1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1990, 1993, 1994 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * Margo Seltzer. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 */ 34 35 /* 36 * PACKAGE: hash 37 * DESCRIPTION: 38 * Big key/data handling for the hashing package. 39 * 40 * ROUTINES: 41 * External 42 * __big_keydata 43 * __big_split 44 * __big_insert 45 * __big_return 46 * __big_delete 47 * __find_last_page 48 * Internal 49 * collect_key 50 * collect_data 51 */ 52 53 #include <sys/param.h> 54 55 #include <errno.h> 56 #include <stdio.h> 57 #include <stdlib.h> 58 #include <string.h> 59 60 #ifdef DEBUG 61 #include <assert.h> 62 #endif 63 64 #include <db.h> 65 #include "hash.h" 66 #include "page.h" 67 #include "extern.h" 68 69 static int collect_key(HTAB *, BUFHEAD *, int, DBT *, int); 70 static int collect_data(HTAB *, BUFHEAD *, int, int); 71 72 /* 73 * Big_insert 74 * 75 * You need to do an insert and the key/data pair is too big 76 * 77 * Returns: 78 * 0 ==> OK 79 *-1 ==> ERROR 80 */ 81 int 82 __big_insert(HTAB *hashp, BUFHEAD *bufp, const DBT *key, const DBT *val) 83 { 84 u_int16_t *p; 85 int key_size, n; 86 unsigned int val_size; 87 u_int16_t space, move_bytes, off; 88 char *cp, *key_data, *val_data; 89 90 cp = bufp->page; /* Character pointer of p. */ 91 p = (u_int16_t *)cp; 92 93 key_data = (char *)key->data; 94 key_size = key->size; 95 val_data = (char *)val->data; 96 val_size = val->size; 97 98 /* First move the Key */ 99 for (space = FREESPACE(p) - BIGOVERHEAD; key_size; 100 space = FREESPACE(p) - BIGOVERHEAD) { 101 move_bytes = MIN(space, key_size); 102 off = OFFSET(p) - move_bytes; 103 memmove(cp + off, key_data, move_bytes); 104 key_size -= move_bytes; 105 key_data += move_bytes; 106 n = p[0]; 107 p[++n] = off; 108 p[0] = ++n; 109 FREESPACE(p) = off - PAGE_META(n); 110 OFFSET(p) = off; 111 p[n] = PARTIAL_KEY; 112 bufp = __add_ovflpage(hashp, bufp); 113 if (!bufp) 114 return (-1); 115 n = p[0]; 116 if (!key_size) { 117 space = FREESPACE(p); 118 if (space) { 119 move_bytes = MIN(space, val_size); 120 /* 121 * If the data would fit exactly in the 122 * remaining space, we must overflow it to the 123 * next page; otherwise the invariant that the 124 * data must end on a page with FREESPACE 125 * non-zero would fail. 126 */ 127 if (space == val_size && val_size == val->size) 128 goto toolarge; 129 off = OFFSET(p) - move_bytes; 130 memmove(cp + off, val_data, move_bytes); 131 val_data += move_bytes; 132 val_size -= move_bytes; 133 p[n] = off; 134 p[n - 2] = FULL_KEY_DATA; 135 FREESPACE(p) = FREESPACE(p) - move_bytes; 136 OFFSET(p) = off; 137 } else { 138 toolarge: 139 p[n - 2] = FULL_KEY; 140 } 141 } 142 p = (u_int16_t *)bufp->page; 143 cp = bufp->page; 144 bufp->flags |= BUF_MOD; 145 } 146 147 /* Now move the data */ 148 for (space = FREESPACE(p) - BIGOVERHEAD; val_size; 149 space = FREESPACE(p) - BIGOVERHEAD) { 150 move_bytes = MIN(space, val_size); 151 /* 152 * Here's the hack to make sure that if the data ends on the 153 * same page as the key ends, FREESPACE is at least one. 154 */ 155 if (space == val_size && val_size == val->size) 156 move_bytes--; 157 off = OFFSET(p) - move_bytes; 158 memmove(cp + off, val_data, move_bytes); 159 val_size -= move_bytes; 160 val_data += move_bytes; 161 n = p[0]; 162 p[++n] = off; 163 p[0] = ++n; 164 FREESPACE(p) = off - PAGE_META(n); 165 OFFSET(p) = off; 166 if (val_size) { 167 p[n] = FULL_KEY; 168 bufp = __add_ovflpage(hashp, bufp); 169 if (!bufp) 170 return (-1); 171 cp = bufp->page; 172 p = (u_int16_t *)cp; 173 } else 174 p[n] = FULL_KEY_DATA; 175 bufp->flags |= BUF_MOD; 176 } 177 return (0); 178 } 179 180 /* 181 * Called when bufp's page contains a partial key (index should be 1) 182 * 183 * All pages in the big key/data pair except bufp are freed. We cannot 184 * free bufp because the page pointing to it is lost and we can't get rid 185 * of its pointer. 186 * 187 * Returns: 188 * 0 => OK 189 *-1 => ERROR 190 */ 191 int 192 __big_delete(HTAB *hashp, BUFHEAD *bufp) 193 { 194 BUFHEAD *last_bfp, *rbufp; 195 u_int16_t *bp, pageno; 196 int key_done, n; 197 198 rbufp = bufp; 199 last_bfp = NULL; 200 bp = (u_int16_t *)bufp->page; 201 pageno = 0; 202 key_done = 0; 203 204 while (!key_done || (bp[2] != FULL_KEY_DATA)) { 205 if (bp[2] == FULL_KEY || bp[2] == FULL_KEY_DATA) 206 key_done = 1; 207 208 /* 209 * If there is freespace left on a FULL_KEY_DATA page, then 210 * the data is short and fits entirely on this page, and this 211 * is the last page. 212 */ 213 if (bp[2] == FULL_KEY_DATA && FREESPACE(bp)) 214 break; 215 pageno = bp[bp[0] - 1]; 216 rbufp->flags |= BUF_MOD; 217 rbufp = __get_buf(hashp, pageno, rbufp, 0); 218 if (last_bfp) 219 __free_ovflpage(hashp, last_bfp); 220 last_bfp = rbufp; 221 if (!rbufp) 222 return (-1); /* Error. */ 223 bp = (u_int16_t *)rbufp->page; 224 } 225 226 /* 227 * If we get here then rbufp points to the last page of the big 228 * key/data pair. Bufp points to the first one -- it should now be 229 * empty pointing to the next page after this pair. Can't free it 230 * because we don't have the page pointing to it. 231 */ 232 233 /* This is information from the last page of the pair. */ 234 n = bp[0]; 235 pageno = bp[n - 1]; 236 237 /* Now, bp is the first page of the pair. */ 238 bp = (u_int16_t *)bufp->page; 239 if (n > 2) { 240 /* There is an overflow page. */ 241 bp[1] = pageno; 242 bp[2] = OVFLPAGE; 243 bufp->ovfl = rbufp->ovfl; 244 } else 245 /* This is the last page. */ 246 bufp->ovfl = NULL; 247 n -= 2; 248 bp[0] = n; 249 FREESPACE(bp) = hashp->BSIZE - PAGE_META(n); 250 OFFSET(bp) = hashp->BSIZE; 251 252 bufp->flags |= BUF_MOD; 253 if (rbufp) 254 __free_ovflpage(hashp, rbufp); 255 if (last_bfp && last_bfp != rbufp) 256 __free_ovflpage(hashp, last_bfp); 257 258 hashp->NKEYS--; 259 return (0); 260 } 261 /* 262 * Returns: 263 * 0 = key not found 264 * -1 = get next overflow page 265 * -2 means key not found and this is big key/data 266 * -3 error 267 */ 268 int 269 __find_bigpair(HTAB *hashp, BUFHEAD *bufp, int ndx, char *key, int size) 270 { 271 u_int16_t *bp; 272 char *p; 273 int ksize; 274 u_int16_t bytes; 275 char *kkey; 276 277 bp = (u_int16_t *)bufp->page; 278 p = bufp->page; 279 ksize = size; 280 kkey = key; 281 282 for (bytes = hashp->BSIZE - bp[ndx]; 283 bytes <= size && bp[ndx + 