1 /*- 2 * Copyright (c) 1990, 1993, 1994 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * Mike Olson. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 #if defined(LIBC_SCCS) && !defined(lint) 34 static char sccsid[] = "@(#)bt_split.c 8.9 (Berkeley) 7/26/94"; 35 #endif /* LIBC_SCCS and not lint */ 36 #include <sys/cdefs.h> 37 __FBSDID("$FreeBSD$"); 38 39 #include <sys/types.h> 40 41 #include <limits.h> 42 #include <stdio.h> 43 #include <stdlib.h> 44 #include <string.h> 45 46 #include <db.h> 47 #include "btree.h" 48 49 static int bt_broot(BTREE *, PAGE *, PAGE *, PAGE *); 50 static PAGE *bt_page (BTREE *, PAGE *, PAGE **, PAGE **, indx_t *, size_t); 51 static int bt_preserve(BTREE *, pgno_t); 52 static PAGE *bt_psplit (BTREE *, PAGE *, PAGE *, PAGE *, indx_t *, size_t); 53 static PAGE *bt_root (BTREE *, PAGE *, PAGE **, PAGE **, indx_t *, size_t); 54 static int bt_rroot(BTREE *, PAGE *, PAGE *, PAGE *); 55 static recno_t rec_total(PAGE *); 56 57 #ifdef STATISTICS 58 u_long bt_rootsplit, bt_split, bt_sortsplit, bt_pfxsaved; 59 #endif 60 61 /* 62 * __BT_SPLIT -- Split the tree. 63 * 64 * Parameters: 65 * t: tree 66 * sp: page to split 67 * key: key to insert 68 * data: data to insert 69 * flags: BIGKEY/BIGDATA flags 70 * ilen: insert length 71 * skip: index to leave open 72 * 73 * Returns: 74 * RET_ERROR, RET_SUCCESS 75 */ 76 int 77 __bt_split(t, sp, key, data, flags, ilen, argskip) 78 BTREE *t; 79 PAGE *sp; 80 const DBT *key, *data; 81 int flags; 82 size_t ilen; 83 u_int32_t argskip; 84 { 85 BINTERNAL *bi; 86 BLEAF *bl, *tbl; 87 DBT a, b; 88 EPGNO *parent; 89 PAGE *h, *l, *r, *lchild, *rchild; 90 indx_t nxtindex; 91 u_int16_t skip; 92 u_int32_t n, nbytes, nksize; 93 int parentsplit; 94 char *dest; 95 96 /* 97 * Split the page into two pages, l and r. The split routines return 98 * a pointer to the page into which the key should be inserted and with 99 * skip set to the offset which should be used. Additionally, l and r 100 * are pinned. 101 */ 102 skip = argskip; 103 h = sp->pgno == P_ROOT ? 104 bt_root(t, sp, &l, &r, &skip, ilen) : 105 bt_page(t, sp, &l, &r, &skip, ilen); 106 if (h == NULL) 107 return (RET_ERROR); 108 109 /* 110 * Insert the new key/data pair into the leaf page. (Key inserts 111 * always cause a leaf page to split first.) 112 */ 113 h->linp[skip] = h->upper -= ilen; 114 dest = (char *)h + h->upper; 115 if (F_ISSET(t, R_RECNO)) 116 WR_RLEAF(dest, data, flags) 117 else 118 WR_BLEAF(dest, key, data, flags) 119 120 /* If the root page was split, make it look right. */ 121 if (sp->pgno == P_ROOT && 122 (F_ISSET(t, R_RECNO) ? 123 bt_rroot(t, sp, l, r) : bt_broot(t, sp, l, r)) == RET_ERROR) 124 goto err2; 125 126 /* 127 * Now we walk the parent page stack -- a LIFO stack of the pages that 128 * were traversed when we searched for the page that split. Each stack 129 * entry is a page number and a page index offset. The offset is for 130 * the page traversed on the search. We've just split a page, so we 131 * have to insert a new key into the parent page. 132 * 133 * If the insert into the parent page causes it to split, may have to 134 * continue splitting all the way up the tree. We stop if the root 135 * splits or the page inserted into didn't have to split to hold the 136 * new key. Some algorithms replace the key for the old page as well 137 * as the new page. We don't, as there's no reason to believe that the 138 * first key on the old page is any better than the key we have, and, 139 * in the case of a key being placed at index 0 causing the split, the 140 * key is unavailable. 