1 /*- 2 * Copyright (c) 1990, 1993, 1994 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * Mike Olson. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 #if defined(LIBC_SCCS) && !defined(lint) 34 static char sccsid[] = "@(#)bt_split.c 8.10 (Berkeley) 1/9/95"; 35 #endif /* LIBC_SCCS and not lint */ 36 #include <sys/cdefs.h> 37 __FBSDID("$FreeBSD$"); 38 39 #include <sys/types.h> 40 #include <sys/param.h> 41 42 #include <limits.h> 43 #include <stdio.h> 44 #include <stdlib.h> 45 #include <string.h> 46 47 #include <db.h> 48 #include "btree.h" 49 50 static int bt_broot(BTREE *, PAGE *, PAGE *, PAGE *); 51 static PAGE *bt_page(BTREE *, PAGE *, PAGE **, PAGE **, indx_t *, size_t); 52 static int bt_preserve(BTREE *, pgno_t); 53 static PAGE *bt_psplit(BTREE *, PAGE *, PAGE *, PAGE *, indx_t *, size_t); 54 static PAGE *bt_root(BTREE *, PAGE *, PAGE **, PAGE **, indx_t *, size_t); 55 static int bt_rroot(BTREE *, PAGE *, PAGE *, PAGE *); 56 static recno_t rec_total(PAGE *); 57 58 #ifdef STATISTICS 59 u_long bt_rootsplit, bt_split, bt_sortsplit, bt_pfxsaved; 60 #endif 61 62 /* 63 * __BT_SPLIT -- Split the tree. 64 * 65 * Parameters: 66 * t: tree 67 * sp: page to split 68 * key: key to insert 69 * data: data to insert 70 * flags: BIGKEY/BIGDATA flags 71 * ilen: insert length 72 * skip: index to leave open 73 * 74 * Returns: 75 * RET_ERROR, RET_SUCCESS 76 */ 77 int 78 __bt_split(BTREE *t, PAGE *sp, const DBT *key, const DBT *data, int flags, 79 size_t ilen, u_int32_t argskip) 80 { 81 BINTERNAL *bi; 82 BLEAF *bl, *tbl; 83 DBT a, b; 84 EPGNO *parent; 85 PAGE *h, *l, *r, *lchild, *rchild; 86 indx_t nxtindex; 87 u_int16_t skip; 88 u_int32_t n, nbytes, nksize; 89 int parentsplit; 90 char *dest; 91 92 /* 93 * Split the page into two pages, l and r. The split routines return 94 * a pointer to the page into which the key should be inserted and with 95 * skip set to the offset which should be used. Additionally, l and r 96 * are pinned. 97 */ 98 skip = argskip; 99 h = sp->pgno == P_ROOT ? 100 bt_root(t, sp, &l, &r, &skip, ilen) : 101 bt_page(t, sp, &l, &r, &skip, ilen); 102 if (h == NULL) 103 return (RET_ERROR); 104 105 /* 106 * Insert the new key/data pair into the leaf page. (Key inserts 107 * always cause a leaf page to split first.) 108 */ 109 h->linp[skip] = h->upper -= ilen; 110 dest = (char *)h + h->upper; 111 if (F_ISSET(t, R_RECNO)) 112 WR_RLEAF(dest, data, flags) 113 else 114 WR_BLEAF(dest, key, data, flags) 115 116 /* If the root page was split, make it look right. */ 117 if (sp->pgno == P_ROOT && 118 (F_ISSET(t, R_RECNO) ? 119 bt_rroot(t, sp, l, r) : bt_broot(t, sp, l, r)) == RET_ERROR) 120 goto err2; 121 122 /* 123 * Now we walk the parent page stack -- a LIFO stack of the pages that 124 * were traversed when we searched for the page that split. Each stack 125 * entry is a page number and a page index offset. The offset is for 126 * the page traversed on the search. We've just split a page, so we 127 * have to insert a new key into the parent page. 128 * 129 * If the insert into the parent page causes it to split, may have to 130 * continue splitting all the way up the tree. We stop if the root 131 * splits or the page inserted into didn't have to split to hold the 132 * new key. Some algorithms replace the key for the old page as well 133 * as the new page. We don't, as there's no reason to believe that the 134 * first key on the old page is any better than the key we have, and, 135 * in the case of a key being placed at index 0 causing the split, the 136 * key is unavailable. 