1 /* 2 * Copyright 1995-2025 The OpenSSL Project Authors. All Rights Reserved. 3 * 4 * Licensed under the Apache License 2.0 (the "License"). You may not use 5 * this file except in compliance with the License. You can obtain a copy 6 * in the file LICENSE in the source distribution or at 7 * https://www.openssl.org/source/license.html 8 */ 9 10 #include <stdio.h> 11 #include <stdlib.h> 12 #include <ctype.h> 13 #include <openssl/objects.h> 14 #include <openssl/evp.h> 15 #include <openssl/hmac.h> 16 #include <openssl/core_names.h> 17 #include <openssl/ocsp.h> 18 #include <openssl/conf.h> 19 #include <openssl/x509v3.h> 20 #include <openssl/dh.h> 21 #include <openssl/bn.h> 22 #include <openssl/provider.h> 23 #include <openssl/param_build.h> 24 #include "internal/nelem.h" 25 #include "internal/sizes.h" 26 #include "internal/tlsgroups.h" 27 #include "internal/ssl_unwrap.h" 28 #include "ssl_local.h" 29 #include "quic/quic_local.h" 30 #include <openssl/ct.h> 31 32 static const SIGALG_LOOKUP *find_sig_alg(SSL_CONNECTION *s, X509 *x, EVP_PKEY *pkey); 33 static int tls12_sigalg_allowed(const SSL_CONNECTION *s, int op, const SIGALG_LOOKUP *lu); 34 35 SSL3_ENC_METHOD const TLSv1_enc_data = { 36 tls1_setup_key_block, 37 tls1_generate_master_secret, 38 tls1_change_cipher_state, 39 tls1_final_finish_mac, 40 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE, 41 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE, 42 tls1_alert_code, 43 tls1_export_keying_material, 44 0, 45 ssl3_set_handshake_header, 46 tls_close_construct_packet, 47 ssl3_handshake_write 48 }; 49 50 SSL3_ENC_METHOD const TLSv1_1_enc_data = { 51 tls1_setup_key_block, 52 tls1_generate_master_secret, 53 tls1_change_cipher_state, 54 tls1_final_finish_mac, 55 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE, 56 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE, 57 tls1_alert_code, 58 tls1_export_keying_material, 59 0, 60 ssl3_set_handshake_header, 61 tls_close_construct_packet, 62 ssl3_handshake_write 63 }; 64 65 SSL3_ENC_METHOD const TLSv1_2_enc_data = { 66 tls1_setup_key_block, 67 tls1_generate_master_secret, 68 tls1_change_cipher_state, 69 tls1_final_finish_mac, 70 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE, 71 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE, 72 tls1_alert_code, 73 tls1_export_keying_material, 74 SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF 75 | SSL_ENC_FLAG_TLS1_2_CIPHERS, 76 ssl3_set_handshake_header, 77 tls_close_construct_packet, 78 ssl3_handshake_write 79 }; 80 81 SSL3_ENC_METHOD const TLSv1_3_enc_data = { 82 tls13_setup_key_block, 83 tls13_generate_master_secret, 84 tls13_change_cipher_state, 85 tls13_final_finish_mac, 86 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE, 87 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE, 88 tls13_alert_code, 89 tls13_export_keying_material, 90 SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF, 91 ssl3_set_handshake_header, 92 tls_close_construct_packet, 93 ssl3_handshake_write 94 }; 95 96 OSSL_TIME tls1_default_timeout(void) 97 { 98 /* 99 * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for 100 * http, the cache would over fill 101 */ 102 return ossl_seconds2time(60 * 60 * 2); 103 } 104 105 int tls1_new(SSL *s) 106 { 107 if (!ssl3_new(s)) 108 return 0; 109 if (!s->method->ssl_clear(s)) 110 return 0; 111 112 return 1; 113 } 114 115 void tls1_free(SSL *s) 116 { 117 SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); 118 119 if (sc == NULL) 120 return; 121 122 OPENSSL_free(sc->ext.session_ticket); 123 ssl3_free(s); 124 } 125 126 int tls1_clear(SSL *s) 127 { 128 SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); 129 130 if (sc == NULL) 131 return 0; 132 133 if (!ssl3_clear(s)) 134 return 0; 135 136 if (s->method->version == TLS_ANY_VERSION) 137 sc->version = TLS_MAX_VERSION_INTERNAL; 138 else 139 sc->version = s->method->version; 140 141 return 1; 142 } 143 144 /* Legacy NID to group_id mapping. Only works for groups we know about */ 145 static const struct { 146 int nid; 147 uint16_t group_id; 148 } nid_to_group[] = { 149 {NID_sect163k1, OSSL_TLS_GROUP_ID_sect163k1}, 150 {NID_sect163r1, OSSL_TLS_GROUP_ID_sect163r1}, 151 {NID_sect163r2, OSSL_TLS_GROUP_ID_sect163r2}, 152 {NID_sect193r1, OSSL_TLS_GROUP_ID_sect193r1}, 153 {NID_sect193r2, OSSL_TLS_GROUP_ID_sect193r2}, 154 {NID_sect233k1, OSSL_TLS_GROUP_ID_sect233k1}, 155 {NID_sect233r1, OSSL_TLS_GROUP_ID_sect233r1}, 156 {NID_sect239k1, OSSL_TLS_GROUP_ID_sect239k1}, 157 {NID_sect283k1, OSSL_TLS_GROUP_ID_sect283k1}, 158 {NID_sect283r1, OSSL_TLS_GROUP_ID_sect283r1}, 159 {NID_sect409k1, OSSL_TLS_GROUP_ID_sect409k1}, 160 {NID_sect409r1, OSSL_TLS_GROUP_ID_sect409r1}, 161 {NID_sect571k1, OSSL_TLS_GROUP_ID_sect571k1}, 162 {NID_sect571r1, OSSL_TLS_GROUP_ID_sect571r1}, 163 {NID_secp160k1, OSSL_TLS_GROUP_ID_secp160k1}, 164 {NID_secp160r1, OSSL_TLS_GROUP_ID_secp160r1}, 165 {NID_secp160r2, OSSL_TLS_GROUP_ID_secp160r2}, 166 {NID_secp192k1, OSSL_TLS_GROUP_ID_secp192k1}, 167 {NID_X9_62_prime192v1, OSSL_TLS_GROUP_ID_secp192r1}, 168 {NID_secp224k1, OSSL_TLS_GROUP_ID_secp224k1}, 169 {NID_secp224r1, OSSL_TLS_GROUP_ID_secp224r1}, 170 {NID_secp256k1, OSSL_TLS_GROUP_ID_secp256k1}, 171 {NID_X9_62_prime256v1, OSSL_TLS_GROUP_ID_secp256r1}, 172 {NID_secp384r1, OSSL_TLS_GROUP_ID_secp384r1}, 173 {NID_secp521r1, OSSL_TLS_GROUP_ID_secp521r1}, 174 {NID_brainpoolP256r1, OSSL_TLS_GROUP_ID_brainpoolP256r1}, 175 {NID_brainpoolP384r1, OSSL_TLS_GROUP_ID_brainpoolP384r1}, 176 {NID_brainpoolP512r1, OSSL_TLS_GROUP_ID_brainpoolP512r1}, 177 {EVP_PKEY_X25519, OSSL_TLS_GROUP_ID_x25519}, 178 {EVP_PKEY_X448, OSSL_TLS_GROUP_ID_x448}, 179 {NID_brainpoolP256r1tls13, OSSL_TLS_GROUP_ID_brainpoolP256r1_tls13}, 180 {NID_brainpoolP384r1tls13, OSSL_TLS_GROUP_ID_brainpoolP384r1_tls13}, 181 {NID_brainpoolP512r1tls13, OSSL_TLS_GROUP_ID_brainpoolP512r1_tls13}, 182 {NID_id_tc26_gost_3410_2012_256_paramSetA, OSSL_TLS_GROUP_ID_gc256A}, 183 {NID_id_tc26_gost_3410_2012_256_paramSetB, OSSL_TLS_GROUP_ID_gc256B}, 184 {NID_id_tc26_gost_3410_2012_256_paramSetC, OSSL_TLS_GROUP_ID_gc256C}, 185 {NID_id_tc26_gost_3410_2012_256_paramSetD, OSSL_TLS_GROUP_ID_gc256D}, 186 {NID_id_tc26_gost_3410_2012_512_paramSetA, OSSL_TLS_GROUP_ID_gc512A}, 187 {NID_id_tc26_gost_3410_2012_512_paramSetB, OSSL_TLS_GROUP_ID_gc512B}, 188 {NID_id_tc26_gost_3410_2012_512_paramSetC, OSSL_TLS_GROUP_ID_gc512C}, 189 {NID_ffdhe2048, OSSL_TLS_GROUP_ID_ffdhe2048}, 190 {NID_ffdhe3072, OSSL_TLS_GROUP_ID_ffdhe3072}, 191 {NID_ffdhe4096, OSSL_TLS_GROUP_ID_ffdhe4096}, 192 {NID_ffdhe6144, OSSL_TLS_GROUP_ID_ffdhe6144}, 193 {NID_ffdhe8192, OSSL_TLS_GROUP_ID_ffdhe8192} 194 }; 195 196 static const unsigned char ecformats_default[] = { 197 TLSEXT_ECPOINTFORMAT_uncompressed, 198 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime, 199 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2 200 }; 201 202 /* Group list string of the built-in pseudo group DEFAULT */ 203 #define DEFAULT_GROUP_NAME "DEFAULT" 204 #define TLS_DEFAULT_GROUP_LIST \ 205 "?