xref: /freebsd/lib/libc/db/hash/hash_page.c (revision 05c7a37afb48ddd5ee1bd921a5d46fe59cc70b15)
1 /*-
2  * Copyright (c) 1990, 1993, 1994
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Margo Seltzer.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  */
36 
37 #if defined(LIBC_SCCS) && !defined(lint)
38 static char sccsid[] = "@(#)hash_page.c	8.7 (Berkeley) 8/16/94";
39 #endif /* LIBC_SCCS and not lint */
40 
41 /*
42  * PACKAGE:  hashing
43  *
44  * DESCRIPTION:
45  *	Page manipulation for hashing package.
46  *
47  * ROUTINES:
48  *
49  * External
50  *	__get_page
51  *	__add_ovflpage
52  * Internal
53  *	overflow_page
54  *	open_temp
55  */
56 
57 #include <sys/types.h>
58 
59 #include <errno.h>
60 #include <fcntl.h>
61 #include <signal.h>
62 #include <stdio.h>
63 #include <stdlib.h>
64 #include <string.h>
65 #include <unistd.h>
66 #ifdef DEBUG
67 #include <assert.h>
68 #endif
69 
70 #include <db.h>
71 #include "hash.h"
72 #include "page.h"
73 #include "extern.h"
74 
75 static u_int32_t	*fetch_bitmap __P((HTAB *, int));
76 static u_int32_t	 first_free __P((u_int32_t));
77 static int	 open_temp __P((HTAB *));
78 static u_int16_t	 overflow_page __P((HTAB *));
79 static void	 putpair __P((char *, const DBT *, const DBT *));
80 static void	 squeeze_key __P((u_int16_t *, const DBT *, const DBT *));
81 static int	 ugly_split
82 		    __P((HTAB *, u_int32_t, BUFHEAD *, BUFHEAD *, int, int));
83 
84 #define	PAGE_INIT(P) { \
85 	((u_int16_t *)(P))[0] = 0; \
86 	((u_int16_t *)(P))[1] = hashp->BSIZE - 3 * sizeof(u_int16_t); \
87 	((u_int16_t *)(P))[2] = hashp->BSIZE; \
88 }
89 
90 /*
91  * This is called AFTER we have verified that there is room on the page for
92  * the pair (PAIRFITS has returned true) so we go right ahead and start moving
93  * stuff on.
94  */
95 static void
96 putpair(p, key, val)
97 	char *p;
98 	const DBT *key, *val;
99 {
100 	register u_int16_t *bp, n, off;
101 
102 	bp = (u_int16_t *)p;
103 
104 	/* Enter the key first. */
105 	n = bp[0];
106 
107 	off = OFFSET(bp) - key->size;
108 	memmove(p + off, key->data, key->size);
109 	bp[++n] = off;
110 
111 	/* Now the data. */
112 	off -= val->size;
113 	memmove(p + off, val->data, val->size);
114 	bp[++n] = off;
115 
116 	/* Adjust page info. */
117 	bp[0] = n;
118 	bp[n + 1] = off - ((n + 3) * sizeof(u_int16_t));
119 	bp[n + 2] = off;
120 }
121 
122 /*
123  * Returns:
124  *	 0 OK
125  *	-1 error
126  */
127 extern int
128 __delpair(hashp, bufp, ndx)
129 	HTAB *hashp;
130 	BUFHEAD *bufp;
131 	register int ndx;
132 {
133 	register u_int16_t *bp, newoff;
134 	register int n;
135 	u_int16_t pairlen;
136 
137 	bp = (u_int16_t *)bufp->page;
138 	n = bp[0];
139 
140 	if (bp[ndx + 1] < REAL_KEY)
141 		return (__big_delete(hashp, bufp));
142 	if (ndx != 1)
143 		newoff = bp[ndx - 1];
144 	else
145 		newoff = hashp->BSIZE;
146 	pairlen = newoff - bp[ndx + 1];
147 
148 	if (ndx != (n - 1)) {
149 		/* Hard Case -- need to shuffle keys */
150 		register int i;
151 		register char *src = bufp->page + (int)OFFSET(bp);
152 		register char *dst = src + (int)pairlen;
153 		memmove(dst, src, bp[ndx + 1] - OFFSET(bp));