141 * 142 * There are a maximum of 5 pages pinned at any time. We keep the left 143 * and right pages pinned while working on the parent. The 5 are the 144 * two children, left parent and right parent (when the parent splits) 145 * and the root page or the overflow key page when calling bt_preserve. 146 * This code must make sure that all pins are released other than the 147 * root page or overflow page which is unlocked elsewhere. 148 */ 149 while ((parent = BT_POP(t)) != NULL) { 150 lchild = l; 151 rchild = r; 152 153 /* Get the parent page. */ 154 if ((h = mpool_get(t->bt_mp, parent->pgno, 0)) == NULL) 155 goto err2; 156 157 /* 158 * The new key goes ONE AFTER the index, because the split 159 * was to the right. 160 */ 161 skip = parent->index + 1; 162 163 /* 164 * Calculate the space needed on the parent page. 165 * 166 * Prefix trees: space hack when inserting into BINTERNAL 167 * pages. Retain only what's needed to distinguish between 168 * the new entry and the LAST entry on the page to its left. 169 * If the keys compare equal, retain the entire key. Note, 170 * we don't touch overflow keys, and the entire key must be 171 * retained for the next-to-left most key on the leftmost 172 * page of each level, or the search will fail. Applicable 173 * ONLY to internal pages that have leaf pages as children. 174 * Further reduction of the key between pairs of internal 175 * pages loses too much information. 176 */ 177 switch (rchild->flags & P_TYPE) { 178 case P_BINTERNAL: 179 bi = GETBINTERNAL(rchild, 0); 180 nbytes = NBINTERNAL(bi->ksize); 181 break; 182 case P_BLEAF: 183 bl = GETBLEAF(rchild, 0); 184 nbytes = NBINTERNAL(bl->ksize); 185 if (t->bt_pfx && !(bl->flags & P_BIGKEY) && 186 (h->prevpg != P_INVALID || skip > 1)) { 187 tbl = GETBLEAF(lchild, NEXTINDEX(lchild) - 1); 188 a.size = tbl->ksize; 189 a.data = tbl->bytes; 190 b.size = bl->ksize; 191 b.data = bl->bytes; 192 nksize = t->bt_pfx(&a, &b); 193 n = NBINTERNAL(nksize); 194 if (n < nbytes) { 195 #ifdef STATISTICS 196 bt_pfxsaved += nbytes - n; 197 #endif 198 nbytes = n; 199 } else 200 nksize = 0; 201 } else 202 nksize = 0; 203 break; 204 case P_RINTERNAL: 205 case P_RLEAF: 206 nbytes = NRINTERNAL; 207 break; 208 default: 209 abort(); 210 } 211 212 /* Split the parent page if necessary or shift the indices. */ 213 if (h->upper - h->lower < nbytes + sizeof(indx_t)) { 214 sp = h; 215 h = h->pgno == P_ROOT ? 