*X25519MLKEM768 / ?*X25519:?secp256r1 / ?X448:?secp384r1:?secp521r1 / ?ffdhe2048:?ffdhe3072" 206 207 static const uint16_t suiteb_curves[] = { 208 OSSL_TLS_GROUP_ID_secp256r1, 209 OSSL_TLS_GROUP_ID_secp384r1, 210 }; 211 212 /* Group list string of the built-in pseudo group DEFAULT_SUITE_B */ 213 #define SUITE_B_GROUP_NAME "DEFAULT_SUITE_B" 214 #define SUITE_B_GROUP_LIST "secp256r1:secp384r1", 215 216 struct provider_ctx_data_st { 217 SSL_CTX *ctx; 218 OSSL_PROVIDER *provider; 219 }; 220 221 #define TLS_GROUP_LIST_MALLOC_BLOCK_SIZE 10 222 static OSSL_CALLBACK add_provider_groups; 223 static int add_provider_groups(const OSSL_PARAM params[], void *data) 224 { 225 struct provider_ctx_data_st *pgd = data; 226 SSL_CTX *ctx = pgd->ctx; 227 const OSSL_PARAM *p; 228 TLS_GROUP_INFO *ginf = NULL; 229 EVP_KEYMGMT *keymgmt; 230 unsigned int gid; 231 unsigned int is_kem = 0; 232 int ret = 0; 233 234 if (ctx->group_list_max_len == ctx->group_list_len) { 235 TLS_GROUP_INFO *tmp = NULL; 236 237 if (ctx->group_list_max_len == 0) 238 tmp = OPENSSL_malloc(sizeof(TLS_GROUP_INFO) 239 * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE); 240 else 241 tmp = OPENSSL_realloc(ctx->group_list, 242 (ctx->group_list_max_len 243 + TLS_GROUP_LIST_MALLOC_BLOCK_SIZE) 244 * sizeof(TLS_GROUP_INFO)); 245 if (tmp == NULL) 246 return 0; 247 ctx->group_list = tmp; 248 memset(tmp + ctx->group_list_max_len, 249 0, 250 sizeof(TLS_GROUP_INFO) * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE); 251 ctx->group_list_max_len += TLS_GROUP_LIST_MALLOC_BLOCK_SIZE; 252 } 253 254 ginf = &ctx->group_list[ctx->group_list_len]; 255 256 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME); 257 if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) { 258 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT); 259 goto err; 260 } 261 ginf->tlsname = OPENSSL_strdup(p->data); 262 if (ginf->tlsname == NULL) 263 goto err; 264 265 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME_INTERNAL); 266 if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) { 267 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT); 268 goto err; 269 } 270 ginf->realname = OPENSSL_strdup(p->data); 271 if (ginf->realname == NULL) 272 goto err; 273 274 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ID); 275 if (p == NULL || !OSSL_PARAM_get_uint(p, &gid) || gid > UINT16_MAX) { 276 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT); 277 goto err; 278 } 279 ginf->group_id = (uint16_t)gid; 280 281 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ALG); 282 if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) { 283 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT); 284 goto err; 285 } 286 ginf->algorithm = OPENSSL_strdup(p->data); 287 if (ginf->algorithm == NULL) 288 goto err; 289 290 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_SECURITY_BITS); 291 if (p == NULL || !OSSL_PARAM_get_uint(p, &ginf->secbits)) { 292 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT); 293 goto err; 294 } 295 296 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_IS_KEM); 297 if (p != NULL && (!OSSL_PARAM_get_uint(p, &is_kem) || is_kem > 1)) { 298 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT); 299 goto err; 300 } 301 ginf->is_kem = 1 & is_kem; 302 303 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_TLS); 304 if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mintls)) { 305 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT); 306 goto err; 307 } 308 309 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_TLS); 310 if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxtls)) { 311 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT); 312 goto err; 313 } 314 315 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_DTLS); 316 if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mindtls)) { 317 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT); 318 goto err; 319 } 320 321 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_DTLS); 322 if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxdtls)) { 323 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT); 324 goto err; 325 } 326 /* 327 * Now check that the algorithm is actually usable for our property query 328 * string. Regardless of the result we still return success because we have 329 * successfully processed this group, even though we may decide not to use 330 * it. 331 */ 332 ret = 1; 333 ERR_set_mark(); 334 keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, ginf->algorithm, ctx->propq); 335 if (keymgmt != NULL) { 336 /* We have successfully fetched the algorithm, we can use the group. */ 337 ctx->group_list_len++; 338 ginf = NULL; 339 EVP_KEYMGMT_free(keymgmt); 340 } 341 ERR_pop_to_mark(); 342 err: 343 if (ginf != NULL) { 344 OPENSSL_free(ginf->tlsname); 345 OPENSSL_free(ginf->realname); 346 OPENSSL_free(ginf->algorithm); 347 ginf->algorithm = ginf->tlsname = ginf->realname = NULL; 348 } 349 return ret; 350 } 351 352 static int discover_provider_groups(OSSL_PROVIDER *provider, void *vctx) 353 { 354 struct provider_ctx_data_st pgd; 355 356 pgd.ctx = vctx; 357 pgd.provider = provider; 358 return OSSL_PROVIDER_get_capabilities(provider, "TLS-GROUP", 359 add_provider_groups, &pgd); 360 } 361 362 int ssl_load_groups(SSL_CTX *ctx) 363 { 364 if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_groups, ctx)) 365 return 0; 366 367 return SSL_CTX_set1_groups_list(ctx, TLS_DEFAULT_GROUP_LIST); 368 } 369 370 #define TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE 10 371 static OSSL_CALLBACK add_provider_sigalgs; 372 static int add_provider_sigalgs(const OSSL_PARAM params[], void *data) 373 { 374 struct provider_ctx_data_st *pgd = data; 375 SSL_CTX *ctx = pgd->ctx; 376 OSSL_PROVIDER *provider = pgd->provider; 377 const OSSL_PARAM *p; 378 TLS_SIGALG_INFO *sinf = NULL; 379 EVP_KEYMGMT *keymgmt; 380 const char *keytype; 381 unsigned int code_point = 0; 382 int ret = 0; 383 384 if (ctx->sigalg_list_max_len == ctx->sigalg_list_len) { 385 TLS_SIGALG_INFO *tmp = NULL; 386 387 if (ctx->sigalg_list_max_len == 0) 388 tmp = OPENSSL_malloc(sizeof(TLS_SIGALG_INFO) 389 * TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE); 390 else 391 tmp = OPENSSL_realloc(ctx->sigalg_list, 392 (ctx->sigalg_list_max_len 393 + TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE) 394 * sizeof(TLS_SIGALG_INFO)); 395 if (tmp == NULL) 396 return 0; 397 ctx->sigalg_list = tmp; 398 memset(tmp + ctx->sigalg_list_max_len, 0, 399 sizeof(TLS_SIGALG_INFO) * TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE); 400 ctx->sigalg_list_max_len += TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE; 401 } 402 403 sinf = &ctx->sigalg_list[ctx->sigalg_list_len]; 404 405 /* First, mandatory parameters */ 406 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_NAME); 407 if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) { 408 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT); 409 goto err; 410 } 411 OPENSSL_free(sinf->sigalg_name); 412 sinf->sigalg_name = OPENSSL_strdup(p->data); 413 if (sinf->sigalg_name == NULL) 414 goto err; 415 416 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_IANA_NAME); 417 if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) { 418 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT); 419 goto err; 420 } 421 OPENSSL_free(sinf->name); 422 sinf->name = OPENSSL_strdup(p->data); 423 if (sinf->name == NULL) 424 goto err; 425 426 p = OSSL_PARAM_locate_const(params, 427 OSSL_CAPABILITY_TLS_SIGALG_CODE_POINT); 428 if (p == NULL 429 || !OSSL_PARAM_get_uint(p, &code_point) 430 || code_point > UINT16_MAX) { 431 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT); 432 goto err; 433 } 434 sinf->code_point = (uint16_t)code_point; 435 436 p = OSSL_PARAM_locate_const(params, 437 OSSL_CAPABILITY_TLS_SIGALG_SECURITY_BITS); 438 if (p == NULL || !OSSL_PARAM_get_uint(p, &sinf->secbits)) { 439 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT); 440 goto err; 441 } 442 443 /* Now, optional parameters */ 444 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_OID); 445 if (p == NULL) { 446 sinf->sigalg_oid = NULL; 447 } else if (p->data_type != OSSL_PARAM_UTF8_STRING) { 448 goto err; 449 } else { 450 OPENSSL_free(sinf->sigalg_oid); 451 sinf->sigalg_oid = OPENSSL_strdup(p->data); 452 if (sinf->sigalg_oid == NULL) 453 goto err; 454 } 455 456 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_SIG_NAME); 457 if (p == NULL) { 458 sinf->sig_name = NULL; 459 } else if (p->data_type != OSSL_PARAM_UTF8_STRING) { 460 goto err; 461 } else { 462 OPENSSL_free(sinf->sig_name); 463 sinf->sig_name = OPENSSL_strdup(p->data); 464 if (sinf->sig_name == NULL) 465 goto err; 466 } 467 468 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_SIG_OID); 469 if (p == NULL) { 470 sinf->sig_oid = NULL; 471 } else if (p->data_type != OSSL_PARAM_UTF8_STRING) { 472 goto err; 473 } else { 474 OPENSSL_free(sinf->sig_oid); 475 sinf->sig_oid = OPENSSL_strdup(p->data); 476 if (sinf->sig_oid == NULL) 477 goto err; 478 } 479 480 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_HASH_NAME); 481 if (p == NULL) { 482 sinf->hash_name = NULL; 483 } else if (p->data_type != OSSL_PARAM_UTF8_STRING) { 484 goto err; 485 } else { 486 OPENSSL_free(sinf->hash_name); 487 sinf->hash_name = OPENSSL_strdup(p->data); 488 if (sinf->hash_name == NULL) 489 goto err; 490 } 491 492 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_HASH_OID); 493 if (p == NULL) { 494 sinf->hash_oid = NULL; 495 } else if (p->data_type != OSSL_PARAM_UTF8_STRING) { 496 goto err; 497 } else { 498 OPENSSL_free(sinf->hash_oid); 499 sinf->hash_oid = OPENSSL_strdup(p->data); 500 if (sinf->hash_oid == NULL) 501 goto err; 502 } 503 504 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_KEYTYPE); 505 if (p == NULL) { 506 sinf->keytype = NULL; 507 } else if (p->data_type != OSSL_PARAM_UTF8_STRING) { 508 goto err; 509 } else { 510 OPENSSL_free(sinf->keytype); 511 sinf->keytype = OPENSSL_strdup(p->data); 512 if (sinf->keytype == NULL) 513 goto err; 514 } 515 516 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_KEYTYPE_OID); 517 if (p == NULL) { 518 sinf->keytype_oid = NULL; 519 } else if (p->data_type != OSSL_PARAM_UTF8_STRING) { 520 goto err; 521 } else { 522 OPENSSL_free(sinf->keytype_oid); 523 sinf->keytype_oid = OPENSSL_strdup(p->data); 524 if (sinf->keytype_oid == NULL) 525 goto err; 526 } 527 528 /* Optional, not documented prior to 3.5 */ 529 sinf->mindtls = sinf->maxdtls = -1; 530 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MIN_DTLS); 531 if (p != NULL && !OSSL_PARAM_get_int(p, &sinf->mindtls)) { 532 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT); 533 goto err; 534 } 535 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MAX_DTLS); 536 if (p != NULL && !OSSL_PARAM_get_int(p, &sinf->maxdtls)) { 537 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT); 538 goto err; 539 } 540 /* DTLS version numbers grow downward */ 541 if ((sinf->maxdtls != 0) && (sinf->maxdtls != -1) && 542 ((sinf->maxdtls > sinf->mindtls))) { 543 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT); 544 goto err; 545 } 546 /* No provider sigalgs are supported in DTLS, reset after checking. */ 547 sinf->mindtls = sinf->maxdtls = -1; 548 549 /* The remaining parameters below are mandatory again */ 550 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MIN_TLS); 551 if (p == NULL || !OSSL_PARAM_get_int(p, &sinf->mintls)) { 552 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT); 553 goto err; 554 } 555 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MAX_TLS); 556 if (p == NULL || !OSSL_PARAM_get_int(p, &sinf->maxtls)) { 557 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT); 558 goto err; 559 } 560 if ((sinf->maxtls != 0) && (sinf->maxtls != -1) && 561 ((sinf->maxtls < sinf->mintls))) { 562 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT); 563 goto err; 564 } 565 if ((sinf->mintls != 0) && (sinf->mintls != -1) && 566 ((sinf->mintls > TLS1_3_VERSION))) 567 sinf->mintls = sinf->maxtls = -1; 568 if ((sinf->maxtls != 0) && (sinf->maxtls != -1) && 569 ((sinf->maxtls < TLS1_3_VERSION))) 570 sinf->mintls = sinf->maxtls = -1; 571 572 /* Ignore unusable sigalgs */ 573 if (sinf->mintls == -1 && sinf->mindtls == -1) { 574 ret = 1; 575 goto err; 576 } 577 578 /* 579 * Now check that the algorithm is actually usable for our property query 580 * string. Regardless of the result we still return success because we have 581 * successfully processed this signature, even though we may decide not to 582 * use it. 583 */ 584 ret = 1; 585 ERR_set_mark(); 586 keytype = (sinf->keytype != NULL 587 ? sinf->keytype 588 : (sinf->sig_name != NULL 589 ? sinf->sig_name 590 : sinf->sigalg_name)); 591 keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, keytype, ctx->propq); 592 if (keymgmt != NULL) { 593 /* 594 * We have successfully fetched the algorithm - however if the provider 595 * doesn't match this one then we ignore it. 596 * 597 * Note: We're cheating a little here. Technically if the same algorithm 598 * is available from more than one provider then it is undefined which 599 * implementation you will get back. Theoretically this could be 600 * different every time...we assume here that you'll always get the 601 * same one back if you repeat the exact same fetch. Is this a reasonable 602 * assumption to make (in which case perhaps we should document this 603 * behaviour)? 