1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1990, 1993, 1994 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * Mike Olson. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 */ 34 35 #include <sys/param.h> 36 37 #include <limits.h> 38 #include <stdio.h> 39 #include <stdlib.h> 40 #include <string.h> 41 42 #include <db.h> 43 #include "btree.h" 44 45 static int bt_broot(BTREE *, PAGE *, PAGE *, PAGE *); 46 static PAGE *bt_page(BTREE *, PAGE *, PAGE **, PAGE **, indx_t *, size_t); 47 static int bt_preserve(BTREE *, pgno_t); 48 static PAGE *bt_psplit(BTREE *, PAGE *, PAGE *, PAGE *, indx_t *, size_t); 49 static PAGE *bt_root(BTREE *, PAGE *, PAGE **, PAGE **, indx_t *, size_t); 50 static int bt_rroot(BTREE *, PAGE *, PAGE *, PAGE *); 51 static recno_t rec_total(PAGE *); 52 53 #ifdef STATISTICS 54 u_long bt_rootsplit, bt_split, bt_sortsplit, bt_pfxsaved; 55 #endif 56 57 /* 58 * __BT_SPLIT -- Split the tree. 59 * 60 * Parameters: 61 * t: tree 62 * sp: page to split 63 * key: key to insert 64 * data: data to insert 65 * flags: BIGKEY/BIGDATA flags 66 * ilen: insert length 67 * skip: index to leave open 68 * 69 * Returns: 70 * RET_ERROR, RET_SUCCESS 71 */ 72 int 73 __bt_split(BTREE *t, PAGE *sp, const DBT *key, const DBT *data, int flags, 74 size_t ilen, u_int32_t argskip) 75 { 76 BINTERNAL *bi; 77 BLEAF *bl, *tbl; 78 DBT a, b; 79 EPGNO *parent; 80 PAGE *h, *l, *r, *lchild, *rchild; 81 indx_t nxtindex; 82 u_int16_t skip; 83 u_int32_t n, nbytes, nksize; 84 int parentsplit; 85 char *dest; 86 87 /* 88 * Split the page into two pages, l and r. The split routines return 89 * a pointer to the page into which the key should be inserted and with 90 * skip set to the offset which should be used. Additionally, l and r 91 * are pinned. 92 */ 93 skip = argskip; 94 h = sp->pgno == P_ROOT ? 95 bt_root(t, sp, &l, &r, &skip, ilen) : 96 bt_page(t, sp, &l, &r, &skip, ilen); 97 if (h == NULL) 98 return (RET_ERROR); 99 100 /* 101 * Insert the new key/data pair into the leaf page. (Key inserts 102 * always cause a leaf page to split first.) 103 */ 104 h->linp[skip] = h->upper -= ilen; 105 dest = (char *)h + h->upper; 106 if (F_ISSET(t, R_RECNO)) 107 WR_RLEAF(dest, data, flags) 108 else 109 WR_BLEAF(dest, key, data, flags) 110 111 /* If the root page was split, make it look right. */ 112 if (sp->pgno == P_ROOT && 113 (F_ISSET(t, R_RECNO) ? 114 bt_rroot(t, sp, l, r) : bt_broot(t, sp, l, r)) == RET_ERROR) 115 goto err2; 116 117 /* 118 * Now we walk the parent page stack -- a LIFO stack of the pages that 119 * were traversed when we searched for the page that split. Each stack 120 * entry is a page number and a page index offset. The offset is for 121 * the page traversed on the search. We've just split a page, so we 122 * have to insert a new key into the parent page. 123 * 124 * If the insert into the parent page causes it to split, may have to 125 * continue splitting all the way up the tree. We stop if the root 126 * splits or the page inserted into didn't have to split to hold the 127 * new key. Some algorithms replace the key for the old page as well 128 * as the new page. We don't, as there's no reason to believe that the 129 * first key on the old page is any better than the key we have, and, 130 * in the case of a key being placed at index 0 causing the split, the 131 * key is unavailable. 