	np = (u_int16_t *)new_bufp->page;
302 	op = (u_int16_t *)old_bufp->page;
303 	last_bfp = NULL;
304 	scopyto = (u_int16_t)copyto;	/* ANSI */
305 
306 	n = ino[0] - 1;
307 	while (n < ino[0]) {
308 		if (ino[2] < REAL_KEY && ino[2] != OVFLPAGE) {
309 			if (__big_split(hashp, old_bufp,
310 			    new_bufp, bufp, bufp->addr, obucket, &ret))
311 				return (-1);
312 			old_bufp = ret.oldp;
313 			if (!old_bufp)
314 				return (-1);
315 			op = (u_int16_t *)old_bufp->page;
316 			new_bufp = ret.newp;
317 			if (!new_bufp)
318 				return (-1);
319 			np = (u_int16_t *)new_bufp->page;
320 			bufp = ret.nextp;
321 			if (!bufp)
322 				return (0);
323 			cino = (char *)bufp->page;
324 			ino = (u_int16_t *)cino;
325 			last_bfp = ret.nextp;
326 		} else if (ino[n + 1] == OVFLPAGE) {
327 			ov_addr = ino[n];
328 			/*
329 			 * Fix up the old page -- the extra 2 are the fields
330 			 * which contained the overflow information.
331 			 */
332 			ino[0] -= (moved + 2);
333 			FREESPACE(ino) =
334 			    scopyto - sizeof(u_int16_t) * (ino[0] + 3);
335 			OFFSET(ino) = scopyto;
336 
337 			bufp = __get_buf(hashp, ov_addr, bufp, 0);
338 			if (!bufp)
339 				return (-1);
340 
341 			ino = (u_int16_t *)bufp->page;
342 			n = 1;
343 			scopyto = hashp->BSIZE;
344 			moved = 0;
345 
346 			if (last_bfp)
347 				__free_ovflpage(hashp, last_bfp);
348 			last_bfp = bufp;
349 		}
350 		/* Move regular sized pairs of there are any */
351 		off = hashp->BSIZE;
352 		for (n = 1; (n < ino[0]) && (ino[n + 1] >= REAL_KEY); n += 2) {
353 			cino = (char *)ino;
354 			key.data = (u_char *)cino + ino[n];
355 			key.size = off - ino[n];
356 			val.data = (u_char *)cino + ino[n + 1];
357 			val.size = ino[n] - ino[n + 1];
358 			off = ino[n + 1];
359 
360 			if (__call_hash(hashp, key.data, key.size) == obucket) {
361 				/* Keep on old page */
362 				if (PAIRFITS(op, (&key), (&val)))
363 					putpair((char *)op, &key, &val);
364 				else {
365 					old_bufp =
366 					    __add_ovflpage(hashp, old_bufp);
367 					if (!old_bufp)
368 						return (-1);
369 					op = (u_int16_t *)old_bufp->page;
370 					putpair((char *)op, &key, &val);
371 				}
372 				old_bufp->flags |= BUF_MOD;
373 			} else {
374 				/* Move to new page */
375 				if (PAIRFITS(np, (&key), (&val)))
376 					putpair((char *)np, &key, &val);
377 				else {
378 					new_bufp =
379 					    __add_ovflpage(hashp, new_bufp);
380 					if (!new_bufp)
381 						return (-1);
382 					np = (u_int16_t *)new_bufp->page;
383 					putpair((char *)np, &key, &val);
384 				}
385 				new_bufp->flags |= BUF_MOD;
386 			}
387 		}
388 	}
389 	if (last_bfp)
390 		__free_ovflpage(hashp, last_bfp);
391 	return (0);
392 }
393 
394 /*
395  * Add the given pair to the page
396  *
397  * Returns:
398  *	0 ==> OK
399  *	1 ==> failure
400  */
401 extern int
402 __addel(hashp, bufp, key, val)
