1.\" Copyright (c) 2007, 2008 Marcel Moolenaar 2.\" All rights reserved. 3.\" 4.\" Redistribution and use in source and binary forms, with or without 5.\" modification, are permitted provided that the following conditions 6.\" are met: 7.\" 1. Redistributions of source code must retain the above copyright 8.\" notice, this list of conditions and the following disclaimer. 9.\" 2. Redistributions in binary form must reproduce the above copyright 10.\" notice, this list of conditions and the following disclaimer in the 11.\" documentation and/or other materials provided with the distribution. 12.\" 13.\" THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND 14.\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 15.\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 16.\" ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE 17.\" FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 18.\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 19.\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 20.\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 21.\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 22.\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23.\" SUCH DAMAGE. 24.\" 25.\" $FreeBSD$ 26.\" 27.Dd December 23, 2019 28.Dt GPART 8 29.Os 30.Sh NAME 31.Nm gpart 32.Nd "control utility for the disk partitioning GEOM class" 33.Sh SYNOPSIS 34.\" ==== ADD ==== 35.Nm 36.Cm add 37.Fl t Ar type 38.Op Fl a Ar alignment 39.Op Fl b Ar start 40.Op Fl s Ar size 41.Op Fl i Ar index 42.Op Fl l Ar label 43.Op Fl f Ar flags 44.Ar geom 45.\" ==== BACKUP ==== 46.Nm 47.Cm backup 48.Ar geom 49.\" ==== BOOTCODE ==== 50.Nm 51.Cm bootcode 52.Op Fl N 53.Op Fl b Ar bootcode 54.Op Fl p Ar partcode Fl i Ar index 55.Op Fl f Ar flags 56.Ar geom 57.\" ==== COMMIT ==== 58.Nm 59.Cm commit 60.Ar geom 61.\" ==== CREATE ==== 62.Nm 63.Cm create 64.Fl s Ar scheme 65.Op Fl n Ar entries 66.Op Fl f Ar flags 67.Ar provider 68.\" ==== DELETE ==== 69.Nm 70.Cm delete 71.Fl i Ar index 72.Op Fl f Ar flags 73.Ar geom 74.\" ==== DESTROY ==== 75.Nm 76.Cm destroy 77.Op Fl F 78.Op Fl f Ar flags 79.Ar geom 80.\" ==== MODIFY ==== 81.Nm 82.Cm modify 83.Fl i Ar index 84.Op Fl l Ar label 85.Op Fl t Ar type 86.Op Fl f Ar flags 87.Ar geom 88.\" ==== RECOVER ==== 89.Nm 90.Cm recover 91.Op Fl f Ar flags 92.Ar geom 93.\" ==== RESIZE ==== 94.Nm 95.Cm resize 96.Fl i Ar index 97.Op Fl a Ar alignment 98.Op Fl s Ar size 99.Op Fl f Ar flags 100.Ar geom 101.\" ==== RESTORE ==== 102.Nm 103.Cm restore 104.Op Fl lF 105.Op Fl f Ar flags 106.Ar provider 107.Op Ar ... 108.\" ==== SET ==== 109.Nm 110.Cm set 111.Fl a Ar attrib 112.Fl i Ar index 113.Op Fl f Ar flags 114.Ar geom 115.\" ==== SHOW ==== 116.Nm 117.Cm show 118.Op Fl l | r 119.Op Fl p 120.Op Ar geom ... 121.\" ==== UNDO ==== 122.Nm 123.Cm undo 124.Ar geom 125.\" ==== UNSET ==== 126.Nm 127.Cm unset 128.Fl a Ar attrib 129.Fl i Ar index 130.Op Fl f Ar flags 131.Ar geom 132.\" 133.Nm 134.Cm list 135.Nm 136.Cm status 137.Nm 138.Cm load 139.Nm 140.Cm unload 141.Sh DESCRIPTION 142The 143.Nm 144utility is used to partition GEOM providers, normally disks. 145The first argument is the action to be taken: 146.Bl -tag -width ".Cm bootcode" 147.\" ==== ADD ==== 148.It Cm add 149Add a new partition to the partitioning scheme given by 150.Ar geom . 151The partition type must be specified with 152.Fl t Ar type . 153The partition's location, size, and other attributes will be calculated 154automatically if the corresponding options are not specified. 155.Pp 156The 157.Cm add 158command accepts these options: 159.Bl -tag -width 12n 160.It Fl a Ar alignment 161If specified, then 162.Nm 163utility tries to align 164.Ar start 165offset and partition 166.Ar size 167to be multiple of 168.Ar alignment 169value. 170.It Fl b Ar start 171The logical block address where the partition will begin. 172A SI unit suffix is allowed. 173.It Fl f Ar flags 174Additional operational flags. 175See the section entitled 176.Sx "OPERATIONAL FLAGS" 177below for a discussion 178about its use. 179.It Fl i Ar index 180The index in the partition table at which the new partition is to be 181placed. 182The index determines the name of the device special file used 183to represent the partition. 184.It Fl l Ar label 185The label attached to the partition. 186This option is only valid when used on partitioning schemes that support 187partition labels. 188.It Fl s Ar size 189Create a partition of size 190.Ar size . 191A SI unit suffix is allowed. 192.It Fl t Ar type 193Create a partition of type 194.Ar type . 195Partition types are discussed below in the section entitled 196.Sx "PARTITION TYPES" . 197.El 198.\" ==== BACKUP ==== 199.It Cm backup 200Dump a partition table to standard output in a special format used by the 201.Cm restore 202action. 203.\" ==== BOOTCODE ==== 204.It Cm bootcode 205Embed bootstrap code into the partitioning scheme's metadata on the 206.Ar geom 207(using 208.Fl b Ar bootcode ) 209or write bootstrap code into a partition (using 210.Fl p Ar partcode 211and 212.Fl i Ar index ) . 213.Pp 214The 215.Cm bootcode 216command accepts these options: 217.Bl -tag -width 10n 218.It Fl N 219Don't preserve the Volume Serial Number for MBR. 220MBR bootcode contains Volume Serial Number by default, and 221.Nm 222tries to preserve it when installing new bootstrap code. 223This option allows to skip the preservation to help with some versions of 224.Xr boot0 8 225that don't support Volume Serial Number. 