xref: /freebsd/lib/libc/db/btree/bt_split.c (revision 3642298923e528d795e3a30ec165d2b469e28b40)
1 /*-
2  * Copyright (c) 1990, 1993, 1994
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Mike Olson.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  */
36 
37 #if defined(LIBC_SCCS) && !defined(lint)
38 static char sccsid[] = "@(#)bt_split.c	8.9 (Berkeley) 7/26/94";
39 #endif /* LIBC_SCCS and not lint */
40 #include <sys/cdefs.h>
41 __FBSDID("$FreeBSD$");
42 
43 #include <sys/types.h>
44 
45 #include <limits.h>
46 #include <stdio.h>
47 #include <stdlib.h>
48 #include <string.h>
49 
50 #include <db.h>
51 #include "btree.h"
52 
53 static int	 bt_broot(BTREE *, PAGE *, PAGE *, PAGE *);
54 static PAGE	*bt_page (BTREE *, PAGE *, PAGE **, PAGE **, indx_t *, size_t);
55 static int	 bt_preserve(BTREE *, pgno_t);
56 static PAGE	*bt_psplit (BTREE *, PAGE *, PAGE *, PAGE *, indx_t *, size_t);
57 static PAGE	*bt_root (BTREE *, PAGE *, PAGE **, PAGE **, indx_t *, size_t);
58 static int	 bt_rroot(BTREE *, PAGE *, PAGE *, PAGE *);
59 static recno_t	 rec_total(PAGE *);
60 
61 #ifdef STATISTICS
62 u_long	bt_rootsplit, bt_split, bt_sortsplit, bt_pfxsaved;
63 #endif
64 
65 /*
66  * __BT_SPLIT -- Split the tree.
67  *
68  * Parameters:
69  *	t:	tree
70  *	sp:	page to split
71  *	key:	key to insert
72  *	data:	data to insert
73  *	flags:	BIGKEY/BIGDATA flags
74  *	ilen:	insert length
75  *	skip:	index to leave open
76  *
77  * Returns:
78  *	RET_ERROR, RET_SUCCESS
79  */
80 int
81 __bt_split(t, sp, key, data, flags, ilen, argskip)
82 	BTREE *t;
83 	PAGE *sp;
84 	const DBT *key, *data;
85 	int flags;
86 	size_t ilen;
87 	u_int32_t argskip;
88 {
89 	BINTERNAL *bi;
90 	BLEAF *bl, *tbl;
91 	DBT a, b;
92 	EPGNO *parent;
93 	PAGE *h, *l, *r, *lchild, *rchild;
94 	indx_t nxtindex;
95 	u_int16_t skip;
96 	u_int32_t n, nbytes, nksize;
97 	int parentsplit;
98 	char *dest;
99 
100 	/*
101 	 * Split the page into two pages, l and r.  The split routines return
102 	 * a pointer to the page into which the key should be inserted and with
103 	 * skip set to the offset which should be used.  Additionally, l and r
104 	 * are pinned.
105 	 */
106 	skip = argskip;
107 	h = sp->pgno == P_ROOT ?
108 	    bt_root(t, sp, &l, &r, &skip, ilen) :
109 	    bt_page(t, sp, &l, &r, &skip, ilen);
110 	if (h == NULL)
111 		return (RET_ERROR);
112 
113 	/*
114 	 * Insert the new key/data pair into the leaf page.  (Key inserts
115 	 * always cause a leaf page to split first.)
116 	 */
117 	h->linp[skip] = h->upper -= ilen;
118 	dest = (char *)h + h->upper;
119 	if (F_ISSET(t, R_RECNO))
120 		WR_RLEAF(dest, data, flags)
121 	else
122 		WR_BLEAF(dest, key, data, flags)
123 
124 	/* If the root page was split, make it look right. */
125 	if (sp->pgno == P_ROOT &&
126 	    (F_ISSET(t, R_RECNO) ?