403 	HTAB *hashp;
404 	BUFHEAD *bufp;
405 	const DBT *key, *val;
406 {
407 	u_int16_t *bp, *sop;
408 	int do_expand;
409 
410 	bp = (u_int16_t *)bufp->page;
411 	do_expand = 0;
412 	while (bp[0] && (bp[2] < REAL_KEY || bp[bp[0]] < REAL_KEY))
413 		/* Exception case */
414 		if (bp[2] == FULL_KEY_DATA && bp[0] == 2)
415 			/* This is the last page of a big key/data pair
416 			   and we need to add another page */
417 			break;
418 		else if (bp[2] < REAL_KEY && bp[bp[0]] != OVFLPAGE) {
419 			bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
420 			if (!bufp)
421 				return (-1);
422 			bp = (u_int16_t *)bufp->page;
423 		} else
424 			/* Try to squeeze key on this page */
425 			if (FREESPACE(bp) > PAIRSIZE(key, val)) {
426 				squeeze_key(bp, key, val);
427 				return (0);
428 			} else {
429 				bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
430 				if (!bufp)
431 					return (-1);
432 				bp = (u_int16_t *)bufp->page;
433 			}
434 
435 	if (PAIRFITS(bp, key, val))
436 		putpair(bufp->page, key, val);
437 	else {
438 		do_expand = 1;
439 		bufp = __add_ovflpage(hashp, bufp);
440 		if (!bufp)
441 			return (-1);
442 		sop = (u_int16_t *)bufp->page;
443 
444 		if (PAIRFITS(sop, key, val))
445 			putpair((char *)sop, key, val);
446 		else
447 			if (__big_insert(hashp, bufp, key, val))
448 				return (-1);
449 	}
450 	bufp->flags |= BUF_MOD;
451 	/*
452 	 * If the average number of keys per bucket exceeds the fill factor,
453 	 * expand the table.
454 	 */
455 	hashp->NKEYS++;
456 	if (do_expand ||
457 	    (hashp->NKEYS / (hashp->MAX_BUCKET + 1) > hashp->FFACTOR))
458 		return (__expand_table(hashp));
459 	return (0);
460 }
461 
462 /*
463  *
464  * Returns:
465  *	pointer on success
466  *	NULL on error
467  */
468 extern BUFHEAD *
469 __add_ovflpage(hashp, bufp)
470 	HTAB *hashp;
471 	BUFHEAD *bufp;
472 {
473 	u_int16_t *sp;
474 	u_int16_t ndx, ovfl_num;
475 #ifdef DEBUG1
476 	int tmp1, tmp2;
477 #endif
478 	sp = (u_int16_t *)bufp->page;
479 
480 	/* Check if we are dynamically determining the fill factor */
481 	if (hashp->FFACTOR == DEF_FFACTOR) {
482 		hashp->FFACTOR = sp[0] >> 1;
483 		if (hashp->FFACTOR < MIN_FFACTOR)
484 			hashp->FFACTOR = MIN_FFACTOR;
485 	}
486 	bufp->flags |= BUF_MOD;
487 	ovfl_num = overflow_page(hashp);
488 #ifdef DEBUG1
489 	tmp1 = bufp->addr;
490 	tmp2 = bufp->ovfl ? bufp->ovfl->addr : 0;
491 #endif
492 	if (!ovfl_num || !(bufp->ovfl = __get_buf(hashp, ovfl_num, bufp, 1)))
493 		return (NULL);
494 	bufp->ovfl->flags |= BUF_MOD;
495 #ifdef DEBUG1
496 	(void)fprintf(stderr, "ADDOVFLPAGE: %d->ovfl was %d is now %d\n",
497 	    tmp1, tmp2, bufp->ovfl->addr);
498 #endif
499 	ndx = sp[0];
500 	/*
501 	 * Since a pair is allocated on a page only if there's room to add
502 	 * an overflow page, we know that the OVFL information will fit on
503 	 * the page.