132 * 133 * There are a maximum of 5 pages pinned at any time. We keep the left 134 * and right pages pinned while working on the parent. The 5 are the 135 * two children, left parent and right parent (when the parent splits) 136 * and the root page or the overflow key page when calling bt_preserve. 137 * This code must make sure that all pins are released other than the 138 * root page or overflow page which is unlocked elsewhere. 139 */ 140 while ((parent = BT_POP(t)) != NULL) { 141 lchild = l; 142 rchild = r; 143 144 /* Get the parent page. */ 145 if ((h = mpool_get(t->bt_mp, parent->pgno, 0)) == NULL) 146 goto err2; 147 148 /* 149 * The new key goes ONE AFTER the index, because the split 150 * was to the right. 151 */ 152 skip = parent->index + 1; 153 154 /* 155 * Calculate the space needed on the parent page. 156 * 157 * Prefix trees: space hack when inserting into BINTERNAL 158 * pages. Retain only what's needed to distinguish between 159 * the new entry and the LAST entry on the page to its left. 160 * If the keys compare equal, retain the entire key. Note, 161 * we don't touch overflow keys, and the entire key must be 162 * retained for the next-to-left most key on the leftmost 163 * page of each level, or the search will fail. Applicable 164 * ONLY to internal pages that have leaf pages as children. 165 * Further reduction of the key between pairs of internal 166 * pages loses too much information. 167 */ 168 switch (rchild->flags & P_TYPE) { 169 case P_BINTERNAL: 170 bi = GETBINTERNAL(rchild, 0); 171 nbytes = NBINTERNAL(bi->ksize); 172 break; 173 case P_BLEAF: 174 bl = GETBLEAF(rchild, 0); 175 nbytes = NBINTERNAL(bl->ksize); 176 if (t->bt_pfx && !(bl->flags & P_BIGKEY) && 177 (h->prevpg != P_INVALID || skip > 1)) { 178 tbl = GETBLEAF(lchild, NEXTINDEX(lchild) - 1); 179 a.size = tbl->ksize; 180 a.data = tbl->bytes; 181 b.size = bl->ksize; 182 b.data = bl->bytes; 183 nksize = t->bt_pfx(&a, &b); 184 n = NBINTERNAL(nksize); 185 if (n < nbytes) { 186 #ifdef STATISTICS 187 bt_pfxsaved += nbytes - n; 188 #endif 189 nbytes = n; 190 } else 191 nksize = 0; 192 } else 193 nksize = 0; 194 break; 195 case P_RINTERNAL: 196 case P_RLEAF: 197 nbytes = NRINTERNAL; 198 break; 199 default: 200 abort(); 201 } 202 203 /* Split the parent page if necessary or shift the indices. */ 204 if ((u_int32_t)(h->upper - h->lower) < nbytes + sizeof(indx_t)) { 205 sp = h; 206 h = h->pgno == P_ROOT ? 207 bt_root(t, h, &l, &r, &skip, nbytes) : 208 bt_page(t, h, &l, &r, &skip, nbytes); 209 if (h == NULL) 210 goto err1; 211 parentsplit = 1; 212 } else { 213 if (skip < (nxtindex = NEXTINDEX(h))) 214 memmove(h->linp + skip + 1, h->linp + skip, 215 (nxtindex - skip) * sizeof(indx_t)); 216 h->lower += sizeof(indx_t); 217 parentsplit = 0; 218 } 219 220 /* Insert the key into the parent page. */ 221 switch (rchild->flags & P_TYPE) { 222 case P_BINTERNAL: 223 h->linp[skip] = h->upper -= nbytes; 224 dest = (char *)h + h->linp[skip]; 225 memmove(dest, bi, nbytes); 226 ((BINTERNAL *)dest)->pgno = rchild->pgno; 227 break; 228 case P_BLEAF: 229 h->linp[skip] = h->upper -= nbytes; 230 dest = (char *)h + h->linp[skip]; 231 WR_BINTERNAL(dest, nksize ? nksize : bl->ksize, 232 rchild->pgno, bl->flags & P_BIGKEY); 233 memmove(dest, bl->bytes, nksize ? nksize : bl->ksize); 234 if (bl->flags & P_BIGKEY) { 235 pgno_t pgno; 236 memcpy(&pgno, bl->bytes, sizeof(pgno)); 237 if (bt_preserve(t, pgno) == RET_ERROR) 238 goto err1; 239 } 240 break; 241 case P_RINTERNAL: 242 /* 243 * Update the left page count. If split 244 * added at index 0, fix the correct page. 245 */ 246 if (skip > 0) 247 dest = (char *)h + h->linp[skip - 1]; 248 else 249 dest = (char *)l + l->linp[NEXTINDEX(l) - 1]; 250 ((RINTERNAL *)dest)->nrecs = rec_total(lchild); 251 ((RINTERNAL *)dest)->pgno = lchild->pgno; 252 253 /* Update the right page count. */ 254 h->linp[skip] = h->upper -= nbytes; 255 dest = (char *)h + h->linp[skip]; 256 ((RINTERNAL *)dest)->nrecs = rec_total(rchild); 257 ((RINTERNAL *)dest)->pgno = rchild->pgno; 258 break; 259 case P_RLEAF: 260 /* 261 * Update the left page count. If split 262 * added at index 0, fix the correct page. 263 */ 264 if (skip > 0) 265 dest = (char *)h + h->linp[skip - 1]; 266 else 267 dest = (char *)l + l->linp[NEXTINDEX(l) - 1]; 268 ((RINTERNAL *)dest)->nrecs = NEXTINDEX(lchild); 269 ((RINTERNAL *)dest)->pgno = lchild->pgno; 270 271 /* Update the right page count. */ 272 h->linp[skip] = h->upper -= nbytes; 273 dest = (char *)h + h->linp[skip]; 274 ((RINTERNAL *)dest)->nrecs = NEXTINDEX(rchild); 275 ((RINTERNAL *)dest)->pgno = rchild->pgno; 276 break; 277 default: 278 abort(); 279 } 280 281 /* Unpin the held pages. */ 282 if (!parentsplit) { 283 mpool_put(t->bt_mp, h, MPOOL_DIRTY); 284 break; 285 } 286 287 /* If the root page was split, make it look right. */ 288 if (sp->pgno == P_ROOT && 289 (F_ISSET(t, R_RECNO) ? 290 bt_rroot(t, sp, l, r) : bt_broot(t, sp, l, r)) == RET_ERROR) 291 goto err1; 292 293 mpool_put(t->bt_mp, lchild, MPOOL_DIRTY); 294 mpool_put(t->bt_mp, rchild, MPOOL_DIRTY); 295 } 296 297 /* Unpin the held pages. */ 298 mpool_put(t->bt_mp, l, MPOOL_DIRTY); 299 mpool_put(t->bt_mp, r, MPOOL_DIRTY); 300 301 /* Clear any pages left on the stack. */ 302 return (RET_SUCCESS); 303 304 /* 305 * If something fails in the above loop we were already walking back 306 * up the tree and the tree is now inconsistent. Nothing much we can 307 * do about it but release any memory we're holding. 308 */ 309 err1: mpool_put(t->bt_mp, lchild, MPOOL_DIRTY); 310 mpool_put(t->bt_mp, rchild, MPOOL_DIRTY); 311 312 err2: mpool_put(t->bt_mp, l, 0); 313 mpool_put(t->bt_mp, r, 0); 314 __dbpanic(t->bt_dbp); 315 return (RET_ERROR); 316 } 317 318 /* 319 * BT_PAGE -- Split a non-root page of a btree. 320 * 321 * Parameters: 322 * t: tree 323 * h: root page 324 * lp: pointer to left page pointer 325 * rp: pointer to right page pointer 326 * skip: pointer to index to leave open 327 * ilen: insert length 328 * 329 * Returns: 330 * Pointer to page in which to insert or NULL on error. 