127 	    bt_rroot(t, sp, l, r) : bt_broot(t, sp, l, r)) == RET_ERROR)
128 		goto err2;
129 
130 	/*
131 	 * Now we walk the parent page stack -- a LIFO stack of the pages that
132 	 * were traversed when we searched for the page that split.  Each stack
133 	 * entry is a page number and a page index offset.  The offset is for
134 	 * the page traversed on the search.  We've just split a page, so we
135 	 * have to insert a new key into the parent page.
136 	 *
137 	 * If the insert into the parent page causes it to split, may have to
138 	 * continue splitting all the way up the tree.  We stop if the root
139 	 * splits or the page inserted into didn't have to split to hold the
140 	 * new key.  Some algorithms replace the key for the old page as well
141 	 * as the new page.  We don't, as there's no reason to believe that the
142 	 * first key on the old page is any better than the key we have, and,
143 	 * in the case of a key being placed at index 0 causing the split, the
144 	 * key is unavailable.
145 	 *
146 	 * There are a maximum of 5 pages pinned at any time.  We keep the left
147 	 * and right pages pinned while working on the parent.   The 5 are the
148 	 * two children, left parent and right parent (when the parent splits)
149 	 * and the root page or the overflow key page when calling bt_preserve.
150 	 * This code must make sure that all pins are released other than the
151 	 * root page or overflow page which is unlocked elsewhere.
152 	 */
153 	while ((parent = BT_POP(t)) != NULL) {
154 		lchild = l;
155 		rchild = r;
156 
157 		/* Get the parent page. */
158 		if ((h = mpool_get(t->bt_mp, parent->pgno, 0)) == NULL)
159 			goto err2;
160 
161 	 	/*
162 		 * The new key goes ONE AFTER the index, because the split
163 		 * was to the right.
164 		 */
165 		skip = parent->index + 1;
166 
167 		/*
168 		 * Calculate the space needed on the parent page.
169 		 *
170 		 * Prefix trees: space hack when inserting into BINTERNAL
171 		 * pages.  Retain only what's needed to distinguish between
172 		 * the new entry and the LAST entry on the page to its left.
173 		 * If the keys compare equal, retain the entire key.  Note,
174 		 * we don't touch overflow keys, and the entire key must be
175 		 * retained for the next-to-left most key on the leftmost
176 		 * page of each level, or the search will fail.  Applicable
177 		 * ONLY to internal pages that have leaf pages as children.
178 		 * Further reduction of the key between pairs of internal
179 		 * pages loses too much information.
180 		 */
181 		switch (rchild->flags & P_TYPE) {
182 		case P_BINTERNAL:
183 			bi = GETBINTERNAL(rchild, 0);
184 			nbytes = NBINTERNAL(bi->ksize);
185 			break;
186 		case P_BLEAF:
187 			bl = GETBLEAF(rchild, 0);
188 			nbytes = NBINTERNAL(bl->ksize);
189 			if (t->bt_pfx && !(bl->flags & P_BIGKEY) &&
190 			    (h->prevpg != P_INVALID || skip > 1)) {
191 				tbl = GETBLEAF(lchild, NEXTINDEX(lchild) - 1);
192 				a.size = tbl->ksize;
193 				a.data = tbl->bytes;
194 				b.size = bl->ksize;
195 				b.data = bl->bytes;
196 				nksize = t->bt_pfx(&a, &b);
197 				n = NBINTERNAL(nksize);
198 				if (n < nbytes) {
199 #ifdef STATISTICS
200 					bt_pfxsaved += nbytes - n;
201 #endif
202 					nbytes = n;
203 				} else
204 					nksize = 0;
205 			} else
206 				nksize = 0;
207 			break;
208 		case P_RINTERNAL:
209 		case P_RLEAF:
210 			nbytes = NRINTERNAL;
211 			break;
212 		default:
213 			abort();
214 		}
215 
216 		/* Split the parent page if necessary or shift the indices. */
217 		if (h->upper - h->lower < nbytes + sizeof(indx_t)) {
218 			sp = h;
219 			h = h->pgno == P_ROOT ?