216 bt_root(t, h, &l, &r, &skip, nbytes) : 217 bt_page(t, h, &l, &r, &skip, nbytes); 218 if (h == NULL) 219 goto err1; 220 parentsplit = 1; 221 } else { 222 if (skip < (nxtindex = NEXTINDEX(h))) 223 memmove(h->linp + skip + 1, h->linp + skip, 224 (nxtindex - skip) * sizeof(indx_t)); 225 h->lower += sizeof(indx_t); 226 parentsplit = 0; 227 } 228 229 /* Insert the key into the parent page. */ 230 switch (rchild->flags & P_TYPE) { 231 case P_BINTERNAL: 232 h->linp[skip] = h->upper -= nbytes; 233 dest = (char *)h + h->linp[skip]; 234 memmove(dest, bi, nbytes); 235 ((BINTERNAL *)dest)->pgno = rchild->pgno; 236 break; 237 case P_BLEAF: 238 h->linp[skip] = h->upper -= nbytes; 239 dest = (char *)h + h->linp[skip]; 240 WR_BINTERNAL(dest, nksize ? nksize : bl->ksize, 241 rchild->pgno, bl->flags & P_BIGKEY); 242 memmove(dest, bl->bytes, nksize ? nksize : bl->ksize); 243 if (bl->flags & P_BIGKEY && 244 bt_preserve(t, *(pgno_t *)bl->bytes) == RET_ERROR) 245 goto err1; 246 break; 247 case P_RINTERNAL: 248 /* 249 * Update the left page count. If split 250 * added at index 0, fix the correct page. 251 */ 252 if (skip > 0) 253 dest = (char *)h + h->linp[skip - 1]; 254 else 255 dest = (char *)l + l->linp[NEXTINDEX(l) - 1]; 256 ((RINTERNAL *)dest)->nrecs = rec_total(lchild); 257 ((RINTERNAL *)dest)->pgno = lchild->pgno; 258 259 /* Update the right page count. */ 260 h->linp[skip] = h->upper -= nbytes; 261 dest = (char *)h + h->linp[skip]; 262 ((RINTERNAL *)dest)->nrecs = rec_total(rchild); 263 ((RINTERNAL *)dest)->pgno = rchild->pgno; 264 break; 265 case P_RLEAF: 266 /* 267 * Update the left page count. If split 268 * added at index 0, fix the correct page. 269 */ 270 if (skip > 0) 271 dest = (char *)h + h->linp[skip - 1]; 272 else 273 dest = (char *)l + l->linp[NEXTINDEX(l) - 1]; 274 ((RINTERNAL *)dest)->nrecs = NEXTINDEX(lchild); 275 ((RINTERNAL *)dest)->pgno = lchild->pgno; 276 277 /* Update the right page count. */ 278 h->linp[skip] = h->upper -= nbytes; 279 dest = (char *)h + h->linp[skip]; 280 ((RINTERNAL *)dest)->nrecs = NEXTINDEX(rchild); 281 ((RINTERNAL *)dest)->pgno = rchild->pgno; 282 break; 283 default: 284 abort(); 285 } 286 287 /* Unpin the held pages. */ 288 if (!parentsplit) { 289 mpool_put(t->bt_mp, h, MPOOL_DIRTY); 290 break; 291 } 292 293 /* If the root page was split, make it look right. */ 294 if (sp->pgno == P_ROOT && 295 (F_ISSET(t, R_RECNO) ? 296 bt_rroot(t, sp, l, r) : bt_broot(t, sp, l, r)) == RET_ERROR) 297 goto err1; 298 299 mpool_put(t->bt_mp, lchild, MPOOL_DIRTY); 300 mpool_put(t->bt_mp, rchild, MPOOL_DIRTY); 301 } 302 303 /* Unpin the held pages. */ 304 mpool_put(t->bt_mp, l, MPOOL_DIRTY); 305 mpool_put(t->bt_mp, r, MPOOL_DIRTY); 306 307 /* Clear any pages left on the stack. */ 308 return (RET_SUCCESS); 309 310 /* 311 * If something fails in the above loop we were already walking back 312 * up the tree and the tree is now inconsistent. Nothing much we can 313 * do about it but release any memory we're holding. 314 */ 315 err1: mpool_put(t->bt_mp, lchild, MPOOL_DIRTY); 316 mpool_put(t->bt_mp, rchild, MPOOL_DIRTY); 317 318 err2: mpool_put(t->bt_mp, l, 0); 319 mpool_put(t->bt_mp, r, 0); 320 __dbpanic(t->bt_dbp); 321 return (RET_ERROR); 322 } 323 324 /* 325 * BT_PAGE -- Split a non-root page of a btree. 326 * 327 * Parameters: 328 * t: tree 329 * h: root page 330 * lp: pointer to left page pointer 331 * rp: pointer to right page pointer 332 * skip: pointer to index to leave open 333 * ilen: insert length 334 * 335 * Returns: 336 * Pointer to page in which to insert or NULL on error. 