xref: /freebsd/lib/libc/db/hash/hash_bigkey.c (revision 4cf49a43559ed9fdad601bdcccd2c55963008675)
1 /*-
2  * Copyright (c) 1990, 1993, 1994
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Margo Seltzer.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  */
36 
37 #if defined(LIBC_SCCS) && !defined(lint)
38 static char sccsid[] = "@(#)hash_bigkey.c	8.3 (Berkeley) 5/31/94";
39 #endif /* LIBC_SCCS and not lint */
40 
41 /*
42  * PACKAGE: hash
43  * DESCRIPTION:
44  *	Big key/data handling for the hashing package.
45  *
46  * ROUTINES:
47  * External
48  *	__big_keydata
49  *	__big_split
50  *	__big_insert
51  *	__big_return
52  *	__big_delete
53  *	__find_last_page
54  * Internal
55  *	collect_key
56  *	collect_data
57  */
58 
59 #include <sys/param.h>
60 
61 #include <errno.h>
62 #include <stdio.h>
63 #include <stdlib.h>
64 #include <string.h>
65 
66 #ifdef DEBUG
67 #include <assert.h>
68 #endif
69 
70 #include <db.h>
71 #include "hash.h"
72 #include "page.h"
73 #include "extern.h"
74 
75 static int collect_key __P((HTAB *, BUFHEAD *, int, DBT *, int));
76 static int collect_data __P((HTAB *, BUFHEAD *, int, int));
77 
78 /*
79  * Big_insert
80  *
81  * You need to do an insert and the key/data pair is too big
82  *
83  * Returns:
84  * 0 ==> OK
85  *-1 ==> ERROR
86  */
87 extern int
88 __big_insert(hashp, bufp, key, val)
89 	HTAB *hashp;
90 	BUFHEAD *bufp;
91 	const DBT *key, *val;
92 {
93 	register u_int16_t *p;
94 	int key_size, n, val_size;
95 	u_int16_t space, move_bytes, off;
96 	char *cp, *key_data, *val_data;
97 
98 	cp = bufp->page;		/* Character pointer of p. */
99 	p = (u_int16_t *)cp;
100 
101 	key_data = (char *)key->data;
102 	key_size = key->size;
103 	val_data = (char *)val->data;
104 	val_size = val->size;
105 
106 	/* First move the Key */
107 	for (space = FREESPACE(p) - BIGOVERHEAD; key_size;
108 	    space = FREESPACE(p) - BIGOVERHEAD) {
109 		move_bytes = MIN(space, key_size);
110 		off = OFFSET(p) - move_bytes;
111 		memmove(cp + off, key_data, move_bytes);
112 		key_size -= move_bytes;
113 		key_data += move_bytes;
114 		n = p[0];
115 		p[++n] = off;
116 		p[0] = ++n;
117 		FREESPACE(p) = off - PAGE_META(n);
118 		OFFSET(p) = off;
119 		p[n] = PARTIAL_KEY;
120 		bufp = __add_ovflpage(hashp, bufp);
121 		if (!bufp)
122 			return (-1);
123 		n = p[0];
124 		if (!key_size)
125 			if (FREESPACE(p)) {
126 				move_bytes = MIN(FREESPACE(p), val_size);
127 				off = OFFSET(p) - move_bytes;
128 				p[n] = off;
129 				memmove(cp + off, val_data, move_bytes);
130 				val_data += move_bytes;
131 				val_size -= move_bytes;
132 				p[n - 2] = FULL_KEY_DATA;
133 				FREESPACE(p) = FREESPACE(p) - move_bytes;
134 				OFFSET(p) = off;
135 			} else
136 				p[n - 2] = FULL_KEY;
137 		p = (u_int16_t *)bufp->page;
138 		cp = bufp->page;
139 		bufp->flags |= BUF_MOD;
140 	}
141 
142 	/* Now move the data */
143 	for (space = FREESPACE(p) - BIGOVERHEAD; val_size;
144 	    space = FREESPACE(p) - BIGOVERHEAD) {
145 		move_bytes = MIN(space, val_size);
146 		/*
147 		 * Here's the hack to make sure that if the data ends on the
148 		 * same page as the key ends, FREESPACE is at least one.