154 
155 		/* Now adjust the pointers */
156 		for (i = ndx + 2; i <= n; i += 2) {
157 			if (bp[i + 1] == OVFLPAGE) {
158 				bp[i - 2] = bp[i];
159 				bp[i - 1] = bp[i + 1];
160 			} else {
161 				bp[i - 2] = bp[i] + pairlen;
162 				bp[i - 1] = bp[i + 1] + pairlen;
163 			}
164 		}
165 	}
166 	/* Finally adjust the page data */
167 	bp[n] = OFFSET(bp) + pairlen;
168 	bp[n - 1] = bp[n + 1] + pairlen + 2 * sizeof(u_int16_t);
169 	bp[0] = n - 2;
170 	hashp->NKEYS--;
171 
172 	bufp->flags |= BUF_MOD;
173 	return (0);
174 }
175 /*
176  * Returns:
177  *	 0 ==> OK
178  *	-1 ==> Error
179  */
180 extern int
181 __split_page(hashp, obucket, nbucket)
182 	HTAB *hashp;
183 	u_int32_t obucket, nbucket;
184 {
185 	register BUFHEAD *new_bufp, *old_bufp;
186 	register u_int16_t *ino;
187 	register char *np;
188 	DBT key, val;
189 	int n, ndx, retval;
190 	u_int16_t copyto, diff, off, moved;
191 	char *op;
192 
193 	copyto = (u_int16_t)hashp->BSIZE;
194 	off = (u_int16_t)hashp->BSIZE;
195 	old_bufp = __get_buf(hashp, obucket, NULL, 0);
196 	if (old_bufp == NULL)
197 		return (-1);
198 	new_bufp = __get_buf(hashp, nbucket, NULL, 0);
199 	if (new_bufp == NULL)
200 		return (-1);
201 
202 	old_bufp->flags |= (BUF_MOD | BUF_PIN);
203 	new_bufp->flags |= (BUF_MOD | BUF_PIN);
204 
205 	ino = (u_int16_t *)(op = old_bufp->page);
206 	np = new_bufp->page;
207 
208 	moved = 0;
209 
210 	for (n = 1, ndx = 1; n < ino[0]; n += 2) {
211 		if (ino[n + 1] < REAL_KEY) {
212 			retval = ugly_split(hashp, obucket, old_bufp, new_bufp,
213 			    (int)copyto, (int)moved);
214 			old_bufp->flags &= ~BUF_PIN;
215 			new_bufp->flags &= ~BUF_PIN;
216 			return (retval);
217 
218 		}
219 		key.data = (u_char *)op + ino[n];
220 		key.size = off - ino[n];
221 
222 		if (__call_hash(hashp, key.data, key.size) == obucket) {
223 			/* Don't switch page */
224 			diff = copyto - off;
225 			if (diff) {
226 				copyto = ino[n + 1] + diff;
227 				memmove(op + copyto, op + ino[n + 1],
228 				    off - ino[n + 1]);
229 				ino[ndx] = copyto + ino[n] - ino[n + 1];
230 				ino[ndx + 1] = copyto;
231 			} else
232 				copyto = ino[n + 1];
233 			ndx += 2;
234 		} else {
235 			/* Switch page */
236 			val.data = (u_char *)op + ino[n + 1];
237 			val.size = ino[n] - ino[n + 1];
238 			putpair(np, &key, &val);
239 			moved += 2;
240 		}
241 
242 		off = ino[n + 1];
243 	}
244 
245 	/* Now clean up the page */
246 	ino[0] -= moved;
247 	FREESPACE(ino) = copyto - sizeof(u_int16_t) * (ino[0] + 3);
248 	OFFSET(ino) = copyto;
249 
250 #ifdef DEBUG3
251 	(void)fprintf(stderr, "split %d/%d\n",
252 	    ((u_int16_t *)np)[0] / 2,
253 	    ((u_int16_t *)op)[0] / 2);
254 #endif
255 	/* unpin both pages */
256 	old_bufp->flags &= ~BUF_PIN;
257 	new_bufp->flags &= ~BUF_PIN;
258 	return (0);
259 }
260 
261 /*
262  * Called when we encounter an overflow or big key/data page during split
263  * handling.  This is special cased since we have to begin checking whether
264  * the key/data pairs fit on their respective pages and because we may need
265  * overflow pages for both the old and new pages.