1] == PARTIAL_KEY; 284 bytes = hashp->BSIZE - bp[ndx]) { 285 if (memcmp(p + bp[ndx], kkey, bytes)) 286 return (-2); 287 kkey += bytes; 288 ksize -= bytes; 289 bufp = __get_buf(hashp, bp[ndx + 2], bufp, 0); 290 if (!bufp) 291 return (-3); 292 p = bufp->page; 293 bp = (u_int16_t *)p; 294 ndx = 1; 295 } 296 297 if (bytes != ksize || memcmp(p + bp[ndx], kkey, bytes)) { 298 #ifdef HASH_STATISTICS 299 ++hash_collisions; 300 #endif 301 return (-2); 302 } else 303 return (ndx); 304 } 305 306 /* 307 * Given the buffer pointer of the first overflow page of a big pair, 308 * find the end of the big pair 309 * 310 * This will set bpp to the buffer header of the last page of the big pair. 311 * It will return the pageno of the overflow page following the last page 312 * of the pair; 0 if there isn't any (i.e. big pair is the last key in the 313 * bucket) 314 */ 315 u_int16_t 316 __find_last_page(HTAB *hashp, BUFHEAD **bpp) 317 { 318 BUFHEAD *bufp; 319 u_int16_t *bp, pageno; 320 int n; 321 322 bufp = *bpp; 323 bp = (u_int16_t *)bufp->page; 324 for (;;) { 325 n = bp[0]; 326 327 /* 328 * This is the last page if: the tag is FULL_KEY_DATA and 329 * either only 2 entries OVFLPAGE marker is explicit there 330 * is freespace on the page. 331 */ 332 if (bp[2] == FULL_KEY_DATA && 333 ((n == 2) || (bp[n] == OVFLPAGE) || (FREESPACE(bp)))) 334 break; 335 336 pageno = bp[n - 1]; 337 bufp = __get_buf(hashp, pageno, bufp, 0); 338 if (!bufp) 339 return (0); /* Need to indicate an error! */ 340 bp = (u_int16_t *)bufp->page; 341 } 342 343 *bpp = bufp; 344 if (bp[0] > 2) 345 return (bp[3]); 346 else 347 return (0); 348 } 349 350 /* 351 * Return the data for the key/data pair that begins on this page at this 352 * index (index should always be 1). 353 */ 354 int 355 __big_return(HTAB *hashp, BUFHEAD *bufp, int ndx, DBT *val, int set_current) 356 { 357 BUFHEAD *save_p; 358 u_int16_t *bp, len, off, save_addr; 359 char *tp; 360 361 bp = (u_int16_t *)bufp->page; 362 while (bp[ndx + 1] == PARTIAL_KEY) { 363 bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0); 364 if (!bufp) 365 return (-1); 366 bp = (u_int16_t *)bufp->page; 367 ndx = 1; 368 } 369 370 if (bp[ndx + 1] == FULL_KEY) { 371 bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0); 372 if (!bufp) 373 return (-1); 374 bp = (u_int16_t *)bufp->page; 375 save_p = bufp; 376 save_addr = save_p->addr; 377 off = bp[1]; 378 len = 0; 379 } else 380 if (!FREESPACE(bp)) { 381 /* 382 * This is a hack. We can't distinguish between 383 * FULL_KEY_DATA that contains complete data or 384 * incomplete data, so we require that if the data 385 * is complete, there is at least 1 byte of free 386 * space left. 387 */ 388 off = bp[bp[0]]; 389 len = bp[1] - off; 390 save_p = bufp; 391 save_addr = bufp->addr; 392 bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0); 393 if (!bufp) 394 return (-1); 395 bp = (u_int16_t *)bufp->page; 396 } else { 397 /* The data is all on one page. */ 398 tp = (char *)bp; 399 off = bp[bp[0]]; 400 val->data = (u_char *)tp + off; 401 val->size = bp[1] - off; 402 if (set_current) { 403 if (bp[0] == 2) { /* No more buckets in 404 * chain */ 405 hashp->cpage = NULL; 406 hashp->cbucket++; 407 hashp->cndx = 1; 408 } else { 409 hashp->cpage = __get_buf(hashp, 410 bp[bp[0] - 1], bufp, 0); 411 if (!hashp->cpage) 412 return (-1); 413 hashp->cndx = 1; 414 if (!