xref: /freebsd/lib/libc/db/btree/bt_split.c (revision b1d046441de9053152c7cf03d6b60d9882687e1b)
1 /*-
2  * Copyright (c) 1990, 1993, 1994
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Mike Olson.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 #if defined(LIBC_SCCS) && !defined(lint)
34 static char sccsid[] = "@(#)bt_split.c	8.10 (Berkeley) 1/9/95";
35 #endif /* LIBC_SCCS and not lint */
36 #include <sys/cdefs.h>
37 __FBSDID("$FreeBSD$");
38 
39 #include <sys/types.h>
40 #include <sys/param.h>
41 
42 #include <limits.h>
43 #include <stdio.h>
44 #include <stdlib.h>
45 #include <string.h>
46 
47 #include <db.h>
48 #include "btree.h"
49 
50 static int	 bt_broot(BTREE *, PAGE *, PAGE *, PAGE *);
51 static PAGE	*bt_page(BTREE *, PAGE *, PAGE **, PAGE **, indx_t *, size_t);
52 static int	 bt_preserve(BTREE *, pgno_t);
53 static PAGE	*bt_psplit(BTREE *, PAGE *, PAGE *, PAGE *, indx_t *, size_t);
54 static PAGE	*bt_root(BTREE *, PAGE *, PAGE **, PAGE **, indx_t *, size_t);
55 static int	 bt_rroot(BTREE *, PAGE *, PAGE *, PAGE *);
56 static recno_t	 rec_total(PAGE *);
57 
58 #ifdef STATISTICS
59 u_long	bt_rootsplit, bt_split, bt_sortsplit, bt_pfxsaved;
60 #endif
61 
62 /*
63  * __BT_SPLIT -- Split the tree.
64  *
65  * Parameters:
66  *	t:	tree
67  *	sp:	page to split
68  *	key:	key to insert
69  *	data:	data to insert
70  *	flags:	BIGKEY/BIGDATA flags
71  *	ilen:	insert length
72  *	skip:	index to leave open
73  *
74  * Returns:
75  *	RET_ERROR, RET_SUCCESS
76  */
77 int
78 __bt_split(BTREE *t, PAGE *sp, const DBT *key, const DBT *data, int flags,
79     size_t ilen, u_int32_t argskip)
80 {
81 	BINTERNAL *bi;
82 	BLEAF *bl, *tbl;
83 	DBT a, b;
84 	EPGNO *parent;
85 	PAGE *h, *l, *r, *lchild, *rchild;
86 	indx_t nxtindex;
87 	u_int16_t skip;
88 	u_int32_t n, nbytes, nksize;
89 	int parentsplit;
90 	char *dest;
91 
92 	/*
93 	 * Split the page into two pages, l and r.  The split routines return
94 	 * a pointer to the page into which the key should be inserted and with
95 	 * skip set to the offset which should be used.  Additionally, l and r
96 	 * are pinned.
97 	 */
98 	skip = argskip;
99 	h = sp->pgno == P_ROOT ?
100 	    bt_root(t, sp, &l, &r, &skip, ilen) :
101 	    bt_page(t, sp, &l, &r, &skip, ilen);
102 	if (h == NULL)
103 		return (RET_ERROR);
104 
105 	/*
106 	 * Insert the new key/data pair into the leaf page.  (Key inserts
107 	 * always cause a leaf page to split first.)
108 	 */
109 	h->linp[skip] = h->upper -= ilen;
110 	dest = (char *)h + h->upper;
111 	if (F_ISSET(t, R_RECNO))
112 		WR_RLEAF(dest, data, flags)
113 	else
114 		WR_BLEAF(dest, key, data, flags)
115 
116 	/* If the root page was split, make it look right. */
117 	if (sp->pgno == P_ROOT &&
118 	    (F_ISSET(t, R_RECNO) ?
119 	    bt_rroot(t, sp, l, r) : bt_broot(t, sp, l, r)) == RET_ERROR)
120 		goto err2;
121 
122 	/*
123 	 * Now we walk the parent page stack -- a LIFO stack of the pages that
124 	 * were traversed when we searched for the page that split.  Each stack
125 	 * entry is a page number and a page index offset.  The offset is for
126 	 * the page traversed on the search.  We've just split a page, so we
127 	 * have to insert a new key into the parent page.
