1 /* 2 * Copyright 2024-2025 The OpenSSL Project Authors. All Rights Reserved. 3 * 4 * Licensed under the Apache License 2.0 (the "License"). You may not use 5 * this file except in compliance with the License. You can obtain a copy 6 * in the file LICENSE in the source distribution or at 7 * https://www.openssl.org/source/license.html 8 */ 9 10 #include <string.h> 11 #include <openssl/opensslconf.h> 12 #include <openssl/rand.h> 13 #include <openssl/core_names.h> 14 #ifndef OPENSSL_NO_STDIO 15 # include <stdio.h> 16 #endif 17 #include <crypto/ml_kem.h> 18 #include "testutil.h" 19 #include "testutil/output.h" 20 21 static uint8_t ml_kem_private_entropy[] = { 22 /* Seed for genkey */ 23 0x7c, 0x99, 0x35, 0xa0, 0xb0, 0x76, 0x94, 0xaa, 0x0c, 0x6d, 0x10, 0xe4, 24 0xdb, 0x6b, 0x1a, 0xdd, 0x2f, 0xd8, 0x1a, 0x25, 0xcc, 0xb1, 0x48, 0x03, 25 0x2d, 0xcd, 0x73, 0x99, 0x36, 0x73, 0x7f, 0x2d, 0x86, 0x26, 0xed, 0x79, 26 0xd4, 0x51, 0x14, 0x08, 0x00, 0xe0, 0x3b, 0x59, 0xb9, 0x56, 0xf8, 0x21, 27 0x0e, 0x55, 0x60, 0x67, 0x40, 0x7d, 0x13, 0xdc, 0x90, 0xfa, 0x9e, 0x8b, 28 0x87, 0x2b, 0xfb, 0x8f 29 }; 30 static uint8_t ml_kem_public_entropy[] = { 31 /* Seed for encap */ 32 0x14, 0x7c, 0x03, 0xf7, 0xa5, 0xbe, 0xbb, 0xa4, 0x06, 0xc8, 0xfa, 0xe1, 33 0x87, 0x4d, 0x7f, 0x13, 0xc8, 0x0e, 0xfe, 0x79, 0xa3, 0xa9, 0xa8, 0x74, 34 0xcc, 0x09, 0xfe, 0x76, 0xf6, 0x99, 0x76, 0x15, 35 /* Seed for decap on length error */ 36 0x4e, 0x6f, 0x74, 0x20, 0x74, 0x68, 0x65, 0x20, 0x64, 0x72, 0x6f, 0x69, 37 0x64, 0x73, 0x20, 0x79, 0x6f, 0x75, 0x27, 0x72, 0x65, 0x20, 0x6c, 0x6f, 38 0x6f, 0x6b, 0x69, 0x6e, 0x67, 0x20, 0x66, 0x6f 39 }; 40 static uint8_t ml_kem_expected_rho[3][ML_KEM_RANDOM_BYTES] = { 41 { 42 0x7e, 0xfb, 0x9e, 0x40, 0xc3, 0xbf, 0x0f, 0xf0, 0x43, 0x29, 0x86, 0xae, 43 0x4b, 0xc1, 0xa2, 0x42, 0xce, 0x99, 0x21, 0xaa, 0x9e, 0x22, 0x44, 0x88, 44 0x19, 0x58, 0x5d, 0xea, 0x30, 0x8e, 0xb0, 0x39 45 }, 46 { 47 0x16, 0x2e, 0xc0, 0x98, 0xa9, 0x00, 0xb1, 0x2d, 0xd8, 0xfa, 0xbb, 0xfb, 48 0x3f, 0xe8, 0xcb, 0x1d, 0xc4, 0xe8, 0x31, 0x5f, 0x2a, 0xf0, 0xd3, 0x2f, 49 0x00, 0x17, 0xae, 0x13, 0x6e, 0x19, 0xf0, 0x28 50 }, 51 { 52 0x29, 0xb4, 0xf9, 0xf8, 0xcf, 0xba, 0xdf, 0x2e, 0x41, 0x86, 0x9a, 0xbf, 53 0xba, 0xd1, 0x07, 0x38, 0xad, 0x04, 0xcc, 0x75, 0x2b, 0xc2, 0x0c, 0x39, 54 0x47, 0x46, 0x85, 0x0e, 0x0c, 0x48, 0x47, 0xdb 55 } 56 }; 57 static uint8_t ml_kem_expected_ctext_sha256[3][32] = { 58 { 59 0xbc, 0x29, 0xd7, 0xdf, 0x8b, 0xc5, 0x46, 0x5d, 0x98, 0x06, 0x01, 0xd8, 60 0x00, 0x25, 0x97, 0x93, 0xe2, 0x60, 0x38, 0x25, 0xa5, 0x72, 0xda, 0x6c, 61 0xd1, 0x98, 0xa5, 0x12, 0xcc, 0x6d, 0x1a, 0x34 62 }, 63 { 64 0x36, 0x82, 0x9a, 0x2f, 0x35, 0xcb, 0xf4, 0xde, 0xb6, 0x2c, 0x0a, 0x12, 65 0xa1, 0x5c, 0x22, 0xda, 0xe9, 0xf8, 0xd2, 0xc2, 0x52, 0x56, 0x6f, 0xc2, 66 0x4f, 0x88, 0xab, 0xe8, 0x05, 0xcb, 0x57, 0x5e 67 }, 68 { 69 0x50, 0x81, 0x36, 0xa1, 0x3f, 0x8a, 0x79, 0x20, 0xe3, 0x43, 0x44, 0x98, 70 0xc6, 0x97, 0x5c, 0xbb, 0xab, 0x45, 0x7d, 0x80, 0x93, 0x09, 0xeb, 0x2f, 71 0x92, 0x45, 0x3e, 0x74, 0x09, 0x73, 0x82, 0x10 72 } 73 }; 74 static uint8_t