137 * 138 * There are a maximum of 5 pages pinned at any time. We keep the left 139 * and right pages pinned while working on the parent. The 5 are the 140 * two children, left parent and right parent (when the parent splits) 141 * and the root page or the overflow key page when calling bt_preserve. 142 * This code must make sure that all pins are released other than the 143 * root page or overflow page which is unlocked elsewhere. 144 */ 145 while ((parent = BT_POP(t)) != NULL) { 146 lchild = l; 147 rchild = r; 148 149 /* Get the parent page. */ 150 if ((h = mpool_get(t->bt_mp, parent->pgno, 0)) == NULL) 151 goto err2; 152 153 /* 154 * The new key goes ONE AFTER the index, because the split 155 * was to the right. 156 */ 157 skip = parent->index + 1; 158 159 /* 160 * Calculate the space needed on the parent page. 161 * 162 * Prefix trees: space hack when inserting into BINTERNAL 163 * pages. Retain only what's needed to distinguish between 164 * the new entry and the LAST entry on the page to its left. 165 * If the keys compare equal, retain the entire key. Note, 166 * we don't touch overflow keys, and the entire key must be 167 * retained for the next-to-left most key on the leftmost 168 * page of each level, or the search will fail. Applicable 169 * ONLY to internal pages that have leaf pages as children. 170 * Further reduction of the key between pairs of internal 171 * pages loses too much information. 172 */ 173 switch (rchild->flags & P_TYPE) { 174 case P_BINTERNAL: 175 bi = GETBINTERNAL(rchild, 0); 176 nbytes = NBINTERNAL(bi->ksize); 177 break; 178 case P_BLEAF: 179 bl = GETBLEAF(rchild, 0); 180 nbytes = NBINTERNAL(bl->ksize); 181 if (t->bt_pfx && !(bl->flags & P_BIGKEY) && 182 (h->prevpg != P_INVALID || skip > 1)) { 183 tbl = GETBLEAF(lchild, NEXTINDEX(lchild) - 1); 184 a.size = tbl->ksize; 185 a.data = tbl->bytes; 186 b.size = bl->ksize; 187 b.data = bl->bytes; 188 nksize = t->bt_pfx(&a, &b); 189 n = NBINTERNAL(nksize); 190 if (n < nbytes) { 191 #ifdef STATISTICS 192 bt_pfxsaved += nbytes - n; 193 #endif 194 nbytes = n; 195 } else 196 nksize = 0; 197 } else 198 nksize = 0; 199 break; 200 case P_RINTERNAL: 201 case P_RLEAF: 202 nbytes = NRINTERNAL; 203 break; 204 default: 205 abort(); 206 } 207 208 /* Split the parent page if necessary or shift the indices. */ 209 if ((u_int32_t)(h->upper - h->lower) < nbytes + sizeof(indx_t)) { 210 sp = h; 211 h = h->pgno == P_ROOT ? 