128 	 *
129 	 * If the insert into the parent page causes it to split, may have to
130 	 * continue splitting all the way up the tree.  We stop if the root
131 	 * splits or the page inserted into didn't have to split to hold the
132 	 * new key.  Some algorithms replace the key for the old page as well
133 	 * as the new page.  We don't, as there's no reason to believe that the
134 	 * first key on the old page is any better than the key we have, and,
135 	 * in the case of a key being placed at index 0 causing the split, the
136 	 * key is unavailable.
137 	 *
138 	 * There are a maximum of 5 pages pinned at any time.  We keep the left
139 	 * and right pages pinned while working on the parent.   The 5 are the
140 	 * two children, left parent and right parent (when the parent splits)
141 	 * and the root page or the overflow key page when calling bt_preserve.
142 	 * This code must make sure that all pins are released other than the
143 	 * root page or overflow page which is unlocked elsewhere.
144 	 */
145 	while ((parent = BT_POP(t)) != NULL) {
146 		lchild = l;
147 		rchild = r;
148 
149 		/* Get the parent page. */
150 		if ((h = mpool_get(t->bt_mp, parent->pgno, 0)) == NULL)
151 			goto err2;
152 
153 		/*
154 		 * The new key goes ONE AFTER the index, because the split
155 		 * was to the right.
156 		 */
157 		skip = parent->index + 1;
158 
159 		/*
160 		 * Calculate the space needed on the parent page.
161 		 *
162 		 * Prefix trees: space hack when inserting into BINTERNAL
163 		 * pages.  Retain only what's needed to distinguish between
164 		 * the new entry and the LAST entry on the page to its left.
165 		 * If the keys compare equal, retain the entire key.  Note,
166 		 * we don't touch overflow keys, and the entire key must be
167 		 * retained for the next-to-left most key on the leftmost
168 		 * page of each level, or the search will fail.  Applicable
169 		 * ONLY to internal pages that have leaf pages as children.
170 		 * Further reduction of the key between pairs of internal
171 		 * pages loses too much information.
172 		 */
173 		switch (rchild->flags & P_TYPE) {
174 		case P_BINTERNAL:
175 			bi = GETBINTERNAL(rchild, 0);
176 			nbytes = NBINTERNAL(bi->ksize);
177 			break;
178 		case P_BLEAF:
179 			bl = GETBLEAF(rchild, 0);
180 			nbytes = NBINTERNAL(bl->ksize);
181 			if (t->bt_pfx && !(bl->flags & P_BIGKEY) &&
182 			    (h->prevpg != P_INVALID || skip > 1)) {
183 				tbl = GETBLEAF(lchild, NEXTINDEX(lchild) - 1);
184 				a.size = tbl->ksize;
185 				a.data = tbl->bytes;
186 				b.size = bl->ksize;
187 				b.data = bl->bytes;
188 				nksize = t->bt_pfx(&a, &b);
189 				n = NBINTERNAL(nksize);
190 				if (n < nbytes) {
191 #ifdef STATISTICS
192 					bt_pfxsaved += nbytes - n;
193 #endif
194 					nbytes = n;
195 				} else
196 					nksize = 0;
197 			} else
198 				nksize = 0;
199 			break;
200 		case P_RINTERNAL:
201 		case P_RLEAF:
202 			nbytes = NRINTERNAL;
203 			break;
204 		default:
205 			abort();
206 		}
207 
208 		/* Split the parent page if necessary or shift the indices. */
209 		if ((u_int32_t)(h->upper - h->lower) < nbytes + sizeof(indx_t)) {
210 			sp = h;
211 			h = h->pgno == P_ROOT ?