220 			    bt_root(t, h, &l, &r, &skip, nbytes) :
221 			    bt_page(t, h, &l, &r, &skip, nbytes);
222 			if (h == NULL)
223 				goto err1;
224 			parentsplit = 1;
225 		} else {
226 			if (skip < (nxtindex = NEXTINDEX(h)))
227 				memmove(h->linp + skip + 1, h->linp + skip,
228 				    (nxtindex - skip) * sizeof(indx_t));
229 			h->lower += sizeof(indx_t);
230 			parentsplit = 0;
231 		}
232 
233 		/* Insert the key into the parent page. */
234 		switch (rchild->flags & P_TYPE) {
235 		case P_BINTERNAL:
236 			h->linp[skip] = h->upper -= nbytes;
237 			dest = (char *)h + h->linp[skip];
238 			memmove(dest, bi, nbytes);
239 			((BINTERNAL *)dest)->pgno = rchild->pgno;
240 			break;
241 		case P_BLEAF:
242 			h->linp[skip] = h->upper -= nbytes;
243 			dest = (char *)h + h->linp[skip];
244 			WR_BINTERNAL(dest, nksize ? nksize : bl->ksize,
245 			    rchild->pgno, bl->flags & P_BIGKEY);
246 			memmove(dest, bl->bytes, nksize ? nksize : bl->ksize);
247 			if (bl->flags & P_BIGKEY &&
248 			    bt_preserve(t, *(pgno_t *)bl->bytes) == RET_ERROR)
249 				goto err1;
250 			break;
251 		case P_RINTERNAL:
252 			/*
253 			 * Update the left page count.  If split
254 			 * added at index 0, fix the correct page.
255 			 */
256 			if (skip > 0)
257 				dest = (char *)h + h->linp[skip - 1];
258 			else
259 				dest = (char *)l + l->linp[NEXTINDEX(l) - 1];
260 			((RINTERNAL *)dest)->nrecs = rec_total(lchild);
261 			((RINTERNAL *)dest)->pgno = lchild->pgno;
262 
263 			/* Update the right page count. */
264 			h->linp[skip] = h->upper -= nbytes;
265 			dest = (char *)h + h->linp[skip];
266 			((RINTERNAL *)dest)->nrecs = rec_total(rchild);
267 			((RINTERNAL *)dest)->pgno = rchild->pgno;
268 			break;
269 		case P_RLEAF:
270 			/*
271 			 * Update the left page count.  If split
272 			 * added at index 0, fix the correct page.
273 			 */
274 			if (skip > 0)
275 				dest = (char *)h + h->linp[skip - 1];
276 			else
277 				dest = (char *)l + l->linp[NEXTINDEX(l) - 1];
278 			((RINTERNAL *)dest)->nrecs = NEXTINDEX(lchild);
279 			((RINTERNAL *)dest)->pgno = lchild->pgno;
280 
281 			/* Update the right page count. */
282 			h->linp[skip] = h->upper -= nbytes;
283 			dest = (char *)h + h->linp[skip];
284 			((RINTERNAL *)dest)->nrecs = NEXTINDEX(rchild);
285 			((RINTERNAL *)dest)->pgno = rchild->pgno;
286 			break;
287 		default:
288 			abort();
289 		}
290 
291 		/* Unpin the held pages. */
292 		if (!parentsplit) {
293 			mpool_put(t->bt_mp, h, MPOOL_DIRTY);
294 			break;
295 		}
296 
297 		/* If the root page was split, make it look right. */
298 		if (sp->pgno == P_ROOT &&
299 		    (F_ISSET(t, R_RECNO) ?