266  *
267  * The first page might be a page with regular key/data pairs in which case
268  * we have a regular overflow condition and just need to go on to the next
269  * page or it might be a big key/data pair in which case we need to fix the
270  * big key/data pair.
271  *
272  * Returns:
273  *	 0 ==> success
274  *	-1 ==> failure
275  */
276 static int
277 ugly_split(hashp, obucket, old_bufp, new_bufp, copyto, moved)
278 	HTAB *hashp;
279 	u_int32_t obucket;	/* Same as __split_page. */
280 	BUFHEAD *old_bufp, *new_bufp;
281 	int copyto;	/* First byte on page which contains key/data values. */
282 	int moved;	/* Number of pairs moved to new page. */
283 {
284 	register BUFHEAD *bufp;	/* Buffer header for ino */
285 	register u_int16_t *ino;	/* Page keys come off of */
286 	register u_int16_t *np;	/* New page */
287 	register u_int16_t *op;	/* Page keys go on to if they aren't moving */
288 
289 	BUFHEAD *last_bfp;	/* Last buf header OVFL needing to be freed */
290 	DBT key, val;
291 	SPLIT_RETURN ret;
292 	u_int16_t n, off, ov_addr, scopyto;
293 	char *cino;		/* Character value of ino */
294 
295 	bufp = old_bufp;
296 	ino = (u_int16_t *)old_bufp->page;
297 	np = (u_int16_t *)new_bufp->page;
298 	op = (u_int16_t *)old_bufp->page;
299 	last_bfp = NULL;
300 	scopyto = (u_int16_t)copyto;	/* ANSI */
301 
302 	n = ino[0] - 1;
303 	while (n < ino[0]) {
304 		if (ino[2] < REAL_KEY && ino[2] != OVFLPAGE) {
305 			if (__big_split(hashp, old_bufp,
306 			    new_bufp, bufp, bufp->addr, obucket, &ret))
307 				return (-1);
308 			old_bufp = ret.oldp;
309 			if (!old_bufp)
310 				return (-1);
311 			op = (u_int16_t *)old_bufp->page;
312 			new_bufp = ret.newp;
313 			if (!new_bufp)
314 				return (-1);
315 			np = (u_int16_t *)new_bufp->page;
316 			bufp = ret.nextp;
317 			if (!bufp)
318 				return (0);
319 			cino = (char *)bufp->page;
320 			ino = (u_int16_t *)cino;
321 			last_bfp = ret.nextp;
322 		} else if (ino[n + 1] == OVFLPAGE) {
323 			ov_addr = ino[n];
324 			/*
325 			 * Fix up the old page -- the extra 2 are the fields
326 			 * which contained the overflow information.
327 			 */
328 			ino[0] -= (moved + 2);
329 			FREESPACE(ino) =
330 			    scopyto - sizeof(u_int16_t) * (ino[0] + 3);
331 			OFFSET(ino) = scopyto;
332 
333 			bufp = __get_buf(hashp, ov_addr, bufp, 0);
334 			if (!bufp)
335 				return (-1);
336 
337 			ino = (u_int16_t *)bufp->page;
338 			n = 1;
339 			scopyto = hashp->BSIZE;
340 			moved = 0;
341 
342 			if (last_bfp)
343 				__free_ovflpage(hashp, last_bfp);
344 			last_bfp = bufp;
345 		}
346 		/* Move regular sized pairs of there are any */
347 		off = hashp->BSIZE;
348 		for (n = 1; (n < ino[0]) && (ino[n + 1] >= REAL_KEY); n += 2) {
349 			cino = (char *)ino;
350 			key.data = (u_char *)cino + ino[n];
351 			key.size = off - ino[n];
352 			val.data = (u_char *)cino + ino[n + 1];
353 			val.size = ino[n] - ino[n + 1];
354 			off = ino[n + 1];
355 
356 			if (__call_hash(hashp, key.data, key.size) == obucket) {
357 				/* Keep on old page */
358 				if (PAIRFITS(op, (&key), (&val)))
359 					putpair((char *)op, &key, &val);
360 				else {
361 					old_bufp =
362 					    __add_ovflpage(hashp, old_bufp);
363 					if (!old_bufp)
364 						return (-1);
365 					op = (u_int16_t *)old_bufp->page;
366 					putpair((char *)op, &key, &val);
367 				}
368 				old_bufp->flags |= BUF_MOD;
369 			} else {
370 				/* Move to new page */
371 				if (PAIRFITS(np, (&key), (&val)))