604 */ 605 if (EVP_KEYMGMT_get0_provider(keymgmt) == provider) { 606 /* 607 * We have a match - so we could use this signature; 608 * Check proper object registration first, though. 609 * Don't care about return value as this may have been 610 * done within providers or previous calls to 611 * add_provider_sigalgs. 612 */ 613 OBJ_create(sinf->sigalg_oid, sinf->sigalg_name, NULL); 614 /* sanity check: Without successful registration don't use alg */ 615 if ((OBJ_txt2nid(sinf->sigalg_name) == NID_undef) || 616 (OBJ_nid2obj(OBJ_txt2nid(sinf->sigalg_name)) == NULL)) { 617 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT); 618 goto err; 619 } 620 if (sinf->sig_name != NULL) 621 OBJ_create(sinf->sig_oid, sinf->sig_name, NULL); 622 if (sinf->keytype != NULL) 623 OBJ_create(sinf->keytype_oid, sinf->keytype, NULL); 624 if (sinf->hash_name != NULL) 625 OBJ_create(sinf->hash_oid, sinf->hash_name, NULL); 626 OBJ_add_sigid(OBJ_txt2nid(sinf->sigalg_name), 627 (sinf->hash_name != NULL 628 ? OBJ_txt2nid(sinf->hash_name) 629 : NID_undef), 630 OBJ_txt2nid(keytype)); 631 ctx->sigalg_list_len++; 632 sinf = NULL; 633 } 634 EVP_KEYMGMT_free(keymgmt); 635 } 636 ERR_pop_to_mark(); 637 err: 638 if (sinf != NULL) { 639 OPENSSL_free(sinf->name); 640 sinf->name = NULL; 641 OPENSSL_free(sinf->sigalg_name); 642 sinf->sigalg_name = NULL; 643 OPENSSL_free(sinf->sigalg_oid); 644 sinf->sigalg_oid = NULL; 645 OPENSSL_free(sinf->sig_name); 646 sinf->sig_name = NULL; 647 OPENSSL_free(sinf->sig_oid); 648 sinf->sig_oid = NULL; 649 OPENSSL_free(sinf->hash_name); 650 sinf->hash_name = NULL; 651 OPENSSL_free(sinf->hash_oid); 652 sinf->hash_oid = NULL; 653 OPENSSL_free(sinf->keytype); 654 sinf->keytype = NULL; 655 OPENSSL_free(sinf->keytype_oid); 656 sinf->keytype_oid = NULL; 657 } 658 return ret; 659 } 660 661 static int discover_provider_sigalgs(OSSL_PROVIDER *provider, void *vctx) 662 { 663 struct provider_ctx_data_st pgd; 664 665 pgd.ctx = vctx; 666 pgd.provider = provider; 667 OSSL_PROVIDER_get_capabilities(provider, "TLS-SIGALG", 668 add_provider_sigalgs, &pgd); 669 /* 670 * Always OK, even if provider doesn't support the capability: 671 * Reconsider testing retval when legacy sigalgs are also loaded this way. 672 */ 673 return 1; 674 } 675 676 int ssl_load_sigalgs(SSL_CTX *ctx) 677 { 678 size_t i; 679 SSL_CERT_LOOKUP lu; 680 681 if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_sigalgs, ctx)) 682 return 0; 683 684 /* now populate ctx->ssl_cert_info */ 685 if (ctx->sigalg_list_len > 0) { 686 OPENSSL_free(ctx->ssl_cert_info); 687 ctx->ssl_cert_info = OPENSSL_zalloc(sizeof(lu) * ctx->sigalg_list_len); 688 if (ctx->ssl_cert_info == NULL) 689 return 0; 690 for(i = 0; i < ctx->sigalg_list_len; i++) { 691 ctx->ssl_cert_info[i].nid = OBJ_txt2nid(ctx->sigalg_list[i].sigalg_name); 692 ctx->ssl_cert_info[i].amask = SSL_aANY; 693 } 694 } 695 696 /* 697 * For now, leave it at this: legacy sigalgs stay in their own 698 * data structures until "legacy cleanup" occurs. 699 */ 700 701 return 1; 702 } 703 704 static uint16_t tls1_group_name2id(SSL_CTX *ctx, const char *name) 705 { 706 size_t i; 707 708 for (i = 0; i < ctx->group_list_len; i++) { 709 if (OPENSSL_strcasecmp(ctx->group_list[i].tlsname, name) == 0 710 || OPENSSL_strcasecmp(ctx->group_list[i].realname, name) == 0) 711 return ctx->group_list[i].group_id; 712 } 713 714 return 0; 715 } 716 717 const TLS_GROUP_INFO *tls1_group_id_lookup(SSL_CTX *ctx, uint16_t group_id) 718 { 719 size_t i; 720 721 for (i = 0; i < ctx->group_list_len; i++) { 722 if (ctx->group_list[i].group_id == group_id) 723 return &ctx->group_list[i]; 724 } 725 726 return NULL; 727 } 728 729 const char *tls1_group_id2name(SSL_CTX *ctx, uint16_t group_id) 730 { 731 const TLS_GROUP_INFO *tls_group_info = tls1_group_id_lookup(ctx, group_id); 732 733 if (tls_group_info == NULL) 734 return NULL; 735 736 return tls_group_info->tlsname; 737 } 738 739 int tls1_group_id2nid(uint16_t group_id, int include_unknown) 740 { 741 size_t i; 742 743 if (group_id == 0) 744 return NID_undef; 745 746 /* 747 * Return well known Group NIDs - for backwards compatibility. This won't 748 * work for groups we don't know about. 749 */ 750 for (i = 0; i < OSSL_NELEM(nid_to_group); i++) 751 { 752 if (nid_to_group[i].group_id == group_id) 753 return nid_to_group[i].nid; 754 } 755 if (!include_unknown) 756 return NID_undef; 757 return TLSEXT_nid_unknown | (int)group_id; 758 } 759 760 uint16_t tls1_nid2group_id(int nid) 761 { 762 size_t i; 763 764 /* 765 * Return well known Group ids - for backwards compatibility. This won't 766 * work for groups we don't know about. 767 */ 768 for (i = 0; i < OSSL_NELEM(nid_to_group); i++) 769 { 770 if (nid_to_group[i].nid == nid) 771 return nid_to_group[i].group_id; 772 } 773 774 return 0; 775 } 776 777 /* 778 * Set *pgroups to the supported groups list and *pgroupslen to 779 * the number of groups supported. 780 */ 781 void tls1_get_supported_groups(SSL_CONNECTION *s, const uint16_t **pgroups, 782 size_t *pgroupslen) 783 { 784 SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s); 785 786 /* For Suite B mode only include P-256, P-384 */ 787 switch (tls1_suiteb(s)) { 788 case SSL_CERT_FLAG_SUITEB_128_LOS: 789 *pgroups = suiteb_curves; 790 *pgroupslen = OSSL_NELEM(suiteb_curves); 791 break; 792 793 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY: 794 *pgroups = suiteb_curves; 795 *pgroupslen = 1; 796 break; 797 798 case SSL_CERT_FLAG_SUITEB_192_LOS: 799 *pgroups = suiteb_curves + 1; 800 *pgroupslen = 1; 801 break; 802 803 default: 804 if (s->ext.supportedgroups == NULL) { 805 *pgroups = sctx->ext.supportedgroups; 806 *pgroupslen = sctx->ext.supportedgroups_len; 807 } else { 808 *pgroups = s->ext.supportedgroups; 809 *pgroupslen = s->ext.supportedgroups_len; 810 } 811 break; 812 } 813 } 814 815 /* 816 * Some comments for the function below: 817 * s->ext.supportedgroups == NULL means legacy syntax (no [*,/,-]) from built-in group array. 818 * In this case, we need to send exactly one key share, which MUST be the first (leftmost) 819 * eligible group from the legacy list. Therefore, we provide the entire list of supported 820 * groups in this case. 821 * 822 * A 'flag' to indicate legacy syntax is created by setting the number of key shares to 1, 823 * but the groupID to 0. 824 * The 'flag' is checked right at the beginning in tls_construct_ctos_key_share and either 825 * the "list of requested key share groups" is used, or the "list of supported groups" in 826 * combination with setting add_only_one = 1 is applied. 