212 bt_root(t, h, &l, &r, &skip, nbytes) : 213 bt_page(t, h, &l, &r, &skip, nbytes); 214 if (h == NULL) 215 goto err1; 216 parentsplit = 1; 217 } else { 218 if (skip < (nxtindex = NEXTINDEX(h))) 219 memmove(h->linp + skip + 1, h->linp + skip, 220 (nxtindex - skip) * sizeof(indx_t)); 221 h->lower += sizeof(indx_t); 222 parentsplit = 0; 223 } 224 225 /* Insert the key into the parent page. */ 226 switch (rchild->flags & P_TYPE) { 227 case P_BINTERNAL: 228 h->linp[skip] = h->upper -= nbytes; 229 dest = (char *)h + h->linp[skip]; 230 memmove(dest, bi, nbytes); 231 ((BINTERNAL *)dest)->pgno = rchild->pgno; 232 break; 233 case P_BLEAF: 234 h->linp[skip] = h->upper -= nbytes; 235 dest = (char *)h + h->linp[skip]; 236 WR_BINTERNAL(dest, nksize ? nksize : bl->ksize, 237 rchild->pgno, bl->flags & P_BIGKEY); 238 memmove(dest, bl->bytes, nksize ? nksize : bl->ksize); 239 if (bl->flags & P_BIGKEY) { 240 pgno_t pgno; 241 memcpy(&pgno, bl->bytes, sizeof(pgno)); 242 if (bt_preserve(t, pgno) == RET_ERROR) 243 goto err1; 244 } 245 break; 246 case P_RINTERNAL: 247 /* 248 * Update the left page count. If split 249 * added at index 0, fix the correct page. 250 */ 251 if (skip > 0) 252 dest = (char *)h + h->linp[skip - 1]; 253 else 254 dest = (char *)l + l->linp[NEXTINDEX(l) - 1]; 255 ((RINTERNAL *)dest)->nrecs = rec_total(lchild); 256 ((RINTERNAL *)dest)->pgno = lchild->pgno; 257 258 /* Update the right page count. */ 259 h->linp[skip] = h->upper -= nbytes; 260 dest = (char *)h + h->linp[skip]; 261 ((RINTERNAL *)dest)->nrecs = rec_total(rchild); 262 ((RINTERNAL *)dest)->pgno = rchild->pgno; 263 break; 264 case P_RLEAF: 265 /* 266 * Update the left page count. If split 267 * added at index 0, fix the correct page. 268 */ 269 if (skip > 0) 270 dest = (char *)h + h->linp[skip - 1]; 271 else 272 dest = (char *)l + l->linp[NEXTINDEX(l) - 1]; 273 ((RINTERNAL *)dest)->nrecs = NEXTINDEX(lchild); 274 ((RINTERNAL *)dest)->pgno = lchild->pgno; 275 276 /* Update the right page count. */ 277 h->linp[skip] = h->upper -= nbytes; 278 dest = (char *)h + h->linp[skip]; 279 ((RINTERNAL *)dest)->nrecs = NEXTINDEX(rchild); 280 ((RINTERNAL *)dest)->pgno = rchild->pgno; 281 break; 282 default: 283 abort(); 284 } 285 286 /* Unpin the held pages. */ 287 if (!parentsplit) { 288 mpool_put(t->bt_mp, h, MPOOL_DIRTY); 289 break; 290 } 291 292 /* If the root page was split, make it look right. */ 293 if (sp->pgno == P_ROOT && 294 (F_ISSET(t, R_RECNO) ? 295 bt_rroot(t, sp, l, r) : bt_broot(t, sp, l, r)) == RET_ERROR) 296 goto err1; 297 298 mpool_put(t->bt_mp, lchild, MPOOL_DIRTY); 299 mpool_put(t->bt_mp, rchild, MPOOL_DIRTY); 300 } 301 302 /* Unpin the held pages. */ 303 mpool_put(t->bt_mp, l, MPOOL_DIRTY); 304 mpool_put(t->bt_mp, r, MPOOL_DIRTY); 305 306 /* Clear any pages left on the stack. */ 307 return (RET_SUCCESS); 308 309 /* 310 * If something fails in the above loop we were already walking back 311 * up the tree and the tree is now inconsistent. Nothing much we can 312 * do about it but release any memory we're holding. 313 */ 314 err1: mpool_put(t->bt_mp, lchild, MPOOL_DIRTY); 315 mpool_put(t->bt_mp, rchild, MPOOL_DIRTY); 316 317 err2: mpool_put(t->bt_mp, l, 0); 318 mpool_put(t->bt_mp, r, 0); 319 __dbpanic(t->bt_dbp); 320 return (RET_ERROR); 321 } 322 323 /* 324 * BT_PAGE -- Split a non-root page of a btree. 325 * 326 * Parameters: 327 * t: tree 328 * h: root page 329 * lp: pointer to left page pointer 330 * rp: pointer to right page pointer 331 * skip: pointer to index to leave open 332 * ilen: insert length 333 * 334 * Returns: 335 * Pointer to page in which to insert or NULL on error. 