ml_kem_expected_shared_secret[3][32] = { 75 { 76 0x31, 0x98, 0x39, 0xe8, 0x2a, 0xb6, 0xb2, 0x22, 0xde, 0x7b, 0x61, 0x9e, 77 0x80, 0xda, 0x83, 0x91, 0x52, 0x2b, 0xbb, 0x37, 0x67, 0x70, 0x18, 0x49, 78 0x4a, 0x47, 0x42, 0xc5, 0x3f, 0x9a, 0xbf, 0xdf 79 }, 80 { 81 0xe7, 0x18, 0x4a, 0x09, 0x75, 0xee, 0x34, 0x70, 0x87, 0x8d, 0x2d, 0x15, 82 0x9e, 0xc8, 0x31, 0x29, 0xc8, 0xae, 0xc2, 0x53, 0xd4, 0xee, 0x17, 0xb4, 83 0x81, 0x03, 0x11, 0xd1, 0x98, 0xcd, 0x03, 0x68 84 }, 85 { 86 0x48, 0x9d, 0xd1, 0xe9, 0xc2, 0xbe, 0x4a, 0xf3, 0x48, 0x2b, 0xdb, 0x35, 87 0xbb, 0x26, 0xce, 0x76, 0x0e, 0x6e, 0x41, 0x4d, 0xa6, 0xec, 0xbe, 0x48, 88 0x99, 0x85, 0x74, 0x8a, 0x82, 0x5f, 0x1c, 0xd6 89 }, 90 }; 91 92 93 static int sanity_test(void) 94 { 95 static const int alg[3] = { 96 EVP_PKEY_ML_KEM_512, 97 EVP_PKEY_ML_KEM_768, 98 EVP_PKEY_ML_KEM_1024 99 }; 100 EVP_RAND_CTX *privctx; 101 EVP_RAND_CTX *pubctx; 102 EVP_MD *sha256 = EVP_MD_fetch(NULL, "sha256", NULL); 103 uint8_t *decap_entropy; 104 int i, ret = 0; 105 106 if (!TEST_ptr(sha256)) 107 return 0; 108 109 if (!TEST_ptr(privctx = RAND_get0_private(NULL)) 110 || !TEST_ptr(pubctx = RAND_get0_public(NULL))) { 111 ret = -1; 112 goto err; 113 } 114 115 decap_entropy = ml_kem_public_entropy + ML_KEM_RANDOM_BYTES; 116 117 for (i = 0; i < (int) OSSL_NELEM(alg); ++i) { 118 OSSL_PARAM params[3]; 119 uint8_t hash[32]; 120 uint8_t shared_secret[ML_KEM_SHARED_SECRET_BYTES]; 121 uint8_t shared_secret2[ML_KEM_SHARED_SECRET_BYTES]; 122 uint8_t *encoded_public_key = NULL; 123 uint8_t *ciphertext = NULL; 124 ML_KEM_KEY *private_key = NULL; 125 ML_KEM_KEY *public_key = NULL; 126 int ret2 = -1; 127 unsigned char c; 128 unsigned int strength = 256; 129 const ML_KEM_VINFO *v; 130 131 /* Configure the private RNG to output just the keygen seed */ 132 params[0] = 133 OSSL_PARAM_construct_octet_string(OSSL_RAND_PARAM_TEST_ENTROPY, 134 ml_kem_private_entropy, 135 sizeof(ml_kem_private_entropy)); 136 params[1] = 137 OSSL_PARAM_construct_uint(OSSL_RAND_PARAM_STRENGTH, &strength); 138 params[2] = OSSL_PARAM_construct_end(); 139 if (!TEST_true(EVP_RAND_CTX_set_params(privctx, params))) { 140 ret = -1; 141 goto err; 142 } 143 144 public_key = ossl_ml_kem_key_new(NULL, NULL, alg[i]); 145 private_key = ossl_ml_kem_key_new(NULL, NULL, alg[i]); 146 if (private_key == NULL || public_key == NULL 147 || (v = ossl_ml_kem_key_vinfo(public_key)) == NULL) 148 goto done; 149 150 encoded_public_key = OPENSSL_malloc(v->pubkey_bytes); 151 ciphertext = OPENSSL_malloc(v->ctext_bytes); 152 if (encoded_public_key == NULL || ciphertext == NULL) 153 goto done; 154 155 ret2 = -2; 156 /* Generate a private key */ 157 if (!ossl_ml_kem_genkey(encoded_public_key, v->pubkey_bytes, 158 private_key)) 159 goto done; 160 161 /* Check that no more entropy is available! */ 162 if (!TEST_int_le(RAND_priv_bytes(&c, 1), 0)) 163 goto done; 164 165 ret2 = -3; 166 /* Check that we got the expected 'rho' value in the ciphertext */ 167 if (!TEST_mem_eq(encoded_public_key + v->vector_bytes, 168 ML_KEM_RANDOM_BYTES, 169 ml_kem_expected_rho[i], 