((u_int16_t *) 415 hashp->cpage->page)[0]) { 416 hashp->cbucket++; 417 hashp->cpage = NULL; 418 } 419 } 420 } 421 return (0); 422 } 423 424 val->size = (size_t)collect_data(hashp, bufp, (int)len, set_current); 425 if (val->size == (size_t)-1) 426 return (-1); 427 if (save_p->addr != save_addr) { 428 /* We are pretty short on buffers. */ 429 errno = EINVAL; /* OUT OF BUFFERS */ 430 return (-1); 431 } 432 memmove(hashp->tmp_buf, (save_p->page) + off, len); 433 val->data = (u_char *)hashp->tmp_buf; 434 return (0); 435 } 436 /* 437 * Count how big the total datasize is by recursing through the pages. Then 438 * allocate a buffer and copy the data as you recurse up. 439 */ 440 static int 441 collect_data(HTAB *hashp, BUFHEAD *bufp, int len, int set) 442 { 443 u_int16_t *bp; 444 char *p; 445 BUFHEAD *xbp; 446 u_int16_t save_addr; 447 int mylen, totlen; 448 449 p = bufp->page; 450 bp = (u_int16_t *)p; 451 mylen = hashp->BSIZE - bp[1]; 452 save_addr = bufp->addr; 453 454 if (bp[2] == FULL_KEY_DATA) { /* End of Data */ 455 totlen = len + mylen; 456 if (hashp->tmp_buf) 457 free(hashp->tmp_buf); 458 if ((hashp->tmp_buf = (char *)malloc(totlen)) == NULL) 459 return (-1); 460 if (set) { 461 hashp->cndx = 1; 462 if (bp[0] == 2) { /* No more buckets in chain */ 463 hashp->cpage = NULL; 464 hashp->cbucket++; 465 } else { 466 hashp->cpage = 467 __get_buf(hashp, bp[bp[0] - 1], bufp, 0); 468 if (!hashp->cpage) 469 return (-1); 470 else if (!((u_int16_t *)hashp->cpage->page)[0]) { 471 hashp->cbucket++; 472 hashp->cpage = NULL; 473 } 474 } 475 } 476 } else { 477 xbp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0); 478 if (!xbp || ((totlen = 479 collect_data(hashp, xbp, len + mylen, set)) < 1)) 480 return (-1); 481 } 482 if (bufp->addr != save_addr) { 483 errno = EINVAL; /* Out of buffers. */ 484 return (-1); 485 } 486 memmove(&hashp->tmp_buf[len], (bufp->page) + bp[1], mylen); 487 return (totlen); 488 } 489 490 /* 491 * Fill in the key and data for this big pair. 492 */ 493 int 494 __big_keydata(HTAB *hashp, BUFHEAD *bufp, DBT *key, DBT *val, int set) 495 { 496 key->size = (size_t)collect_key(hashp, bufp, 0, val, set); 497 if (key->size == (size_t)-1) 498 return (-1); 499 key->data = (u_char *)hashp->tmp_key; 500 return (0); 501 } 502 503 /* 504 * Count how big the total key size is by recursing through the pages. Then 505 * collect the data, allocate a buffer and copy the key as you recurse up. 506 */ 507 static int 508 collect_key(HTAB *hashp, BUFHEAD *bufp, int len, DBT *val, int set) 509 { 510 BUFHEAD *xbp; 511 char *p; 512 int mylen, totlen; 513 u_int16_t *bp, save_addr; 514 515 p = bufp->page; 516 bp = (u_int16_t *)p; 517 mylen = hashp->BSIZE - bp[1]; 518 519 save_addr = bufp->addr; 520 totlen = len + mylen; 521 if (bp[2] == FULL_KEY || bp[2] == FULL_KEY_DATA) { /* End of Key. */ 522 if (hashp->tmp_key != NULL) 523 free(hashp->tmp_key); 524 if ((hashp->tmp_key = (char *)malloc(totlen)) == NULL) 525 return (-1); 526 if (__big_return(hashp, bufp, 