336 */ 337 static PAGE * 338 bt_page(BTREE *t, PAGE *h, PAGE **lp, PAGE **rp, indx_t *skip, size_t ilen) 339 { 340 PAGE *l, *r, *tp; 341 pgno_t npg; 342 343 #ifdef STATISTICS 344 ++bt_split; 345 #endif 346 /* Put the new right page for the split into place. */ 347 if ((r = __bt_new(t, &npg)) == NULL) 348 return (NULL); 349 r->pgno = npg; 350 r->lower = BTDATAOFF; 351 r->upper = t->bt_psize; 352 r->nextpg = h->nextpg; 353 r->prevpg = h->pgno; 354 r->flags = h->flags & P_TYPE; 355 356 /* 357 * If we're splitting the last page on a level because we're appending 358 * a key to it (skip is NEXTINDEX()), it's likely that the data is 359 * sorted. Adding an empty page on the side of the level is less work 360 * and can push the fill factor much higher than normal. If we're 361 * wrong it's no big deal, we'll just do the split the right way next 362 * time. It may look like it's equally easy to do a similar hack for 363 * reverse sorted data, that is, split the tree left, but it's not. 364 * Don't even try. 365 */ 366 if (h->nextpg == P_INVALID && *skip == NEXTINDEX(h)) { 367 #ifdef STATISTICS 368 ++bt_sortsplit; 369 #endif 370 h->nextpg = r->pgno; 371 r->lower = BTDATAOFF + sizeof(indx_t); 372 *skip = 0; 373 *lp = h; 374 *rp = r; 375 return (r); 376 } 377 378 /* Put the new left page for the split into place. */ 379 if ((l = (PAGE *)calloc(1, t->bt_psize)) == NULL) { 380 mpool_put(t->bt_mp, r, 0); 381 return (NULL); 382 } 383 l->pgno = h->pgno; 384 l->nextpg = r->pgno; 385 l->prevpg = h->prevpg; 386 l->lower = BTDATAOFF; 387 l->upper = t->bt_psize; 388 l->flags = h->flags & P_TYPE; 389 390 /* Fix up the previous pointer of the page after the split page. */ 391 if (h->nextpg != P_INVALID) { 392 if ((tp = mpool_get(t->bt_mp, h->nextpg, 0)) == NULL) { 393 free(l); 394 /* XXX mpool_free(t->bt_mp, r->pgno); */ 395 return (NULL); 396 } 397 tp->prevpg = r->pgno; 398 mpool_put(t->bt_mp, tp, MPOOL_DIRTY); 399 } 400 401 /* 402 * Split right. The key/data pairs aren't sorted in the btree page so 403 * it's simpler to copy the data from the split page onto two new pages 404 * instead of copying half the data to the right page and compacting 405 * the left page in place. Since the left page can't change, we have 406 * to swap the original and the allocated left page after the split. 407 */ 408 tp = bt_psplit(t, h, l, r, skip, ilen); 409 410 /* Move the new left page onto the old left page. */ 411 memmove(h, l, t->bt_psize); 412 if (tp == l) 413 tp = h; 414 free(l); 415 416 *lp = h; 417 *rp = r; 418 return (tp); 419 } 420 421 /* 422 * BT_ROOT -- Split the root page of a btree. 423 * 424 * Parameters: 425 * t: tree 426 * h: root page 427 * lp: pointer to left page pointer 428 * rp: pointer to right page pointer 429 * skip: pointer to index to leave open 430 * ilen: insert length 431 * 432 * Returns: 433 * Pointer to page in which to insert or NULL on error. 