149 		 */
150 		if (space == val_size && val_size == val->size)
151 			move_bytes--;
152 		off = OFFSET(p) - move_bytes;
153 		memmove(cp + off, val_data, move_bytes);
154 		val_size -= move_bytes;
155 		val_data += move_bytes;
156 		n = p[0];
157 		p[++n] = off;
158 		p[0] = ++n;
159 		FREESPACE(p) = off - PAGE_META(n);
160 		OFFSET(p) = off;
161 		if (val_size) {
162 			p[n] = FULL_KEY;
163 			bufp = __add_ovflpage(hashp, bufp);
164 			if (!bufp)
165 				return (-1);
166 			cp = bufp->page;
167 			p = (u_int16_t *)cp;
168 		} else
169 			p[n] = FULL_KEY_DATA;
170 		bufp->flags |= BUF_MOD;
171 	}
172 	return (0);
173 }
174 
175 /*
176  * Called when bufp's page  contains a partial key (index should be 1)
177  *
178  * All pages in the big key/data pair except bufp are freed.  We cannot
179  * free bufp because the page pointing to it is lost and we can't get rid
180  * of its pointer.
181  *
182  * Returns:
183  * 0 => OK
184  *-1 => ERROR
185  */
186 extern int
187 __big_delete(hashp, bufp)
188 	HTAB *hashp;
189 	BUFHEAD *bufp;
190 {
191 	register BUFHEAD *last_bfp, *rbufp;
192 	u_int16_t *bp, pageno;
193 	int key_done, n;
194 
195 	rbufp = bufp;
196 	last_bfp = NULL;
197 	bp = (u_int16_t *)bufp->page;
198 	pageno = 0;
199 	key_done = 0;
200 
201 	while (!key_done || (bp[2] != FULL_KEY_DATA)) {
202 		if (bp[2] == FULL_KEY || bp[2] == FULL_KEY_DATA)
203 			key_done = 1;
204 
205 		/*
206 		 * If there is freespace left on a FULL_KEY_DATA page, then
207 		 * the data is short and fits entirely on this page, and this
208 		 * is the last page.
209 		 */
210 		if (bp[2] == FULL_KEY_DATA && FREESPACE(bp))
211 			break;
212 		pageno = bp[bp[0] - 1];
213 		rbufp->flags |= BUF_MOD;
214 		rbufp = __get_buf(hashp, pageno, rbufp, 0);
215 		if (last_bfp)
216 			__free_ovflpage(hashp, last_bfp);
217 		last_bfp = rbufp;
218 		if (!rbufp)
219 			return (-1);		/* Error. */
220 		bp = (u_int16_t *)rbufp->page;
221 	}
222 
223 	/*
224 	 * If we get here then rbufp points to the last page of the big
225 	 * key/data pair.  Bufp points to the first one -- it should now be
226 	 * empty pointing to the next page after this pair.  Can't free it
227 	 * because we don't have the page pointing to it.
228 	 */
229 
230 	/* This is information from the last page of the pair. */
231 	n = bp[0];
232 	pageno = bp[n - 1];
233 
234 	/* Now, bp is the first page of the pair. */
235 	bp = (u_int16_t *)bufp->page;
236 	if (n > 2) {
237 		/* There is an overflow page. */
238 		bp[1] = pageno;
239 		bp[2] = OVFLPAGE;
240 		bufp->ovfl = rbufp->ovfl;
241 	} else
242 		/* This is the last page. */
243 		bufp->ovfl = NULL;
244 	n -= 2;
245 	bp[0] = n;
246 	FREESPACE(bp) = hashp->BSIZE - PAGE_META(n);
247 	OFFSET(bp) = hashp->BSIZE - 1;
248 
249 	bufp->flags |= BUF_MOD;
250 	if (rbufp)
251 		__free_ovflpage(hashp, rbufp);
252 	if (last_bfp != rbufp)
253 		__free_ovflpage(hashp, last_bfp);
254 
255 	hashp->NKEYS--;
256 	return (0);
257 }
258 /*
259  * Returns:
260  *  0 = key not found
261  * -1 = get next overflow page
262  * -2 means key not found and this is big key/data
263  * -3 error
264  */
265 extern int
266 __find_bigpair(hashp, bufp, ndx, key, size)
267 	HTAB *hashp;
268 	BUFHEAD *bufp;
269 	int ndx;
270 	char *key;
271 	int size;
272 {
273 	register u_int16_t *bp;
274 	register char *p;
275 	int ksize;
276 	u_int16_t bytes;
277 	char *kkey;
278 
279 	bp = (u_int16_t *)bufp->page;
280 	p = bufp->page;
281 	ksize = size;
282 	kkey = key;
283 
284 	for (bytes = hashp->BSIZE - bp[ndx];
285 	    bytes <= size && bp[ndx + 1] == PARTIAL_KEY;
286 	    bytes = hashp->BSIZE - bp[ndx]) {
287 		if (memcmp(p + bp[ndx], kkey, bytes))
288 			return (-2);
289 		kkey += bytes;
290 		ksize -= bytes;
291 		bufp = __get_buf(hashp, bp[ndx + 2], bufp, 0);
292 		if (!bufp)
293 			return (-3);
294 		p = bufp->page;
295 		bp = (u_int16_t *)p;
296 		ndx = 1;
297 	}
298 
299 	if (bytes != ksize || memcmp(p + bp[ndx], kkey, bytes)) {
300 #ifdef HASH_STATISTICS
301 		++hash_collisions;
302 #endif
303 		return (-2);
304 	} else
305 		return (ndx);
306 }
307 
308 /*
309  * Given the buffer pointer of the first overflow page of a big pair,
310  * find the end of the big pair
311  *
312  * This will set bpp to the buffer header of the last page of the big pair.