372 					putpair((char *)np, &key, &val);
373 				else {
374 					new_bufp =
375 					    __add_ovflpage(hashp, new_bufp);
376 					if (!new_bufp)
377 						return (-1);
378 					np = (u_int16_t *)new_bufp->page;
379 					putpair((char *)np, &key, &val);
380 				}
381 				new_bufp->flags |= BUF_MOD;
382 			}
383 		}
384 	}
385 	if (last_bfp)
386 		__free_ovflpage(hashp, last_bfp);
387 	return (0);
388 }
389 
390 /*
391  * Add the given pair to the page
392  *
393  * Returns:
394  *	0 ==> OK
395  *	1 ==> failure
396  */
397 extern int
398 __addel(hashp, bufp, key, val)
399 	HTAB *hashp;
400 	BUFHEAD *bufp;
401 	const DBT *key, *val;
402 {
403 	register u_int16_t *bp, *sop;
404 	int do_expand;
405 
406 	bp = (u_int16_t *)bufp->page;
407 	do_expand = 0;
408 	while (bp[0] && (bp[2] < REAL_KEY || bp[bp[0]] < REAL_KEY))
409 		/* Exception case */
410 		if (bp[2] == FULL_KEY_DATA && bp[0] == 2)
411 			/* This is the last page of a big key/data pair
412 			   and we need to add another page */
413 			break;
414 		else if (bp[2] < REAL_KEY && bp[bp[0]] != OVFLPAGE) {
415 			bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
416 			if (!bufp)
417 				return (-1);
418 			bp = (u_int16_t *)bufp->page;
419 		} else
420 			/* Try to squeeze key on this page */
421 			if (FREESPACE(bp) > PAIRSIZE(key, val)) {
422 				squeeze_key(bp, key, val);
423 				return (0);
424 			} else {
425 				bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
426 				if (!bufp)
427 					return (-1);
428 				bp = (u_int16_t *)bufp->page;
429 			}
430 
431 	if (PAIRFITS(bp, key, val))
432 		putpair(bufp->page, key, val);
433 	else {
434 		do_expand = 1;
435 		bufp = __add_ovflpage(hashp, bufp);
436 		if (!bufp)
437 			return (-1);
438 		sop = (u_int16_t *)bufp->page;
439 
440 		if (PAIRFITS(sop, key, val))
441 			putpair((char *)sop, key, val);
442 		else
443 			if (__big_insert(hashp, bufp, key, val))
444 				return (-1);
445 	}
446 	bufp->flags |= BUF_MOD;
447 	/*
448 	 * If the average number of keys per bucket exceeds the fill factor,
449 	 * expand the table.
450 	 */
451 	hashp->NKEYS++;
452 	if (do_expand ||
453 	    (hashp->NKEYS / (hashp->MAX_BUCKET + 1) > hashp->FFACTOR))
454 		return (__expand_table(hashp));
455 	return (0);
456 }
457 
458 /*
459  *
460  * Returns:
461  *	pointer on success
462  *	NULL on error
463  */
464 extern BUFHEAD *
465 __add_ovflpage(hashp, bufp)
466 	HTAB *hashp;
467 	BUFHEAD *bufp;
468 {
469 	register u_int16_t *sp;
470 	u_int16_t ndx, ovfl_num;
471 #ifdef DEBUG1
472 	int tmp1, tmp2;
473 #endif
474 	sp = (u_int16_t *)bufp->page;
475 
476 	/* Check if we are dynamically determining the fill factor */
477 	if (hashp->FFACTOR == DEF_FFACTOR) {
478 		hashp->FFACTOR = sp[0] >> 1;
479 		if (hashp->FFACTOR < MIN_FFACTOR)
480 			hashp->FFACTOR = MIN_FFACTOR;
481 	}
482 	bufp->flags |= BUF_MOD;
483 	ovfl_num = overflow_page(hashp);
484 #ifdef DEBUG1
485 	tmp1 = bufp->addr;
486 	tmp2 = bufp->ovfl ? bufp->ovfl->addr : 0;
487 #endif
488 	if (!ovfl_num || !(bufp->ovfl = __get_buf(hashp, ovfl_num, bufp, 1)))
489 		return (NULL);
490 	bufp->ovfl->flags |= BUF_MOD;
491 #ifdef DEBUG1
492 	(void)fprintf(stderr, "ADDOVFLPAGE: %d->ovfl was %d is now %d\n",
493 	    tmp1, tmp2, bufp->ovfl->addr);
494 #endif
495 	ndx = sp[0];
496 	/*
497 	 * Since a pair is allocated on a page only if there's room to add
498 	 * an overflow page, we know that the OVFL information will fit on
499 	 * the page.