504 	 */
505 	sp[ndx + 4] = OFFSET(sp);
506 	sp[ndx + 3] = FREESPACE(sp) - OVFLSIZE;
507 	sp[ndx + 1] = ovfl_num;
508 	sp[ndx + 2] = OVFLPAGE;
509 	sp[0] = ndx + 2;
510 #ifdef HASH_STATISTICS
511 	hash_overflows++;
512 #endif
513 	return (bufp->ovfl);
514 }
515 
516 /*
517  * Returns:
518  *	 0 indicates SUCCESS
519  *	-1 indicates FAILURE
520  */
521 extern int
522 __get_page(hashp, p, bucket, is_bucket, is_disk, is_bitmap)
523 	HTAB *hashp;
524 	char *p;
525 	u_int32_t bucket;
526 	int is_bucket, is_disk, is_bitmap;
527 {
528 	int fd, page, size;
529 	int rsize;
530 	u_int16_t *bp;
531 
532 	fd = hashp->fp;
533 	size = hashp->BSIZE;
534 
535 	if ((fd == -1) || !is_disk) {
536 		PAGE_INIT(p);
537 		return (0);
538 	}
539 	if (is_bucket)
540 		page = BUCKET_TO_PAGE(bucket);
541 	else
542 		page = OADDR_TO_PAGE(bucket);
543 	if ((lseek(fd, (off_t)page << hashp->BSHIFT, SEEK_SET) == -1) ||
544 	    ((rsize = _read(fd, p, size)) == -1))
545 		return (-1);
546 	bp = (u_int16_t *)p;
547 	if (!rsize)
548 		bp[0] = 0;	/* We hit the EOF, so initialize a new page */
549 	else
550 		if (rsize != size) {
551 			errno = EFTYPE;
552 			return (-1);
553 		}
554 	if (!is_bitmap && !bp[0]) {
555 		PAGE_INIT(p);
556 	} else
557 		if (hashp->LORDER != BYTE_ORDER) {
558 			int i, max;
559 
560 			if (is_bitmap) {
561 				max = hashp->BSIZE >> 2; /* divide by 4 */
562 				for (i = 0; i < max; i++)
563 					M_32_SWAP(((int *)p)[i]);
564 			} else {
565 				M_16_SWAP(bp[0]);
566 				max = bp[0] + 2;
567 				for (i = 1; i <= max; i++)
568 					M_16_SWAP(bp[i]);
569 			}
570 		}
571 	return (0);
572 }
573 
574 /*
575  * Write page p to disk
576  *
577  * Returns:
578  *	 0 ==> OK
579  *	-1 ==>failure
580  */
581 extern int
582 __put_page(hashp, p, bucket, is_bucket, is_bitmap)
583 	HTAB *hashp;
584 	char *p;
585 	u_int32_t bucket;
586 	int is_bucket, is_bitmap;
587 {
588 	int fd, page, size;
589 	int wsize;
590 
591 	size = hashp->BSIZE;
592 	if ((hashp->fp == -1) && open_temp(hashp))
593 		return (-1);
594 	fd = hashp->fp;
595 
596 	if (hashp->LORDER != BYTE_ORDER) {
597 		int i;
598 		int max;
599 
600 		if (is_bitmap) {
601 			max = hashp->BSIZE >> 2;	/* divide by 4 */
602 			for (i = 0; i < max; i++)
603 				M_32_SWAP(((int *)p)[i]);
604 		} else {
605 			max = ((u_int16_t *)p)[0] + 2;
606 			for (i = 0; i <= max; i++)
607 				M_16_SWAP(((u_int16_t *)p)[i]);
608 		}
609 	}
610 	if (is_bucket)
611 		page = BUCKET_TO_PAGE(bucket);
612 	else
613 		page = OADDR_TO_PAGE(bucket);
614 	if ((lseek(fd, (off_t)page << hashp->BSHIFT, SEEK_SET) == -1) ||
615 	    ((wsize = _write(fd, p, size)) == -1))
616 		/* Errno is set */
617 		return (-1);
618 	if (wsize != size) {
619 		errno = EFTYPE;
620 		return (-1);
621 	}
622 	return (0);
623 }
624 
625 #define BYTE_MASK	((1 << INT_BYTE_SHIFT) -1)
626 /*
627  * Initialize a new bitmap page.  Bitmap pages are left in memory
628  * once they are read in.