226.It Fl b Ar bootcode 227Embed bootstrap code from the file 228.Ar bootcode 229into the partitioning scheme's metadata for 230.Ar geom . 231Not all partitioning schemes have embedded bootstrap code, so the 232.Fl b Ar bootcode 233option is scheme-specific in nature (see the section entitled 234.Sx BOOTSTRAPPING 235below). 236The 237.Ar bootcode 238file must match the partitioning scheme's requirements for file content 239and size. 240.It Fl f Ar flags 241Additional operational flags. 242See the section entitled 243.Sx "OPERATIONAL FLAGS" 244below for a discussion 245about its use. 246.It Fl i Ar index 247Specify the target partition for 248.Fl p Ar partcode . 249.It Fl p Ar partcode 250Write the bootstrap code from the file 251.Ar partcode 252into the 253.Ar geom 254partition specified by 255.Fl i Ar index . 256The size of the file must be smaller than the size of the partition. 257.El 258.\" ==== COMMIT ==== 259.It Cm commit 260Commit any pending changes for geom 261.Ar geom . 262All actions are committed by default and will not result in 263pending changes. 264Actions can be modified with the 265.Fl f Ar flags 266option so that they are not committed, but become pending. 267Pending changes are reflected by the geom and the 268.Nm 269utility, but they are not actually written to disk. 270The 271.Cm commit 272action will write all pending changes to disk. 273.\" ==== CREATE ==== 274.It Cm create 275Create a new partitioning scheme on a provider given by 276.Ar provider . 277The scheme to use must be specified with the 278.Fl s Ar scheme 279option. 280.Pp 281The 282.Cm create 283command accepts these options: 284.Bl -tag -width 10n 285.It Fl f Ar flags 286Additional operational flags. 287See the section entitled 288.Sx "OPERATIONAL FLAGS" 289below for a discussion 290about its use. 291.It Fl n Ar entries 292The number of entries in the partition table. 293Every partitioning scheme has a minimum and maximum number of entries. 294This option allows tables to be created with a number of entries 295that is within the limits. 296Some schemes have a maximum equal to the minimum and some schemes have 297a maximum large enough to be considered unlimited. 298By default, partition tables are created with the minimum number of 299entries. 300.It Fl s Ar scheme 301Specify the partitioning scheme to use. 302The kernel must have support for a particular scheme before 303that scheme can be used to partition a disk. 304.El 305.\" ==== DELETE ==== 306.It Cm delete 307Delete a partition from geom 308.Ar geom 309and further identified by the 310.Fl i Ar index 311option. 312The partition cannot be actively used by the kernel. 313.Pp 314The 315.cm delete 316command accepts these options: 317.Bl -tag -width 10n 318.It Fl f Ar flags 319Additional operational flags. 320See the section entitled 321.Sx "OPERATIONAL FLAGS" 322below for a discussion 323about its use. 324.It Fl i Ar index 325Specifies the index of the partition to be deleted. 326.El 327.\" ==== DESTROY ==== 328.It Cm destroy 329Destroy the partitioning scheme as implemented by geom 330.Ar geom . 331.Pp 332The 333.Cm destroy 334command accepts these options: 335.Bl -tag -width 10n 336.It Fl F 337Forced destroying of the partition table even if it is not empty. 338.It Fl f Ar flags 339Additional operational flags. 340See the section entitled 341.Sx "OPERATIONAL FLAGS" 342below for a discussion 343about its use. 344.El 345.\" ==== MODIFY ==== 346.It Cm modify 347Modify a partition from geom 348.Ar geom 349and further identified by the 350.Fl i Ar index 351option. 352Only the type and/or label of the partition can be modified. 353Not all partitioning schemes support labels and it is invalid to 354try to change a partition label in such cases. 355.Pp 356The 357.Cm modify 358command accepts these options: 359.Bl -tag -width 10n 360.It Fl f Ar flags 361Additional operational flags. 362See the section entitled 363.Sx "OPERATIONAL FLAGS" 364below for a discussion 365about its use. 366.It Fl i Ar index 367Specifies the index of the partition to be modified. 368.It Fl l Ar label 369Change the partition label to 370.Ar label . 371.It Fl t Ar type 372Change the partition type to 373.Ar type . 374.El 375.\" ==== RECOVER ==== 376.It Cm recover 377Recover a corrupt partition's scheme metadata on the geom 378.Ar geom . 379See the section entitled 380.Sx RECOVERING 381below for the additional information. 382.Pp 383The 384.Cm recover 385command accepts these options: 386.Bl -tag -width 10n 387.It Fl f Ar flags 388Additional operational flags. 389See the section entitled 390.Sx "OPERATIONAL FLAGS" 391below for a discussion 392about its use. 393.El 394.\" ==== RESIZE ==== 395.It Cm resize 396Resize a partition from geom 397.Ar geom 398and further identified by the 399.Fl i Ar index 400option. 401If the new size is not specified it is automatically calculated 402to be the maximum available from 403.Ar geom . 404.Pp 405The 406.Cm resize 407command accepts these options: 408.Bl -tag -width 12n 409.It Fl a Ar alignment 410If specified, then 411.Nm 412utility tries to align partition 413.Ar size 414to be a multiple of the 415.Ar alignment 416value. 417.It Fl f Ar flags 418Additional operational flags. 419See the section entitled 420.Sx "OPERATIONAL FLAGS" 421below for a discussion 422about its use. 423.It Fl i Ar index 424Specifies the index of the partition to be resized. 425.It Fl s Ar size 426Specifies the new size of the partition, in logical blocks. 