827 */ 828 void tls1_get_requested_keyshare_groups(SSL_CONNECTION *s, const uint16_t **pgroups, 829 size_t *pgroupslen) 830 { 831 SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s); 832 833 if (s->ext.supportedgroups == NULL) { 834 *pgroups = sctx->ext.supportedgroups; 835 *pgroupslen = sctx->ext.supportedgroups_len; 836 } else { 837 *pgroups = s->ext.keyshares; 838 *pgroupslen = s->ext.keyshares_len; 839 } 840 } 841 842 void tls1_get_group_tuples(SSL_CONNECTION *s, const size_t **ptuples, 843 size_t *ptupleslen) 844 { 845 SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s); 846 847 if (s->ext.supportedgroups == NULL) { 848 *ptuples = sctx->ext.tuples; 849 *ptupleslen = sctx->ext.tuples_len; 850 } else { 851 *ptuples = s->ext.tuples; 852 *ptupleslen = s->ext.tuples_len; 853 } 854 } 855 856 int tls_valid_group(SSL_CONNECTION *s, uint16_t group_id, 857 int minversion, int maxversion, 858 int isec, int *okfortls13) 859 { 860 const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(SSL_CONNECTION_GET_CTX(s), 861 group_id); 862 int ret; 863 int group_minversion, group_maxversion; 864 865 if (okfortls13 != NULL) 866 *okfortls13 = 0; 867 868 if (ginfo == NULL) 869 return 0; 870 871 group_minversion = SSL_CONNECTION_IS_DTLS(s) ? ginfo->mindtls : ginfo->mintls; 872 group_maxversion = SSL_CONNECTION_IS_DTLS(s) ? ginfo->maxdtls : ginfo->maxtls; 873 874 if (group_minversion < 0 || group_maxversion < 0) 875 return 0; 876 if (group_maxversion == 0) 877 ret = 1; 878 else 879 ret = (ssl_version_cmp(s, minversion, group_maxversion) <= 0); 880 if (group_minversion > 0) 881 ret &= (ssl_version_cmp(s, maxversion, group_minversion) >= 0); 882 883 if (!SSL_CONNECTION_IS_DTLS(s)) { 884 if (ret && okfortls13 != NULL && maxversion == TLS1_3_VERSION) 885 *okfortls13 = (group_maxversion == 0) 886 || (group_maxversion >= TLS1_3_VERSION); 887 } 888 ret &= !isec 889 || strcmp(ginfo->algorithm, "EC") == 0 890 || strcmp(ginfo->algorithm, "X25519") == 0 891 || strcmp(ginfo->algorithm, "X448") == 0; 892 893 return ret; 894 } 895 896 /* See if group is allowed by security callback */ 897 int tls_group_allowed(SSL_CONNECTION *s, uint16_t group, int op) 898 { 899 const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(SSL_CONNECTION_GET_CTX(s), 900 group); 901 unsigned char gtmp[2]; 902 903 if (ginfo == NULL) 904 return 0; 905 906 gtmp[0] = group >> 8; 907 gtmp[1] = group & 0xff; 908 return ssl_security(s, op, ginfo->secbits, 909 tls1_group_id2nid(ginfo->group_id, 0), (void *)gtmp); 910 } 911 912 /* Return 1 if "id" is in "list" */ 913 static int tls1_in_list(uint16_t id, const uint16_t *list, size_t listlen) 914 { 915 size_t i; 916 for (i = 0; i < listlen; i++) 917 if (list[i] == id) 918 return 1; 919 return 0; 920 } 921 922 typedef struct { 923 TLS_GROUP_INFO *grp; 924 size_t ix; 925 } TLS_GROUP_IX; 926 927 DEFINE_STACK_OF(TLS_GROUP_IX) 928 929 static void free_wrapper(TLS_GROUP_IX *a) 930 { 931 OPENSSL_free(a); 932 } 933 934 static int tls_group_ix_cmp(const TLS_GROUP_IX *const *a, 935 const TLS_GROUP_IX *const *b) 936 { 937 int idcmpab = (*a)->grp->group_id < (*b)->grp->group_id; 938 int idcmpba = (*b)->grp->group_id < (*a)->grp->group_id; 939 int ixcmpab = (*a)->ix < (*b)->ix; 940 int ixcmpba = (*b)->ix < (*a)->ix; 941 942 /* Ascending by group id */ 943 if (idcmpab != idcmpba) 944 return (idcmpba - idcmpab); 945 /* Ascending by original appearance index */ 946 return ixcmpba - ixcmpab; 947 } 948 949 int tls1_get0_implemented_groups(int min_proto_version, int max_proto_version, 950 TLS_GROUP_INFO *grps, size_t num, long all, 951 STACK_OF(OPENSSL_CSTRING) *out) 952 { 953 STACK_OF(TLS_GROUP_IX) *collect = NULL; 954 TLS_GROUP_IX *gix; 955 uint16_t id = 0; 956 int ret = 0; 957 size_t ix; 958 959 if (grps == NULL || out == NULL) 960 return 0; 961 if ((collect = sk_TLS_GROUP_IX_new(tls_group_ix_cmp)) == NULL) 962 return 0; 963 for (ix = 0; ix < num; ++ix, ++grps) { 964 if (grps->mintls > 0 && max_proto_version > 0 965 && grps->mintls > max_proto_version) 966 continue; 967 if (grps->maxtls > 0 && min_proto_version > 0 968 && grps->maxtls < min_proto_version) 969 continue; 970 971 if ((gix = OPENSSL_malloc(sizeof(*gix))) == NULL) 972 goto end; 973 gix->grp = grps; 974 gix->ix = ix; 975 if (sk_TLS_GROUP_IX_push(collect, gix) <= 0) { 976 OPENSSL_free(gix); 977 goto end; 978 } 979 } 980 981 sk_TLS_GROUP_IX_sort(collect); 982 num = sk_TLS_GROUP_IX_num(collect); 983 for (ix = 0; ix < num; ++ix) { 984 gix = sk_TLS_GROUP_IX_value(collect, ix); 985 if (!all && gix->grp->group_id == id) 986 continue; 987 id = gix->grp->group_id; 988 if (sk_OPENSSL_CSTRING_push(out, gix->grp->tlsname) <= 0) 989 goto end; 990 } 991 ret = 1; 992 993 end: 994 sk_TLS_GROUP_IX_pop_free(collect, free_wrapper); 995 return ret; 996 } 997 998 /*- 999 * For nmatch >= 0, return the id of the |nmatch|th shared group or 0 1000 * if there is no match. 1001 * For nmatch == -1, return number of matches 1002 * For nmatch == -2, return the id of the group to use for 1003 * a tmp key, or 0 if there is no match. 1004 */ 1005 uint16_t tls1_shared_group(SSL_CONNECTION *s, int nmatch) 1006 { 1007 const uint16_t *pref, *supp; 1008 size_t num_pref, num_supp, i; 1009 int k; 1010 SSL_CTX *ctx = SSL_CONNECTION_GET_CTX(s); 1011 1012 /* Can't do anything on client side */ 1013 if (s->server == 0) 1014 return 0; 1015 if (nmatch == -2) { 1016 if (tls1_suiteb(s)) { 1017 /* 1018 * For Suite B ciphersuite determines curve: we already know 1019 * these are acceptable due to previous checks. 1020 */ 1021 unsigned long cid = s->s3.tmp.new_cipher->id; 1022 1023 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) 1024 return OSSL_TLS_GROUP_ID_secp256r1; 1025 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) 1026 return OSSL_TLS_GROUP_ID_secp384r1; 1027 /* Should never happen */ 1028 return 0; 1029 } 1030 /* If not Suite B just return first preference shared curve */ 1031 nmatch = 0; 1032 } 1033 /* 1034 * If server preference set, our groups are the preference order 1035 * otherwise peer decides. 