331 */ 332 static PAGE * 333 bt_page(BTREE *t, PAGE *h, PAGE **lp, PAGE **rp, indx_t *skip, size_t ilen) 334 { 335 PAGE *l, *r, *tp; 336 pgno_t npg; 337 338 #ifdef STATISTICS 339 ++bt_split; 340 #endif 341 /* Put the new right page for the split into place. */ 342 if ((r = __bt_new(t, &npg)) == NULL) 343 return (NULL); 344 r->pgno = npg; 345 r->lower = BTDATAOFF; 346 r->upper = t->bt_psize; 347 r->nextpg = h->nextpg; 348 r->prevpg = h->pgno; 349 r->flags = h->flags & P_TYPE; 350 351 /* 352 * If we're splitting the last page on a level because we're appending 353 * a key to it (skip is NEXTINDEX()), it's likely that the data is 354 * sorted. Adding an empty page on the side of the level is less work 355 * and can push the fill factor much higher than normal. If we're 356 * wrong it's no big deal, we'll just do the split the right way next 357 * time. It may look like it's equally easy to do a similar hack for 358 * reverse sorted data, that is, split the tree left, but it's not. 359 * Don't even try. 360 */ 361 if (h->nextpg == P_INVALID && *skip == NEXTINDEX(h)) { 362 #ifdef STATISTICS 363 ++bt_sortsplit; 364 #endif 365 h->nextpg = r->pgno; 366 r->lower = BTDATAOFF + sizeof(indx_t); 367 *skip = 0; 368 *lp = h; 369 *rp = r; 370 return (r); 371 } 372 373 /* Put the new left page for the split into place. */ 374 if ((l = (PAGE *)calloc(1, t->bt_psize)) == NULL) { 375 mpool_put(t->bt_mp, r, 0); 376 return (NULL); 377 } 378 l->pgno = h->pgno; 379 l->nextpg = r->pgno; 380 l->prevpg = h->prevpg; 381 l->lower = BTDATAOFF; 382 l->upper = t->bt_psize; 383 l->flags = h->flags & P_TYPE; 384 385 /* Fix up the previous pointer of the page after the split page. */ 386 if (h->nextpg != P_INVALID) { 387 if ((tp = mpool_get(t->bt_mp, h->nextpg, 0)) == NULL) { 388 free(l); 389 /* XXX mpool_free(t->bt_mp, r->pgno); */ 390 return (NULL); 391 } 392 tp->prevpg = r->pgno; 393 mpool_put(t->bt_mp, tp, MPOOL_DIRTY); 394 } 395 396 /* 397 * Split right. The key/data pairs aren't sorted in the btree page so 398 * it's simpler to copy the data from the split page onto two new pages 399 * instead of copying half the data to the right page and compacting 400 * the left page in place. Since the left page can't change, we have 401 * to swap the original and the allocated left page after the split. 402 */ 403 tp = bt_psplit(t, h, l, r, skip, ilen); 404 405 /* Move the new left page onto the old left page. */ 406 memmove(h, l, t->bt_psize); 407 if (tp == l) 408 tp = h; 409 free(l); 410 411 *lp = h; 412 *rp = r; 413 return (tp); 414 } 415 416 /* 417 * BT_ROOT -- Split the root page of a btree. 418 * 419 * Parameters: 420 * t: tree 421 * h: root page 422 * lp: pointer to left page pointer 423 * rp: pointer to right page pointer 424 * skip: pointer to index to leave open 425 * ilen: insert length 426 * 427 * Returns: 428 * Pointer to page in which to insert or NULL on error. 