434 */ 435 static PAGE * 436 bt_root(BTREE *t, PAGE *h, PAGE **lp, PAGE **rp, indx_t *skip, size_t ilen) 437 { 438 PAGE *l, *r, *tp; 439 pgno_t lnpg, rnpg; 440 441 #ifdef STATISTICS 442 ++bt_split; 443 ++bt_rootsplit; 444 #endif 445 /* Put the new left and right pages for the split into place. */ 446 if ((l = __bt_new(t, &lnpg)) == NULL || 447 (r = __bt_new(t, &rnpg)) == NULL) 448 return (NULL); 449 l->pgno = lnpg; 450 r->pgno = rnpg; 451 l->nextpg = r->pgno; 452 r->prevpg = l->pgno; 453 l->prevpg = r->nextpg = P_INVALID; 454 l->lower = r->lower = BTDATAOFF; 455 l->upper = r->upper = t->bt_psize; 456 l->flags = r->flags = h->flags & P_TYPE; 457 458 /* Split the root page. */ 459 tp = bt_psplit(t, h, l, r, skip, ilen); 460 461 *lp = l; 462 *rp = r; 463 return (tp); 464 } 465 466 /* 467 * BT_RROOT -- Fix up the recno root page after it has been split. 468 * 469 * Parameters: 470 * t: tree 471 * h: root page 472 * l: left page 473 * r: right page 474 * 475 * Returns: 476 * RET_ERROR, RET_SUCCESS 477 */ 478 static int 479 bt_rroot(BTREE *t, PAGE *h, PAGE *l, PAGE *r) 480 { 481 char *dest; 482 483 /* Insert the left and right keys, set the header information. */ 484 h->linp[0] = h->upper = t->bt_psize - NRINTERNAL; 485 dest = (char *)h + h->upper; 486 WR_RINTERNAL(dest, 487 l->flags & P_RLEAF ? NEXTINDEX(l) : rec_total(l), l->pgno); 488 489 __PAST_END(h->linp, 1) = h->upper -= NRINTERNAL; 490 dest = (char *)h + h->upper; 491 WR_RINTERNAL(dest, 492 r->flags & P_RLEAF ? NEXTINDEX(r) : rec_total(r), r->pgno); 493 494 h->lower = BTDATAOFF + 2 * sizeof(indx_t); 495 496 /* Unpin the root page, set to recno internal page. */ 497 h->flags &= ~P_TYPE; 498 h->flags |= P_RINTERNAL; 499 mpool_put(t->bt_mp, h, MPOOL_DIRTY); 500 501 return (RET_SUCCESS); 502 } 503 504 /* 505 * BT_BROOT -- Fix up the btree root page after it has been split. 506 * 507 * Parameters: 508 * t: tree 509 * h: root page 510 * l: left page 511 * r: right page 512 * 513 * Returns: 514 * RET_ERROR, RET_SUCCESS 515 */ 516 static int 517 bt_broot(BTREE *t, PAGE *h, PAGE *l, PAGE *r) 518 { 519 BINTERNAL *bi; 520 BLEAF *bl; 521 u_int32_t nbytes; 522 char *dest; 523 524 /* 525 * If the root page was a leaf page, change it into an internal page. 526 * We copy the key we split on (but not the key's data, in the case of 527 * a leaf page) to the new root page. 528 * 529 * The btree comparison code guarantees that the left-most key on any 530 * level of the tree is never used, so it doesn't need to be filled in. 531 */ 532 nbytes = NBINTERNAL(0); 533 h->linp[0] = h->upper = t->bt_psize - nbytes; 534 dest = (char *)h + h->upper; 535 WR_BINTERNAL(dest, 0, l->pgno, 0); 536 537 switch (h->flags & P_TYPE) { 538 case P_BLEAF: 539 bl = GETBLEAF(r, 0); 540 nbytes = NBINTERNAL(bl->ksize); 541 __PAST_END(h->linp, 1) = h->upper -= nbytes; 542 dest = (char *)h + h->upper; 543 WR_BINTERNAL(dest, bl->ksize, r->pgno, 0); 544 memmove(dest, bl->bytes, bl->ksize); 545 546 /* 547 * If the key is on an overflow page, mark the overflow chain 548 * so it isn't deleted when the leaf copy of the key is deleted. 