xref: /freebsd/include/rpcsvc/nis_object.x (revision ce834215a70ff69e7e222827437116eee2f9ac6f)
1 %/*
2 % * Sun RPC is a product of Sun Microsystems, Inc. and is provided for
3 % * unrestricted use provided that this legend is included on all tape
4 % * media and as a part of the software program in whole or part.  Users
5 % * may copy or modify Sun RPC without charge, but are not authorized
6 % * to license or distribute it to anyone else except as part of a product or
7 % * program developed by the user or with the express written consent of
8 % * Sun Microsystems, Inc.
9 % *
10 % * SUN RPC IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING THE
11 % * WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
12 % * PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.
13 % *
14 % * Sun RPC is provided with no support and without any obligation on the
15 % * part of Sun Microsystems, Inc. to assist in its use, correction,
16 % * modification or enhancement.
17 % *
18 % * SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE
19 % * INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY SUN RPC
20 % * OR ANY PART THEREOF.
21 % *
22 % * In no event will Sun Microsystems, Inc. be liable for any lost revenue
23 % * or profits or other special, indirect and consequential damages, even if
24 % * Sun has been advised of the possibility of such damages.
25 % *
26 % * Sun Microsystems, Inc.
27 % * 2550 Garcia Avenue
28 % * Mountain View, California  94043
29 % */
30 
31 /*
32  *	nis_object.x
33  *
34  *	Copyright (c) 1988-1992 Sun Microsystems Inc
35  *	All Rights Reserved.
36  */
37 
38 /* From: %#pragma ident	"@(#)nis_object.x	1.10	94/05/03 SMI" */
39 %#pragma ident "$Id: nis_object.x,v 1.2 1996/07/29 14:31:02 wpaul Exp $"
40 
41 #if RPC_HDR
42 %
43 %#ifndef __nis_object_h
44 %#define __nis_object_h
45 %
46 #endif
47 /*
48  * 	This file defines the format for a NIS object in RPC language.
49  * It is included by the main .x file and the database access protocol
50  * file. It is common because both of them need to deal with the same
51  * type of object. Generating the actual code though is a bit messy because
52  * the nis.x file and the nis_dba.x file will generate xdr routines to
53  * encode/decode objects when only one set is needed. Such is life when
54  * one is using rpcgen.
55  *
56  * Note, the protocol doesn't specify any limits on such things as
57  * maximum name length, number of attributes, etc. These are enforced
58  * by the database backend. When you hit them you will no. Also see
59  * the db_getlimits() function for fetching the limit values.
60  *
61  */
62 
63 /* Some manifest constants, chosen to maximize flexibility without
64  * plugging the wire full of data.
65  */
66 const NIS_MAXSTRINGLEN = 255;
67 const NIS_MAXNAMELEN   = 1024;
68 const NIS_MAXATTRNAME  = 32;
69 const NIS_MAXATTRVAL   = 2048;
70 const NIS_MAXCOLUMNS   = 64;
71 const NIS_MAXATTR      = 16;
72 const NIS_MAXPATH      = 1024;
73 const NIS_MAXREPLICAS  = 128;
74 const NIS_MAXLINKS     = 16;
75 
76 const NIS_PK_NONE      = 0;	/* no public key (unix/sys auth) */
77 const NIS_PK_DH	       = 1;	/* Public key is Diffie-Hellman type */
78 const NIS_PK_RSA       = 2;	/* Public key if RSA type */
79 const NIS_PK_KERB      = 3;	/* Use kerberos style authentication */
80 
81 /*
82  * The fundamental name type of NIS. The name may consist of two parts,
83  * the first being the fully qualified name, and the second being an
84  * optional set of attribute/value pairs.
85  */
86 struct nis_attr {
87 	string	zattr_ndx<>;	/* name of the index 		*/
88 	opaque	zattr_val<>;	/* Value for the attribute. 	*/
89 };
90 
91 typedef string nis_name<>;	/* The NIS name itself. */
92 
93 /* NIS object types are defined by the following enumeration. The numbers
94  * they use are based on the following scheme :
95  *		     0 - 1023 are reserved for Sun,
96  * 		1024 - 2047 are defined to be private to a particular tree.
97  *		2048 - 4095 are defined to be user defined.
98  *		4096 - ...  are reserved for future use.
99  */
100 
101 enum zotypes {
102 	BOGUS_OBJ  	= 0,	/* Uninitialized object structure 	*/
103 	NO_OBJ   	= 1,	/* NULL object (no data)	 	*/
104 	DIRECTORY_OBJ 	= 2,	/* Directory object describing domain 	*/
105 	GROUP_OBJ  	= 3,	/* Group object (a list of names) 	*/
106 	TABLE_OBJ  	= 4,	/* Table object (a database schema) 	*/
107 	ENTRY_OBJ  	= 5,	/* Entry object (a database record) 	*/
108 	LINK_OBJ   	= 6, 	/* A name link.				*/
109 	PRIVATE_OBJ   	= 7 	/* Private object (all opaque data) 	*/
110 };
111 
112 /*
113  * The types of Name services NIS knows about. They are enumerated
114  * here. The Binder code will use this type to determine if it has
115  * a set of library routines that will access the indicated name service.
