xref: /freebsd/lib/libc/db/btree/bt_seq.c (revision 5e3190f700637fcfc1a52daeaa4a031fdd2557c7)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1990, 1993, 1994
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * Mike Olson.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 #if defined(LIBC_SCCS) && !defined(lint)
36 static char sccsid[] = "@(#)bt_seq.c	8.7 (Berkeley) 7/20/94";
37 #endif /* LIBC_SCCS and not lint */
38 #include <sys/cdefs.h>
39 #include <sys/types.h>
40 
41 #include <errno.h>
42 #include <stddef.h>
43 #include <stdio.h>
44 #include <stdlib.h>
45 
46 #include <db.h>
47 #include "btree.h"
48 
49 static int __bt_first(BTREE *, const DBT *, EPG *, int *);
50 static int __bt_seqadv(BTREE *, EPG *, int);
51 static int __bt_seqset(BTREE *, EPG *, DBT *, int);
52 
53 /*
54  * Sequential scan support.
55  *
56  * The tree can be scanned sequentially, starting from either end of the
57  * tree or from any specific key.  A scan request before any scanning is
58  * done is initialized as starting from the least node.
59  */
60 
61 /*
62  * __bt_seq --
63  *	Btree sequential scan interface.
64  *
65  * Parameters:
66  *	dbp:	pointer to access method
67  *	key:	key for positioning and return value
68  *	data:	data return value
69  *	flags:	R_CURSOR, R_FIRST, R_LAST, R_NEXT, R_PREV.
70  *
71  * Returns:
72  *	RET_ERROR, RET_SUCCESS or RET_SPECIAL if there's no next key.
73  */
74 int
75 __bt_seq(const DB *dbp, DBT *key, DBT *data, u_int flags)
76 {
77 	BTREE *t;
78 	EPG e;
79 	int status;
80 
81 	t = dbp->internal;
82 
83 	/* Toss any page pinned across calls. */
84 	if (t->bt_pinned != NULL) {
85 		mpool_put(t->bt_mp, t->bt_pinned, 0);
86 		t->bt_pinned = NULL;
87 	}
88 
89 	/*
90 	 * If scan unitialized as yet, or starting at a specific record, set
91 	 * the scan to a specific key.  Both __bt_seqset and __bt_seqadv pin
92 	 * the page the cursor references if they're successful.
93 	 */
94 	switch (flags) {
95 	case R_NEXT:
96 	case R_PREV:
97 		if (F_ISSET(&t->bt_cursor, CURS_INIT)) {
98 			status = __bt_seqadv(t, &e, flags);
99 			break;
100 		}
101 		/* FALLTHROUGH */
102 	case R_FIRST:
103 	case R_LAST:
104 	case R_CURSOR:
105 		status = __bt_seqset(t, &e, key, flags);
106 		break;
107 	default:
108 		errno = EINVAL;
109 		return (RET_ERROR);
110 	}
111 
112 	if (status == RET_SUCCESS) {
113 		__bt_setcur(t, e.page->pgno, e.index);
114 
115 		status =
116 		    __bt_ret(t, &e, key, &t->bt_rkey, data, &t->bt_rdata, 0);
117 
118 		/*
119 		 * If the user is doing concurrent access, we copied the
120 		 * key/data, toss the page.
121 		 */
122 		if (F_ISSET(t, B_DB_LOCK))
123 			mpool_put(t->bt_mp, e.page, 0);
124 		else
125 			t->bt_pinned = e.page;
126 	}
127 	return (status);
128 }
129 
130 /*
131  * __bt_seqset --
132  *	Set the sequential scan to a specific key.
133  *
134  * Parameters:
135  *	t:	tree
136  *	ep:	storage for returned key
137  *	key:	key for initial scan position
138  *	flags:	R_CURSOR, R_FIRST, R_LAST, R_NEXT, R_PREV
139  *
140  * Side effects:
141  *	Pins the page the cursor references.
142  *
143  * Returns:
144  *	RET_ERROR, RET_SUCCESS or RET_SPECIAL if there's no next key.
145  */
146 static int
147 __bt_seqset(BTREE *t, EPG *ep, DBT *key, int flags)
148 {
149 	PAGE *h;
150 	pgno_t pg;
151 	int exact;
152 
153 	/*
154 	 * Find the first, last or specific key in the tree and point the
155 	 * cursor at it.  The cursor may not be moved until a new key has
156 	 * been found.
157 	 */
158 	switch (flags) {
159 	case R_CURSOR:				/* Keyed scan. */
160 		/*
161 		 * Find the first instance of the key or the smallest key
162 		 * which is greater than or equal to the specified key.