313  * It will return the pageno of the overflow page following the last page
314  * of the pair; 0 if there isn't any (i.e. big pair is the last key in the
315  * bucket)
316  */
317 extern u_int16_t
318 __find_last_page(hashp, bpp)
319 	HTAB *hashp;
320 	BUFHEAD **bpp;
321 {
322 	BUFHEAD *bufp;
323 	u_int16_t *bp, pageno;
324 	int n;
325 
326 	bufp = *bpp;
327 	bp = (u_int16_t *)bufp->page;
328 	for (;;) {
329 		n = bp[0];
330 
331 		/*
332 		 * This is the last page if: the tag is FULL_KEY_DATA and
333 		 * either only 2 entries OVFLPAGE marker is explicit there
334 		 * is freespace on the page.
335 		 */
336 		if (bp[2] == FULL_KEY_DATA &&
337 		    ((n == 2) || (bp[n] == OVFLPAGE) || (FREESPACE(bp))))
338 			break;
339 
340 		pageno = bp[n - 1];
341 		bufp = __get_buf(hashp, pageno, bufp, 0);
342 		if (!bufp)
343 			return (0);	/* Need to indicate an error! */
344 		bp = (u_int16_t *)bufp->page;
345 	}
346 
347 	*bpp = bufp;
348 	if (bp[0] > 2)
349 		return (bp[3]);
350 	else
351 		return (0);
352 }
353 
354 /*
355  * Return the data for the key/data pair that begins on this page at this
356  * index (index should always be 1).
357  */
358 extern int
359 __big_return(hashp, bufp, ndx, val, set_current)
360 	HTAB *hashp;
361 	BUFHEAD *bufp;
362 	int ndx;
363 	DBT *val;
364 	int set_current;
365 {
366 	BUFHEAD *save_p;
367 	u_int16_t *bp, len, off, save_addr;
368 	char *tp;
369 
370 	bp = (u_int16_t *)bufp->page;
371 	while (bp[ndx + 1] == PARTIAL_KEY) {
372 		bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
373 		if (!bufp)
374 			return (-1);
375 		bp = (u_int16_t *)bufp->page;
376 		ndx = 1;
377 	}
378 
379 	if (bp[ndx + 1] == FULL_KEY) {
380 		bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
381 		if (!bufp)
382 			return (-1);
383 		bp = (u_int16_t *)bufp->page;
384 		save_p = bufp;
385 		save_addr = save_p->addr;
386 		off = bp[1];
387 		len = 0;
388 	} else
389 		if (!FREESPACE(bp)) {
390 			/*
391 			 * This is a hack.  We can't distinguish between
392 			 * FULL_KEY_DATA that contains complete data or
393 			 * incomplete data, so we require that if the data
394 			 * is complete, there is at least 1 byte of free
395 			 * space left.