212 			    bt_root(t, h, &l, &r, &skip, nbytes) :
213 			    bt_page(t, h, &l, &r, &skip, nbytes);
214 			if (h == NULL)
215 				goto err1;
216 			parentsplit = 1;
217 		} else {
218 			if (skip < (nxtindex = NEXTINDEX(h)))
219 				memmove(h->linp + skip + 1, h->linp + skip,
220 				    (nxtindex - skip) * sizeof(indx_t));
221 			h->lower += sizeof(indx_t);
222 			parentsplit = 0;
223 		}
224 
225 		/* Insert the key into the parent page. */
226 		switch (rchild->flags & P_TYPE) {
227 		case P_BINTERNAL:
228 			h->linp[skip] = h->upper -= nbytes;
229 			dest = (char *)h + h->linp[skip];
230 			memmove(dest, bi, nbytes);
231 			((BINTERNAL *)dest)->pgno = rchild->pgno;
232 			break;
233 		case P_BLEAF:
234 			h->linp[skip] = h->upper -= nbytes;
235 			dest = (char *)h + h->linp[skip];
236 			WR_BINTERNAL(dest, nksize ? nksize : bl->ksize,
237 			    rchild->pgno, bl->flags & P_BIGKEY);
238 			memmove(dest, bl->bytes, nksize ? nksize : bl->ksize);
239 			if (bl->flags & P_BIGKEY &&
240 			    bt_preserve(t, *(pgno_t *)bl->bytes) == RET_ERROR)
241 				goto err1;
242 			break;
243 		case P_RINTERNAL:
244 			/*
245 			 * Update the left page count.  If split
246 			 * added at index 0, fix the correct page.
247 			 */
248 			if (skip > 0)
249 				dest = (char *)h + h->linp[skip - 1];
250 			else
251 				dest = (char *)l + l->linp[NEXTINDEX(l) - 1];
252 			((RINTERNAL *)dest)->nrecs = rec_total(lchild);
253 			((RINTERNAL *)dest)->pgno = lchild->pgno;
254 
255 			/* Update the right page count. */
256 			h->linp[skip] = h->upper -= nbytes;
257 			dest = (char *)h + h->linp[skip];
258 			((RINTERNAL *)dest)->nrecs = rec_total(rchild);
259 			((RINTERNAL *)dest)->pgno = rchild->pgno;
260 			break;
261 		case P_RLEAF:
262 			/*
263 			 * Update the left page count.  If split
264 			 * added at index 0, fix the correct page.
265 			 */
266 			if (skip > 0)
267 				dest = (char *)h + h->linp[skip - 1];
268 			else
269 				dest = (char *)l + l->linp[NEXTINDEX(l) - 1];
270 			((RINTERNAL *)dest)->nrecs = NEXTINDEX(lchild);
271 			((RINTERNAL *)dest)->pgno = lchild->pgno;
272 
273 			/* Update the right page count. */
274 			h->linp[skip] = h->upper -= nbytes;
275 			dest = (char *)h + h->linp[skip];
276 			((RINTERNAL *)dest)->nrecs = NEXTINDEX(rchild);
277 			((RINTERNAL *)dest)->pgno = rchild->pgno;
278 			break;
279 		default:
280 			abort();
281 		}
282 
283 		/* Unpin the held pages. */
284 		if (!parentsplit) {
285 			mpool_put(t->bt_mp, h, MPOOL_DIRTY);
286 			break;
287 		}
288 
289 		/* If the root page was split, make it look right. */
290 		if (sp->pgno == P_ROOT &&
291 		    (F_ISSET(t, R_RECNO) ?
292 		    bt_rroot(t, sp, l, r) : bt_broot(t, sp, l, r)) == RET_ERROR)
293 			goto err1;
294 
295 		mpool_put(t->bt_mp, lchild, MPOOL_DIRTY);
296 		mpool_put(t->bt_mp, rchild, MPOOL_DIRTY);
297 	}
298 
299 	/* Unpin the held pages. */
300 	mpool_put(t->bt_mp, l, MPOOL_DIRTY);
301 	mpool_put(t->bt_mp, r, MPOOL_DIRTY);
302 
303 	/* Clear any pages left on the stack. */
304 	return (RET_SUCCESS);
305 
306 	/*
307 	 * If something fails in the above loop we were already walking back
308 	 * up the tree and the tree is now inconsistent.  Nothing much we can
309 	 * do about it but release any memory we're holding.
310 	 */
311 err1:	mpool_put(t->bt_mp, lchild, MPOOL_DIRTY);
312 	mpool_put(t->bt_mp, rchild, MPOOL_DIRTY);
313 
314 err2:	mpool_put(t->bt_mp, l, 0);
315 	mpool_put(t->bt_mp, r, 0);
316 	__dbpanic(t->bt_dbp);
317 	return (RET_ERROR);
318 }
319 
320 /*
321  * BT_PAGE -- Split a non-root page of a btree.
322  *
323  * Parameters:
324  *	t:	tree
325  *	h:	root page
326  *	lp:	pointer to left page pointer
327  *	rp:	pointer to right page pointer
328  *	skip:	pointer to index to leave open
329  *	ilen:	insert length
330  *
331  * Returns:
332  *	Pointer to page in which to insert or NULL on error.