629  */
630 extern int
631 __ibitmap(hashp, pnum, nbits, ndx)
632 	HTAB *hashp;
633 	int pnum, nbits, ndx;
634 {
635 	u_int32_t *ip;
636 	int clearbytes, clearints;
637 
638 	if ((ip = (u_int32_t *)malloc(hashp->BSIZE)) == NULL)
639 		return (1);
640 	hashp->nmaps++;
641 	clearints = ((nbits - 1) >> INT_BYTE_SHIFT) + 1;
642 	clearbytes = clearints << INT_TO_BYTE;
643 	(void)memset((char *)ip, 0, clearbytes);
644 	(void)memset(((char *)ip) + clearbytes, 0xFF,
645 	    hashp->BSIZE - clearbytes);
646 	ip[clearints - 1] = ALL_SET << (nbits & BYTE_MASK);
647 	SETBIT(ip, 0);
648 	hashp->BITMAPS[ndx] = (u_int16_t)pnum;
649 	hashp->mapp[ndx] = ip;
650 	return (0);
651 }
652 
653 static u_int32_t
654 first_free(map)
655 	u_int32_t map;
656 {
657 	u_int32_t i, mask;
658 
659 	mask = 0x1;
660 	for (i = 0; i < BITS_PER_MAP; i++) {
661 		if (!(mask & map))
662 			return (i);
663 		mask = mask << 1;
664 	}
665 	return (i);
666 }
667 
668 static u_int16_t
669 overflow_page(hashp)
670 	HTAB *hashp;
671 {
672 	u_int32_t *freep;
673 	int max_free, offset, splitnum;
674 	u_int16_t addr;
675 	int bit, first_page, free_bit, free_page, i, in_use_bits, j;
676 #ifdef DEBUG2
677 	int tmp1, tmp2;
678 #endif
679 	splitnum = hashp->OVFL_POINT;
680 	max_free = hashp->SPARES[splitnum];
681 
682 	free_page = (max_free - 1) >> (hashp->BSHIFT + BYTE_SHIFT);
683 	free_bit = (max_free - 1) & ((hashp->BSIZE << BYTE_SHIFT) - 1);
684 
685 	/* Look through all the free maps to find the first free block */
686 	first_page = hashp->LAST_FREED >>(hashp->BSHIFT + BYTE_SHIFT);
687 	for ( i = first_page; i <= free_page; i++ ) {
688 		if (!(freep = (u_int32_t *)hashp->mapp[i]) &&
689 		    !(freep = fetch_bitmap(hashp, i)))
690 			return (0);
691 		if (i == free_page)
692 			in_use_bits = free_bit;
693 		else
694 			in_use_bits = (hashp->BSIZE << BYTE_SHIFT) - 1;
695 
696 		if (i == first_page) {
697 			bit = hashp->LAST_FREED &
698 			    ((hashp->BSIZE << BYTE_SHIFT) - 1);
699 			j = bit / BITS_PER_MAP;
700 			bit = bit & ~(BITS_PER_MAP - 1);
701 		} else {
702 			bit = 0;
703 			j = 0;
704 		}
705 		for (; bit <= in_use_bits; j++, bit += BITS_PER_MAP)
706 			if (freep[j] != ALL_SET)
707 				goto found;
708 	}
709 
710 	/* No Free Page Found */
711 	hashp->LAST_FREED = hashp->SPARES[splitnum];
712 	hashp->SPARES[splitnum]++;
713 	offset = hashp->SPARES[splitnum] -
714 	    (splitnum ? hashp->SPARES[splitnum - 1] : 0);
715 
716 #define	OVMSG	"HASH: Out of overflow pages.  Increase page size\n"
717 	if (offset > SPLITMASK) {
718 		if (++splitnum >= NCACHED) {
719 			(void)_write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
720 			return (0);
721 		}
722 		hashp->OVFL_POINT = splitnum;
723 		hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
724 		hashp->SPARES[splitnum-1]--;
725 		offset = 1;
726 	}
727 
728 	/* Check if we need to allocate a new bitmap page */
729 	if (free_bit == (hashp->BSIZE << BYTE_SHIFT) - 1) {
730 		free_page++;
731 		if (free_page >= NCACHED) {
732 			(void)_write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
733 			return (0);
734 		}
735 		/*
736 		 * This is tricky.  The 1 indicates that you want the new page
737 		 * allocated with 1 clear bit.  Actually, you are going to
738 		 * allocate 2 pages from this map.  The first is going to be
739 		 * the map page, the second is the overflow page we were
740 		 * looking for.  The init_bitmap routine automatically, sets
741 		 * the first bit of itself to indicate that the bitmap itself
742 		 * is in use.  We would explicitly set the second bit, but
743 		 * don't have to if we tell init_bitmap not to leave it clear
744 		 * in the first place.