1036 */ 1037 if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) { 1038 tls1_get_supported_groups(s, &pref, &num_pref); 1039 tls1_get_peer_groups(s, &supp, &num_supp); 1040 } else { 1041 tls1_get_peer_groups(s, &pref, &num_pref); 1042 tls1_get_supported_groups(s, &supp, &num_supp); 1043 } 1044 1045 for (k = 0, i = 0; i < num_pref; i++) { 1046 uint16_t id = pref[i]; 1047 const TLS_GROUP_INFO *inf; 1048 int minversion, maxversion; 1049 1050 if (!tls1_in_list(id, supp, num_supp) 1051 || !tls_group_allowed(s, id, SSL_SECOP_CURVE_SHARED)) 1052 continue; 1053 inf = tls1_group_id_lookup(ctx, id); 1054 if (!ossl_assert(inf != NULL)) 1055 return 0; 1056 1057 minversion = SSL_CONNECTION_IS_DTLS(s) 1058 ? inf->mindtls : inf->mintls; 1059 maxversion = SSL_CONNECTION_IS_DTLS(s) 1060 ? inf->maxdtls : inf->maxtls; 1061 if (maxversion == -1) 1062 continue; 1063 if ((minversion != 0 && ssl_version_cmp(s, s->version, minversion) < 0) 1064 || (maxversion != 0 1065 && ssl_version_cmp(s, s->version, maxversion) > 0)) 1066 continue; 1067 1068 if (nmatch == k) 1069 return id; 1070 k++; 1071 } 1072 if (nmatch == -1) 1073 return k; 1074 /* Out of range (nmatch > k). */ 1075 return 0; 1076 } 1077 1078 int tls1_set_groups(uint16_t **grpext, size_t *grpextlen, 1079 uint16_t **ksext, size_t *ksextlen, 1080 size_t **tplext, size_t *tplextlen, 1081 int *groups, size_t ngroups) 1082 { 1083 uint16_t *glist = NULL, *kslist = NULL; 1084 size_t *tpllist = NULL; 1085 size_t i; 1086 /* 1087 * Bitmap of groups included to detect duplicates: two variables are added 1088 * to detect duplicates as some values are more than 32. 1089 */ 1090 unsigned long *dup_list = NULL; 1091 unsigned long dup_list_egrp = 0; 1092 unsigned long dup_list_dhgrp = 0; 1093 1094 if (ngroups == 0) { 1095 ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH); 1096 return 0; 1097 } 1098 if ((glist = OPENSSL_malloc(ngroups * sizeof(*glist))) == NULL) 1099 goto err; 1100 if ((kslist = OPENSSL_malloc(1 * sizeof(*kslist))) == NULL) 1101 goto err; 1102 if ((tpllist = OPENSSL_malloc(1 * sizeof(*tpllist))) == NULL) 1103 goto err; 1104 for (i = 0; i < ngroups; i++) { 1105 unsigned long idmask; 1106 uint16_t id; 1107 id = tls1_nid2group_id(groups[i]); 1108 if ((id & 0x00FF) >= (sizeof(unsigned long) * 8)) 1109 goto err; 1110 idmask = 1L << (id & 0x00FF); 1111 dup_list = (id < 0x100) ? &dup_list_egrp : &dup_list_dhgrp; 1112 if (!id || ((*dup_list) & idmask)) 1113 goto err; 1114 *dup_list |= idmask; 1115 glist[i] = id; 1116 } 1117 OPENSSL_free(*grpext); 1118 OPENSSL_free(*ksext); 1119 OPENSSL_free(*tplext); 1120 *grpext = glist; 1121 *grpextlen = ngroups; 1122 kslist[0] = glist[0]; 1123 *ksext = kslist; 1124 *ksextlen = 1; 1125 tpllist[0] = ngroups; 1126 *tplext = tpllist; 1127 *tplextlen = 1; 1128 return 1; 1129 err: 1130 OPENSSL_free(glist); 1131 OPENSSL_free(kslist); 1132 OPENSSL_free(tpllist); 1133 return 0; 1134 } 1135 1136 /* 1137 * Definition of DEFAULT[_XYZ] pseudo group names. 1138 * A pseudo group name is actually a full list of groups, including prefixes 1139 * and or tuple delimiters. It can be hierarchically defined (for potential future use). 1140 * IMPORTANT REMARK: For ease of use, in the built-in lists of groups, unknown groups or 1141 * groups not backed by a provider will always silently be ignored, even without '?' prefix 1142 */ 1143 typedef struct { 1144 const char *list_name; /* The name of this pseudo group */ 1145 const char *group_string; /* The group string of this pseudo group */ 1146 } default_group_string_st; /* (can include '?', '*'. '-', '/' as needed) */ 1147 1148 /* Built-in pseudo group-names must start with a (D or d) */ 1149 static const char *DEFAULT_GROUPNAME_FIRST_CHARACTER = "D"; 1150 1151 /* The list of all built-in pseudo-group-name structures */ 1152 static const default_group_string_st default_group_strings[] = { 1153 {DEFAULT_GROUP_NAME, TLS_DEFAULT_GROUP_LIST}, 1154 {SUITE_B_GROUP_NAME, SUITE_B_GROUP_LIST} 1155 }; 1156 1157 /* 1158 * Some GOST names are not resolved by tls1_group_name2id, 1159 * hence we'll check for those manually 1160 */ 1161 typedef struct { 1162 const char *group_name; 1163 uint16_t groupID; 1164 } name2id_st; 1165 static const name2id_st name2id_arr[] = { 1166 {"GC256A", OSSL_TLS_GROUP_ID_gc256A }, 1167 {"GC256B", OSSL_TLS_GROUP_ID_gc256B }, 1168 {"GC256C", OSSL_TLS_GROUP_ID_gc256C }, 1169 {"GC256D", OSSL_TLS_GROUP_ID_gc256D }, 1170 {"GC512A", OSSL_TLS_GROUP_ID_gc512A }, 1171 {"GC512B", OSSL_TLS_GROUP_ID_gc512B }, 1172 {"GC512C", OSSL_TLS_GROUP_ID_gc512C }, 1173 }; 1174 1175 /* 1176 * Group list management: 1177 * We establish three lists along with their related size counters: 1178 * 1) List of (unique) groups 1179 * 2) List of number of groups per group-priority-tuple 1180 * 3) List of (unique) key share groups 1181 */ 1182 #define GROUPLIST_INCREMENT 32 /* Memory allocation chunk size (64 Bytes chunks ~= cache line) */ 1183 #define GROUP_NAME_BUFFER_LENGTH 64 /* Max length of a group name */ 1184 1185 /* 1186 * Preparation of the prefix used to indicate the desire to send a key share, 1187 * the characters used as separators between groups or tuples of groups, the 1188 * character to indicate that an unknown group should be ignored, and the 1189 * character to indicate that a group should be deleted from a list 1190 */ 1191 #ifndef TUPLE_DELIMITER_CHARACTER 1192 /* The prefix characters to indicate group tuple boundaries */ 1193 # define TUPLE_DELIMITER_CHARACTER '/' 1194 #endif 1195 #ifndef GROUP_DELIMITER_CHARACTER 1196 /* The prefix characters to indicate group tuple boundaries */ 1197 # define GROUP_DELIMITER_CHARACTER ':' 1198 #endif 1199 #ifndef IGNORE_UNKNOWN_GROUP_CHARACTER 1200 /* The prefix character to ignore unknown groups */ 1201 # define IGNORE_UNKNOWN_GROUP_CHARACTER '?' 1202 #endif 1203 #ifndef KEY_SHARE_INDICATOR_CHARACTER 1204 /* The prefix character to trigger a key share addition */ 1205 # define KEY_SHARE_INDICATOR_CHARACTER '*' 1206 #endif 1207 #ifndef REMOVE_GROUP_INDICATOR_CHARACTER 1208 /* The prefix character to trigger a key share removal */ 1209 # define REMOVE_GROUP_INDICATOR_CHARACTER '-' 1210 #endif 1211 static const char prefixes[] = {TUPLE_DELIMITER_CHARACTER, 1212 GROUP_DELIMITER_CHARACTER, 1213 IGNORE_UNKNOWN_GROUP_CHARACTER, 1214 KEY_SHARE_INDICATOR_CHARACTER, 1215 REMOVE_GROUP_INDICATOR_CHARACTER, 1216 '\0'}; 1217 1218 /* 1219 * High-level description of how group strings are analyzed: 1220 * A first call back function (tuple_cb) is used to process group tuples, and a 1221 * second callback function (gid_cb) is used to process the groups inside a tuple. 