300 		    bt_rroot(t, sp, l, r) : bt_broot(t, sp, l, r)) == RET_ERROR)
301 			goto err1;
302 
303 		mpool_put(t->bt_mp, lchild, MPOOL_DIRTY);
304 		mpool_put(t->bt_mp, rchild, MPOOL_DIRTY);
305 	}
306 
307 	/* Unpin the held pages. */
308 	mpool_put(t->bt_mp, l, MPOOL_DIRTY);
309 	mpool_put(t->bt_mp, r, MPOOL_DIRTY);
310 
311 	/* Clear any pages left on the stack. */
312 	return (RET_SUCCESS);
313 
314 	/*
315 	 * If something fails in the above loop we were already walking back
316 	 * up the tree and the tree is now inconsistent.  Nothing much we can
317 	 * do about it but release any memory we're holding.
318 	 */
319 err1:	mpool_put(t->bt_mp, lchild, MPOOL_DIRTY);
320 	mpool_put(t->bt_mp, rchild, MPOOL_DIRTY);
321 
322 err2:	mpool_put(t->bt_mp, l, 0);
323 	mpool_put(t->bt_mp, r, 0);
324 	__dbpanic(t->bt_dbp);
325 	return (RET_ERROR);
326 }
327 
328 /*
329  * BT_PAGE -- Split a non-root page of a btree.
330  *
331  * Parameters:
332  *	t:	tree
333  *	h:	root page
334  *	lp:	pointer to left page pointer
335  *	rp:	pointer to right page pointer
336  *	skip:	pointer to index to leave open
337  *	ilen:	insert length
338  *
339  * Returns:
340  *	Pointer to page in which to insert or NULL on error.
341  */
342 static PAGE *
343 bt_page(t, h, lp, rp, skip, ilen)
344 	BTREE *t;
345 	PAGE *h, **lp, **rp;
346 	indx_t *skip;
347 	size_t ilen;
348 {
349 	PAGE *l, *r, *tp;
350 	pgno_t npg;
351 
352 #ifdef STATISTICS
353 	++bt_split;
354 #endif
355 	/* Put the new right page for the split into place. */
356 	if ((r = __bt_new(t, &npg)) == NULL)
357 		return (NULL);
358 	r->pgno = npg;
359 	r->lower = BTDATAOFF;
360 	r->upper = t->bt_psize;
361 	r->nextpg = h->nextpg;
362 	r->prevpg = h->pgno;
363 	r->flags = h->flags & P_TYPE;
364 
365 	/*
366 	 * If we're splitting the last page on a level because we're appending
367 	 * a key to it (skip is NEXTINDEX()), it's likely that the data is
368 	 * sorted.  Adding an empty page on the side of the level is less work
369 	 * and can push the fill factor much higher than normal.  If we're
370 	 * wrong it's no big deal, we'll just do the split the right way next
371 	 * time.  It may look like it's equally easy to do a similar hack for
372 	 * reverse sorted data, that is, split the tree left, but it's not.
373 	 * Don't even try.