745 		 */
746 		if (__ibitmap(hashp,
747 		    (int)OADDR_OF(splitnum, offset), 1, free_page))
748 			return (0);
749 		hashp->SPARES[splitnum]++;
750 #ifdef DEBUG2
751 		free_bit = 2;
752 #endif
753 		offset++;
754 		if (offset > SPLITMASK) {
755 			if (++splitnum >= NCACHED) {
756 				(void)_write(STDERR_FILENO, OVMSG,
757 				    sizeof(OVMSG) - 1);
758 				return (0);
759 			}
760 			hashp->OVFL_POINT = splitnum;
761 			hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
762 			hashp->SPARES[splitnum-1]--;
763 			offset = 0;
764 		}
765 	} else {
766 		/*
767 		 * Free_bit addresses the last used bit.  Bump it to address
768 		 * the first available bit.
769 		 */
770 		free_bit++;
771 		SETBIT(freep, free_bit);
772 	}
773 
774 	/* Calculate address of the new overflow page */
775 	addr = OADDR_OF(splitnum, offset);
776 #ifdef DEBUG2
777 	(void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
778 	    addr, free_bit, free_page);
779 #endif
780 	return (addr);
781 
782 found:
783 	bit = bit + first_free(freep[j]);
784 	SETBIT(freep, bit);
785 #ifdef DEBUG2
786 	tmp1 = bit;
787 	tmp2 = i;
788 #endif
789 	/*
790 	 * Bits are addressed starting with 0, but overflow pages are addressed
791 	 * beginning at 1. Bit is a bit addressnumber, so we need to increment
792 	 * it to convert it to a page number.
793 	 */
794 	bit = 1 + bit + (i * (hashp->BSIZE << BYTE_SHIFT));
795 	if (bit >= hashp->LAST_FREED)
796 		hashp->LAST_FREED = bit - 1;
797 
798 	/* Calculate the split number for this page */
799 	for (i = 0; (i < splitnum) && (bit > hashp->SPARES[i]); i++);
800 	offset = (i ? bit - hashp->SPARES[i - 1] : bit);
801 	if (offset >= SPLITMASK)
802 		return (0);	/* Out of overflow pages */
803 	addr = OADDR_OF(i, offset);
804 #ifdef DEBUG2
805 	(void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
806 	    addr, tmp1, tmp2);
807 #endif
808 
809 	/* Allocate and return the overflow page */
810 	return (addr);
811 }
812 
813 /*
814  * Mark this overflow page as free.
815  */
816 extern void
817 __free_ovflpage(hashp, obufp)
818 	HTAB *hashp;
819 	BUFHEAD *obufp;
820 {
821 	u_int16_t addr;
822 	u_int32_t *freep;
823 	int bit_address, free_page, free_bit;
824 	u_int16_t ndx;
825 
826 	addr = obufp->addr;
827 #ifdef DEBUG1
828 	(void)fprintf(stderr, "Freeing %d\n", addr);
829 #endif
830 	ndx = (((u_int16_t)addr) >> SPLITSHIFT);
831 	bit_address =
832 	    (ndx ? hashp->SPARES[ndx - 1] : 0) + (addr & SPLITMASK) - 1;
833 	 if (bit_address < hashp->LAST_FREED)
834 		hashp->LAST_FREED = bit_address;
835 	free_page = (bit_address >> (hashp->BSHIFT + BYTE_SHIFT));
836 	free_bit = bit_address & ((hashp->BSIZE << BYTE_SHIFT) - 1);
837 
838 	if (!(freep = hashp->mapp[free_page]))
839 		freep = fetch_bitmap(hashp, free_page);
840 #ifdef DEBUG
841 	/*
842 	 * This had better never happen.  It means we tried to read a bitmap
843 	 * that has already had overflow pages allocated off it, and we
844 	 * failed to read it from the file.