396 			 */
397 			off = bp[bp[0]];
398 			len = bp[1] - off;
399 			save_p = bufp;
400 			save_addr = bufp->addr;
401 			bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
402 			if (!bufp)
403 				return (-1);
404 			bp = (u_int16_t *)bufp->page;
405 		} else {
406 			/* The data is all on one page. */
407 			tp = (char *)bp;
408 			off = bp[bp[0]];
409 			val->data = (u_char *)tp + off;
410 			val->size = bp[1] - off;
411 			if (set_current) {
412 				if (bp[0] == 2) {	/* No more buckets in
413 							 * chain */
414 					hashp->cpage = NULL;
415 					hashp->cbucket++;
416 					hashp->cndx = 1;
417 				} else {
418 					hashp->cpage = __get_buf(hashp,
419 					    bp[bp[0] - 1], bufp, 0);
420 					if (!hashp->cpage)
421 						return (-1);
422 					hashp->cndx = 1;
423 					if (!((u_int16_t *)
424 					    hashp->cpage->page)[0]) {
425 						hashp->cbucket++;
426 						hashp->cpage = NULL;
427 					}
428 				}
429 			}
430 			return (0);
431 		}
432 
433 	val->size = collect_data(hashp, bufp, (int)len, set_current);
434 	if (val->size == -1)
435 		return (-1);
436 	if (save_p->addr != save_addr) {
437 		/* We are pretty short on buffers. */
438 		errno = EINVAL;			/* OUT OF BUFFERS */
439 		return (-1);
440 	}
441 	memmove(hashp->tmp_buf, (save_p->page) + off, len);
442 	val->data = (u_char *)hashp->tmp_buf;
443 	return (0);
444 }
445 /*
446  * Count how big the total datasize is by recursing through the pages.  Then
447  * allocate a buffer and copy the data as you recurse up.
448  */
449 static int
450 collect_data(hashp, bufp, len, set)
451 	HTAB *hashp;
452 	BUFHEAD *bufp;
453 	int len, set;
454 {
455 	register u_int16_t *bp;
456 	register char *p;
457 	BUFHEAD *xbp;
458 	u_int16_t save_addr;
459 	int mylen, totlen;
460 
461 	p = bufp->page;
462 	bp = (u_int16_t *)p;
463 	mylen = hashp->BSIZE - bp[1];
464 	save_addr = bufp->addr;
465 
466 	if (bp[2] == FULL_KEY_DATA) {		/* End of Data */
467 		totlen = len + mylen;
468 		if (hashp->tmp_buf)
469 			free(hashp->tmp_buf);
470 		if ((hashp->tmp_buf = (char *)malloc(totlen)) == NULL)
471 			return (-1);
472 		if (set) {
473 			hashp->cndx = 1;
474 			if (bp[0] == 2) {	/* No more buckets in chain */
475 				hashp->cpage = NULL;
476 				hashp->cbucket++;
477 			} else {
478 				hashp->cpage =
479 				    __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
480 				if (!hashp->cpage)
481 					return (-1);
482 				else if (!((u_int16_t *)hashp->cpage->page)[0]) {
483 					hashp->cbucket++;
484 					hashp->cpage = NULL;
485 				}
486 			}
487 		}
488 	} else {
489 		xbp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
490 		if (!xbp || ((totlen =
491 		    collect_data(hashp, xbp, len + mylen, set)) < 1))
492 			return (-1);
493 	}
494 	if (bufp->addr != save_addr) {
495 		errno = EINVAL;			/* Out of buffers. */
496 		return (-1);
497 	}
498 	memmove(&hashp->tmp_buf[len], (bufp->page) + bp[1], mylen);
499 	return (totlen);
500 }
501 
502 /*
503  * Fill in the key and data for this big pair.
504  */
505 extern int
506 __big_keydata(hashp, bufp, key, val, set)
507 	HTAB *hashp;
508 	BUFHEAD *bufp;
509 	DBT *key, *val;
510 	int set;
511 {
512 	key->size = collect_key(hashp, bufp, 0, val, set);
513 	if (key->size == -1)
514 		return (-1);
515 	key->data = (u_char *)hashp->tmp_key;
516 	return (0);
517 }
518 
519 /*
520  * Count how big the total key size is by recursing through the pages.  Then
521  * collect the data, allocate a buffer and copy the key as you recurse up.