1222 * Those callback functions are (indirectly) called by CONF_parse_list with 1223 * different separators (nominally ':' or '/'), a variable based on gid_cb_st 1224 * is used to keep track of the parsing results between the various calls 1225 */ 1226 1227 typedef struct { 1228 SSL_CTX *ctx; 1229 /* Variables to hold the three lists (groups, requested keyshares, tuple structure) */ 1230 size_t gidmax; /* The memory allocation chunk size for the group IDs */ 1231 size_t gidcnt; /* Number of groups */ 1232 uint16_t *gid_arr; /* The IDs of the supported groups (flat list) */ 1233 size_t tplmax; /* The memory allocation chunk size for the tuple counters */ 1234 size_t tplcnt; /* Number of tuples */ 1235 size_t *tuplcnt_arr; /* The number of groups inside a tuple */ 1236 size_t ksidmax; /* The memory allocation chunk size */ 1237 size_t ksidcnt; /* Number of key shares */ 1238 uint16_t *ksid_arr; /* The IDs of the key share groups (flat list) */ 1239 /* Variable to keep state between execution of callback or helper functions */ 1240 size_t tuple_mode; /* Keeps track whether tuple_cb called from 'the top' or from gid_cb */ 1241 int ignore_unknown_default; /* Flag such that unknown groups for DEFAULT[_XYZ] are ignored */ 1242 } gid_cb_st; 1243 1244 /* Forward declaration of tuple callback function */ 1245 static int tuple_cb(const char *tuple, int len, void *arg); 1246 1247 /* 1248 * Extract and process the individual groups (and their prefixes if present) 1249 * present in a tuple. Note: The argument 'elem' is a NON-\0-terminated string 1250 * and must be appended by a \0 if used as \0-terminated string 1251 */ 1252 static int gid_cb(const char *elem, int len, void *arg) 1253 { 1254 gid_cb_st *garg = arg; 1255 size_t i, j, k; 1256 uint16_t gid = 0; 1257 int found_group = 0; 1258 char etmp[GROUP_NAME_BUFFER_LENGTH]; 1259 int retval = 1; /* We assume success */ 1260 char *current_prefix; 1261 int ignore_unknown = 0; 1262 int add_keyshare = 0; 1263 int remove_group = 0; 1264 size_t restored_prefix_index = 0; 1265 char *restored_default_group_string; 1266 int continue_while_loop = 1; 1267 1268 /* Sanity checks */ 1269 if (garg == NULL || elem == NULL || len <= 0) { 1270 ERR_raise(ERR_LIB_SSL, SSL_R_UNSUPPORTED_CONFIG_VALUE); 1271 return 0; 1272 } 1273 1274 /* Check the possible prefixes (remark: Leading and trailing spaces already cleared) */ 1275 while (continue_while_loop && len > 0 1276 && ((current_prefix = strchr(prefixes, elem[0])) != NULL 1277 || OPENSSL_strncasecmp(current_prefix = (char *)DEFAULT_GROUPNAME_FIRST_CHARACTER, elem, 1) == 0)) { 1278 1279 switch (*current_prefix) { 1280 case TUPLE_DELIMITER_CHARACTER: 1281 /* tuple delimiter not allowed here -> syntax error */ 1282 return -1; 1283 break; 1284 case GROUP_DELIMITER_CHARACTER: 1285 return -1; /* Not a valid prefix for a single group name-> syntax error */ 1286 break; 1287 case KEY_SHARE_INDICATOR_CHARACTER: 1288 if (add_keyshare) 1289 return -1; /* Only single key share prefix allowed -> syntax error */ 1290 add_keyshare = 1; 1291 ++elem; 1292 --len; 1293 break; 1294 case REMOVE_GROUP_INDICATOR_CHARACTER: 1295 if (remove_group) 1296 return -1; /* Only single remove group prefix allowed -> syntax error */ 1297 remove_group = 1; 1298 ++elem; 1299 --len; 1300 break; 1301 case IGNORE_UNKNOWN_GROUP_CHARACTER: 1302 if (ignore_unknown) 1303 return -1; /* Only single ? allowed -> syntax error */ 1304 ignore_unknown = 1; 1305 ++elem; 1306 --len; 1307 break; 1308 default: 1309 /* 1310 * Check whether a DEFAULT[_XYZ] 'pseudo group' (= a built-in 1311 * list of groups) should be added 1312 */ 1313 for (i = 0; i < OSSL_NELEM(default_group_strings); i++) { 1314 if ((size_t)len == (strlen(default_group_strings[i].list_name)) 1315 && OPENSSL_strncasecmp(default_group_strings[i].list_name, elem, len) == 0) { 1316 /* 1317 * We're asked to insert an entire list of groups from a 1318 * DEFAULT[_XYZ] 'pseudo group' which we do by 1319 * recursively calling this function (indirectly via 1320 * CONF_parse_list and tuple_cb); essentially, we treat a DEFAULT 1321 * group string like a tuple which is appended to the current tuple 1322 * rather then starting a new tuple. Variable tuple_mode is the flag which 1323 * controls append tuple vs start new tuple. 1324 */ 1325 1326 if (ignore_unknown || remove_group) 1327 return -1; /* removal or ignore not allowed here -> syntax error */ 1328 1329 /* 1330 * First, we restore any keyshare prefix in a new zero-terminated string 1331 * (if not already present) 1332 */ 1333 restored_default_group_string = OPENSSL_malloc((1 /* max prefix length */ + 1334 strlen(default_group_strings[i].group_string) + 1335 1 /* \0 */) * sizeof(char)); 1336 if (restored_default_group_string == NULL) 1337 return 0; 1338 if (add_keyshare 1339 /* Remark: we tolerate a duplicated keyshare indicator here */ 1340 && default_group_strings[i].group_string[0] 1341 != KEY_SHARE_INDICATOR_CHARACTER) 1342 restored_default_group_string[restored_prefix_index++] = 1343 KEY_SHARE_INDICATOR_CHARACTER; 1344 1345 memcpy(restored_default_group_string + restored_prefix_index, 1346 default_group_strings[i].group_string, 1347 strlen(default_group_strings[i].group_string)); 1348 restored_default_group_string[strlen(default_group_strings[i].group_string) + 1349 restored_prefix_index] = '\0'; 1350 /* We execute the recursive call */ 1351 garg->ignore_unknown_default = 1; /* We ignore unknown groups for DEFAULT_XYZ */ 1352 /* we enforce group mode (= append tuple) for DEFAULT_XYZ group lists */ 1353 garg->tuple_mode = 0; 1354 /* We use the tuple_cb callback to process the pseudo group tuple */ 1355 retval = CONF_parse_list(restored_default_group_string, 1356 TUPLE_DELIMITER_CHARACTER, 1, tuple_cb, garg); 1357 garg->tuple_mode = 1; /* next call to tuple_cb will again start new tuple */ 1358 garg->ignore_unknown_default = 0; /* reset to original value */ 1359 /* We don't need the \0-terminated string anymore */ 1360 OPENSSL_free(restored_default_group_string); 1361 1362 return retval; 1363 } 1364 } 1365 /* 1366 * If we reached this point, a group name started with a 'd' or 'D', but no request 1367 * for a DEFAULT[_XYZ] 'pseudo group' was detected, hence processing of the group 1368 * name can continue as usual (= the while loop checking prefixes can end) 1369 */ 1370 continue_while_loop = 0; 1371 break; 1372 } 1373 } 1374 1375 if (len == 0) 1376 return -1; /* Seems we have prefxes without a group name -> syntax error */ 1377 1378 if (garg->ignore_unknown_default == 1) /* Always ignore unknown groups for DEFAULT[_XYZ] */ 1379 ignore_unknown = 1; 1380 1381 /* Memory management in case more groups are present compared to initial allocation */ 1382 if (garg->gidcnt == garg->gidmax) { 1383 uint16_t *tmp = 1384 OPENSSL_realloc(garg->gid_arr, 1385 (garg->gidmax + GROUPLIST_INCREMENT) * sizeof(*garg->gid_arr)); 1386 1387 if (tmp == NULL) 1388 return 0; 1389 1390 garg->gidmax += GROUPLIST_INCREMENT; 1391 garg->gid_arr = tmp; 1392 } 1393 /* Memory management for key share groups */ 1394 if (garg->ksidcnt == garg->ksidmax) { 1395 uint16_t *tmp = 1396 OPENSSL_realloc(garg->ksid_arr, 1397 (garg->ksidmax + GROUPLIST_INCREMENT) * sizeof(*garg->ksid_arr)); 1398 1399 if (tmp == NULL) 1400 return 0; 1401 garg->ksidmax += GROUPLIST_INCREMENT; 1402 garg->ksid_arr = tmp; 1403 } 1404 1405 if (len > (int)(sizeof(etmp) - 1)) 1406 return -1; /* group name to long -> syntax error */ 1407 1408 /* 1409 * Prepare addition