429 */ 430 static PAGE * 431 bt_root(BTREE *t, PAGE *h, PAGE **lp, PAGE **rp, indx_t *skip, size_t ilen) 432 { 433 PAGE *l, *r, *tp; 434 pgno_t lnpg, rnpg; 435 436 #ifdef STATISTICS 437 ++bt_split; 438 ++bt_rootsplit; 439 #endif 440 /* Put the new left and right pages for the split into place. */ 441 if ((l = __bt_new(t, &lnpg)) == NULL || 442 (r = __bt_new(t, &rnpg)) == NULL) 443 return (NULL); 444 l->pgno = lnpg; 445 r->pgno = rnpg; 446 l->nextpg = r->pgno; 447 r->prevpg = l->pgno; 448 l->prevpg = r->nextpg = P_INVALID; 449 l->lower = r->lower = BTDATAOFF; 450 l->upper = r->upper = t->bt_psize; 451 l->flags = r->flags = h->flags & P_TYPE; 452 453 /* Split the root page. */ 454 tp = bt_psplit(t, h, l, r, skip, ilen); 455 456 *lp = l; 457 *rp = r; 458 return (tp); 459 } 460 461 /* 462 * BT_RROOT -- Fix up the recno root page after it has been split. 463 * 464 * Parameters: 465 * t: tree 466 * h: root page 467 * l: left page 468 * r: right page 469 * 470 * Returns: 471 * RET_ERROR, RET_SUCCESS 472 */ 473 static int 474 bt_rroot(BTREE *t, PAGE *h, PAGE *l, PAGE *r) 475 { 476 char *dest; 477 478 /* Insert the left and right keys, set the header information. */ 479 h->linp[0] = h->upper = t->bt_psize - NRINTERNAL; 480 dest = (char *)h + h->upper; 481 WR_RINTERNAL(dest, 482 l->flags & P_RLEAF ? NEXTINDEX(l) : rec_total(l), l->pgno); 483 484 __PAST_END(h->linp, 1) = h->upper -= NRINTERNAL; 485 dest = (char *)h + h->upper; 486 WR_RINTERNAL(dest, 487 r->flags & P_RLEAF ? NEXTINDEX(r) : rec_total(r), r->pgno); 488 489 h->lower = BTDATAOFF + 2 * sizeof(indx_t); 490 491 /* Unpin the root page, set to recno internal page. */ 492 h->flags &= ~P_TYPE; 493 h->flags |= P_RINTERNAL; 494 mpool_put(t->bt_mp, h, MPOOL_DIRTY); 495 496 return (RET_SUCCESS); 497 } 498 499 /* 500 * BT_BROOT -- Fix up the btree root page after it has been split. 501 * 502 * Parameters: 503 * t: tree 504 * h: root page 505 * l: left page 506 * r: right page 507 * 508 * Returns: 509 * RET_ERROR, RET_SUCCESS 510 */ 511 static int 512 bt_broot(BTREE *t, PAGE *h, PAGE *l, PAGE *r) 513 { 514 BINTERNAL *bi; 515 BLEAF *bl; 516 u_int32_t nbytes; 517 char *dest; 518 519 /* 520 * If the root page was a leaf page, change it into an internal page. 521 * We copy the key we split on (but not the key's data, in the case of 522 * a leaf page) to the new root page. 523 * 524 * The btree comparison code guarantees that the left-most key on any 525 * level of the tree is never used, so it doesn't need to be filled in. 526 */ 527 nbytes = NBINTERNAL(0); 528 h->linp[0] = h->upper = t->bt_psize - nbytes; 529 dest = (char *)h + h->upper; 530 WR_BINTERNAL(dest, 0, l->pgno, 0); 531 532 switch (h->flags & P_TYPE) { 533 case P_BLEAF: 534 bl = GETBLEAF(r, 0); 535 nbytes = NBINTERNAL(bl->ksize); 536 __PAST_END(h->linp, 1) = h->upper -= nbytes; 537 dest = (char *)h + h->upper; 538 WR_BINTERNAL(dest, bl->ksize, r->pgno, 0); 539 memmove(dest, bl->bytes, bl->ksize); 540 541 /* 542 * If the key is on an overflow page, mark the overflow chain 543 * so it isn't deleted when the leaf copy of the key is deleted. 