170 ML_KEM_RANDOM_BYTES)) 171 goto done; 172 173 ret2 = -4; 174 /* Create the expected associated public key */ 175 if (!ossl_ml_kem_parse_public_key(encoded_public_key, v->pubkey_bytes, 176 public_key)) 177 goto done; 178 179 /* Configure the public RNG to output the encap and decap seeds */ 180 params[0] = 181 OSSL_PARAM_construct_octet_string(OSSL_RAND_PARAM_TEST_ENTROPY, 182 ml_kem_public_entropy, 183 sizeof(ml_kem_public_entropy)); 184 if (!TEST_true(EVP_RAND_CTX_set_params(pubctx, params))) 185 goto done; 186 187 /* encaps - decaps test: validate shared secret equality */ 188 ret2 = -5; 189 if (!ossl_ml_kem_encap_rand(ciphertext, v->ctext_bytes, 190 shared_secret, sizeof(shared_secret), 191 public_key)) 192 goto done; 193 194 ret2 = -6; 195 /* Check the ciphertext hash */ 196 if (!TEST_true(EVP_Digest(ciphertext, v->ctext_bytes, 197 hash, NULL, sha256, NULL)) 198 || !TEST_mem_eq(hash, sizeof(hash), 199 ml_kem_expected_ctext_sha256[i], 200 sizeof(ml_kem_expected_ctext_sha256[i]))) 201 goto done; 202 203 /* Check for the expected shared secret */ 204 if (!TEST_mem_eq(shared_secret, sizeof(shared_secret), 205 ml_kem_expected_shared_secret[i], 206 ML_KEM_SHARED_SECRET_BYTES)) 207 goto done; 208 209 /* Now decapsulate the ciphertext */ 210 ret2 = -7; 211 if (!ossl_ml_kem_decap(shared_secret2, sizeof(shared_secret2), 212 ciphertext, v->ctext_bytes, private_key)) 213 goto done; 214 215 /* Check for the same shared secret */ 216 if (!TEST_mem_eq(shared_secret, sizeof(shared_secret), 217 shared_secret2, sizeof(shared_secret2))) 218 goto done; 219 220 ret2 = -8; 221 /* Now a quick negative test by zeroing the ciphertext */ 222 memset(ciphertext, 0, v->ctext_bytes); 223 if (!TEST_true(ossl_ml_kem_decap(shared_secret2, sizeof(shared_secret2), 224 ciphertext, v->ctext_bytes, 225 private_key))) 226 goto done; 227 228 /* Ensure we have a mismatch */ 229 if (!TEST_mem_ne(shared_secret, sizeof(shared_secret), 230 shared_secret2, sizeof(shared_secret2))) 231 goto done; 232 233 ret2 = -9; 234 /* 235 * Change the ciphertext length, decap should fail, but and consume the 236 * last batch of entropy to return a fake shared secret, just in case. 237 */ 238 if (!TEST_false(ossl_ml_kem_decap(shared_secret2, sizeof(shared_secret2), 239 ciphertext, v->ctext_bytes - 1, 240 private_key))) 241 goto done; 242 243 if (!TEST_mem_eq(shared_secret2, sizeof(shared_secret2), 244 decap_entropy, ML_KEM_SHARED_SECRET_BYTES)) 245 goto done; 246 247 /* Check that no more entropy is available! */ 248 if (!TEST_int_le(RAND_bytes(&c, 1), 0)) 249 goto done; 250 251 ret2 = 0; 252 253 done: 254 if (ret2 != 0) 255 ret = ret2; 256 ossl_ml_kem_key_free(private_key); 257 ossl_ml_kem_key_free(public_key); 258 OPENSSL_free(encoded_public_key); 259 OPENSSL_free(ciphertext); 260 } 261 262 err: 263 EVP_MD_free(sha256); 264 return ret == 0; 265 } 266 267 int setup_tests(void) 268 { 269 if (!TEST_true(RAND_set_DRBG_type(NULL, "TEST-RAND", "fips=no", NULL, NULL))) 270 return 0; 271 272 ADD_TEST(sanity_test); 273 return 1; 274 } 275