116  */
117 enum nstype {
118 	UNKNOWN = 0,
119 	NIS = 1,	/* Nis Plus Service		*/
120 	SUNYP = 2,	/* Old NIS Service		*/
121 	IVY = 3,	/* Nis Plus Plus Service	*/
122 	DNS = 4,	/* Domain Name Service		*/
123 	X500 = 5,	/* ISO/CCCIT X.500 Service	*/
124 	DNANS = 6,	/* Digital DECNet Name Service	*/
125 	XCHS = 7,	/* Xerox ClearingHouse Service	*/
126 	CDS= 8
127 };
128 
129 /*
130  * DIRECTORY - The name service object. These objects identify other name
131  * servers that are serving some portion of the name space. Each has a
132  * type associated with it. The resolver library will note whether or not
133  * is has the needed routines to access that type of service.
134  * The oarmask structure defines an access rights mask on a per object
135  * type basis for the name spaces. The only bits currently used are
136  * create and destroy. By enabling or disabling these access rights for
137  * a specific object type for a one of the accessor entities (owner,
138  * group, world) the administrator can control what types of objects
139  * may be freely added to the name space and which require the
140  * administrator's approval.
141  */
142 struct oar_mask {
143 	u_long	oa_rights;	/* Access rights mask 	*/
144 	zotypes	oa_otype;	/* Object type 		*/
145 };
146 
147 struct endpoint {
148 	string		uaddr<>;
149 	string		family<>;   /* Transport family (INET, OSI, etc) */
150 	string		proto<>;    /* Protocol (TCP, UDP, CLNP,  etc)   */
151 };
152 
153 /*
154  * Note: pkey is a netobj which is limited to 1024 bytes which limits the
155  * keysize to 8192 bits. This is consider to be a reasonable limit for
156  * the expected lifetime of this service.
157  */
158 struct nis_server {
159 	nis_name	name; 	 	/* Principal name of the server  */
160 	endpoint	ep<>;  		/* Universal addr(s) for server  */
161 	u_long		key_type;	/* Public key type		 */
162 	netobj		pkey;		/* server's public key  	 */
163 };
164 
165 struct directory_obj {
166 	nis_name   do_name;	 /* Name of the directory being served   */
167 	nstype	   do_type;	 /* one of NIS, DNS, IVY, YP, or X.500 	 */
168 	nis_server do_servers<>; /* <0> == Primary name server     	 */
169 	u_long	   do_ttl;	 /* Time To Live (for caches) 		 */
170 	oar_mask   do_armask<>;  /* Create/Destroy rights by object type */
171 };
172 
173 /*
174  * ENTRY - This is one row of data from an information base.
175  * The type value is used by the client library to convert the entry to
176  * it's internal structure representation. The Table name is a back pointer
177  * to the table where the entry is stored. This allows the client library
178  * to determine where to send a request if the client wishes to change this
179  * entry but got to it through a LINK rather than directly.
180  * If the entry is a "standalone" entry then this field is void.
181  */
182 const EN_BINARY   = 1;	/* Indicates value is binary data 	*/
183 const EN_CRYPT    = 2;	/* Indicates the value is encrypted	*/
184 const EN_XDR      = 4;	/* Indicates the value is XDR encoded	*/
185 const EN_MODIFIED = 8;	/* Indicates entry is modified. 	*/
186 const EN_ASN1     = 64;	/* Means contents use ASN.1 encoding    */
187 
188 struct entry_col {
189 	u_long	ec_flags;	/* Flags for this value */
190 	opaque	ec_value<>;	/* It's textual value	*/
191 };
192 
193 struct entry_obj {
194 	string 	en_type<>;	/* Type of entry such as "passwd" */
195 	entry_col en_cols<>;	/* Value for the entry		  */
196 };
197 
198 /*
199  * GROUP - The group object contains a list of NIS principal names. Groups
200  * are used to authorize principals. Each object has a set of access rights
201  * for members of its group. Principal names in groups are in the form
202  * name.directory and recursive groups are expressed as @groupname.directory
203  */
204 struct group_obj {
205 	u_long		gr_flags;	/* Flags controlling group	*/
206 	nis_name	gr_members<>;  	/* List of names in group 	*/
207 };
208 
209 /*
210  * LINK - This is the LINK object. It is quite similar to a symbolic link
211  * in the UNIX filesystem. The attributes in the main object structure are
212  * relative to the LINK data and not what it points to (like the file system)
213  * "modify" privleges here indicate the right to modify what the link points
214  * at and not to modify that actual object pointed to by the link.