427A SI unit suffix is allowed. 428.El 429.\" ==== RESTORE ==== 430.It Cm restore 431Restore the partition table from a backup previously created by the 432.Cm backup 433action and read from standard input. 434Only the partition table is restored. 435This action does not affect the content of partitions. 436After restoring the partition table and writing bootcode if needed, 437user data must be restored from backup. 438.Pp 439The 440.Cm restore 441command accepts these options: 442.Bl -tag -width 10n 443.It Fl F 444Destroy partition table on the given 445.Ar provider 446before doing restore. 447.It Fl f Ar flags 448Additional operational flags. 449See the section entitled 450.Sx "OPERATIONAL FLAGS" 451below for a discussion 452about its use. 453.It Fl l 454Restore partition labels for partitioning schemes that support them. 455.El 456.\" ==== SET ==== 457.It Cm set 458Set the named attribute on the partition entry. 459See the section entitled 460.Sx ATTRIBUTES 461below for a list of available attributes. 462.Pp 463The 464.Cm set 465command accepts these options: 466.Bl -tag -width 10n 467.It Fl a Ar attrib 468Specifies the attribute to set. 469.It Fl f Ar flags 470Additional operational flags. 471See the section entitled 472.Sx "OPERATIONAL FLAGS" 473below for a discussion 474about its use. 475.It Fl i Ar index 476Specifies the index of the partition on which the attribute will be set. 477.El 478.\" ==== SHOW ==== 479.It Cm show 480Show current partition information for the specified geoms, or all 481geoms if none are specified. 482The default output includes the logical starting block of each 483partition, the partition size in blocks, the partition index number, 484the partition type, and a human readable partition size. 485Block sizes and locations are based on the device's Sectorsize 486as shown by 487.Cm gpart list . 488.Pp 489The 490.Cm show 491command accepts these options: 492.Bl -tag -width 10n 493.It Fl l 494For partitioning schemes that support partition labels, print them 495instead of partition type. 496.It Fl p 497Show provider names instead of partition indexes. 498.It Fl r 499Show raw partition type instead of symbolic name. 500.El 501.\" ==== UNDO ==== 502.It Cm undo 503Revert any pending changes for geom 504.Ar geom . 505This action is the opposite of the 506.Cm commit 507action and can be used to undo any changes that have not been committed. 508.\" ==== UNSET ==== 509.It Cm unset 510Clear the named attribute on the partition entry. 511See the section entitled 512.Sx ATTRIBUTES 513below for a list of available attributes. 514.Pp 515The 516.Cm unset 517command accepts these options: 518.Bl -tag -width 10n 519.It Fl a Ar attrib 520Specifies the attribute to clear. 521.It Fl f Ar flags 522Additional operational flags. 523See the section entitled 524.Sx "OPERATIONAL FLAGS" 525below for a discussion 526about its use. 527.It Fl i Ar index 528Specifies the index of the partition on which the attribute will be cleared. 529.El 530.It Cm list 531See 532.Xr geom 8 . 533.It Cm status 534See 535.Xr geom 8 . 536.It Cm load 537See 538.Xr geom 8 . 539.It Cm unload 540See 541.Xr geom 8 . 542.El 543.Sh PARTITIONING SCHEMES 544Several partitioning schemes are supported by the 545.Nm 546utility: 547.Bl -tag -width ".Cm VTOC8" 548.It Cm APM 549Apple Partition Map, used by PowerPC(R) Macintosh(R) computers. 550Requires the 551.Cd GEOM_PART_APM 552kernel option. 553.It Cm BSD 554Traditional BSD disklabel, usually used to subdivide MBR partitions. 555.Po 556This scheme can also be used as the sole partitioning method, without 557an MBR. 558Partition editing tools from other operating systems often do not 559understand the bare disklabel partition layout, so this is sometimes 560called 561.Dq dangerously dedicated . 562.Pc 563Requires the 564.Cm GEOM_PART_BSD 565kernel option. 566.It Cm BSD64 56764-bit implementation of BSD disklabel used in DragonFlyBSD to subdivide MBR 568or GPT partitions. 569Requires the 570.Cm GEOM_PART_BSD64 571kernel option. 572.It Cm LDM 573The Logical Disk Manager is an implementation of volume manager for 574Microsoft Windows NT. 575Requires the 576.Cd GEOM_PART_LDM 577kernel option. 578.It Cm GPT 579GUID Partition Table is used on Intel-based Macintosh computers and 580gradually replacing MBR on most PCs and other systems. 581Requires the 582.Cm GEOM_PART_GPT 583kernel option. 584.It Cm MBR 585Master Boot Record is used on PCs and removable media. 586Requires the 587.Cm GEOM_PART_MBR 588kernel option. 589The 590.Cm GEOM_PART_EBR 591option adds support for the Extended Boot Record (EBR), 592which is used to define a logical partition. 593The 594.Cm GEOM_PART_EBR_COMPAT 595option enables backward compatibility for partition names 596in the EBR scheme. 597It also prevents any type of actions on such partitions. 598.It Cm VTOC8 599Sun's SMI Volume Table Of Contents, used by 600.Tn SPARC64 601and 602.Tn UltraSPARC 603computers. 604Requires the 605.Cm GEOM_PART_VTOC8 606kernel option. 607.El 608.Sh PARTITION TYPES 609Partition types are identified on disk by particular strings or magic 610values. 611The 612.Nm 613utility uses symbolic names for common partition types so the user 614does not need to know these values or other details of the partitioning 615scheme in question. 616The 617.Nm 618utility also allows the user to specify scheme-specific partition types 619for partition types that do not have symbolic names. 