xref: /freebsd/lib/libc/db/btree/btree.h (revision c98323078dede7579020518ec84cdcb478e5c142)
1 /*-
2  * Copyright (c) 1991, 1993, 1994
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Mike Olson.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)btree.h	8.11 (Berkeley) 8/17/94
37  * $FreeBSD$
38  */
39 
40 /* Macros to set/clear/test flags. */
41 #define	F_SET(p, f)	(p)->flags |= (f)
42 #define	F_CLR(p, f)	(p)->flags &= ~(f)
43 #define	F_ISSET(p, f)	((p)->flags & (f))
44 
45 #include <mpool.h>
46 
47 #define	DEFMINKEYPAGE	(2)		/* Minimum keys per page */
48 #define	MINCACHE	(5)		/* Minimum cached pages */
49 #define	MINPSIZE	(512)		/* Minimum page size */
50 
51 /*
52  * Page 0 of a btree file contains a copy of the meta-data.  This page is also
53  * used as an out-of-band page, i.e. page pointers that point to nowhere point
54  * to page 0.  Page 1 is the root of the btree.
55  */
56 #define	P_INVALID	 0		/* Invalid tree page number. */
57 #define	P_META		 0		/* Tree metadata page number. */
58 #define	P_ROOT		 1		/* Tree root page number. */
59 
60 /*
61  * There are five page layouts in the btree: btree internal pages (BINTERNAL),
62  * btree leaf pages (BLEAF), recno internal pages (RINTERNAL), recno leaf pages
63  * (RLEAF) and overflow pages.  All five page types have a page header (PAGE).
64  * This implementation requires that values within structures NOT be padded.
65  * (ANSI C permits random padding.)  If your compiler pads randomly you'll have
66  * to do some work to get this package to run.
67  */
68 typedef struct _page {
69 	pgno_t	pgno;			/* this page's page number */
70 	pgno_t	prevpg;			/* left sibling */
71 	pgno_t	nextpg;			/* right sibling */
72 
73 #define	P_BINTERNAL	0x01		/* btree internal page */
74 #define	P_BLEAF		0x02		/* leaf page */
75 #define	P_OVERFLOW	0x04		/* overflow page */
76 #define	P_RINTERNAL	0x08		/* recno internal page */
77 #define	P_RLEAF		0x10		/* leaf page */
78 #define P_TYPE		0x1f		/* type mask */
79 #define	P_PRESERVE	0x20		/* never delete this chain of pages */
80 	u_int32_t flags;
81 
82 	indx_t	lower;			/* lower bound of free space on page */
83 	indx_t	upper;			/* upper bound of free space on page */
84 	indx_t	linp[1];		/* indx_t-aligned VAR. LENGTH DATA */
85 } PAGE;
86 
87 /* First and next index. */
88 #define	BTDATAOFF							\
89 	(sizeof(pgno_t) + sizeof(pgno_t) + sizeof(pgno_t) +		\
90 	    sizeof(u_int32_t) + sizeof(indx_t) + sizeof(indx_t))
91 #define	NEXTINDEX(p)	(((p)->lower - BTDATAOFF) / sizeof(indx_t))
92 
93 /*
94  * For pages other than overflow pages, there is an array of offsets into the
95  * rest of the page immediately following the page header.  Each offset is to
96  * an item which is unique to the type of page.  The h_lower offset is just
97  * past the last filled-in index.  The h_upper offset is the first item on the
98  * page.  Offsets are from the beginning of the page.
99  *
100  * If an item is too big to store on a single page, a flag is set and the item
101  * is a { page, size } pair such that the page is the first page of an overflow
102  * chain with size bytes of item.  Overflow pages are simply bytes without any
103  * external structure.
104  *
105  * The page number and size fields in the items are pgno_t-aligned so they can
106  * be manipulated without copying.  (This presumes that 32 bit items can be
107  * manipulated on this system.)
108  */
109 #define	LALIGN(n)	(((n) + sizeof(pgno_t) - 1) & ~(sizeof(pgno_t) - 1))
110 #define	NOVFLSIZE	(sizeof(pgno_t) + sizeof(u_int32_t))
111 
112 /*
113  * For the btree internal pages, the item is a key.  BINTERNALs are {key, pgno}
114  * pairs, such that the key compares less than or equal to all of the records
115  * on that page.  For a tree without duplicate keys, an internal page with two
116  * consecutive keys, a and b, will have all records greater than or equal to a
117  * and less than b stored on the page associated with a.  Duplicate keys are
118  * somewhat special and can cause duplicate internal and leaf page records and
119  * some minor modifications of the above rule.