522  */
523 static int
524 collect_key(hashp, bufp, len, val, set)
525 	HTAB *hashp;
526 	BUFHEAD *bufp;
527 	int len;
528 	DBT *val;
529 	int set;
530 {
531 	BUFHEAD *xbp;
532 	char *p;
533 	int mylen, totlen;
534 	u_int16_t *bp, save_addr;
535 
536 	p = bufp->page;
537 	bp = (u_int16_t *)p;
538 	mylen = hashp->BSIZE - bp[1];
539 
540 	save_addr = bufp->addr;
541 	totlen = len + mylen;
542 	if (bp[2] == FULL_KEY || bp[2] == FULL_KEY_DATA) {    /* End of Key. */
543 		if (hashp->tmp_key != NULL)
544 			free(hashp->tmp_key);
545 		if ((hashp->tmp_key = (char *)malloc(totlen)) == NULL)
546 			return (-1);
547 		if (__big_return(hashp, bufp, 1, val, set))
548 			return (-1);
549 	} else {
550 		xbp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
551 		if (!xbp || ((totlen =
552 		    collect_key(hashp, xbp, totlen, val, set)) < 1))
553 			return (-1);
554 	}
555 	if (bufp->addr != save_addr) {
556 		errno = EINVAL;		/* MIS -- OUT OF BUFFERS */
557 		return (-1);
558 	}
559 	memmove(&hashp->tmp_key[len], (bufp->page) + bp[1], mylen);
560 	return (totlen);
561 }
562 
563 /*
564  * Returns:
565  *  0 => OK
566  * -1 => error
567  */
568 extern int
569 __big_split(hashp, op, np, big_keyp, addr, obucket, ret)
570 	HTAB *hashp;
571 	BUFHEAD *op;	/* Pointer to where to put keys that go in old bucket */
572 	BUFHEAD *np;	/* Pointer to new bucket page */
573 			/* Pointer to first page containing the big key/data */
574 	BUFHEAD *big_keyp;
575 	int addr;	/* Address of big_keyp */
576 	u_int32_t   obucket;/* Old Bucket */
577 	SPLIT_RETURN *ret;
578 {
579 	register BUFHEAD *tmpp;
580 	register u_int16_t *tp;
581 	BUFHEAD *bp;
582 	DBT key, val;
583 	u_int32_t change;
584 	u_int16_t free_space, n, off;
585 
586 	bp = big_keyp;
587 
588 	/* Now figure out where the big key/data goes */
589 	if (__big_keydata(hashp, big_keyp, &key, &val, 0))
590 		return (-1);
591 	change = (__call_hash(hashp, key.data, key.size) != obucket);
592 
593 	if ( (ret->next_addr = __find_last_page(hashp, &big_keyp)) ) {
594 		if (!(ret->nextp =
595 		    __get_buf(hashp, ret->next_addr, big_keyp, 0)))
596 			return (-1);;
597 	} else
598 		ret->nextp = NULL;
599 
600 	/* Now make one of np/op point to the big key/data pair */
601 #ifdef DEBUG
602 	assert(np->ovfl == NULL);
603 #endif
604 	if (change)
605 		tmpp = np;
606 	else
607 		tmpp = op;
608 
609 	tmpp->flags |= BUF_MOD;
610 #ifdef DEBUG1
611 	(void)fprintf(stderr,
612 	    "BIG_SPLIT: %d->ovfl was %d is now %d\n", tmpp->addr,
613 	    (tmpp->ovfl ? tmpp->ovfl->addr : 0), (bp ? bp->addr : 0));
614 #endif
615 	tmpp->ovfl = bp;	/* one of op/np point to big_keyp */
616 	tp = (u_int16_t *)tmpp->page;
617 #ifdef DEBUG
618 	assert(FREESPACE(tp) >= OVFLSIZE);
619 #endif
620 	n = tp[0];
621 	off = OFFSET(tp);
622 	free_space = FREESPACE(tp);
623 	tp[++n] = (u_int16_t)addr;
624 	tp[++n] = OVFLPAGE;
625 	tp[0] = n;
626 	OFFSET(tp) = off;
627 	FREESPACE(tp) = free_space - OVFLSIZE;
628 
629 	/*
630 	 * Finally, set the new and old return values. BIG_KEYP contains a
631 	 * pointer to the last page of the big key_data pair. Make sure that
632 	 * big_keyp has no following page (2 elements) or create an empty
633 	 * following page.
634 	 */
635 
636 	ret->newp = np;
637 	ret->oldp = op;
638 
639 	tp = (u_int16_t *)big_keyp->page;
640 	big_keyp->flags |= BUF_MOD;
641 	if (tp[0] > 2) {
642 		/*
643 		 * There may be either one or two offsets on this page.  If
644 		 * there is one, then the overflow page is linked on normally
645 		 * and tp[4] is OVFLPAGE.  If there are two, tp[4] contains
646 		 * the second offset and needs to get stuffed in after the
647 		 * next overflow page is added.
648 		 */
649 		n = tp[4];
650 		free_space = FREESPACE(tp);
651 		off = OFFSET(tp);
652 		tp[0] -= 2;
653 		FREESPACE(tp) = free_space + OVFLSIZE;
654 		OFFSET(tp) = off;
655 		tmpp = __add_ovflpage(hashp, big_keyp);
656 		if (!tmpp)
657 			return (-1);
658 		tp[4] = n;
659 	} else
660 		tmpp = big_keyp;
661 
662 	if (change)
663 		ret->newp = tmpp;
664 	else
665 		ret->oldp = tmpp;
666 	return (0);
667 }
668