549 */ 550 if (bl->flags & P_BIGKEY) { 551 pgno_t pgno; 552 memcpy(&pgno, bl->bytes, sizeof(pgno)); 553 if (bt_preserve(t, pgno) == RET_ERROR) 554 return (RET_ERROR); 555 } 556 break; 557 case P_BINTERNAL: 558 bi = GETBINTERNAL(r, 0); 559 nbytes = NBINTERNAL(bi->ksize); 560 __PAST_END(h->linp, 1) = h->upper -= nbytes; 561 dest = (char *)h + h->upper; 562 memmove(dest, bi, nbytes); 563 ((BINTERNAL *)dest)->pgno = r->pgno; 564 break; 565 default: 566 abort(); 567 } 568 569 /* There are two keys on the page. */ 570 h->lower = BTDATAOFF + 2 * sizeof(indx_t); 571 572 /* Unpin the root page, set to btree internal page. */ 573 h->flags &= ~P_TYPE; 574 h->flags |= P_BINTERNAL; 575 mpool_put(t->bt_mp, h, MPOOL_DIRTY); 576 577 return (RET_SUCCESS); 578 } 579 580 /* 581 * BT_PSPLIT -- Do the real work of splitting the page. 582 * 583 * Parameters: 584 * t: tree 585 * h: page to be split 586 * l: page to put lower half of data 587 * r: page to put upper half of data 588 * pskip: pointer to index to leave open 589 * ilen: insert length 590 * 591 * Returns: 592 * Pointer to page in which to insert. 593 */ 594 static PAGE * 595 bt_psplit(BTREE *t, PAGE *h, PAGE *l, PAGE *r, indx_t *pskip, size_t ilen) 596 { 597 BINTERNAL *bi; 598 BLEAF *bl; 599 CURSOR *c; 600 RLEAF *rl; 601 PAGE *rval; 602 void *src; 603 indx_t full, half, nxt, off, skip, top, used; 604 u_int32_t nbytes; 605 int bigkeycnt, isbigkey; 606 607 /* 608 * Split the data to the left and right pages. Leave the skip index 609 * open. Additionally, make some effort not to split on an overflow 610 * key. This makes internal page processing faster and can save 611 * space as overflow keys used by internal pages are never deleted. 612 */ 613 bigkeycnt = 0; 614 skip = *pskip; 615 full = t->bt_psize - BTDATAOFF; 616 half = full / 2; 617 used = 0; 618 for (nxt = off = 0, top = NEXTINDEX(h); nxt < top; ++off) { 619 if (skip == off) { 620 nbytes = ilen; 621 isbigkey = 0; /* XXX: not really known. */ 622 } else 623 switch (h->flags & P_TYPE) { 624 case P_BINTERNAL: 625 src = bi = GETBINTERNAL(h, nxt); 626 nbytes = NBINTERNAL(bi->ksize); 627 isbigkey = bi->flags & P_BIGKEY; 628 break; 629 case P_BLEAF: 630 src = bl = GETBLEAF(h, nxt); 631 nbytes = NBLEAF(bl); 632 isbigkey = bl->flags & P_BIGKEY; 633 break; 634 case P_RINTERNAL: 635 src = GETRINTERNAL(h, nxt); 636 nbytes = NRINTERNAL; 637 isbigkey = 0; 638 break; 639 case P_RLEAF: 640 src = rl = GETRLEAF(h, nxt); 641 nbytes = NRLEAF(rl); 642 isbigkey = 0; 643 break; 644 default: 645 abort(); 646 } 647 648 /* 649 * If the key/data pairs are substantial fractions of the max 650 * possible size for the page, it's possible to get situations 651 * where we decide to try and copy too much onto the left page. 652 * Make sure that doesn't happen. 653 */ 654 if ((skip <= off && used + nbytes + sizeof(indx_t) >= full) || 655 nxt == top - 1) { 656 --off; 657 break; 658 } 659 660 /* Copy the key/data pair, if not the skipped index. */ 661 if (skip != off) { 662 ++nxt; 663 664 l->linp[off] = l->upper -= nbytes; 665 memmove((char *)l + l->upper, src, nbytes); 666 } 667 668 used += nbytes + sizeof(indx_t); 669 if (used >= half) { 670 if (!isbigkey || bigkeycnt == 3) 671 break; 672 else 673 ++bigkeycnt; 674 } 675 } 676 677 /* 678 * Off is the last offset that's valid for the left page. 679 * Nxt is the first offset to be placed on the right page. 680 */ 681 l->lower += (off + 1) * sizeof(indx_t); 682 683 /* 684 * If splitting the page that