163 		 */
164 		if (key->data == NULL || key->size == 0) {
165 			errno = EINVAL;
166 			return (RET_ERROR);
167 		}
168 		return (__bt_first(t, key, ep, &exact));
169 	case R_FIRST:				/* First record. */
170 	case R_NEXT:
171 		/* Walk down the left-hand side of the tree. */
172 		for (pg = P_ROOT;;) {
173 			if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
174 				return (RET_ERROR);
175 
176 			/* Check for an empty tree. */
177 			if (NEXTINDEX(h) == 0) {
178 				mpool_put(t->bt_mp, h, 0);
179 				return (RET_SPECIAL);
180 			}
181 
182 			if (h->flags & (P_BLEAF | P_RLEAF))
183 				break;
184 			pg = GETBINTERNAL(h, 0)->pgno;
185 			mpool_put(t->bt_mp, h, 0);
186 		}
187 		ep->page = h;
188 		ep->index = 0;
189 		break;
190 	case R_LAST:				/* Last record. */
191 	case R_PREV:
192 		/* Walk down the right-hand side of the tree. */
193 		for (pg = P_ROOT;;) {
194 			if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
195 				return (RET_ERROR);
196 
197 			/* Check for an empty tree. */
198 			if (NEXTINDEX(h) == 0) {
199 				mpool_put(t->bt_mp, h, 0);
200 				return (RET_SPECIAL);
201 			}
202 
203 			if (h->flags & (P_BLEAF | P_RLEAF))
204 				break;
205 			pg = GETBINTERNAL(h, NEXTINDEX(h) - 1)->pgno;
206 			mpool_put(t->bt_mp, h, 0);
207 		}
208 
209 		ep->page = h;
210 		ep->index = NEXTINDEX(h) - 1;
211 		break;
212 	}
213 	return (RET_SUCCESS);
214 }
215 
216 /*
217  * __bt_seqadvance --
218  *	Advance the sequential scan.
219  *
220  * Parameters:
221  *	t:	tree
222  *	flags:	R_NEXT, R_PREV
223  *
224  * Side effects:
225  *	Pins the page the new key/data record is on.
226  *
227  * Returns:
228  *	RET_ERROR, RET_SUCCESS or RET_SPECIAL if there's no next key.
229  */
230 static int
231 __bt_seqadv(BTREE *t, EPG *ep, int flags)
232 {
233 	CURSOR *c;
234 	PAGE *h;
235 	indx_t idx;
236 	pgno_t pg;
237 	int exact;
238 
239 	/*
240 	 * There are a couple of states that we can be in.  The cursor has
241 	 * been initialized by the time we get here, but that's all we know.
242 	 */
243 	c = &t->bt_cursor;
244 
245 	/*
246 	 * The cursor was deleted where there weren't any duplicate records,
247 	 * so the key was saved.  Find out where that key would go in the
248 	 * current tree.  It doesn't matter if the returned key is an exact
249 	 * match or not -- if it's an exact match, the record was added after
250 	 * the delete so we can just return it.  If not, as long as there's
251 	 * a record there, return it.
252 	 */
253 	if (F_ISSET(c, CURS_ACQUIRE))
254 		return (__bt_first(t, &c->key, ep, &exact));
255 
256 	/* Get the page referenced by the cursor. */
257 	if ((h = mpool_get(t->bt_mp, c->pg.pgno, 0)) == NULL)
258 		return (RET_ERROR);
259 
260 	/*
261 	 * Find the next/previous record in the tree and point the cursor at
262 	 * it.  The cursor may not be moved until a new key has been found.
263 	 */
264 	switch (flags) {
265 	case R_NEXT:			/* Next record. */
266 		/*
267 		 * The cursor was deleted in duplicate records, and moved
268 		 * forward to a record that has yet to be returned.  Clear
269 		 * that flag, and return the record.
270 		 */
271 		if (F_ISSET(c, CURS_AFTER))
272 			goto usecurrent;
273 		idx = c->pg.index;
274 		if (++idx == NEXTINDEX(h)) {
275 			pg = h->nextpg;
276 			mpool_put(t->bt_mp, h, 0);
277 			if (pg == P_INVALID)
278 				return (RET_SPECIAL);
279 			if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
280 				return (RET_ERROR);
281 			idx = 0;
282 		}
283 		break;
284 	case R_PREV:			/* Previous record. */
285 		/*
286 		 * The cursor was deleted in duplicate records, and moved
287 		 * backward to a record that has yet to be returned.  Clear
288 		 * that flag, and return the record.