374 	 */
375 	if (h->nextpg == P_INVALID && *skip == NEXTINDEX(h)) {
376 #ifdef STATISTICS
377 		++bt_sortsplit;
378 #endif
379 		h->nextpg = r->pgno;
380 		r->lower = BTDATAOFF + sizeof(indx_t);
381 		*skip = 0;
382 		*lp = h;
383 		*rp = r;
384 		return (r);
385 	}
386 
387 	/* Put the new left page for the split into place. */
388 	if ((l = (PAGE *)malloc(t->bt_psize)) == NULL) {
389 		mpool_put(t->bt_mp, r, 0);
390 		return (NULL);
391 	}
392 #ifdef PURIFY
393 	memset(l, 0xff, t->bt_psize);
394 #endif
395 	l->pgno = h->pgno;
396 	l->nextpg = r->pgno;
397 	l->prevpg = h->prevpg;
398 	l->lower = BTDATAOFF;
399 	l->upper = t->bt_psize;
400 	l->flags = h->flags & P_TYPE;
401 
402 	/* Fix up the previous pointer of the page after the split page. */
403 	if (h->nextpg != P_INVALID) {
404 		if ((tp = mpool_get(t->bt_mp, h->nextpg, 0)) == NULL) {
405 			free(l);
406 			/* XXX mpool_free(t->bt_mp, r->pgno); */
407 			return (NULL);
408 		}
409 		tp->prevpg = r->pgno;
410 		mpool_put(t->bt_mp, tp, MPOOL_DIRTY);
411 	}
412 
413 	/*
414 	 * Split right.  The key/data pairs aren't sorted in the btree page so
415 	 * it's simpler to copy the data from the split page onto two new pages
416 	 * instead of copying half the data to the right page and compacting
417 	 * the left page in place.  Since the left page can't change, we have
418 	 * to swap the original and the allocated left page after the split.
419 	 */
420 	tp = bt_psplit(t, h, l, r, skip, ilen);
421 
422 	/* Move the new left page onto the old left page. */
423 	memmove(h, l, t->bt_psize);
424 	if (tp == l)
425 		tp = h;
426 	free(l);
427 
428 	*lp = h;
429 	*rp = r;
430 	return (tp);
431 }
432 
433 /*
434  * BT_ROOT -- Split the root page of a btree.
435  *
436  * Parameters:
437  *	t:	tree
438  *	h:	root page
439  *	lp:	pointer to left page pointer
440  *	rp:	pointer to right page pointer
441  *	skip:	pointer to index to leave open
442  *	ilen:	insert length
443  *
444  * Returns:
445  *	Pointer to page in which to insert or NULL on error.
446  */
447 static PAGE *
448 bt_root(t, h, lp, rp, skip, ilen)
449 	BTREE *t;
450 	PAGE *h, **lp, **rp;
451 	indx_t *skip;
452 	size_t ilen;
453 {
454 	PAGE *l, *r, *tp;
455 	pgno_t lnpg, rnpg;
456 
457 #ifdef STATISTICS
458 	++bt_split;
459 	++bt_rootsplit;
460 #endif
461 	/* Put the new left and right pages for the split into place. */
462 	if ((l = __bt_new(t, &lnpg)) == NULL ||
463 	    (r = __bt_new(t, &rnpg)) == NULL)
464 		return (NULL);
465 	l->pgno = lnpg;
466 	r->pgno = rnpg;
467 	l->nextpg = r->pgno;
468 	r->prevpg = l->pgno;
469 	l->prevpg = r->nextpg = P_INVALID;
470 	l->lower = r->lower = BTDATAOFF;
471 	l->upper = r->upper = t->bt_psize;
472 	l->flags = r->flags = h->flags & P_TYPE;
473 
474 	/* Split the root page. */
475 	tp = bt_psplit(t, h, l, r, skip, ilen);
476 
477 	*lp = l;
478 	*rp = r;
479 	return (tp);
480 }
481 
482 /*
483  * BT_RROOT -- Fix up the recno root page after it has been split.