500 	 */
501 	sp[ndx + 4] = OFFSET(sp);
502 	sp[ndx + 3] = FREESPACE(sp) - OVFLSIZE;
503 	sp[ndx + 1] = ovfl_num;
504 	sp[ndx + 2] = OVFLPAGE;
505 	sp[0] = ndx + 2;
506 #ifdef HASH_STATISTICS
507 	hash_overflows++;
508 #endif
509 	return (bufp->ovfl);
510 }
511 
512 /*
513  * Returns:
514  *	 0 indicates SUCCESS
515  *	-1 indicates FAILURE
516  */
517 extern int
518 __get_page(hashp, p, bucket, is_bucket, is_disk, is_bitmap)
519 	HTAB *hashp;
520 	char *p;
521 	u_int32_t bucket;
522 	int is_bucket, is_disk, is_bitmap;
523 {
524 	register int fd, page, size;
525 	int rsize;
526 	u_int16_t *bp;
527 
528 	fd = hashp->fp;
529 	size = hashp->BSIZE;
530 
531 	if ((fd == -1) || !is_disk) {
532 		PAGE_INIT(p);
533 		return (0);
534 	}
535 	if (is_bucket)
536 		page = BUCKET_TO_PAGE(bucket);
537 	else
538 		page = OADDR_TO_PAGE(bucket);
539 	if ((lseek(fd, (off_t)page << hashp->BSHIFT, SEEK_SET) == -1) ||
540 	    ((rsize = read(fd, p, size)) == -1))
541 		return (-1);
542 	bp = (u_int16_t *)p;
543 	if (!rsize)
544 		bp[0] = 0;	/* We hit the EOF, so initialize a new page */
545 	else
546 		if (rsize != size) {
547 			errno = EFTYPE;
548 			return (-1);
549 		}
550 	if (!is_bitmap && !bp[0]) {
551 		PAGE_INIT(p);
552 	} else
553 		if (hashp->LORDER != BYTE_ORDER) {
554 			register int i, max;
555 
556 			if (is_bitmap) {
557 				max = hashp->BSIZE >> 2; /* divide by 4 */
558 				for (i = 0; i < max; i++)
559 					M_32_SWAP(((int *)p)[i]);
560 			} else {
561 				M_16_SWAP(bp[0]);
562 				max = bp[0] + 2;
563 				for (i = 1; i <= max; i++)
564 					M_16_SWAP(bp[i]);
565 			}
566 		}
567 	return (0);
568 }
569 
570 /*
571  * Write page p to disk
572  *
573  * Returns:
574  *	 0 ==> OK
575  *	-1 ==>failure
576  */
577 extern int
578 __put_page(hashp, p, bucket, is_bucket, is_bitmap)
579 	HTAB *hashp;
580 	char *p;
581 	u_int32_t bucket;
582 	int is_bucket, is_bitmap;
583 {
584 	register int fd, page, size;
585 	int wsize;
586 
587 	size = hashp->BSIZE;
588 	if ((hashp->fp == -1) && open_temp(hashp))
589 		return (-1);
590 	fd = hashp->fp;
591 
592 	if (hashp->LORDER != BYTE_ORDER) {
593 		register int i;
594 		register int max;
595 
596 		if (is_bitmap) {
597 			max = hashp->BSIZE >> 2;	/* divide by 4 */
598 			for (i = 0; i < max; i++)
599 				M_32_SWAP(((int *)p)[i]);
600 		} else {
601 			max = ((u_int16_t *)p)[0] + 2;
602 			for (i = 0; i <= max; i++)
603 				M_16_SWAP(((u_int16_t *)p)[i]);
604 		}
605 	}
606 	if (is_bucket)
607 		page = BUCKET_TO_PAGE(bucket);
608 	else
609 		page = OADDR_TO_PAGE(bucket);
610 	if ((lseek(fd, (off_t)page << hashp->BSHIFT, SEEK_SET) == -1) ||
611 	    ((wsize = write(fd, p, size)) == -1))
612 		/* Errno is set */
613 		return (-1);
614 	if (wsize != size) {
615 		errno = EFTYPE;
616 		return (-1);
617 	}
618 	return (0);
619 }
620 
621 #define BYTE_MASK	((1 << INT_BYTE_SHIFT) -1)
622 /*
623  * Initialize a new bitmap page.  Bitmap pages are left in memory
624  * once they are read in.