337 */ 338 static PAGE * 339 bt_page(t, h, lp, rp, skip, ilen) 340 BTREE *t; 341 PAGE *h, **lp, **rp; 342 indx_t *skip; 343 size_t ilen; 344 { 345 PAGE *l, *r, *tp; 346 pgno_t npg; 347 348 #ifdef STATISTICS 349 ++bt_split; 350 #endif 351 /* Put the new right page for the split into place. */ 352 if ((r = __bt_new(t, &npg)) == NULL) 353 return (NULL); 354 r->pgno = npg; 355 r->lower = BTDATAOFF; 356 r->upper = t->bt_psize; 357 r->nextpg = h->nextpg; 358 r->prevpg = h->pgno; 359 r->flags = h->flags & P_TYPE; 360 361 /* 362 * If we're splitting the last page on a level because we're appending 363 * a key to it (skip is NEXTINDEX()), it's likely that the data is 364 * sorted. Adding an empty page on the side of the level is less work 365 * and can push the fill factor much higher than normal. If we're 366 * wrong it's no big deal, we'll just do the split the right way next 367 * time. It may look like it's equally easy to do a similar hack for 368 * reverse sorted data, that is, split the tree left, but it's not. 369 * Don't even try. 370 */ 371 if (h->nextpg == P_INVALID && *skip == NEXTINDEX(h)) { 372 #ifdef STATISTICS 373 ++bt_sortsplit; 374 #endif 375 h->nextpg = r->pgno; 376 r->lower = BTDATAOFF + sizeof(indx_t); 377 *skip = 0; 378 *lp = h; 379 *rp = r; 380 return (r); 381 } 382 383 /* Put the new left page for the split into place. */ 384 if ((l = (PAGE *)malloc(t->bt_psize)) == NULL) { 385 mpool_put(t->bt_mp, r, 0); 386 return (NULL); 387 } 388 #ifdef PURIFY 389 memset(l, 0xff, t->bt_psize); 390 #endif 391 l->pgno = h->pgno; 392 l->nextpg = r->pgno; 393 l->prevpg = h->prevpg; 394 l->lower = BTDATAOFF; 395 l->upper = t->bt_psize; 396 l->flags = h->flags & P_TYPE; 397 398 /* Fix up the previous pointer of the page after the split page. */ 399 if (h->nextpg != P_INVALID) { 400 if ((tp = mpool_get(t->bt_mp, h->nextpg, 0)) == NULL) { 401 free(l); 402 /* XXX mpool_free(t->bt_mp, r->pgno); */ 403 return (NULL); 404 } 405 tp->prevpg = r->pgno; 406 mpool_put(t->bt_mp, tp, MPOOL_DIRTY); 407 } 408 409 /* 410 * Split right. The key/data pairs aren't sorted in the btree page so 411 * it's simpler to copy the data from the split page onto two new pages 412 * instead of copying half the data to the right page and compacting 413 * the left page in place. Since the left page can't change, we have 414 * to swap the original and the allocated left page after the split. 415 */ 416 tp = bt_psplit(t, h, l, r, skip, ilen); 417 418 /* Move the new left page onto the old left page. */ 419 memmove(h, l, t->bt_psize); 420 if (tp == l) 421 tp = h; 422 free(l); 423 424 *lp = h; 425 *rp = r; 426 return (tp); 427 } 428 429 /* 430 * BT_ROOT -- Split the root page of a btree. 431 * 432 * Parameters: 433 * t: tree 434 * h: root page 435 * lp: pointer to left page pointer 436 * rp: pointer to right page pointer 437 * skip: pointer to index to leave open 438 * ilen: insert length 439 * 440 * Returns: 441 * Pointer to page in which to insert or NULL on error. 