620Symbolic names currently understood and used by 621.Fx 622are: 623.Bl -tag -width ".Cm dragonfly-disklabel64" 624.It Cm apple-boot 625The system partition dedicated to storing boot loaders on some Apple 626systems. 627The scheme-specific types are 628.Qq Li "!171" 629for MBR, 630.Qq Li "!Apple_Bootstrap" 631for APM, and 632.Qq Li "!426f6f74-0000-11aa-aa11-00306543ecac" 633for GPT. 634.It Cm bios-boot 635The system partition dedicated to second stage of the boot loader program. 636Usually it is used by the GRUB 2 loader for GPT partitioning schemes. 637The scheme-specific type is 638.Qq Li "!21686148-6449-6E6F-744E-656564454649" . 639.It Cm efi 640The system partition for computers that use the Extensible Firmware 641Interface (EFI). 642The scheme-specific types are 643.Qq Li "!239" 644for MBR, and 645.Qq Li "!c12a7328-f81f-11d2-ba4b-00a0c93ec93b" 646for GPT. 647.It Cm freebsd 648A 649.Fx 650partition subdivided into filesystems with a 651.Bx 652disklabel. 653This is a legacy partition type and should not be used for the APM 654or GPT schemes. 655The scheme-specific types are 656.Qq Li "!165" 657for MBR, 658.Qq Li "!FreeBSD" 659for APM, and 660.Qq Li "!516e7cb4-6ecf-11d6-8ff8-00022d09712b" 661for GPT. 662.It Cm freebsd-boot 663A 664.Fx 665partition dedicated to bootstrap code. 666The scheme-specific type is 667.Qq Li "!83bd6b9d-7f41-11dc-be0b-001560b84f0f" 668for GPT. 669.It Cm freebsd-swap 670A 671.Fx 672partition dedicated to swap space. 673The scheme-specific types are 674.Qq Li "!FreeBSD-swap" 675for APM, 676.Qq Li "!516e7cb5-6ecf-11d6-8ff8-00022d09712b" 677for GPT, and tag 0x0901 for VTOC8. 678.It Cm freebsd-ufs 679A 680.Fx 681partition that contains a UFS or UFS2 filesystem. 682The scheme-specific types are 683.Qq Li "!FreeBSD-UFS" 684for APM, 685.Qq Li "!516e7cb6-6ecf-11d6-8ff8-00022d09712b" 686for GPT, and tag 0x0902 for VTOC8. 687.It Cm freebsd-vinum 688A 689.Fx 690partition that contains a Vinum volume. 691The scheme-specific types are 692.Qq Li "!FreeBSD-Vinum" 693for APM, 694.Qq Li "!516e7cb8-6ecf-11d6-8ff8-00022d09712b" 695for GPT, and tag 0x0903 for VTOC8. 696.It Cm freebsd-zfs 697A 698.Fx 699partition that contains a ZFS volume. 700The scheme-specific types are 701.Qq Li "!FreeBSD-ZFS" 702for APM, 703.Qq Li "!516e7cba-6ecf-11d6-8ff8-00022d09712b" 704for GPT, and 0x0904 for VTOC8. 705.El 706.Pp 707Other symbolic names that can be used with 708.Cm gpart 709utility are: 710.Bl -tag -width ".Cm dragonfly-disklabel64" 711.It Cm apple-apfs 712An Apple macOS partition used for the Apple file system, APFS. 713.It Cm apple-core-storage 714An Apple Mac OS X partition used by logical volume manager known as 715Core Storage. 716The scheme-specific type is 717.Qq Li "!53746f72-6167-11aa-aa11-00306543ecac" 718for GPT. 719.It Cm apple-hfs 720An Apple Mac OS X partition that contains a HFS or HFS+ filesystem. 721The scheme-specific types are 722.Qq Li "!175" 723for MBR, 724.Qq Li "!Apple_HFS" 725for APM and 726.Qq Li "!48465300-0000-11aa-aa11-00306543ecac" 727for GPT. 728.It Cm apple-label 729An Apple Mac OS X partition dedicated to partition metadata that descibes 730disk device. 731The scheme-specific type is 732.Qq Li "!4c616265-6c00-11aa-aa11-00306543ecac" 733for GPT. 734.It Cm apple-raid 735An Apple Mac OS X partition used in a software RAID configuration. 736The scheme-specific type is 737.Qq Li "!52414944-0000-11aa-aa11-00306543ecac" 738for GPT. 739.It Cm apple-raid-offline 740An Apple Mac OS X partition used in a software RAID configuration. 741The scheme-specific type is 742.Qq Li "!52414944-5f4f-11aa-aa11-00306543ecac" 743for GPT. 744.It Cm apple-tv-recovery 745An Apple Mac OS X partition used by Apple TV. 746The scheme-specific type is 747.Qq Li "!5265636f-7665-11aa-aa11-00306543ecac" 748for GPT. 749.It Cm apple-ufs 750An Apple Mac OS X partition that contains a UFS filesystem. 751The scheme-specific types are 752.Qq Li "!168" 753for MBR, 754.Qq Li "!Apple_UNIX_SVR2" 755for APM and 756.Qq Li "!55465300-0000-11aa-aa11-00306543ecac" 757for GPT. 758.It Cm dragonfly-label32 759A DragonFlyBSD partition subdivided into filesystems with a 760.Bx 761disklabel. 762The scheme-specific type is 763.Qq Li "!9d087404-1ca5-11dc-8817-01301bb8a9f5" 764for GPT. 765.It Cm dragonfly-label64 766A DragonFlyBSD partition subdivided into filesystems with a 767disklabel64. 768The scheme-specific type is 769.Qq Li "!3d48ce54-1d16-11dc-8696-01301bb8a9f5" 770for GPT. 771.It Cm dragonfly-legacy 772A legacy partition type used in DragonFlyBSD. 773The scheme-specific type is 774.Qq Li "!bd215ab2-1d16-11dc-8696-01301bb8a9f5" 775for GPT. 776.It Cm dragonfly-ccd 777A DragonFlyBSD partition used with Concatenated Disk driver. 778The scheme-specific type is 779.Qq Li "!dbd5211b-1ca5-11dc-8817-01301bb8a9f5" 780for GPT. 781.It Cm dragonfly-hammer 782A DragonFlyBSD partition that contains a Hammer filesystem. 783The scheme-specific type is 784.Qq Li "!61dc63ac-6e38-11dc-8513-01301bb8a9f5" 785for GPT. 786.It Cm dragonfly-hammer2 787A DragonFlyBSD partition that contains a Hammer2 filesystem. 788The scheme-specific type is 789.Qq Li "!5cbb9ad1-862d-11dc-a94d-01301bb8a9f5" 790for GPT. 791.It Cm dragonfly-swap 792A DragonFlyBSD partition dedicated to swap space. 793The scheme-specific type is 794.Qq Li "!9d58fdbd-1ca5-11dc-8817-01301bb8a9f5" 795for GPT. 796.It Cm dragonfly-ufs 797A DragonFlyBSD partition that contains an UFS1 filesystem. 