1, val, set)) 527 return (-1); 528 } else { 529 xbp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0); 530 if (!xbp || ((totlen = 531 collect_key(hashp, xbp, totlen, val, set)) < 1)) 532 return (-1); 533 } 534 if (bufp->addr != save_addr) { 535 errno = EINVAL; /* MIS -- OUT OF BUFFERS */ 536 return (-1); 537 } 538 memmove(&hashp->tmp_key[len], (bufp->page) + bp[1], mylen); 539 return (totlen); 540 } 541 542 /* 543 * Returns: 544 * 0 => OK 545 * -1 => error 546 */ 547 int 548 __big_split(HTAB *hashp, 549 BUFHEAD *op, /* Pointer to where to put keys that go in old bucket */ 550 BUFHEAD *np, /* Pointer to new bucket page */ 551 BUFHEAD *big_keyp, /* Pointer to first page containing the big key/data */ 552 int addr, /* Address of big_keyp */ 553 u_int32_t obucket, /* Old Bucket */ 554 SPLIT_RETURN *ret) 555 { 556 BUFHEAD *bp, *tmpp; 557 DBT key, val; 558 u_int32_t change; 559 u_int16_t free_space, n, off, *tp; 560 561 bp = big_keyp; 562 563 /* Now figure out where the big key/data goes */ 564 if (__big_keydata(hashp, big_keyp, &key, &val, 0)) 565 return (-1); 566 change = (__call_hash(hashp, key.data, key.size) != obucket); 567 568 if ( (ret->next_addr = __find_last_page(hashp, &big_keyp)) ) { 569 if (!(ret->nextp = 570 __get_buf(hashp, ret->next_addr, big_keyp, 0))) 571 return (-1); 572 } else 573 ret->nextp = NULL; 574 575 /* Now make one of np/op point to the big key/data pair */ 576 #ifdef DEBUG 577 assert(np->ovfl == NULL); 578 #endif 579 if (change) 580 tmpp = np; 581 else 582 tmpp = op; 583 584 tmpp->flags |= BUF_MOD; 585 #ifdef DEBUG1 586 (void)fprintf(stderr, 587 "BIG_SPLIT: %d->ovfl was %d is now %d\n", tmpp->addr, 588 (tmpp->ovfl ? tmpp->ovfl->addr : 0), (bp ? bp->addr : 0)); 589 #endif 590 tmpp->ovfl = bp; /* one of op/np point to big_keyp */ 591 tp = (u_int16_t *)tmpp->page; 592 #ifdef DEBUG 593 assert(FREESPACE(tp) >= OVFLSIZE); 594 #endif 595 n = tp[0]; 596 off = OFFSET(tp); 597 free_space = FREESPACE(tp); 598 tp[++n] = (u_int16_t)addr; 599 tp[++n] = OVFLPAGE; 600 tp[0] = n; 601 OFFSET(tp) = off; 602 FREESPACE(tp) = free_space - OVFLSIZE; 603 604 /* 605 * Finally, set the new and old return values. BIG_KEYP contains a 606 * pointer to the last page of the big key_data pair. Make sure that 607 * big_keyp has no following page (2 elements) or create an empty 608 * following page. 609 */ 610 611 ret->newp = np; 612 ret->oldp = op; 613 614 tp = (u_int16_t *)big_keyp->page; 615 big_keyp->flags |= BUF_MOD; 616 if (tp[0] > 2) { 617 /* 618 * There may be either one or two offsets on this page. If 619 * there is one, then the overflow page is linked on normally 620 * and tp[4] is OVFLPAGE. If there are two, tp[4] contains 621 * the second offset and needs to get stuffed in after the 622 * next overflow page is added. 623 */ 624 n = tp[4]; 625 free_space = FREESPACE(tp); 626 off = OFFSET(tp); 627 tp[0] -= 2; 628 FREESPACE(tp) = free_space + OVFLSIZE; 629 OFFSET(tp) = off; 630 tmpp = __add_ovflpage(hashp, big_keyp); 631 if (!tmpp) 632 return (-1); 633 tp[4] = n; 634 } else 635 tmpp = big_keyp; 636 637 if (change) 638 ret->newp = tmpp; 639 else 640 ret->oldp = tmpp; 641 return (0); 642 } 643