120  */
121 typedef struct _binternal {
122 	u_int32_t ksize;		/* key size */
123 	pgno_t	pgno;			/* page number stored on */
124 #define	P_BIGDATA	0x01		/* overflow data */
125 #define	P_BIGKEY	0x02		/* overflow key */
126 	u_char	flags;
127 	char	bytes[1];		/* data */
128 } BINTERNAL;
129 
130 /* Get the page's BINTERNAL structure at index indx. */
131 #define	GETBINTERNAL(pg, indx)						\
132 	((BINTERNAL *)((char *)(pg) + (pg)->linp[indx]))
133 
134 /* Get the number of bytes in the entry. */
135 #define NBINTERNAL(len)							\
136 	LALIGN(sizeof(u_int32_t) + sizeof(pgno_t) + sizeof(u_char) + (len))
137 
138 /* Copy a BINTERNAL entry to the page. */
139 #define	WR_BINTERNAL(p, size, pgno, flags) {				\
140 	*(u_int32_t *)p = size;						\
141 	p += sizeof(u_int32_t);						\
142 	*(pgno_t *)p = pgno;						\
143 	p += sizeof(pgno_t);						\
144 	*(u_char *)p = flags;						\
145 	p += sizeof(u_char);						\
146 }
147 
148 /*
149  * For the recno internal pages, the item is a page number with the number of
150  * keys found on that page and below.
151  */
152 typedef struct _rinternal {
153 	recno_t	nrecs;			/* number of records */
154 	pgno_t	pgno;			/* page number stored below */
155 } RINTERNAL;
156 
157 /* Get the page's RINTERNAL structure at index indx. */
158 #define	GETRINTERNAL(pg, indx)						\
159 	((RINTERNAL *)((char *)(pg) + (pg)->linp[indx]))
160 
161 /* Get the number of bytes in the entry. */
162 #define NRINTERNAL							\
163 	LALIGN(sizeof(recno_t) + sizeof(pgno_t))
164 
165 /* Copy a RINTERAL entry to the page. */
166 #define	WR_RINTERNAL(p, nrecs, pgno) {					\
167 	*(recno_t *)p = nrecs;						\
168 	p += sizeof(recno_t);						\
169 	*(pgno_t *)p = pgno;						\
170 }
171 
172 /* For the btree leaf pages, the item is a key and data pair. */
173 typedef struct _bleaf {
174 	u_int32_t	ksize;		/* size of key */
175 	u_int32_t	dsize;		/* size of data */
176 	u_char	flags;			/* P_BIGDATA, P_BIGKEY */
177 	char	bytes[1];		/* data */
178 } BLEAF;
179 
180 /* Get the page's BLEAF structure at index indx. */
181 #define	GETBLEAF(pg, indx)						\
182 	((BLEAF *)((char *)(pg) + (pg)->linp[indx]))
183 
184 /* Get the number of bytes in the entry. */
185 #define NBLEAF(p)	NBLEAFDBT((p)->ksize, (p)->dsize)
186 
187 /* Get the number of bytes in the user's key/data pair. */
188 #define NBLEAFDBT(ksize, dsize)						\
189 	LALIGN(sizeof(u_int32_t) + sizeof(u_int32_t) + sizeof(u_char) +	\
190 	    (ksize) + (dsize))
191 
192 /* Copy a BLEAF entry to the page. */
193 #define	WR_BLEAF(p, key, data, flags) {					\
194 	*(u_int32_t *)p = key->size;					\
195 	p += sizeof(u_int32_t);						\
196 	*(u_int32_t *)p = data->size;					\
197 	p += sizeof(u_int32_t);						\
198 	*(u_char *)p = flags;						\
199 	p += sizeof(u_char);						\
200 	memmove(p, key->data, key->size);				\
201 	p += key->size;							\
202 	memmove(p, data->data, data->size);				\
203 }
204 
205 /* For the recno leaf pages, the item is a data entry. */
206 typedef struct _rleaf {
207 	u_int32_t	dsize;		/* size of data */
208 	u_char	flags;			/* P_BIGDATA */
209 	char	bytes[1];
210 } RLEAF;
211 
212 /* Get the page's RLEAF structure at index indx. */
213 #define	GETRLEAF(pg, indx)						\
214 	((RLEAF *)((char *)(pg) + (pg)->linp[indx]))
215 
216 /* Get the number of bytes in the entry. */
217 #define NRLEAF(p)	NRLEAFDBT((p)->dsize)
218 
219 /* Get the number of bytes from the user's data. */
220 #define	NRLEAFDBT(dsize)						\
221 	LALIGN(sizeof(u_int32_t) + sizeof(u_char) + (dsize))
222 
223 /* Copy a RLEAF entry to the page. */
224 #define	WR_RLEAF(p, data, flags) {					\
225 	*(u_int32_t *)p = data->size;					\
226 	p += sizeof(u_int32_t);						\
227 	*(u_char *)p = flags;						\
228 	p += sizeof(u_char);						\
229 	memmove(p, data->data, data->size);				\
230 }
231 
232 /*
233  * A record in the tree is either a pointer to a page and an index in the page
234  * or a page number and an index.  These structures are used as a cursor, stack
235  * entry and search returns as well as to pass records to other routines.