798The scheme-specific type is 799.Qq Li "!9d94ce7c-1ca5-11dc-8817-01301bb8a9f5" 800for GPT. 801.It Cm dragonfly-vinum 802A DragonFlyBSD partition used with Logical Volume Manager. 803The scheme-specific type is 804.Qq Li "!9dd4478f-1ca5-11dc-8817-01301bb8a9f5" 805for GPT. 806.It Cm ebr 807A partition subdivided into filesystems with a EBR. 808The scheme-specific type is 809.Qq Li "!5" 810for MBR. 811.It Cm fat16 812A partition that contains a FAT16 filesystem. 813The scheme-specific type is 814.Qq Li "!6" 815for MBR. 816.It Cm fat32 817A partition that contains a FAT32 filesystem. 818The scheme-specific type is 819.Qq Li "!11" 820for MBR. 821.It Cm fat32lba 822A partition that contains a FAT32 (LBA) filesystem. 823The scheme-specific type is 824.Qq Li "!12" 825for MBR. 826.It Cm linux-data 827A Linux partition that contains some filesystem with data. 828The scheme-specific types are 829.Qq Li "!131" 830for MBR and 831.Qq Li "!0fc63daf-8483-4772-8e79-3d69d8477de4" 832for GPT. 833.It Cm linux-lvm 834A Linux partition dedicated to Logical Volume Manager. 835The scheme-specific types are 836.Qq Li "!142" 837for MBR and 838.Qq Li "!e6d6d379-f507-44c2-a23c-238f2a3df928" 839for GPT. 840.It Cm linux-raid 841A Linux partition used in a software RAID configuration. 842The scheme-specific types are 843.Qq Li "!253" 844for MBR and 845.Qq Li "!a19d880f-05fc-4d3b-a006-743f0f84911e" 846for GPT. 847.It Cm linux-swap 848A Linux partition dedicated to swap space. 849The scheme-specific types are 850.Qq Li "!130" 851for MBR and 852.Qq Li "!0657fd6d-a4ab-43c4-84e5-0933c84b4f4f" 853for GPT. 854.It Cm mbr 855A partition that is sub-partitioned by a Master Boot Record (MBR). 856This type is known as 857.Qq Li "!024dee41-33e7-11d3-9d69-0008c781f39f" 858by GPT. 859.It Cm ms-basic-data 860A basic data partition (BDP) for Microsoft operating systems. 861In the GPT this type is the equivalent to partition types 862.Cm fat16 , fat32 863and 864.Cm ntfs 865in MBR. 866This type is used for GPT exFAT partitions. 867The scheme-specific type is 868.Qq Li "!ebd0a0a2-b9e5-4433-87c0-68b6b72699c7" 869for GPT. 870.It Cm ms-ldm-data 871A partition that contains Logical Disk Manager (LDM) volumes. 872The scheme-specific types are 873.Qq Li "!66" 874for MBR, 875.Qq Li "!af9b60a0-1431-4f62-bc68-3311714a69ad" 876for GPT. 877.It Cm ms-ldm-metadata 878A partition that contains Logical Disk Manager (LDM) database. 879The scheme-specific type is 880.Qq Li "!5808c8aa-7e8f-42e0-85d2-e1e90434cfb3" 881for GPT. 882.It Cm netbsd-ccd 883A NetBSD partition used with Concatenated Disk driver. 884The scheme-specific type is 885.Qq Li "!2db519c4-b10f-11dc-b99b-0019d1879648" 886for GPT. 887.It Cm netbsd-cgd 888An encrypted NetBSD partition. 889The scheme-specific type is 890.Qq Li "!2db519ec-b10f-11dc-b99b-0019d1879648" 891for GPT. 892.It Cm netbsd-ffs 893A NetBSD partition that contains an UFS filesystem. 894The scheme-specific type is 895.Qq Li "!49f48d5a-b10e-11dc-b99b-0019d1879648" 896for GPT. 897.It Cm netbsd-lfs 898A NetBSD partition that contains an LFS filesystem. 899The scheme-specific type is 900.Qq Li "!49f48d82-b10e-11dc-b99b-0019d1879648" 901for GPT. 902.It Cm netbsd-raid 903A NetBSD partition used in a software RAID configuration. 904The scheme-specific type is 905.Qq Li "!49f48daa-b10e-11dc-b99b-0019d1879648" 906for GPT. 907.It Cm netbsd-swap 908A NetBSD partition dedicated to swap space. 909The scheme-specific type is 910.Qq Li "!49f48d32-b10e-11dc-b99b-0019d1879648" 911for GPT. 912.It Cm ntfs 913A partition that contains a NTFS or exFAT filesystem. 914The scheme-specific type is 915.Qq Li "!7" 916for MBR. 917.It Cm prep-boot 918The system partition dedicated to storing boot loaders on some PowerPC systems, 919notably those made by IBM. 920The scheme-specific types are 921.Qq Li "!65" 922for MBR and 923.Qq Li "!0x9e1a2d38-c612-4316-aa26-8b49521e5a8b" 924for GPT. 925.It Cm vmware-vmfs 926A partition that contains a VMware File System (VMFS). 927The scheme-specific types are 928.Qq Li "!251" 929for MBR and 930.Qq Li "!aa31e02a-400f-11db-9590-000c2911d1b8" 931for GPT. 932.It Cm vmware-vmkdiag 933A partition that contains a VMware diagostic filesystem. 934The scheme-specific types are 935.Qq Li "!252" 936for MBR and 937.Qq Li "!9d275380-40ad-11db-bf97-000c2911d1b8" 938for GPT. 939.It Cm vmware-reserved 940A VMware reserved partition. 941The scheme-specific type is 942.Qq Li "!9198effc-31c0-11db-8f-78-000c2911d1b8" 943for GPT. 944.It Cm vmware-vsanhdr 945A partition claimed by VMware VSAN. 946The scheme-specific type is 947.Qq Li "!381cfccc-7288-11e0-92ee-000c2911d0b2" 948for GPT. 949.El 950.Sh ATTRIBUTES 951The scheme-specific attributes for EBR: 952.Bl -tag -width ".Cm active" 953.It Cm active 954.El 955.Pp 956The scheme-specific attributes for GPT: 957.Bl -tag -width ".Cm bootfailed" 958.It Cm bootme 959When set, the 960.Nm gptboot 961stage 1 boot loader will try to boot the system from this partition. 962Multiple partitions can be marked with the 963.Cm bootme 964attribute. 965See 966.Xr gptboot 8 967for more details. 968.It Cm bootonce 969Setting this attribute automatically sets the 970.Cm bootme 971attribute. 972When set, the 973.Nm gptboot 974stage 1 boot loader will try to boot the system from this partition only once. 975Multiple partitions can be marked with the 976.Cm bootonce 977and 978.Cm bootme 979attribute pairs. 980See 981.Xr gptboot 8 982for more details. 983.It Cm bootfailed 984This attribute should not be manually managed. 985It is managed by the 986.Nm gptboot 987stage 1 boot loader and the 988.Pa /etc/rc.d/gptboot 989start-up script. 