625  */
626 extern int
627 __ibitmap(hashp, pnum, nbits, ndx)
628 	HTAB *hashp;
629 	int pnum, nbits, ndx;
630 {
631 	u_int32_t *ip;
632 	int clearbytes, clearints;
633 
634 	if ((ip = (u_int32_t *)malloc(hashp->BSIZE)) == NULL)
635 		return (1);
636 	hashp->nmaps++;
637 	clearints = ((nbits - 1) >> INT_BYTE_SHIFT) + 1;
638 	clearbytes = clearints << INT_TO_BYTE;
639 	(void)memset((char *)ip, 0, clearbytes);
640 	(void)memset(((char *)ip) + clearbytes, 0xFF,
641 	    hashp->BSIZE - clearbytes);
642 	ip[clearints - 1] = ALL_SET << (nbits & BYTE_MASK);
643 	SETBIT(ip, 0);
644 	hashp->BITMAPS[ndx] = (u_int16_t)pnum;
645 	hashp->mapp[ndx] = ip;
646 	return (0);
647 }
648 
649 static u_int32_t
650 first_free(map)
651 	u_int32_t map;
652 {
653 	register u_int32_t i, mask;
654 
655 	mask = 0x1;
656 	for (i = 0; i < BITS_PER_MAP; i++) {
657 		if (!(mask & map))
658 			return (i);
659 		mask = mask << 1;
660 	}
661 	return (i);
662 }
663 
664 static u_int16_t
665 overflow_page(hashp)
666 	HTAB *hashp;
667 {
668 	register u_int32_t *freep;
669 	register int max_free, offset, splitnum;
670 	u_int16_t addr;
671 	int bit, first_page, free_bit, free_page, i, in_use_bits, j;
672 #ifdef DEBUG2
673 	int tmp1, tmp2;
674 #endif
675 	splitnum = hashp->OVFL_POINT;
676 	max_free = hashp->SPARES[splitnum];
677 
678 	free_page = (max_free - 1) >> (hashp->BSHIFT + BYTE_SHIFT);
679 	free_bit = (max_free - 1) & ((hashp->BSIZE << BYTE_SHIFT) - 1);
680 
681 	/* Look through all the free maps to find the first free block */
682 	first_page = hashp->LAST_FREED >>(hashp->BSHIFT + BYTE_SHIFT);
683 	for ( i = first_page; i <= free_page; i++ ) {
684 		if (!(freep = (u_int32_t *)hashp->mapp[i]) &&
685 		    !(freep = fetch_bitmap(hashp, i)))
686 			return (0);
687 		if (i == free_page)
688 			in_use_bits = free_bit;
689 		else
690 			in_use_bits = (hashp->BSIZE << BYTE_SHIFT) - 1;
691 
692 		if (i == first_page) {
693 			bit = hashp->LAST_FREED &
694 			    ((hashp->BSIZE << BYTE_SHIFT) - 1);
695 			j = bit / BITS_PER_MAP;
696 			bit = bit & ~(BITS_PER_MAP - 1);
697 		} else {
698 			bit = 0;
699 			j = 0;
700 		}
701 		for (; bit <= in_use_bits; j++, bit += BITS_PER_MAP)
702 			if (freep[j] != ALL_SET)
703 				goto found;
704 	}
705 
706 	/* No Free Page Found */
707 	hashp->LAST_FREED = hashp->SPARES[splitnum];
708 	hashp->SPARES[splitnum]++;
709 	offset = hashp->SPARES[splitnum] -
710 	    (splitnum ? hashp->SPARES[splitnum - 1] : 0);
711 
712 #define	OVMSG	"HASH: Out of overflow pages.  Increase page size\n"
713 	if (offset > SPLITMASK) {
714 		if (++splitnum >= NCACHED) {
715 			(void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
716 			return (0);
717 		}
718 		hashp->OVFL_POINT = splitnum;
719 		hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
720 		hashp->SPARES[splitnum-1]--;
721 		offset = 1;
722 	}
723 
724 	/* Check if we need to allocate a new bitmap page */
725 	if (free_bit == (hashp->BSIZE << BYTE_SHIFT) - 1) {
726 		free_page++;
727 		if (free_page >= NCACHED) {
728 			(void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
729 			return (0);
730 		}
731 		/*
732 		 * This is tricky.  The 1 indicates that you want the new page
733 		 * allocated with 1 clear bit.  Actually, you are going to
734 		 * allocate 2 pages from this map.  The first is going to be
735 		 * the map page, the second is the overflow page we were
736 		 * looking for.  The init_bitmap routine automatically, sets
737 		 * the first bit of itself to indicate that the bitmap itself
738 		 * is in use.  We would explicitly set the second bit, but
739 		 * don't have to if we tell init_bitmap not to leave it clear
740 		 * in the first place.