333  */
334 static PAGE *
335 bt_page(BTREE *t, PAGE *h, PAGE **lp, PAGE **rp, indx_t *skip, size_t ilen)
336 {
337 	PAGE *l, *r, *tp;
338 	pgno_t npg;
339 
340 #ifdef STATISTICS
341 	++bt_split;
342 #endif
343 	/* Put the new right page for the split into place. */
344 	if ((r = __bt_new(t, &npg)) == NULL)
345 		return (NULL);
346 	r->pgno = npg;
347 	r->lower = BTDATAOFF;
348 	r->upper = t->bt_psize;
349 	r->nextpg = h->nextpg;
350 	r->prevpg = h->pgno;
351 	r->flags = h->flags & P_TYPE;
352 
353 	/*
354 	 * If we're splitting the last page on a level because we're appending
355 	 * a key to it (skip is NEXTINDEX()), it's likely that the data is
356 	 * sorted.  Adding an empty page on the side of the level is less work
357 	 * and can push the fill factor much higher than normal.  If we're
358 	 * wrong it's no big deal, we'll just do the split the right way next
359 	 * time.  It may look like it's equally easy to do a similar hack for
360 	 * reverse sorted data, that is, split the tree left, but it's not.
361 	 * Don't even try.
362 	 */
363 	if (h->nextpg == P_INVALID && *skip == NEXTINDEX(h)) {
364 #ifdef STATISTICS
365 		++bt_sortsplit;
366 #endif
367 		h->nextpg = r->pgno;
368 		r->lower = BTDATAOFF + sizeof(indx_t);
369 		*skip = 0;
370 		*lp = h;
371 		*rp = r;
372 		return (r);
373 	}
374 
375 	/* Put the new left page for the split into place. */
376 	if ((l = (PAGE *)calloc(1, t->bt_psize)) == NULL) {
377 		mpool_put(t->bt_mp, r, 0);
378 		return (NULL);
379 	}
380 	l->pgno = h->pgno;
381 	l->nextpg = r->pgno;
382 	l->prevpg = h->prevpg;
383 	l->lower = BTDATAOFF;
384 	l->upper = t->bt_psize;
385 	l->flags = h->flags & P_TYPE;
386 
387 	/* Fix up the previous pointer of the page after the split page. */
388 	if (h->nextpg != P_INVALID) {
389 		if ((tp = mpool_get(t->bt_mp, h->nextpg, 0)) == NULL) {
390 			free(l);
391 			/* XXX mpool_free(t->bt_mp, r->pgno); */
392 			return (NULL);
393 		}
394 		tp->prevpg = r->pgno;
395 		mpool_put(t->bt_mp, tp, MPOOL_DIRTY);
396 	}
397 
398 	/*
399 	 * Split right.  The key/data pairs aren't sorted in the btree page so
400 	 * it's simpler to copy the data from the split page onto two new pages
401 	 * instead of copying half the data to the right page and compacting
402 	 * the left page in place.  Since the left page can't change, we have
403 	 * to swap the original and the allocated left page after the split.
404 	 */
405 	tp = bt_psplit(t, h, l, r, skip, ilen);
406 
407 	/* Move the new left page onto the old left page. */
408 	memmove(h, l, t->bt_psize);
409 	if (tp == l)
410 		tp = h;
411 	free(l);
412 
413 	*lp = h;
414 	*rp = r;
415 	return (tp);
416 }
417 
418 /*
419  * BT_ROOT -- Split the root page of a btree.
420  *
421  * Parameters:
422  *	t:	tree
423  *	h:	root page
424  *	lp:	pointer to left page pointer
425  *	rp:	pointer to right page pointer
426  *	skip:	pointer to index to leave open
427  *	ilen:	insert length
428  *
429  * Returns:
430  *	Pointer to page in which to insert or NULL on error.