the cursor was on, the cursor has to be 685 * adjusted to point to the same record as before the split. If the 686 * cursor is at or past the skipped slot, the cursor is incremented by 687 * one. If the cursor is on the right page, it is decremented by the 688 * number of records split to the left page. 689 */ 690 c = &t->bt_cursor; 691 if (F_ISSET(c, CURS_INIT) && c->pg.pgno == h->pgno) { 692 if (c->pg.index >= skip) 693 ++c->pg.index; 694 if (c->pg.index < nxt) /* Left page. */ 695 c->pg.pgno = l->pgno; 696 else { /* Right page. */ 697 c->pg.pgno = r->pgno; 698 c->pg.index -= nxt; 699 } 700 } 701 702 /* 703 * If the skipped index was on the left page, just return that page. 704 * Otherwise, adjust the skip index to reflect the new position on 705 * the right page. 706 */ 707 if (skip <= off) { 708 skip = MAX_PAGE_OFFSET; 709 rval = l; 710 } else { 711 rval = r; 712 *pskip -= nxt; 713 } 714 715 for (off = 0; nxt < top; ++off) { 716 if (skip == nxt) { 717 ++off; 718 skip = MAX_PAGE_OFFSET; 719 } 720 switch (h->flags & P_TYPE) { 721 case P_BINTERNAL: 722 src = bi = GETBINTERNAL(h, nxt); 723 nbytes = NBINTERNAL(bi->ksize); 724 break; 725 case P_BLEAF: 726 src = bl = GETBLEAF(h, nxt); 727 nbytes = NBLEAF(bl); 728 break; 729 case P_RINTERNAL: 730 src = GETRINTERNAL(h, nxt); 731 nbytes = NRINTERNAL; 732 break; 733 case P_RLEAF: 734 src = rl = GETRLEAF(h, nxt); 735 nbytes = NRLEAF(rl); 736 break; 737 default: 738 abort(); 739 } 740 ++nxt; 741 r->linp[off] = r->upper -= nbytes; 742 memmove((char *)r + r->upper, src, nbytes); 743 } 744 r->lower += off * sizeof(indx_t); 745 746 /* If the key is being appended to the page, adjust the index. */ 747 if (skip == top) 748 r->lower += sizeof(indx_t); 749 750 return (rval); 751 } 752 753 /* 754 * BT_PRESERVE -- Mark a chain of pages as used by an internal node. 755 * 756 * Chains of indirect blocks pointed to by leaf nodes get reclaimed when the 757 * record that references them gets deleted. Chains pointed to by internal 758 * pages never get deleted. This routine marks a chain as pointed to by an 759 * internal page. 760 * 761 * Parameters: 762 * t: tree 763 * pg: page number of first page in the chain. 764 * 765 * Returns: 766 * RET_SUCCESS, RET_ERROR. 767 */ 768 static int 769 bt_preserve(BTREE *t, pgno_t pg) 770 { 771 PAGE *h; 772 773 if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL) 774 return (RET_ERROR); 775 h->flags |= P_PRESERVE; 776 mpool_put(t->bt_mp, h, MPOOL_DIRTY); 777 return (RET_SUCCESS); 778 } 779 780 /* 781 * REC_TOTAL -- Return the number of recno entries below a page. 782 * 783 * Parameters: 784 * h: page 785 * 786 * Returns: 787 * The number of recno entries below a page. 788 * 789 * XXX 790 * These values could be set by the bt_psplit routine. The problem is that the 791 * entry has to be popped off of the stack etc. or the values have to be passed 792 * all the way back to bt_split/bt_rroot and it's not very clean. 793 */ 794 static recno_t 795 rec_total(PAGE *h) 796 { 797 recno_t recs; 798 indx_t nxt, top; 799 800 for (recs = 0, nxt = 0, top = NEXTINDEX(h); nxt < top; ++nxt) 801 recs += GETRINTERNAL(h, nxt)->nrecs; 802 return (recs); 803 } 804