236  *
237  * One comment about searches.  Internal page searches must find the largest
238  * record less than key in the tree so that descents work.  Leaf page searches
239  * must find the smallest record greater than key so that the returned index
240  * is the record's correct position for insertion.
241  */
242 typedef struct _epgno {
243 	pgno_t	pgno;			/* the page number */
244 	indx_t	index;			/* the index on the page */
245 } EPGNO;
246 
247 typedef struct _epg {
248 	PAGE	*page;			/* the (pinned) page */
249 	indx_t	 index;			/* the index on the page */
250 } EPG;
251 
252 /*
253  * About cursors.  The cursor (and the page that contained the key/data pair
254  * that it referenced) can be deleted, which makes things a bit tricky.  If
255  * there are no duplicates of the cursor key in the tree (i.e. B_NODUPS is set
256  * or there simply aren't any duplicates of the key) we copy the key that it
257  * referenced when it's deleted, and reacquire a new cursor key if the cursor
258  * is used again.  If there are duplicates keys, we move to the next/previous
259  * key, and set a flag so that we know what happened.  NOTE: if duplicate (to
260  * the cursor) keys are added to the tree during this process, it is undefined
261  * if they will be returned or not in a cursor scan.
262  *
263  * The flags determine the possible states of the cursor:
264  *
265  * CURS_INIT	The cursor references *something*.
266  * CURS_ACQUIRE	The cursor was deleted, and a key has been saved so that
267  *		we can reacquire the right position in the tree.
268  * CURS_AFTER, CURS_BEFORE
269  *		The cursor was deleted, and now references a key/data pair
270  *		that has not yet been returned, either before or after the
271  *		deleted key/data pair.
272  * XXX
273  * This structure is broken out so that we can eventually offer multiple
274  * cursors as part of the DB interface.
275  */
276 typedef struct _cursor {
277 	EPGNO	 pg;			/* B: Saved tree reference. */
278 	DBT	 key;			/* B: Saved key, or key.data == NULL. */
279 	recno_t	 rcursor;		/* R: recno cursor (1-based) */
280 
281 #define	CURS_ACQUIRE	0x01		/*  B: Cursor needs to be reacquired. */
282 #define	CURS_AFTER	0x02		/*  B: Unreturned cursor after key. */
283 #define	CURS_BEFORE	0x04		/*  B: Unreturned cursor before key. */
284 #define	CURS_INIT	0x08		/* RB: Cursor initialized. */
285 	u_int8_t flags;
286 } CURSOR;
287 
288 /*
289  * The metadata of the tree.  The nrecs field is used only by the RECNO code.
290  * This is because the btree doesn't really need it and it requires that every
291  * put or delete call modify the metadata.