544 */ 545 if (bl->flags & P_BIGKEY) { 546 pgno_t pgno; 547 memcpy(&pgno, bl->bytes, sizeof(pgno)); 548 if (bt_preserve(t, pgno) == RET_ERROR) 549 return (RET_ERROR); 550 } 551 break; 552 case P_BINTERNAL: 553 bi = GETBINTERNAL(r, 0); 554 nbytes = NBINTERNAL(bi->ksize); 555 __PAST_END(h->linp, 1) = h->upper -= nbytes; 556 dest = (char *)h + h->upper; 557 memmove(dest, bi, nbytes); 558 ((BINTERNAL *)dest)->pgno = r->pgno; 559 break; 560 default: 561 abort(); 562 } 563 564 /* There are two keys on the page. */ 565 h->lower = BTDATAOFF + 2 * sizeof(indx_t); 566 567 /* Unpin the root page, set to btree internal page. */ 568 h->flags &= ~P_TYPE; 569 h->flags |= P_BINTERNAL; 570 mpool_put(t->bt_mp, h, MPOOL_DIRTY); 571 572 return (RET_SUCCESS); 573 } 574 575 /* 576 * BT_PSPLIT -- Do the real work of splitting the page. 577 * 578 * Parameters: 579 * t: tree 580 * h: page to be split 581 * l: page to put lower half of data 582 * r: page to put upper half of data 583 * pskip: pointer to index to leave open 584 * ilen: insert length 585 * 586 * Returns: 587 * Pointer to page in which to insert. 588 */ 589 static PAGE * 590 bt_psplit(BTREE *t, PAGE *h, PAGE *l, PAGE *r, indx_t *pskip, size_t ilen) 591 { 592 BINTERNAL *bi; 593 BLEAF *bl; 594 CURSOR *c; 595 RLEAF *rl; 596 PAGE *rval; 597 void *src; 598 indx_t full, half, nxt, off, skip, top, used; 599 u_int32_t nbytes; 600 int bigkeycnt, isbigkey; 601 602 /* 603 * Split the data to the left and right pages. Leave the skip index 604 * open. Additionally, make some effort not to split on an overflow 605 * key. This makes internal page processing faster and can save 606 * space as overflow keys used by internal pages are never deleted. 607 */ 608 bigkeycnt = 0; 609 skip = *pskip; 610 full = t->bt_psize - BTDATAOFF; 611 half = full / 2; 612 used = 0; 613 for (nxt = off = 0, top = NEXTINDEX(h); nxt < top; ++off) { 614 if (skip == off) { 615 nbytes = ilen; 616 isbigkey = 0; /* XXX: not really known. */ 617 } else 618 switch (h->flags & P_TYPE) { 619 case P_BINTERNAL: 620 src = bi = GETBINTERNAL(h, nxt); 621 nbytes = NBINTERNAL(bi->ksize); 622 isbigkey = bi->flags & P_BIGKEY; 623 break; 624 case P_BLEAF: 625 src = bl = GETBLEAF(h, nxt); 626 nbytes = NBLEAF(bl); 627 isbigkey = bl->flags & P_BIGKEY; 628 break; 629 case P_RINTERNAL: 630 src = GETRINTERNAL(h, nxt); 631 nbytes = NRINTERNAL; 632 isbigkey = 0; 633 break; 634 case P_RLEAF: 635 src = rl = GETRLEAF(h, nxt); 636 nbytes = NRLEAF(rl); 637 isbigkey = 0; 638 break; 639 default: 640 abort(); 641 } 642 643 /* 644 * If the key/data pairs are substantial fractions of the max 645 * possible size for the page, it's possible to get situations 646 * where we decide to try and copy too much onto the left page. 647 * Make sure that doesn't happen. 648 */ 649 if ((skip <= off && used + nbytes + sizeof(indx_t) >= full) || 650 nxt == top - 1) { 651 --off; 652 break; 653 } 654 655 /* Copy the key/data pair, if not the skipped index. */ 656 if (skip != off) { 657 ++nxt; 658 659 l->linp[off] = l->upper -= nbytes; 660 memmove((char *)l + l->upper, src, nbytes); 661 } 662 663 used += nbytes + sizeof(indx_t); 664 if (used >= half) { 665 if (!isbigkey || bigkeycnt == 3) 666 break; 667 else 668 ++bigkeycnt; 669 } 670 } 671 672 /* 673 * Off is the last offset that's valid for the left page. 674 * Nxt is the first offset to be placed on the right page. 675 */ 676 l->lower += (off + 1) * sizeof(indx_t); 677 678 /* 679 * If splitting the page that the cursor was on, the