442 */ 443 static PAGE * 444 bt_root(t, h, lp, rp, skip, ilen) 445 BTREE *t; 446 PAGE *h, **lp, **rp; 447 indx_t *skip; 448 size_t ilen; 449 { 450 PAGE *l, *r, *tp; 451 pgno_t lnpg, rnpg; 452 453 #ifdef STATISTICS 454 ++bt_split; 455 ++bt_rootsplit; 456 #endif 457 /* Put the new left and right pages for the split into place. */ 458 if ((l = __bt_new(t, &lnpg)) == NULL || 459 (r = __bt_new(t, &rnpg)) == NULL) 460 return (NULL); 461 l->pgno = lnpg; 462 r->pgno = rnpg; 463 l->nextpg = r->pgno; 464 r->prevpg = l->pgno; 465 l->prevpg = r->nextpg = P_INVALID; 466 l->lower = r->lower = BTDATAOFF; 467 l->upper = r->upper = t->bt_psize; 468 l->flags = r->flags = h->flags & P_TYPE; 469 470 /* Split the root page. */ 471 tp = bt_psplit(t, h, l, r, skip, ilen); 472 473 *lp = l; 474 *rp = r; 475 return (tp); 476 } 477 478 /* 479 * BT_RROOT -- Fix up the recno root page after it has been split. 480 * 481 * Parameters: 482 * t: tree 483 * h: root page 484 * l: left page 485 * r: right page 486 * 487 * Returns: 488 * RET_ERROR, RET_SUCCESS 489 */ 490 static int 491 bt_rroot(t, h, l, r) 492 BTREE *t; 493 PAGE *h, *l, *r; 494 { 495 char *dest; 496 497 /* Insert the left and right keys, set the header information. */ 498 h->linp[0] = h->upper = t->bt_psize - NRINTERNAL; 499 dest = (char *)h + h->upper; 500 WR_RINTERNAL(dest, 501 l->flags & P_RLEAF ? NEXTINDEX(l) : rec_total(l), l->pgno); 502 503 h->linp[1] = h->upper -= NRINTERNAL; 504 dest = (char *)h + h->upper; 505 WR_RINTERNAL(dest, 506 r->flags & P_RLEAF ? NEXTINDEX(r) : rec_total(r), r->pgno); 507 508 h->lower = BTDATAOFF + 2 * sizeof(indx_t); 509 510 /* Unpin the root page, set to recno internal page. */ 511 h->flags &= ~P_TYPE; 512 h->flags |= P_RINTERNAL; 513 mpool_put(t->bt_mp, h, MPOOL_DIRTY); 514 515 return (RET_SUCCESS); 516 } 517 518 /* 519 * BT_BROOT -- Fix up the btree root page after it has been split. 520 * 521 * Parameters: 522 * t: tree 523 * h: root page 524 * l: left page 525 * r: right page 526 * 527 * Returns: 528 * RET_ERROR, RET_SUCCESS 529 */ 530 static int 531 bt_broot(t, h, l, r) 532 BTREE *t; 533 PAGE *h, *l, *r; 534 { 535 BINTERNAL *bi; 536 BLEAF *bl; 537 u_int32_t nbytes; 538 char *dest; 539 540 /* 541 * If the root page was a leaf page, change it into an internal page. 542 * We copy the key we split on (but not the key's data, in the case of 543 * a leaf page) to the new root page. 544 * 545 * The btree comparison code guarantees that the left-most key on any 546 * level of the tree is never used, so it doesn't need to be filled in. 547 */ 548 nbytes = NBINTERNAL(0); 549 h->linp[0] = h->upper = t->bt_psize - nbytes; 550 dest = (char *)h + h->upper; 551 WR_BINTERNAL(dest, 0, l->pgno, 0); 552 553 switch (h->flags & P_TYPE) { 554 case P_BLEAF: 555 bl = GETBLEAF(r, 0); 556 nbytes = NBINTERNAL(bl->ksize); 557 h->linp[1] = h->upper -= nbytes; 558 dest = (char *)h + h->upper; 559 WR_BINTERNAL(dest, bl->ksize, r->pgno, 0); 560 memmove(dest, bl->bytes, bl->ksize); 561 562 /* 563 * If the key is on an overflow page, mark the overflow chain 564 * so it isn't deleted when the leaf copy of the key is deleted. 