292  */
293 typedef struct _btmeta {
294 	u_int32_t	magic;		/* magic number */
295 	u_int32_t	version;	/* version */
296 	u_int32_t	psize;		/* page size */
297 	u_int32_t	free;		/* page number of first free page */
298 	u_int32_t	nrecs;		/* R: number of records */
299 
300 #define	SAVEMETA	(B_NODUPS | R_RECNO)
301 	u_int32_t	flags;		/* bt_flags & SAVEMETA */
302 } BTMETA;
303 
304 /* The in-memory btree/recno data structure. */
305 typedef struct _btree {
306 	MPOOL	 *bt_mp;		/* memory pool cookie */
307 
308 	DB	 *bt_dbp;		/* pointer to enclosing DB */
309 
310 	EPG	  bt_cur;		/* current (pinned) page */
311 	PAGE	 *bt_pinned;		/* page pinned across calls */
312 
313 	CURSOR	  bt_cursor;		/* cursor */
314 
315 #define	BT_PUSH(t, p, i) {						\
316 	t->bt_sp->pgno = p; 						\
317 	t->bt_sp->index = i; 						\
318 	++t->bt_sp;							\
319 }
320 #define	BT_POP(t)	(t->bt_sp == t->bt_stack ? NULL : --t->bt_sp)
321 #define	BT_CLR(t)	(t->bt_sp = t->bt_stack)
322 	EPGNO	  bt_stack[50];		/* stack of parent pages */
323 	EPGNO	 *bt_sp;		/* current stack pointer */
324 
325 	DBT	  bt_rkey;		/* returned key */
326 	DBT	  bt_rdata;		/* returned data */
327 
328 	int	  bt_fd;		/* tree file descriptor */
329 
330 	pgno_t	  bt_free;		/* next free page */
331 	u_int32_t bt_psize;		/* page size */
332 	indx_t	  bt_ovflsize;		/* cut-off for key/data overflow */
333 	int	  bt_lorder;		/* byte order */
334 					/* sorted order */
335 	enum { NOT, BACK, FORWARD } bt_order;
336 	EPGNO	  bt_last;		/* last insert */
337 
338 					/* B: key comparison function */
339 	int	(*bt_cmp)(const DBT *, const DBT *);
340 					/* B: prefix comparison function */
341 	size_t	(*bt_pfx)(const DBT *, const DBT *);
342 					/* R: recno input function */
343 	int	(*bt_irec)(struct _btree *, recno_t);
344 
345 	FILE	 *bt_rfp;		/* R: record FILE pointer */
346 	int	  bt_rfd;		/* R: record file descriptor */
347 
348 	caddr_t	  bt_cmap;		/* R: current point in mapped space */
349 	caddr_t	  bt_smap;		/* R: start of mapped space */
350 	caddr_t   bt_emap;		/* R: end of mapped space */
351 	size_t	  bt_msize;		/* R: size of mapped region. */
352 
353 	recno_t	  bt_nrecs;		/* R: number of records */
354 	size_t	  bt_reclen;		/* R: fixed record length */
355 	u_char	  bt_bval;		/* R: delimiting byte/pad character */
356 
357 /*
358  * NB:
359  * B_NODUPS and R_RECNO are stored on disk, and may not be changed.
360  */
361 #define	B_INMEM		0x00001		/* in-memory tree */
362 #define	B_METADIRTY	0x00002		/* need to write metadata */
363 #define	B_MODIFIED	0x00004		/* tree modified */
364 #define	B_NEEDSWAP	0x00008		/* if byte order requires swapping */
365 #define	B_RDONLY	0x00010		/* read-only tree */
366 
367 #define	B_NODUPS	0x00020		/* no duplicate keys permitted */
368 #define	R_RECNO		0x00080		/* record oriented tree */
369 
370 #define	R_CLOSEFP	0x00040		/* opened a file pointer */
371 #define	R_EOF		0x00100		/* end of input file reached. */
372 #define	R_FIXLEN	0x00200		/* fixed length records */
373 #define	R_MEMMAPPED	0x00400		/* memory mapped file. */
374 #define	R_INMEM		0x00800		/* in-memory file */
375 #define	R_MODIFIED	0x01000		/* modified file */
376 #define	R_RDONLY	0x02000		/* read-only file */
377 
378 #define	B_DB_LOCK	0x04000		/* DB_LOCK specified. */
379 #define	B_DB_SHMEM	0x08000		/* DB_SHMEM specified. */
380 #define	B_DB_TXN	0x10000		/* DB_TXN specified. */
381 	u_int32_t flags;
382 } BTREE;
383 
384 #include "extern.h"
385