741 		 */
742 		if (__ibitmap(hashp,
743 		    (int)OADDR_OF(splitnum, offset), 1, free_page))
744 			return (0);
745 		hashp->SPARES[splitnum]++;
746 #ifdef DEBUG2
747 		free_bit = 2;
748 #endif
749 		offset++;
750 		if (offset > SPLITMASK) {
751 			if (++splitnum >= NCACHED) {
752 				(void)write(STDERR_FILENO, OVMSG,
753 				    sizeof(OVMSG) - 1);
754 				return (0);
755 			}
756 			hashp->OVFL_POINT = splitnum;
757 			hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
758 			hashp->SPARES[splitnum-1]--;
759 			offset = 0;
760 		}
761 	} else {
762 		/*
763 		 * Free_bit addresses the last used bit.  Bump it to address
764 		 * the first available bit.
765 		 */
766 		free_bit++;
767 		SETBIT(freep, free_bit);
768 	}
769 
770 	/* Calculate address of the new overflow page */
771 	addr = OADDR_OF(splitnum, offset);
772 #ifdef DEBUG2
773 	(void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
774 	    addr, free_bit, free_page);
775 #endif
776 	return (addr);
777 
778 found:
779 	bit = bit + first_free(freep[j]);
780 	SETBIT(freep, bit);
781 #ifdef DEBUG2
782 	tmp1 = bit;
783 	tmp2 = i;
784 #endif
785 	/*
786 	 * Bits are addressed starting with 0, but overflow pages are addressed
787 	 * beginning at 1. Bit is a bit addressnumber, so we need to increment
788 	 * it to convert it to a page number.
789 	 */
790 	bit = 1 + bit + (i * (hashp->BSIZE << BYTE_SHIFT));
791 	if (bit >= hashp->LAST_FREED)
792 		hashp->LAST_FREED = bit - 1;
793 
794 	/* Calculate the split number for this page */
795 	for (i = 0; (i < splitnum) && (bit > hashp->SPARES[i]); i++);
796 	offset = (i ? bit - hashp->SPARES[i - 1] : bit);
797 	if (offset >= SPLITMASK)
798 		return (0);	/* Out of overflow pages */
799 	addr = OADDR_OF(i, offset);
800 #ifdef DEBUG2
801 	(void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
802 	    addr, tmp1, tmp2);
803 #endif
804 
805 	/* Allocate and return the overflow page */
806 	return (addr);
807 }
808 
809 /*
810  * Mark this overflow page as free.
811  */
812 extern void
813 __free_ovflpage(hashp, obufp)
814 	HTAB *hashp;
815 	BUFHEAD *obufp;
816 {
817 	register u_int16_t addr;
818 	u_int32_t *freep;
819 	int bit_address, free_page, free_bit;
820 	u_int16_t ndx;
821 
822 	addr = obufp->addr;
823 #ifdef DEBUG1
824 	(void)fprintf(stderr, "Freeing %d\n", addr);
825 #endif
826 	ndx = (((u_int16_t)addr) >> SPLITSHIFT);
827 	bit_address =
828 	    (ndx ? hashp->SPARES[ndx - 1] : 0) + (addr & SPLITMASK) - 1;
829 	 if (bit_address < hashp->LAST_FREED)
830 		hashp->LAST_FREED = bit_address;
831 	free_page = (bit_address >> (hashp->BSHIFT + BYTE_SHIFT));
832 	free_bit = bit_address & ((hashp->BSIZE << BYTE_SHIFT) - 1);
833 
834 	if (!(freep = hashp->mapp[free_page]))
835 		freep = fetch_bitmap(hashp, free_page);
836 #ifdef DEBUG
837 	/*
838 	 * This had better never happen.  It means we tried to read a bitmap
839 	 * that has already had overflow pages allocated off it, and we
840 	 * failed to read it from the file.