565 */ 566 if (bl->flags & P_BIGKEY && 567 bt_preserve(t, *(pgno_t *)bl->bytes) == RET_ERROR) 568 return (RET_ERROR); 569 break; 570 case P_BINTERNAL: 571 bi = GETBINTERNAL(r, 0); 572 nbytes = NBINTERNAL(bi->ksize); 573 h->linp[1] = h->upper -= nbytes; 574 dest = (char *)h + h->upper; 575 memmove(dest, bi, nbytes); 576 ((BINTERNAL *)dest)->pgno = r->pgno; 577 break; 578 default: 579 abort(); 580 } 581 582 /* There are two keys on the page. */ 583 h->lower = BTDATAOFF + 2 * sizeof(indx_t); 584 585 /* Unpin the root page, set to btree internal page. */ 586 h->flags &= ~P_TYPE; 587 h->flags |= P_BINTERNAL; 588 mpool_put(t->bt_mp, h, MPOOL_DIRTY); 589 590 return (RET_SUCCESS); 591 } 592 593 /* 594 * BT_PSPLIT -- Do the real work of splitting the page. 595 * 596 * Parameters: 597 * t: tree 598 * h: page to be split 599 * l: page to put lower half of data 600 * r: page to put upper half of data 601 * pskip: pointer to index to leave open 602 * ilen: insert length 603 * 604 * Returns: 605 * Pointer to page in which to insert. 606 */ 607 static PAGE * 608 bt_psplit(t, h, l, r, pskip, ilen) 609 BTREE *t; 610 PAGE *h, *l, *r; 611 indx_t *pskip; 612 size_t ilen; 613 { 614 BINTERNAL *bi; 615 BLEAF *bl; 616 CURSOR *c; 617 RLEAF *rl; 618 PAGE *rval; 619 void *src; 620 indx_t full, half, nxt, off, skip, top, used; 621 u_int32_t nbytes; 622 int bigkeycnt, isbigkey; 623 624 /* 625 * Split the data to the left and right pages. Leave the skip index 626 * open. Additionally, make some effort not to split on an overflow 627 * key. This makes internal page processing faster and can save 628 * space as overflow keys used by internal pages are never deleted. 629 */ 630 bigkeycnt = 0; 631 skip = *pskip; 632 full = t->bt_psize - BTDATAOFF; 633 half = full / 2; 634 used = 0; 635 for (nxt = off = 0, top = NEXTINDEX(h); nxt < top; ++off) { 636 if (skip == off) { 637 nbytes = ilen; 638 isbigkey = 0; /* XXX: not really known. */ 639 } else 640 switch (h->flags & P_TYPE) { 641 case P_BINTERNAL: 642 src = bi = GETBINTERNAL(h, nxt); 643 nbytes = NBINTERNAL(bi->ksize); 644 isbigkey = bi->flags & P_BIGKEY; 645 break; 646 case P_BLEAF: 647 src = bl = GETBLEAF(h, nxt); 648 nbytes = NBLEAF(bl); 649 isbigkey = bl->flags & P_BIGKEY; 650 break; 651 case P_RINTERNAL: 652 src = GETRINTERNAL(h, nxt); 653 nbytes = NRINTERNAL; 654 isbigkey = 0; 655 break; 656 case P_RLEAF: 657 src = rl = GETRLEAF(h, nxt); 658 nbytes = NRLEAF(rl); 659 isbigkey = 0; 660 break; 661 default: 662 abort(); 663 } 664 665 /* 666 * If the key/data pairs are substantial fractions of the max 667 * possible size for the page, it's possible to get situations 668 * where we decide to try and copy too much onto the left page. 669 * Make sure that doesn't happen. 670 */ 671 if ((skip <= off && used + nbytes + sizeof(indx_t) >= full) 672 || nxt == top - 1) { 673 --off; 674 break; 675 } 676 677 /* Copy the key/data pair, if not the skipped index. */ 678 if (skip != off) { 679 ++nxt; 680 681 l->linp[off] = l->upper -= nbytes; 682 memmove((char *)l + l->upper, src, nbytes); 683 } 684 685 used += nbytes + sizeof(indx_t); 686 if (used >= half) { 687 if (!isbigkey || bigkeycnt == 3) 688 break; 689 else 690 ++bigkeycnt; 691 } 692 } 693 694 /* 695 * Off is the last offset that's valid for the left page. 696 * Nxt is the first offset to be placed on the right page. 697 */ 698 l->lower += (off + 1) * sizeof(indx_t); 699 700 /* 701 * If splitting the page that the cursor