845 	 */
846 	if (!freep)
847 		assert(0);
848 #endif
849 	CLRBIT(freep, free_bit);
850 #ifdef DEBUG2
851 	(void)fprintf(stderr, "FREE_OVFLPAGE: ADDR: %d BIT: %d PAGE %d\n",
852 	    obufp->addr, free_bit, free_page);
853 #endif
854 	__reclaim_buf(hashp, obufp);
855 }
856 
857 /*
858  * Returns:
859  *	 0 success
860  *	-1 failure
861  */
862 static int
863 open_temp(hashp)
864 	HTAB *hashp;
865 {
866 	sigset_t set, oset;
867 	static char namestr[] = "_hashXXXXXX";
868 
869 	/* Block signals; make sure file goes away at process exit. */
870 	(void)sigfillset(&set);
871 	(void)_sigprocmask(SIG_BLOCK, &set, &oset);
872 	if ((hashp->fp = mkstemp(namestr)) != -1) {
873 		(void)unlink(namestr);
874 		(void)_fcntl(hashp->fp, F_SETFD, 1);
875 	}
876 	(void)_sigprocmask(SIG_SETMASK, &oset, (sigset_t *)NULL);
877 	return (hashp->fp != -1 ? 0 : -1);
878 }
879 
880 /*
881  * We have to know that the key will fit, but the last entry on the page is
882  * an overflow pair, so we need to shift things.
883  */
884 static void
885 squeeze_key(sp, key, val)
886 	u_int16_t *sp;
887 	const DBT *key, *val;
888 {
889 	char *p;
890 	u_int16_t free_space, n, off, pageno;
891 
892 	p = (char *)sp;
893 	n = sp[0];
894 	free_space = FREESPACE(sp);
895 	off = OFFSET(sp);
896 
897 	pageno = sp[n - 1];
898 	off -= key->size;
899 	sp[n - 1] = off;
900 	memmove(p + off, key->data, key->size);
901 	off -= val->size;
902 	sp[n] = off;
903 	memmove(p + off, val->data, val->size);
904 	sp[0] = n + 2;
905 	sp[n + 1] = pageno;
906 	sp[n + 2] = OVFLPAGE;
907 	FREESPACE(sp) = free_space - PAIRSIZE(key, val);
908 	OFFSET(sp) = off;
909 }
910 
911 static u_int32_t *
912 fetch_bitmap(hashp, ndx)
913 	HTAB *hashp;
914 	int ndx;
915 {
916 	if (ndx >= hashp->nmaps)
917 		return (NULL);
918 	if ((hashp->mapp[ndx] = (u_int32_t *)malloc(hashp->BSIZE)) == NULL)
919 		return (NULL);
920 	if (__get_page(hashp,
921 	    (char *)hashp->mapp[ndx], hashp->BITMAPS[ndx], 0, 1, 1)) {
922 		free(hashp->mapp[ndx]);
923 		return (NULL);
924 	}
925 	return (hashp->mapp[ndx]);
926 }
927 
928 #ifdef DEBUG4
929 int
930 print_chain(addr)
931 	int addr;
932 {
933 	BUFHEAD *bufp;
934 	short *bp, oaddr;
935 
936 	(void)fprintf(stderr, "%d ", addr);
937 	bufp = __get_buf(hashp, addr, NULL, 0);
938 	bp = (short *)bufp->page;
939 	while (bp[0] && ((bp[bp[0]] == OVFLPAGE) ||
940 		((bp[0] > 2) && bp[2] < REAL_KEY))) {
941 		oaddr = bp[bp[0] - 1];
942 		(void)fprintf(stderr, "%d ", (int)oaddr);
943 		bufp = __get_buf(hashp, (int)oaddr, bufp, 0);
944 		bp = (short *)bufp->page;
945 	}
946 	(void)fprintf(stderr, "\n");
947 }
948 #endif
949