431  */
432 static PAGE *
433 bt_root(BTREE *t, PAGE *h, PAGE **lp, PAGE **rp, indx_t *skip, size_t ilen)
434 {
435 	PAGE *l, *r, *tp;
436 	pgno_t lnpg, rnpg;
437 
438 #ifdef STATISTICS
439 	++bt_split;
440 	++bt_rootsplit;
441 #endif
442 	/* Put the new left and right pages for the split into place. */
443 	if ((l = __bt_new(t, &lnpg)) == NULL ||
444 	    (r = __bt_new(t, &rnpg)) == NULL)
445 		return (NULL);
446 	l->pgno = lnpg;
447 	r->pgno = rnpg;
448 	l->nextpg = r->pgno;
449 	r->prevpg = l->pgno;
450 	l->prevpg = r->nextpg = P_INVALID;
451 	l->lower = r->lower = BTDATAOFF;
452 	l->upper = r->upper = t->bt_psize;
453 	l->flags = r->flags = h->flags & P_TYPE;
454 
455 	/* Split the root page. */
456 	tp = bt_psplit(t, h, l, r, skip, ilen);
457 
458 	*lp = l;
459 	*rp = r;
460 	return (tp);
461 }
462 
463 /*
464  * BT_RROOT -- Fix up the recno root page after it has been split.
465  *
466  * Parameters:
467  *	t:	tree
468  *	h:	root page
469  *	l:	left page
470  *	r:	right page
471  *
472  * Returns:
473  *	RET_ERROR, RET_SUCCESS
474  */
475 static int
476 bt_rroot(BTREE *t, PAGE *h, PAGE *l, PAGE *r)
477 {
478 	char *dest;
479 
480 	/* Insert the left and right keys, set the header information. */
481 	h->linp[0] = h->upper = t->bt_psize - NRINTERNAL;
482 	dest = (char *)h + h->upper;
483 	WR_RINTERNAL(dest,
484 	    l->flags & P_RLEAF ? NEXTINDEX(l) : rec_total(l), l->pgno);
485 
486 	__PAST_END(h->linp, 1) = h->upper -= NRINTERNAL;
487 	dest = (char *)h + h->upper;
488 	WR_RINTERNAL(dest,
489 	    r->flags & P_RLEAF ? NEXTINDEX(r) : rec_total(r), r->pgno);
490 
491 	h->lower = BTDATAOFF + 2 * sizeof(indx_t);
492 
493 	/* Unpin the root page, set to recno internal page. */
494 	h->flags &= ~P_TYPE;
495 	h->flags |= P_RINTERNAL;
496 	mpool_put(t->bt_mp, h, MPOOL_DIRTY);
497 
498 	return (RET_SUCCESS);
499 }
500 
501 /*
502  * BT_BROOT -- Fix up the btree root page after it has been split.
503  *
504  * Parameters:
505  *	t:	tree
506  *	h:	root page
507  *	l:	left page
508  *	r:	right page
509  *
510  * Returns:
511  *	RET_ERROR, RET_SUCCESS
512  */
513 static int
514 bt_broot(BTREE *t, PAGE *h, PAGE *l, PAGE *r)
515 {
516 	BINTERNAL *bi;
517 	BLEAF *bl;
518 	u_int32_t nbytes;
519 	char *dest;
520 
521 	/*
522 	 * If the root page was a leaf page, change it into an internal page.
523 	 * We copy the key we split on (but not the key's data, in the case of
524 	 * a leaf page) to the new root page.
525 	 *
526 	 * The btree comparison code guarantees that the left-most key on any
527 	 * level of the tree is never used, so it doesn't need to be filled in.
528 	 */
529 	nbytes = NBINTERNAL(0);
530 	h->linp[0] = h->upper = t->bt_psize - nbytes;
531 	dest = (char *)h + h->upper;
532 	WR_BINTERNAL(dest, 0, l->pgno, 0);
533 
534 	switch (h->flags & P_TYPE) {
535 	case P_BLEAF:
536 		bl = GETBLEAF(r, 0);
537 		nbytes = NBINTERNAL(bl->ksize);
538 		__PAST_END(h->linp, 1) = h->upper -= nbytes;
539 		dest = (char *)h + h->upper;
540 		WR_BINTERNAL(dest, bl->ksize, r->pgno, 0);
541 		memmove(dest, bl->bytes, bl->ksize);
542 
543 		/*
544 		 * If the key is on an overflow page, mark the overflow chain
545 		 * so it isn't deleted when the leaf copy of the key is deleted.