990See 991.Xr gptboot 8 992for more details. 993.It Cm lenovofix 994Setting this attribute overwrites the Protective MBR with a new one where 995the 0xee partition is the second, rather than the first record. 996This resolves a BIOS compatibility issue with some Lenovo models including the 997X220, T420, and T520, allowing them to boot from GPT partitioned disks 998without using EFI. 999.El 1000.Pp 1001The scheme-specific attributes for MBR: 1002.Bl -tag -width ".Cm active" 1003.It Cm active 1004.El 1005.Sh BOOTSTRAPPING 1006.Fx 1007supports several partitioning schemes and each scheme uses different 1008bootstrap code. 1009The bootstrap code is located in a specific disk area for each partitioning 1010scheme, and may vary in size for different schemes. 1011.Pp 1012Bootstrap code can be separated into two types. 1013The first type is embedded in the partitioning scheme's metadata, while the 1014second type is located on a specific partition. 1015Embedding bootstrap code should only be done with the 1016.Cm gpart bootcode 1017command with the 1018.Fl b Ar bootcode 1019option. 1020The GEOM PART class knows how to safely embed bootstrap code into 1021specific partitioning scheme metadata without causing any damage. 1022.Pp 1023The Master Boot Record (MBR) uses a 512-byte bootstrap code image, embedded 1024into the partition table's metadata area. 1025There are two variants of this bootstrap code: 1026.Pa /boot/mbr 1027and 1028.Pa /boot/boot0 . 1029.Pa /boot/mbr 1030searches for a partition with the 1031.Cm active 1032attribute (see the 1033.Sx ATTRIBUTES 1034section) in the partition table. 1035Then it runs next bootstrap stage. 1036The 1037.Pa /boot/boot0 1038image contains a boot manager with some additional interactive functions 1039for multi-booting from a user-selected partition. 1040.Pp 1041A BSD disklabel is usually created inside an MBR partition (slice) 1042with type 1043.Cm freebsd 1044(see the 1045.Sx "PARTITION TYPES" 1046section). 1047It uses 8 KB size bootstrap code image 1048.Pa /boot/boot , 1049embedded into the partition table's metadata area. 1050.Pp 1051Both types of bootstrap code are used to boot from the GUID Partition Table. 1052First, a protective MBR is embedded into the first disk sector from the 1053.Pa /boot/pmbr 1054image. 1055It searches through the GPT for a 1056.Cm freebsd-boot 1057partition (see the 1058.Sx "PARTITION TYPES" 1059section) and runs the next bootstrap stage from it. 1060The 1061.Cm freebsd-boot 1062partition should be smaller than 545 KB. 1063It can be located either before or after other 1064.Fx 1065partitions on the disk. 1066There are two variants of bootstrap code to write to this partition: 1067.Pa /boot/gptboot 1068and 1069.Pa /boot/gptzfsboot . 1070.Pp 1071.Pa /boot/gptboot 1072is used to boot from UFS partitions. 1073.Cm gptboot 1074searches through 1075.Cm freebsd-ufs 1076partitions in the GPT and selects one to boot based on the 1077.Cm bootonce 1078and 1079.Cm bootme 1080attributes. 1081If neither attribute is found, 1082.Pa /boot/gptboot 1083boots from the first 1084.Cm freebsd-ufs 1085partition. 1086.Pa /boot/loader 1087.Pq the third bootstrap stage 1088is loaded from the first partition that matches these conditions. 1089See 1090.Xr gptboot 8 1091for more information. 1092.Pp 1093.Pa /boot/gptzfsboot 1094is used to boot from ZFS. 1095It searches through the GPT for 1096.Cm freebsd-zfs 1097partitions, trying to detect ZFS pools. 1098After all pools are detected, 1099.Pa /boot/loader 1100is started from the first one found set as bootable. 1101.Pp 1102The VTOC8 scheme does not support embedding bootstrap code. 1103Instead, the 8 KBytes bootstrap code image 1104.Pa /boot/boot1 1105should be written with the 1106.Cm gpart bootcode 1107command with the 1108.Fl p Ar bootcode 1109option to all sufficiently large VTOC8 partitions. 1110To do this the 1111.Fl i Ar index 1112option could be omitted. 1113.Pp 1114The APM scheme also does not support embedding bootstrap code. 1115Instead, the 800 KBytes bootstrap code image 1116.Pa /boot/boot1.hfs 1117should be written with the 1118.Cm gpart bootcode 1119command to a partition of type 1120.Cm apple-boot , 1121which should also be 800 KB in size. 1122.Sh OPERATIONAL FLAGS 1123Actions other than the 1124.Cm commit 1125and 1126.Cm undo 1127actions take an optional 1128.Fl f Ar flags 1129option. 1130This option is used to specify action-specific operational flags. 1131By default, the 1132.Nm 1133utility defines the 1134.Ql C 1135flag so that the action is immediately 1136committed. 1137The user can specify 1138.Dq Fl f Cm x 1139to have the action result in a pending change that can later, with 1140other pending changes, be committed as a single compound change with 1141the 1142.Cm commit 1143action or reverted with the 1144.Cm undo 1145action. 1146.Sh RECOVERING 1147The GEOM PART class supports recovering of partition tables only for GPT. 1148The GPT primary metadata is stored at the beginning of the device. 1149For redundancy, a secondary 1150.Pq backup 1151copy of the metadata is stored at the end of the device. 1152As a result of having two copies, some corruption of metadata is not 1153fatal to the working of GPT. 1154When the kernel detects corrupt metadata, it marks this table as corrupt 1155and reports the problem. 1156.Cm destroy 1157and 1158.Cm recover 1159are the only operations allowed on corrupt tables. 