484  *
485  * Parameters:
486  *	t:	tree
487  *	h:	root page
488  *	l:	left page
489  *	r:	right page
490  *
491  * Returns:
492  *	RET_ERROR, RET_SUCCESS
493  */
494 static int
495 bt_rroot(t, h, l, r)
496 	BTREE *t;
497 	PAGE *h, *l, *r;
498 {
499 	char *dest;
500 
501 	/* Insert the left and right keys, set the header information. */
502 	h->linp[0] = h->upper = t->bt_psize - NRINTERNAL;
503 	dest = (char *)h + h->upper;
504 	WR_RINTERNAL(dest,
505 	    l->flags & P_RLEAF ? NEXTINDEX(l) : rec_total(l), l->pgno);
506 
507 	h->linp[1] = h->upper -= NRINTERNAL;
508 	dest = (char *)h + h->upper;
509 	WR_RINTERNAL(dest,
510 	    r->flags & P_RLEAF ? NEXTINDEX(r) : rec_total(r), r->pgno);
511 
512 	h->lower = BTDATAOFF + 2 * sizeof(indx_t);
513 
514 	/* Unpin the root page, set to recno internal page. */
515 	h->flags &= ~P_TYPE;
516 	h->flags |= P_RINTERNAL;
517 	mpool_put(t->bt_mp, h, MPOOL_DIRTY);
518 
519 	return (RET_SUCCESS);
520 }
521 
522 /*
523  * BT_BROOT -- Fix up the btree root page after it has been split.
524  *
525  * Parameters:
526  *	t:	tree
527  *	h:	root page
528  *	l:	left page
529  *	r:	right page
530  *
531  * Returns:
532  *	RET_ERROR, RET_SUCCESS
533  */
534 static int
535 bt_broot(t, h, l, r)
536 	BTREE *t;
537 	PAGE *h, *l, *r;
538 {
539 	BINTERNAL *bi;
540 	BLEAF *bl;
541 	u_int32_t nbytes;
542 	char *dest;
543 
544 	/*
545 	 * If the root page was a leaf page, change it into an internal page.
546 	 * We copy the key we split on (but not the key's data, in the case of
547 	 * a leaf page) to the new root page.
548 	 *
549 	 * The btree comparison code guarantees that the left-most key on any
550 	 * level of the tree is never used, so it doesn't need to be filled in.
551 	 */
552 	nbytes = NBINTERNAL(0);
553 	h->linp[0] = h->upper = t->bt_psize - nbytes;
554 	dest = (char *)h + h->upper;
555 	WR_BINTERNAL(dest, 0, l->pgno, 0);
556 
557 	switch (h->flags & P_TYPE) {
558 	case P_BLEAF:
559 		bl = GETBLEAF(r, 0);
560 		nbytes = NBINTERNAL(bl->ksize);
561 		h->linp[1] = h->upper -= nbytes;
562 		dest = (char *)h + h->upper;
563 		WR_BINTERNAL(dest, bl->ksize, r->pgno, 0);
564 		memmove(dest, bl->bytes, bl->ksize);
565 
566 		/*
567 		 * If the key is on an overflow page, mark the overflow chain
568 		 * so it isn't deleted when the leaf copy of the key is deleted.
569 		 */
570 		if (bl->flags & P_BIGKEY &&
571 		    bt_preserve(t, *(pgno_t *)bl->bytes) == RET_ERROR)
572 			return (RET_ERROR);
573 		break;
574 	case P_BINTERNAL:
575 		bi = GETBINTERNAL(r, 0);
576 		nbytes = NBINTERNAL(bi->ksize);
577 		h->linp[1] = h->upper -= nbytes;
578 		dest = (char *)h + h->upper;
579 		memmove(dest, bi, nbytes);
580 		((BINTERNAL *)dest)->pgno = r->pgno;
581 		break;
582 	default:
583 		abort();
584 	}
585 
586 	/* There are two keys on the page. */
587 	h->lower = BTDATAOFF + 2 * sizeof(indx_t);
588 
589 	/* Unpin the root page, set to btree internal page. */
590 	h->flags &= ~P_TYPE;
591 	h->flags |= P_BINTERNAL;
592 	mpool_put(t->bt_mp, h, MPOOL_DIRTY);
593 
594 	return (RET_SUCCESS);
595 }
596 
597 /*
598  * BT_PSPLIT -- Do the real work of splitting the page.
599  *
600  * Parameters:
601  *	t:	tree
602  *	h:	page to be split
603  *	l:	page to put lower half of data
604  *	r:	page to put upper half of data
605  *	pskip:	pointer to index to leave open
606  *	ilen:	insert length
607  *
608  * Returns:
609  *	Pointer to page in which to insert.