546 		 */
547 		if (bl->flags & P_BIGKEY &&
548 		    bt_preserve(t, *(pgno_t *)bl->bytes) == RET_ERROR)
549 			return (RET_ERROR);
550 		break;
551 	case P_BINTERNAL:
552 		bi = GETBINTERNAL(r, 0);
553 		nbytes = NBINTERNAL(bi->ksize);
554 		__PAST_END(h->linp, 1) = h->upper -= nbytes;
555 		dest = (char *)h + h->upper;
556 		memmove(dest, bi, nbytes);
557 		((BINTERNAL *)dest)->pgno = r->pgno;
558 		break;
559 	default:
560 		abort();
561 	}
562 
563 	/* There are two keys on the page. */
564 	h->lower = BTDATAOFF + 2 * sizeof(indx_t);
565 
566 	/* Unpin the root page, set to btree internal page. */
567 	h->flags &= ~P_TYPE;
568 	h->flags |= P_BINTERNAL;
569 	mpool_put(t->bt_mp, h, MPOOL_DIRTY);
570 
571 	return (RET_SUCCESS);
572 }
573 
574 /*
575  * BT_PSPLIT -- Do the real work of splitting the page.
576  *
577  * Parameters:
578  *	t:	tree
579  *	h:	page to be split
580  *	l:	page to put lower half of data
581  *	r:	page to put upper half of data
582  *	pskip:	pointer to index to leave open
583  *	ilen:	insert length
584  *
585  * Returns:
586  *	Pointer to page in which to insert.
587  */
588 static PAGE *
589 bt_psplit(BTREE *t, PAGE *h, PAGE *l, PAGE *r, indx_t *pskip, size_t ilen)
590 {
591 	BINTERNAL *bi;
592 	BLEAF *bl;
593 	CURSOR *c;
594 	RLEAF *rl;
595 	PAGE *rval;
596 	void *src;
597 	indx_t full, half, nxt, off, skip, top, used;
598 	u_int32_t nbytes;
599 	int bigkeycnt, isbigkey;
600 
601 	/*
602 	 * Split the data to the left and right pages.  Leave the skip index
603 	 * open.  Additionally, make some effort not to split on an overflow
604 	 * key.  This makes internal page processing faster and can save
605 	 * space as overflow keys used by internal pages are never deleted.
606 	 */
607 	bigkeycnt = 0;
608 	skip = *pskip;
609 	full = t->bt_psize - BTDATAOFF;
610 	half = full / 2;
611 	used = 0;
612 	for (nxt = off = 0, top = NEXTINDEX(h); nxt < top; ++off) {
613 		if (skip == off) {
614 			nbytes = ilen;
615 			isbigkey = 0;		/* XXX: not really known. */
616 		} else
617 			switch (h->flags & P_TYPE) {
618 			case P_BINTERNAL:
619 				src = bi = GETBINTERNAL(h, nxt);
620 				nbytes = NBINTERNAL(bi->ksize);
621 				isbigkey = bi->flags & P_BIGKEY;
622 				break;
623 			case P_BLEAF:
624 				src = bl = GETBLEAF(h, nxt);
625 				nbytes = NBLEAF(bl);
626 				isbigkey = bl->flags & P_BIGKEY;
627 				break;
628 			case P_RINTERNAL:
629 				src = GETRINTERNAL(h, nxt);
630 				nbytes = NRINTERNAL;
631 				isbigkey = 0;
632 				break;
633 			case P_RLEAF:
634 				src = rl = GETRLEAF(h, nxt);
635 				nbytes = NRLEAF(rl);
636 				isbigkey = 0;
637 				break;
638 			default:
639 				abort();
640 			}
641 
642 		/*
643 		 * If the key/data pairs are substantial fractions of the max
644 		 * possible size for the page, it's possible to get situations
645 		 * where we decide to try and copy too much onto the left page.
646 		 * Make sure that doesn't happen.
647 		 */
648 		if ((skip <= off && used + nbytes + sizeof(indx_t) >= full) ||
649 		    nxt == top - 1) {
650 			--off;
651 			break;
652 		}
653 
654 		/* Copy the key/data pair, if not the skipped index. */
655 		if (skip != off) {
656 			++nxt;
657 
658 			l->linp[off] = l->upper -= nbytes;
659 			memmove((char *)l + l->upper, src, nbytes);
660 		}
661 
662 		used += nbytes + sizeof(indx_t);
663 		if (used >= half) {
664 			if (!isbigkey || bigkeycnt == 3)
665 				break;
666 			else
667 				++bigkeycnt;
668 		}
669 	}
670 
671 	/*
672 	 * Off is the last offset that's valid for the left page.