1160.Pp 1161If one GPT header appears to be corrupt but the other copy remains intact, 1162the kernel will log the following: 1163.Bd -literal -offset indent 1164GEOM: provider: the primary GPT table is corrupt or invalid. 1165GEOM: provider: using the secondary instead -- recovery strongly advised. 1166.Ed 1167.Pp 1168or 1169.Bd -literal -offset indent 1170GEOM: provider: the secondary GPT table is corrupt or invalid. 1171GEOM: provider: using the primary only -- recovery suggested. 1172.Ed 1173.Pp 1174Also 1175.Nm 1176commands such as 1177.Cm show , status 1178and 1179.Cm list 1180will report about corrupt tables. 1181.Pp 1182If the size of the device has changed (e.g.,\& volume expansion) the 1183secondary GPT header will no longer be located in the last sector. 1184This is not a metadata corruption, but it is dangerous because any 1185corruption of the primary GPT will lead to loss of the partition table. 1186This problem is reported by the kernel with the message: 1187.Bd -literal -offset indent 1188GEOM: provider: the secondary GPT header is not in the last LBA. 1189.Ed 1190.Pp 1191This situation can be recovered with the 1192.Cm recover 1193command. 1194This command reconstructs the corrupt metadata using known valid 1195metadata and relocates the secondary GPT to the end of the device. 1196.Pp 1197.Em NOTE : 1198The GEOM PART class can detect the same partition table visible through 1199different GEOM providers, and some of them will be marked as corrupt. 1200Be careful when choosing a provider for recovery. 1201If you choose incorrectly you can destroy the metadata of another GEOM class, 1202e.g.,\& GEOM MIRROR or GEOM LABEL. 1203.Sh SYSCTL VARIABLES 1204The following 1205.Xr sysctl 8 1206variables can be used to control the behavior of the 1207.Nm PART 1208GEOM class. 1209The default value is shown next to each variable. 1210.Bl -tag -width indent 1211.It Va kern.geom.part.allow_nesting : No 0 1212By default, some schemes (currently BSD, BSD64 and VTOC8) do not permit 1213further nested partitioning. 1214This variable overrides this restriction and allows arbitrary nesting (except 1215within partitions created at offset 0). 1216Some schemes have their own separate checks, for which see below. 1217.It Va kern.geom.part.auto_resize : No 1 1218This variable controls automatic resize behavior of 1219.Nm 1220GEOM class. 1221When this variable is enable and new size of provider is detected, the schema 1222metadata is resized but all changes are not saved to disk, until 1223.Cm gpart commit 1224is run to confirm changes. 1225This behavior is also reported with diagnostic message: 1226.Sy "GEOM_PART: (provider) was automatically resized." 1227.Sy "Use `gpart commit (provider)` to save changes or `gpart undo (provider)`" 1228.Sy "to revert them." 1229.It Va kern.geom.part.check_integrity : No 1 1230This variable controls the behaviour of metadata integrity checks. 1231When integrity checks are enabled, the 1232.Nm PART 1233GEOM class verifies all generic partition parameters obtained from the 1234disk metadata. 1235If some inconsistency is detected, the partition table will be 1236rejected with a diagnostic message: 1237.Sy "GEOM_PART: Integrity check failed (provider, scheme)" . 1238.It Va kern.geom.part.gpt.allow_nesting : No 0 1239By default the GPT scheme is allowed only at the outermost nesting level. 1240This variable allows this restriction to be removed. 1241.It Va kern.geom.part.ldm.debug : No 0 1242Debug level of the Logical Disk Manager (LDM) module. 1243This can be set to a number between 0 and 2 inclusive. 1244If set to 0 minimal debug information is printed, 1245and if set to 2 the maximum amount of debug information is printed. 1246.It Va kern.geom.part.ldm.show_mirrors : No 0 1247This variable controls how the Logical Disk Manager (LDM) module handles 1248mirrored volumes. 1249By default mirrored volumes are shown as partitions with type 1250.Cm ms-ldm-data 1251(see the 1252.Sx "PARTITION TYPES" 1253section). 1254If this variable set to 1 each component of the mirrored volume will be 1255present as independent partition. 1256.Em NOTE : 1257This may break a mirrored volume and lead to data damage. 1258.It Va kern.geom.part.mbr.enforce_chs : No 0 1259Specify how the Master Boot Record (MBR) module does alignment. 1260If this variable is set to a non-zero value, the module will automatically 1261recalculate the user-specified offset and size for alignment with the CHS 1262geometry. 1263Otherwise the values will be left unchanged. 1264.It Va kern.geom.part.separator : No "" 1265Specify an optional separator that will be inserted between the GEOM name 1266and partition name. 1267This variable is a 1268.Xr loader 8 1269tunable. 1270Note that setting this variable may break software which assumes a particular 1271naming scheme. 1272.El 1273.Sh EXIT STATUS 1274Exit status is 0 on success, and 1 if the command fails. 1275.Sh EXAMPLES 1276The examples below assume that the disk's logical block size is 512 1277bytes, regardless of its physical block size. 1278.Ss GPT 1279In this example, we will format 1280.Pa ada0 1281with the GPT scheme and create boot, swap and root partitions. 1282First, we need to create the partition table: 1283.Bd -literal -offset indent 1284/sbin/gpart create -s GPT ada0 1285.Ed 1286.Pp 1287Next, we install a protective MBR with the first-stage bootstrap code. 1288The protective MBR lists a single, bootable partition spanning the 1289entire disk, thus allowing non-GPT-aware BIOSes to boot from the disk 1290and preventing tools which do not understand the GPT scheme from 1291considering the disk to be unformatted. 