289 		 */
290 		if (F_ISSET(c, CURS_BEFORE)) {
291 usecurrent:		F_CLR(c, CURS_AFTER | CURS_BEFORE);
292 			ep->page = h;
293 			ep->index = c->pg.index;
294 			return (RET_SUCCESS);
295 		}
296 		idx = c->pg.index;
297 		if (idx == 0) {
298 			pg = h->prevpg;
299 			mpool_put(t->bt_mp, h, 0);
300 			if (pg == P_INVALID)
301 				return (RET_SPECIAL);
302 			if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
303 				return (RET_ERROR);
304 			idx = NEXTINDEX(h) - 1;
305 		} else
306 			--idx;
307 		break;
308 	}
309 
310 	ep->page = h;
311 	ep->index = idx;
312 	return (RET_SUCCESS);
313 }
314 
315 /*
316  * __bt_first --
317  *	Find the first entry.
318  *
319  * Parameters:
320  *	t:	the tree
321  *    key:	the key
322  *  erval:	return EPG
323  * exactp:	pointer to exact match flag
324  *
325  * Returns:
326  *	The first entry in the tree greater than or equal to key,
327  *	or RET_SPECIAL if no such key exists.
328  */
329 static int
330 __bt_first(BTREE *t, const DBT *key, EPG *erval, int *exactp)
331 {
332 	PAGE *h;
333 	EPG *ep, save;
334 	pgno_t pg;
335 
336 	/*
337 	 * Find any matching record; __bt_search pins the page.
338 	 *
339 	 * If it's an exact match and duplicates are possible, walk backwards
340 	 * in the tree until we find the first one.  Otherwise, make sure it's
341 	 * a valid key (__bt_search may return an index just past the end of a
342 	 * page) and return it.
343 	 */
344 	if ((ep = __bt_search(t, key, exactp)) == NULL)
345 		return (0);
346 	if (*exactp) {
347 		if (F_ISSET(t, B_NODUPS)) {
348 			*erval = *ep;
349 			return (RET_SUCCESS);
350 		}
351 
352 		/*
353 		 * Walk backwards, as long as the entry matches and there are
354 		 * keys left in the tree.  Save a copy of each match in case
355 		 * we go too far.
356 		 */
357 		save = *ep;
358 		h = ep->page;
359 		do {
360 			if (save.page->pgno != ep->page->pgno) {
361 				mpool_put(t->bt_mp, save.page, 0);
362 				save = *ep;
363 			} else
364 				save.index = ep->index;
365 
366 			/*
367 			 * Don't unpin the page the last (or original) match
368 			 * was on, but make sure it's unpinned if an error
369 			 * occurs.
370 			 */
371 			if (ep->index == 0) {
372 				if (h->prevpg == P_INVALID)
373 					break;
374 				if (h->pgno != save.page->pgno)
375 					mpool_put(t->bt_mp, h, 0);
376 				if ((h = mpool_get(t->bt_mp,
377 				    h->prevpg, 0)) == NULL) {
378 					if (h->pgno == save.page->pgno)
379 						mpool_put(t->bt_mp,
380 						    save.page, 0);
381 					return (RET_ERROR);
382 				}
383 				ep->page = h;
384 				ep->index = NEXTINDEX(h);
385 			}
386 			--ep->index;
387 		} while (__bt_cmp(t, key, ep) == 0);
388 
389 		/*
390 		 * Reach here with the last page that was looked at pinned,
391 		 * which may or may not be the same as the last (or original)
392 		 * match page.  If it's not useful, release it.
393 		 */
394 		if (h->pgno != save.page->pgno)
395 			mpool_put(t->bt_mp, h, 0);
396 
397 		*erval = save;
398 		return (RET_SUCCESS);
399 	}
400 
401 	/* If at the end of a page, find the next entry. */
402 	if (ep->index == NEXTINDEX(ep->page)) {
403 		h = ep->page;
404 		pg = h->nextpg;
405 		mpool_put(t->bt_mp, h, 0);
406 		if (pg == P_INVALID)
407 			return (RET_SPECIAL);
408 		if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
409 			return (RET_ERROR);
410 		ep->index = 0;
411 		ep->page = h;
412 	}
413 	*erval = *ep;
414 	return (RET_SUCCESS);
415 }
416 
417 /*
418  * __bt_setcur --
419  *	Set the cursor to an entry in the tree.
420  *
421  * Parameters:
422  *	t:	the tree
423  *   pgno:	page number
424  *    idx:	page index
425  */
426 void
427 __bt_setcur(BTREE *t, pgno_t pgno, u_int idx)
428 {
429 	/* Lose any already deleted key. */
430 	if (t->bt_cursor.key.data != NULL) {
431 		free(t->bt_cursor.key.data);
432 		t->bt_cursor.key.size = 0;
433 		t->bt_cursor.key.data = NULL;
434 	}
435 	F_CLR(&t->bt_cursor, CURS_ACQUIRE | CURS_AFTER | CURS_BEFORE);
436 
437 	/* Update the cursor. */
438 	t->bt_cursor.pg.pgno = pgno;
439 	t->bt_cursor.pg.index = idx;
440 	F_SET(&t->bt_cursor, CURS_INIT);
441 }
442