cursor has to be 680 * adjusted to point to the same record as before the split. If the 681 * cursor is at or past the skipped slot, the cursor is incremented by 682 * one. If the cursor is on the right page, it is decremented by the 683 * number of records split to the left page. 684 */ 685 c = &t->bt_cursor; 686 if (F_ISSET(c, CURS_INIT) && c->pg.pgno == h->pgno) { 687 if (c->pg.index >= skip) 688 ++c->pg.index; 689 if (c->pg.index < nxt) /* Left page. */ 690 c->pg.pgno = l->pgno; 691 else { /* Right page. */ 692 c->pg.pgno = r->pgno; 693 c->pg.index -= nxt; 694 } 695 } 696 697 /* 698 * If the skipped index was on the left page, just return that page. 699 * Otherwise, adjust the skip index to reflect the new position on 700 * the right page. 701 */ 702 if (skip <= off) { 703 skip = MAX_PAGE_OFFSET; 704 rval = l; 705 } else { 706 rval = r; 707 *pskip -= nxt; 708 } 709 710 for (off = 0; nxt < top; ++off) { 711 if (skip == nxt) { 712 ++off; 713 skip = MAX_PAGE_OFFSET; 714 } 715 switch (h->flags & P_TYPE) { 716 case P_BINTERNAL: 717 src = bi = GETBINTERNAL(h, nxt); 718 nbytes = NBINTERNAL(bi->ksize); 719 break; 720 case P_BLEAF: 721 src = bl = GETBLEAF(h, nxt); 722 nbytes = NBLEAF(bl); 723 break; 724 case P_RINTERNAL: 725 src = GETRINTERNAL(h, nxt); 726 nbytes = NRINTERNAL; 727 break; 728 case P_RLEAF: 729 src = rl = GETRLEAF(h, nxt); 730 nbytes = NRLEAF(rl); 731 break; 732 default: 733 abort(); 734 } 735 ++nxt; 736 r->linp[off] = r->upper -= nbytes; 737 memmove((char *)r + r->upper, src, nbytes); 738 } 739 r->lower += off * sizeof(indx_t); 740 741 /* If the key is being appended to the page, adjust the index. */ 742 if (skip == top) 743 r->lower += sizeof(indx_t); 744 745 return (rval); 746 } 747 748 /* 749 * BT_PRESERVE -- Mark a chain of pages as used by an internal node. 750 * 751 * Chains of indirect blocks pointed to by leaf nodes get reclaimed when the 752 * record that references them gets deleted. Chains pointed to by internal 753 * pages never get deleted. This routine marks a chain as pointed to by an 754 * internal page. 755 * 756 * Parameters: 757 * t: tree 758 * pg: page number of first page in the chain. 759 * 760 * Returns: 761 * RET_SUCCESS, RET_ERROR. 762 */ 763 static int 764 bt_preserve(BTREE *t, pgno_t pg) 765 { 766 PAGE *h; 767 768 if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL) 769 return (RET_ERROR); 770 h->flags |= P_PRESERVE; 771 mpool_put(t->bt_mp, h, MPOOL_DIRTY); 772 return (RET_SUCCESS); 773 } 774 775 /* 776 * REC_TOTAL -- Return the number of recno entries below a page. 777 * 778 * Parameters: 779 * h: page 780 * 781 * Returns: 782 * The number of recno entries below a page. 783 * 784 * XXX 785 * These values could be set by the bt_psplit routine. The problem is that the 786 * entry has to be popped off of the stack etc. or the values have to be passed 787 * all the way back to bt_split/bt_rroot and it's not very clean. 788 */ 789 static recno_t 790 rec_total(PAGE *h) 791 { 792 recno_t recs; 793 indx_t nxt, top; 794 795 for (recs = 0, nxt = 0, top = NEXTINDEX(h); nxt < top; ++nxt) 796 recs += GETRINTERNAL(h, nxt)->nrecs; 797 return (recs); 798 } 799