1292.Bd -literal -offset indent 1293/sbin/gpart bootcode -b /boot/pmbr ada0 1294.Ed 1295.Pp 1296We then create a dedicated 1297.Cm freebsd-boot 1298partition to hold the second-stage boot loader, which will load the 1299.Fx 1300kernel and modules from a UFS or ZFS filesystem. 1301This partition must be larger than the bootstrap code 1302.Po 1303either 1304.Pa /boot/gptboot 1305for UFS or 1306.Pa /boot/gptzfsboot 1307for ZFS 1308.Pc , 1309but smaller than 545 kB since the first-stage loader will load the 1310entire partition into memory during boot, regardless of how much data 1311it actually contains. 1312We create a 472-block (236 kB) boot partition at offset 40, which is 1313the size of the partition table (34 blocks or 17 kB) rounded up to the 1314nearest 4 kB boundary. 1315.Bd -literal -offset indent 1316/sbin/gpart add -b 40 -s 472 -t freebsd-boot ada0 1317/sbin/gpart bootcode -p /boot/gptboot -i 1 ada0 1318.Ed 1319.Pp 1320We now create a 4 GB swap partition at the first available offset, 1321which is 40 + 472 = 512 blocks (256 kB). 1322.Bd -literal -offset indent 1323/sbin/gpart add -s 4G -t freebsd-swap ada0 1324.Ed 1325.Pp 1326Aligning the swap partition and all subsequent partitions on a 256 kB 1327boundary ensures optimal performance on a wide range of media, from 1328plain old disks with 512-byte blocks, through modern 1329.Dq advanced format 1330disks with 4096-byte physical blocks, to RAID volumes with stripe 1331sizes of up to 256 kB. 1332.Pp 1333Finally, we create and format an 8 GB 1334.Cm freebsd-ufs 1335partition for the root filesystem, leaving the rest of the slice free 1336for additional filesystems: 1337.Bd -literal -offset indent 1338/sbin/gpart add -s 8G -t freebsd-ufs ada0 1339/sbin/newfs -Uj /dev/ada0p3 1340.Ed 1341.Ss MBR 1342In this example, we will format 1343.Pa ada0 1344with the MBR scheme and create a single partition which we subdivide 1345using a traditional 1346.Bx 1347disklabel. 1348.Pp 1349First, we create the partition table and a single 64 GB partition, 1350then we mark that partition active (bootable) and install the 1351first-stage boot loader: 1352.Bd -literal -offset indent 1353/sbin/gpart create -s MBR ada0 1354/sbin/gpart add -t freebsd -s 64G ada0 1355/sbin/gpart set -a active -i 1 ada0 1356/sbin/gpart bootcode -b /boot/boot0 ada0 1357.Ed 1358.Pp 1359Next, we create a disklabel in that partition 1360.Po 1361.Dq slice 1362in disklabel terminology 1363.Pc 1364with room for up to 20 partitions: 1365.Bd -literal -offset indent 1366/sbin/gpart create -s BSD -n 20 ada0s1 1367.Ed 1368.Pp 1369We then create an 8 GB root partition and a 4 GB swap partition: 1370.Bd -literal -offset indent 1371/sbin/gpart add -t freebsd-ufs -s 8G ada0s1 1372/sbin/gpart add -t freebsd-swap -s 4G ada0s1 1373.Ed 1374.Pp 1375Finally, we install the appropriate boot loader for the 1376.Bx 1377label: 1378.Bd -literal -offset indent 1379/sbin/gpart bootcode -b /boot/boot ada0s1 1380.Ed 1381.Ss VTOC8 1382.Pp 1383Create a VTOC8 scheme on 1384.Pa da0 : 1385.Bd -literal -offset indent 1386/sbin/gpart create -s VTOC8 da0 1387.Ed 1388.Pp 1389Create a 512MB-sized 1390.Cm freebsd-ufs 1391partition to contain a UFS filesystem from which the system can boot. 1392.Bd -literal -offset indent 1393/sbin/gpart add -s 512M -t freebsd-ufs da0 1394.Ed 1395.Pp 1396Create a 15GB-sized 1397.Cm freebsd-ufs 1398partition to contain a UFS filesystem and aligned on 4KB boundaries: 1399.Bd -literal -offset indent 1400/sbin/gpart add -s 15G -t freebsd-ufs -a 4k da0 1401.Ed 1402.Pp 1403After creating all required partitions, embed bootstrap code into them: 1404.Bd -literal -offset indent 1405/sbin/gpart bootcode -p /boot/boot1 da0 1406.Ed 1407.Ss Deleting Partitions and Destroying the Partitioning Scheme 1408If a 1409.Em "Device busy" 1410error is shown when trying to destroy a partition table, remember that 1411all of the partitions must be deleted first with the 1412.Cm delete 1413action. 1414In this example, 1415.Pa da0 1416has three partitions: 1417.Bd -literal -offset indent 1418/sbin/gpart delete -i 3 da0 1419/sbin/gpart delete -i 2 da0 1420/sbin/gpart delete -i 1 da0 1421/sbin/gpart destroy da0 1422.Ed 1423.Pp 1424Rather than deleting each partition and then destroying the partitioning 1425scheme, the 1426.Fl F 1427option can be given with 1428.Cm destroy 1429to delete all of the partitions before destroying the partitioning scheme. 1430This is equivalent to the previous example: 1431.Bd -literal -offset indent 1432/sbin/gpart destroy -F da0 1433.Ed 1434.Ss Backup and Restore 1435.Pp 1436Create a backup of the partition table from 1437.Pa da0 : 1438.Bd -literal -offset indent 1439/sbin/gpart backup da0 > da0.backup 1440.Ed 1441.Pp 1442Restore the partition table from the backup to 1443.Pa da0 : 1444.Bd -literal -offset indent 1445/sbin/gpart restore -l da0 < /mnt/da0.backup 1446.Ed 1447.Pp 1448Clone the partition table from 1449.Pa ada0 1450to 1451.Pa ada1 1452and 1453.Pa ada2 : 1454.Bd -literal -offset indent 1455/sbin/gpart backup ada0 | /sbin/gpart restore -F ada1 ada2 1456.Ed 1457.Sh SEE ALSO 1458.Xr geom 4 , 1459.Xr boot0cfg 8 , 1460.Xr geom 8 , 1461.Xr gptboot 8 1462.Sh HISTORY 1463The 1464.Nm 1465utility appeared in 1466.Fx 7.0 . 1467.Sh AUTHORS 1468.An Marcel Moolenaar Aq Mt marcel@FreeBSD.org 1469