215  */
216 struct link_obj {
217 	zotypes	 li_rtype;	/* Real type of the object	*/
218 	nis_attr li_attrs<>;	/* Attribute/Values for tables	*/
219 	nis_name li_name; 	/* The object's real NIS name	*/
220 };
221 
222 /*
223  * TABLE - This is the table object. It implements a simple
224  * data base that applications and use for configuration or
225  * administration purposes. The role of the table is to group together
226  * a set of related entries. Tables are the simple database component
227  * of NIS. Like many databases, tables are logically divided into columns
228  * and rows. The columns are labeled with indexes and each ENTRY makes
229  * up a row. Rows may be addressed within the table by selecting one
230  * or more indexes, and values for those indexes. Each row which has
231  * a value for the given index that matches the desired value is returned.
232  * Within the definition of each column there is a flags variable, this
233  * variable contains flags which determine whether or not the column is
234  * searchable, contains binary data, and access rights for the entry objects
235  * column value.
236  */
237 
238 const TA_BINARY     = 1;	/* Means table data is binary 		*/
239 const TA_CRYPT      = 2;	/* Means value should be encrypted 	*/
240 const TA_XDR        = 4;	/* Means value is XDR encoded		*/
241 const TA_SEARCHABLE = 8;	/* Means this column is searchable	*/
242 const TA_CASE       = 16;	/* Means this column is Case Sensitive	*/
243 const TA_MODIFIED   = 32;	/* Means this columns attrs are modified*/
244 const TA_ASN1       = 64;	/* Means contents use ASN.1 encoding     */
245 
246 struct table_col {
247 	string	tc_name<64>;	/* Column Name 	 	   */
248 	u_long	tc_flags;	/* control flags	   */
249 	u_long	tc_rights;	/* Access rights mask	   */
250 };
251 
252 struct table_obj {
253 	string 	  ta_type<64>;	 /* Table type such as "passwd"	*/
254 	int	  ta_maxcol;	 /* Total number of columns	*/
255 	u_char	  ta_sep;	 /* Separator character 	*/
256 	table_col ta_cols<>; 	 /* The number of table indexes */
257 	string	  ta_path<>;	 /* A search path for this table */
258 };
259 
260 /*
261  * This union joins together all of the currently known objects.
262  */
263 union objdata switch (zotypes zo_type) {
264         case DIRECTORY_OBJ :
265                 struct directory_obj di_data;
266         case GROUP_OBJ :
267                 struct group_obj gr_data;
268         case TABLE_OBJ :
269                 struct table_obj ta_data;
270         case ENTRY_OBJ:
271                 struct entry_obj en_data;
272         case LINK_OBJ :
273                 struct link_obj li_data;
274         case PRIVATE_OBJ :
275                 opaque	po_data<>;
276 	case NO_OBJ :
277 		void;
278         case BOGUS_OBJ :
279 		void;
280         default :
281                 void;
282 };
283 
284 /*
285  * This is the basic NIS object data type. It consists of a generic part
286  * which all objects contain, and a specialized part which varies depending
287  * on the type of the object. All of the specialized sections have been
288  * described above. You might have wondered why they all start with an
289  * integer size, followed by the useful data. The answer is, when the
290  * server doesn't recognize the type returned it treats it as opaque data.
291  * And the definition for opaque data is {int size; char *data;}. In this
292  * way, servers and utility routines that do not understand a given type
293  * may still pass it around. One has to be careful in setting
294  * this variable accurately, it must take into account such things as
295  * XDR padding of structures etc. The best way to set it is to note one's
296  * position in the XDR encoding stream, encode the structure, look at the
297  * new position and calculate the size.
298  */
299 struct nis_oid {
300 	u_long	ctime;		/* Time of objects creation 	*/
301 	u_long	mtime;		/* Time of objects modification */
302 };
303 
304 struct nis_object {
305 	nis_oid	 zo_oid;	/* object identity verifier.		*/
306 	nis_name zo_name;	/* The NIS name for this object		*/
307 	nis_name zo_owner;	/* NIS name of object owner.		*/
308 	nis_name zo_group;	/* NIS name of access group.		*/
309 	nis_name zo_domain;	/* The administrator for the object	*/
310 	u_long	 zo_access;	/* Access rights (owner, group, world)	*/
311 	u_long	 zo_ttl;	/* Object's time to live in seconds.	*/
312 	objdata	 zo_data;	/* Data structure for this type 	*/
313 };
314 #if RPC_HDR
315 %
316 %#endif /* if __nis_object_h */
317 %
318 #endif
319