841 	 */
842 	if (!freep)
843 		assert(0);
844 #endif
845 	CLRBIT(freep, free_bit);
846 #ifdef DEBUG2
847 	(void)fprintf(stderr, "FREE_OVFLPAGE: ADDR: %d BIT: %d PAGE %d\n",
848 	    obufp->addr, free_bit, free_page);
849 #endif
850 	__reclaim_buf(hashp, obufp);
851 }
852 
853 /*
854  * Returns:
855  *	 0 success
856  *	-1 failure
857  */
858 static int
859 open_temp(hashp)
860 	HTAB *hashp;
861 {
862 	sigset_t set, oset;
863 	static char namestr[] = "_hashXXXXXX";
864 
865 	/* Block signals; make sure file goes away at process exit. */
866 	(void)sigfillset(&set);
867 	(void)sigprocmask(SIG_BLOCK, &set, &oset);
868 	if ((hashp->fp = mkstemp(namestr)) != -1) {
869 		(void)unlink(namestr);
870 		(void)fcntl(hashp->fp, F_SETFD, 1);
871 	}
872 	(void)sigprocmask(SIG_SETMASK, &oset, (sigset_t *)NULL);
873 	return (hashp->fp != -1 ? 0 : -1);
874 }
875 
876 /*
877  * We have to know that the key will fit, but the last entry on the page is
878  * an overflow pair, so we need to shift things.
879  */
880 static void
881 squeeze_key(sp, key, val)
882 	u_int16_t *sp;
883 	const DBT *key, *val;
884 {
885 	register char *p;
886 	u_int16_t free_space, n, off, pageno;
887 
888 	p = (char *)sp;
889 	n = sp[0];
890 	free_space = FREESPACE(sp);
891 	off = OFFSET(sp);
892 
893 	pageno = sp[n - 1];
894 	off -= key->size;
895 	sp[n - 1] = off;
896 	memmove(p + off, key->data, key->size);
897 	off -= val->size;
898 	sp[n] = off;
899 	memmove(p + off, val->data, val->size);
900 	sp[0] = n + 2;
901 	sp[n + 1] = pageno;
902 	sp[n + 2] = OVFLPAGE;
903 	FREESPACE(sp) = free_space - PAIRSIZE(key, val);
904 	OFFSET(sp) = off;
905 }
906 
907 static u_int32_t *
908 fetch_bitmap(hashp, ndx)
909 	HTAB *hashp;
910 	int ndx;
911 {
912 	if (ndx >= hashp->nmaps)
913 		return (NULL);
914 	if ((hashp->mapp[ndx] = (u_int32_t *)malloc(hashp->BSIZE)) == NULL)
915 		return (NULL);
916 	if (__get_page(hashp,
917 	    (char *)hashp->mapp[ndx], hashp->BITMAPS[ndx], 0, 1, 1)) {
918 		free(hashp->mapp[ndx]);
919 		return (NULL);
920 	}
921 	return (hashp->mapp[ndx]);
922 }
923 
924 #ifdef DEBUG4
925 int
926 print_chain(addr)
927 	int addr;
928 {
929 	BUFHEAD *bufp;
930 	short *bp, oaddr;
931 
932 	(void)fprintf(stderr, "%d ", addr);
933 	bufp = __get_buf(hashp, addr, NULL, 0);
934 	bp = (short *)bufp->page;
935 	while (bp[0] && ((bp[bp[0]] == OVFLPAGE) ||
936 		((bp[0] > 2) && bp[2] < REAL_KEY))) {
937 		oaddr = bp[bp[0] - 1];
938 		(void)fprintf(stderr, "%d ", (int)oaddr);
939 		bufp = __get_buf(hashp, (int)oaddr, bufp, 0);
940 		bp = (short *)bufp->page;
941 	}
942 	(void)fprintf(stderr, "\n");
943 }
944 #endif
945