was on, the cursor has to be 702 * adjusted to point to the same record as before the split. If the 703 * cursor is at or past the skipped slot, the cursor is incremented by 704 * one. If the cursor is on the right page, it is decremented by the 705 * number of records split to the left page. 706 */ 707 c = &t->bt_cursor; 708 if (F_ISSET(c, CURS_INIT) && c->pg.pgno == h->pgno) { 709 if (c->pg.index >= skip) 710 ++c->pg.index; 711 if (c->pg.index < nxt) /* Left page. */ 712 c->pg.pgno = l->pgno; 713 else { /* Right page. */ 714 c->pg.pgno = r->pgno; 715 c->pg.index -= nxt; 716 } 717 } 718 719 /* 720 * If the skipped index was on the left page, just return that page. 721 * Otherwise, adjust the skip index to reflect the new position on 722 * the right page. 723 */ 724 if (skip <= off) { 725 skip = MAX_PAGE_OFFSET; 726 rval = l; 727 } else { 728 rval = r; 729 *pskip -= nxt; 730 } 731 732 for (off = 0; nxt < top; ++off) { 733 if (skip == nxt) { 734 ++off; 735 skip = MAX_PAGE_OFFSET; 736 } 737 switch (h->flags & P_TYPE) { 738 case P_BINTERNAL: 739 src = bi = GETBINTERNAL(h, nxt); 740 nbytes = NBINTERNAL(bi->ksize); 741 break; 742 case P_BLEAF: 743 src = bl = GETBLEAF(h, nxt); 744 nbytes = NBLEAF(bl); 745 break; 746 case P_RINTERNAL: 747 src = GETRINTERNAL(h, nxt); 748 nbytes = NRINTERNAL; 749 break; 750 case P_RLEAF: 751 src = rl = GETRLEAF(h, nxt); 752 nbytes = NRLEAF(rl); 753 break; 754 default: 755 abort(); 756 } 757 ++nxt; 758 r->linp[off] = r->upper -= nbytes; 759 memmove((char *)r + r->upper, src, nbytes); 760 } 761 r->lower += off * sizeof(indx_t); 762 763 /* If the key is being appended to the page, adjust the index. */ 764 if (skip == top) 765 r->lower += sizeof(indx_t); 766 767 return (rval); 768 } 769 770 /* 771 * BT_PRESERVE -- Mark a chain of pages as used by an internal node. 772 * 773 * Chains of indirect blocks pointed to by leaf nodes get reclaimed when the 774 * record that references them gets deleted. Chains pointed to by internal 775 * pages never get deleted. This routine marks a chain as pointed to by an 776 * internal page. 777 * 778 * Parameters: 779 * t: tree 780 * pg: page number of first page in the chain. 781 * 782 * Returns: 783 * RET_SUCCESS, RET_ERROR. 784 */ 785 static int 786 bt_preserve(t, pg) 787 BTREE *t; 788 pgno_t pg; 789 { 790 PAGE *h; 791 792 if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL) 793 return (RET_ERROR); 794 h->flags |= P_PRESERVE; 795 mpool_put(t->bt_mp, h, MPOOL_DIRTY); 796 return (RET_SUCCESS); 797 } 798 799 /* 800 * REC_TOTAL -- Return the number of recno entries below a page. 801 * 802 * Parameters: 803 * h: page 804 * 805 * Returns: 806 * The number of recno entries below a page. 807 * 808 * XXX 809 * These values could be set by the bt_psplit routine. The problem is that the 810 * entry has to be popped off of the stack etc. or the values have to be passed 811 * all the way back to bt_split/bt_rroot and it's not very clean. 812 */ 813 static recno_t 814 rec_total(h) 815 PAGE *h; 816 { 817 recno_t recs; 818 indx_t nxt, top; 819 820 for (recs = 0, nxt = 0, top = NEXTINDEX(h); nxt < top; ++nxt) 821 recs += GETRINTERNAL(h, nxt)->nrecs; 822 return (recs); 823 } 824