673 	 * Nxt is the first offset to be placed on the right page.
674 	 */
675 	l->lower += (off + 1) * sizeof(indx_t);
676 
677 	/*
678 	 * If splitting the page that the cursor was on, the cursor has to be
679 	 * adjusted to point to the same record as before the split.  If the
680 	 * cursor is at or past the skipped slot, the cursor is incremented by
681 	 * one.  If the cursor is on the right page, it is decremented by the
682 	 * number of records split to the left page.
683 	 */
684 	c = &t->bt_cursor;
685 	if (F_ISSET(c, CURS_INIT) && c->pg.pgno == h->pgno) {
686 		if (c->pg.index >= skip)
687 			++c->pg.index;
688 		if (c->pg.index < nxt)			/* Left page. */
689 			c->pg.pgno = l->pgno;
690 		else {					/* Right page. */
691 			c->pg.pgno = r->pgno;
692 			c->pg.index -= nxt;
693 		}
694 	}
695 
696 	/*
697 	 * If the skipped index was on the left page, just return that page.
698 	 * Otherwise, adjust the skip index to reflect the new position on
699 	 * the right page.
700 	 */
701 	if (skip <= off) {
702 		skip = MAX_PAGE_OFFSET;
703 		rval = l;
704 	} else {
705 		rval = r;
706 		*pskip -= nxt;
707 	}
708 
709 	for (off = 0; nxt < top; ++off) {
710 		if (skip == nxt) {
711 			++off;
712 			skip = MAX_PAGE_OFFSET;
713 		}
714 		switch (h->flags & P_TYPE) {
715 		case P_BINTERNAL:
716 			src = bi = GETBINTERNAL(h, nxt);
717 			nbytes = NBINTERNAL(bi->ksize);
718 			break;
719 		case P_BLEAF:
720 			src = bl = GETBLEAF(h, nxt);
721 			nbytes = NBLEAF(bl);
722 			break;
723 		case P_RINTERNAL:
724 			src = GETRINTERNAL(h, nxt);
725 			nbytes = NRINTERNAL;
726 			break;
727 		case P_RLEAF:
728 			src = rl = GETRLEAF(h, nxt);
729 			nbytes = NRLEAF(rl);
730 			break;
731 		default:
732 			abort();
733 		}
734 		++nxt;
735 		r->linp[off] = r->upper -= nbytes;
736 		memmove((char *)r + r->upper, src, nbytes);
737 	}
738 	r->lower += off * sizeof(indx_t);
739 
740 	/* If the key is being appended to the page, adjust the index. */
741 	if (skip == top)
742 		r->lower += sizeof(indx_t);
743 
744 	return (rval);
745 }
746 
747 /*
748  * BT_PRESERVE -- Mark a chain of pages as used by an internal node.
749  *
750  * Chains of indirect blocks pointed to by leaf nodes get reclaimed when the
751  * record that references them gets deleted.  Chains pointed to by internal
752  * pages never get deleted.  This routine marks a chain as pointed to by an
753  * internal page.
754  *
755  * Parameters:
756  *	t:	tree
757  *	pg:	page number of first page in the chain.
758  *
759  * Returns:
760  *	RET_SUCCESS, RET_ERROR.
761  */
762 static int
763 bt_preserve(BTREE *t, pgno_t pg)
764 {
765 	PAGE *h;
766 
767 	if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
768 		return (RET_ERROR);
769 	h->flags |= P_PRESERVE;
770 	mpool_put(t->bt_mp, h, MPOOL_DIRTY);
771 	return (RET_SUCCESS);
772 }
773 
774 /*
775  * REC_TOTAL -- Return the number of recno entries below a page.
776  *
777  * Parameters:
778  *	h:	page
779  *
780  * Returns:
781  *	The number of recno entries below a page.
782  *
783  * XXX
784  * These values could be set by the bt_psplit routine.  The problem is that the
785  * entry has to be popped off of the stack etc. or the values have to be passed
786  * all the way back to bt_split/bt_rroot and it's not very clean.
787  */
788 static recno_t
789 rec_total(PAGE *h)
790 {
791 	recno_t recs;
792 	indx_t nxt, top;
793 
794 	for (recs = 0, nxt = 0, top = NEXTINDEX(h); nxt < top; ++nxt)
795 		recs += GETRINTERNAL(h, nxt)->nrecs;
796 	return (recs);
797 }
798