610  */
611 static PAGE *
612 bt_psplit(t, h, l, r, pskip, ilen)
613 	BTREE *t;
614 	PAGE *h, *l, *r;
615 	indx_t *pskip;
616 	size_t ilen;
617 {
618 	BINTERNAL *bi;
619 	BLEAF *bl;
620 	CURSOR *c;
621 	RLEAF *rl;
622 	PAGE *rval;
623 	void *src;
624 	indx_t full, half, nxt, off, skip, top, used;
625 	u_int32_t nbytes;
626 	int bigkeycnt, isbigkey;
627 
628 	/*
629 	 * Split the data to the left and right pages.  Leave the skip index
630 	 * open.  Additionally, make some effort not to split on an overflow
631 	 * key.  This makes internal page processing faster and can save
632 	 * space as overflow keys used by internal pages are never deleted.
633 	 */
634 	bigkeycnt = 0;
635 	skip = *pskip;
636 	full = t->bt_psize - BTDATAOFF;
637 	half = full / 2;
638 	used = 0;
639 	for (nxt = off = 0, top = NEXTINDEX(h); nxt < top; ++off) {
640 		if (skip == off) {
641 			nbytes = ilen;
642 			isbigkey = 0;		/* XXX: not really known. */
643 		} else
644 			switch (h->flags & P_TYPE) {
645 			case P_BINTERNAL:
646 				src = bi = GETBINTERNAL(h, nxt);
647 				nbytes = NBINTERNAL(bi->ksize);
648 				isbigkey = bi->flags & P_BIGKEY;
649 				break;
650 			case P_BLEAF:
651 				src = bl = GETBLEAF(h, nxt);
652 				nbytes = NBLEAF(bl);
653 				isbigkey = bl->flags & P_BIGKEY;
654 				break;
655 			case P_RINTERNAL:
656 				src = GETRINTERNAL(h, nxt);
657 				nbytes = NRINTERNAL;
658 				isbigkey = 0;
659 				break;
660 			case P_RLEAF:
661 				src = rl = GETRLEAF(h, nxt);
662 				nbytes = NRLEAF(rl);
663 				isbigkey = 0;
664 				break;
665 			default:
666 				abort();
667 			}
668 
669 		/*
670 		 * If the key/data pairs are substantial fractions of the max
671 		 * possible size for the page, it's possible to get situations
672 		 * where we decide to try and copy too much onto the left page.
673 		 * Make sure that doesn't happen.
674 		 */
675 		if ((skip <= off && used + nbytes + sizeof(indx_t) >= full)
676 		    || nxt == top - 1) {
677 			--off;
678 			break;
679 		}
680 
681 		/* Copy the key/data pair, if not the skipped index. */
682 		if (skip != off) {
683 			++nxt;
684 
685 			l->linp[off] = l->upper -= nbytes;
686 			memmove((char *)l + l->upper, src, nbytes);
687 		}
688 
689 		used += nbytes + sizeof(indx_t);
690 		if (used >= half) {
691 			if (!isbigkey || bigkeycnt == 3)
692 				break;
693 			else
694 				++bigkeycnt;
695 		}
696 	}
697 
698 	/*
699 	 * Off is the last offset that's valid for the left page.
700 	 * Nxt is the first offset to be placed on the right page.
701 	 */
702 	l->lower += (off + 1) * sizeof(indx_t);
703 
704 	/*
705 	 * If splitting the page that the cursor was on, the cursor has to be
706 	 * adjusted to point to the same record as before the split.  If the
707 	 * cursor is at or past the skipped slot, the cursor is incremented by
708 	 * one.  If the cursor is on the right page, it is decremented by the
709 	 * number of records split to the left page.
710 	 */
711 	c = &t->bt_cursor;
712 	if (F_ISSET(c, CURS_INIT) && c->pg.pgno == h->pgno) {
713 		if (c->pg.index >= skip)
714 			++c->pg.index;
715 		if (c->pg.index < nxt)			/* Left page. */
716 			c->pg.pgno = l->pgno;
717 		else {					/* Right page. */
718 			c->pg.pgno = r->pgno;
719 			c->pg.index -= nxt;
720 		}
721 	}
722 
723 	/*
724 	 * If the skipped index was on the left page, just return that page.
725 	 * Otherwise, adjust the skip index to reflect the new position on
726 	 * the right page.
727 	 */
728 	if (skip <= off) {
729 		skip = MAX_PAGE_OFFSET;
730 		rval = l;
731 	} else {
732 		rval = r;
733 		*pskip -= nxt;
734 	}
735 
736 	for (off = 0; nxt < top; ++off) {
737 		if (skip == nxt) {
738 			++off;
739 			skip = MAX_PAGE_OFFSET;
740 		}
741 		switch (h->flags & P_TYPE) {
742 		case P_BINTERNAL:
743 			src = bi = GETBINTERNAL(h, nxt);
744 			nbytes = NBINTERNAL(bi->ksize);
745 			break;
746 		case P_BLEAF:
747 			src = bl = GETBLEAF(h, nxt);
748 			nbytes = NBLEAF(bl);
749 			break;
750 		case P_RINTERNAL:
751 			src = GETRINTERNAL(h, nxt);
752 			nbytes = NRINTERNAL;
753 			break;
754 		case P_RLEAF:
755 			src = rl = GETRLEAF(h, nxt);
756 			nbytes = NRLEAF(rl);
757 			break;
758 		default:
759 			abort();
760 		}
761 		++nxt;
762 		r->linp[off] = r->upper -= nbytes;
763 		memmove((char *)r + r->upper, src, nbytes);
764 	}
765 	r->lower += off * sizeof(indx_t);
766 
767 	/* If the key is being appended to the page, adjust the index. */
768 	if (skip == top)
769 		r->lower += sizeof(indx_t);
770 
771 	return (rval);
772 }
773 
774 /*
775  * BT_PRESERVE -- Mark a chain of pages as used by an internal node.
776  *
777  * Chains of indirect blocks pointed to by leaf nodes get reclaimed when the
778  * record that references them gets deleted.  Chains pointed to by internal
779  * pages never get deleted.  This routine marks a chain as pointed to by an
780  * internal page.
781  *
782  * Parameters:
783  *	t:	tree
784  *	pg:	page number of first page in the chain.
785  *
786  * Returns:
787  *	RET_SUCCESS, RET_ERROR.
788  */
789 static int
790 bt_preserve(t, pg)
791 	BTREE *t;
792 	pgno_t pg;
793 {
794 	PAGE *h;
795 
796 	if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
797 		return (RET_ERROR);
798 	h->flags |= P_PRESERVE;
799 	mpool_put(t->bt_mp, h, MPOOL_DIRTY);
800 	return (RET_SUCCESS);
801 }
802 
803 /*
804  * REC_TOTAL -- Return the number of recno entries below a page.
805  *
806  * Parameters:
807  *	h:	page
808  *
809  * Returns:
810  *	The number of recno entries below a page.
811  *
812  * XXX
813  * These values could be set by the bt_psplit routine.  The problem is that the
814  * entry has to be popped off of the stack etc. or the values have to be passed
815  * all the way back to bt_split/bt_rroot and it's not very clean.
816  */
817 static recno_t
818 rec_total(h)
819 	PAGE *h;
820 {
821 	recno_t recs;
822 	indx_t nxt, top;
823 
824 	for (recs = 0, nxt = 0, top = NEXTINDEX(h); nxt < top; ++nxt)
825 		recs += GETRINTERNAL(h, nxt)->nrecs;
826 	return (recs);
827 }
828