or removal of a single group by converting 1410 * a group name into its groupID equivalent 1411 */ 1412 1413 /* Create a \0-terminated string and get the gid for this group if possible */ 1414 memcpy(etmp, elem, len); 1415 etmp[len] = 0; 1416 1417 /* Get the groupID */ 1418 gid = tls1_group_name2id(garg->ctx, etmp); 1419 /* 1420 * Handle the case where no valid groupID was returned 1421 * e.g. for an unknown group, which we'd ignore (only) if relevant prefix was set 1422 */ 1423 if (gid == 0) { 1424 /* Is it one of the GOST groups ? */ 1425 for (i = 0; i < OSSL_NELEM(name2id_arr); i++) { 1426 if (OPENSSL_strcasecmp(etmp, name2id_arr[i].group_name) == 0) { 1427 gid = name2id_arr[i].groupID; 1428 break; 1429 } 1430 } 1431 if (gid == 0) { /* still not found */ 1432 /* Unknown group - ignore if ignore_unknown; trigger error otherwise */ 1433 retval = ignore_unknown; 1434 goto done; 1435 } 1436 } 1437 1438 /* Make sure that at least one provider is supporting this groupID */ 1439 found_group = 0; 1440 for (j = 0; j < garg->ctx->group_list_len; j++) 1441 if (garg->ctx->group_list[j].group_id == gid) { 1442 found_group = 1; 1443 break; 1444 } 1445 1446 /* 1447 * No provider supports this group - ignore if 1448 * ignore_unknown; trigger error otherwise 1449 */ 1450 if (found_group == 0) { 1451 retval = ignore_unknown; 1452 goto done; 1453 } 1454 /* Remove group (and keyshare) from anywhere in the list if present, ignore if not present */ 1455 if (remove_group) { 1456 /* Is the current group specified anywhere in the entire list so far? */ 1457 found_group = 0; 1458 for (i = 0; i < garg->gidcnt; i++) 1459 if (garg->gid_arr[i] == gid) { 1460 found_group = 1; 1461 break; 1462 } 1463 /* The group to remove is at position i in the list of (zero indexed) groups */ 1464 if (found_group) { 1465 /* We remove that group from its position (which is at i)... */ 1466 for (j = i; j < (garg->gidcnt - 1); j++) 1467 garg->gid_arr[j] = garg->gid_arr[j + 1]; /* ...shift remaining groups left ... */ 1468 garg->gidcnt--; /* ..and update the book keeping for the number of groups */ 1469 1470 /* 1471 * We also must update the number of groups either in a previous tuple (which we 1472 * must identify and check whether it becomes empty due to the deletion) or in 1473 * the current tuple, pending where the deleted group resides 1474 */ 1475 k = 0; 1476 for (j = 0; j < garg->tplcnt; j++) { 1477 k += garg->tuplcnt_arr[j]; 1478 /* Remark: i is zero-indexed, k is one-indexed */ 1479 if (k > i) { /* remove from one of the previous tuples */ 1480 garg->tuplcnt_arr[j]--; 1481 break; /* We took care not to have group duplicates, hence we can stop here */ 1482 } 1483 } 1484 if (k <= i) /* remove from current tuple */ 1485 garg->tuplcnt_arr[j]--; 1486 1487 /* We also remove the group from the list of keyshares (if present) */ 1488 found_group = 0; 1489 for (i = 0; i < garg->ksidcnt; i++) 1490 if (garg->ksid_arr[i] == gid) { 1491 found_group = 1; 1492 break; 1493 } 1494 if (found_group) { 1495 /* Found, hence we remove that keyshare from its position (which is at i)... */ 1496 for (j = i; j < (garg->ksidcnt - 1); j++) 1497 garg->ksid_arr[j] = garg->ksid_arr[j + 1]; /* shift remaining key shares */ 1498 /* ... and update the book keeping */ 1499 garg->ksidcnt--; 1500 } 1501 } 1502 } else { /* Processing addition of a single new group */ 1503 1504 /* Check for duplicates */ 1505 for (i = 0; i < garg->gidcnt; i++) 1506 if (garg->gid_arr[i] == gid) { 1507 /* Duplicate group anywhere in the list of groups - ignore */ 1508 goto done; 1509 } 1510 1511 /* Add the current group to the 'flat' list of groups */ 1512 garg->gid_arr[garg->gidcnt++] = gid; 1513 /* and update the book keeping for the number of groups in current tuple */ 1514 garg->tuplcnt_arr[garg->tplcnt]++; 1515 1516 /* We memorize if needed that we want to add a key share for the current group */ 1517 if (add_keyshare) 1518 garg->ksid_arr[garg->ksidcnt++] = gid; 1519 } 1520 1521 done: 1522 return retval; 1523 } 1524 1525 /* Extract and process a tuple of groups */ 1526 static int tuple_cb(const char *tuple, int len, void *arg) 1527 { 1528 gid_cb_st *garg = arg; 1529 int retval = 1; /* We assume success */ 1530 char *restored_tuple_string; 1531 1532 /* Sanity checks */ 1533 if (garg == NULL || tuple == NULL || len <= 0) { 1534 ERR_raise(ERR_LIB_SSL, SSL_R_UNSUPPORTED_CONFIG_VALUE); 1535 return 0; 1536 } 1537 1538 /* Memory management for tuples */ 1539 if (garg->tplcnt == garg->tplmax) { 1540 size_t *tmp = 1541 OPENSSL_realloc(garg->tuplcnt_arr, 1542 (garg->tplmax + GROUPLIST_INCREMENT) * sizeof(*garg->tuplcnt_arr)); 1543 1544 if (tmp == NULL) 1545 return 0; 1546 garg->tplmax += GROUPLIST_INCREMENT; 1547 garg->tuplcnt_arr = tmp; 1548 } 1549 1550 /* Convert to \0-terminated string */ 1551 restored_tuple_string = OPENSSL_malloc((len + 1 /* \0 */) * sizeof(char)); 1552 if (restored_tuple_string == NULL) 1553 return 0; 1554 memcpy(restored_tuple_string, tuple, len); 1555 restored_tuple_string[len] = '\0'; 1556 1557 /* Analyze group list of this tuple */ 1558 retval = CONF_parse_list(restored_tuple_string, GROUP_DELIMITER_CHARACTER, 1, gid_cb, arg); 1559 1560 /* We don't need the \o-terminated string anymore */ 1561 OPENSSL_free(restored_tuple_string); 1562 1563 if (garg->tuplcnt_arr[garg->tplcnt] > 0) { /* Some valid groups are present in current tuple... */ 1564 if (garg->tuple_mode) { 1565 /* We 'close' the tuple */ 1566 garg->tplcnt++; 1567 garg->tuplcnt_arr[garg->tplcnt] = 0; /* Next tuple is initialized to be empty */ 1568 garg->tuple_mode = 1; /* next call will start a tuple (unless overridden in gid_cb) */ 1569 } 1570 } 1571 1572 return retval; 1573 } 1574 1575 /* 1576 * Set groups and prepare generation of keyshares based on a string of groupnames, 1577 * names separated by the group or the tuple delimiter, with per-group prefixes to 1578 * (1) add a key share for this group, (2) ignore the group if unkown to the current 1579 * context, (3) delete a previous occurrence of the group in the current tuple. 1580 * 1581 * The list parsing is done in two hierachical steps: The top-level step extracts the 1582 * string of a tuple using tuple_cb, while the next lower step uses gid_cb to 1583 * parse and process the groups inside a tuple 1584 */ 1585 int tls1_set_groups_list(SSL_CTX *ctx, 1586 uint16_t **grpext, size_t *grpextlen, 1587 uint16_t **ksext, size_t *ksextlen, 1588 size_t **tplext, size_t *tplextlen, 1589 const char *str) 1590 { 1591 size_t i = 0, j; 1592 int ret = 0, parse_ret = 0; 1593 gid_cb_st gcb; 1594 1595 /* Sanity check */ 1596 if (ctx == NULL) { 1597 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_NULL_PARAMETER); 1598 return 0; 1599 } 1600 1601 memset(&gcb, 0, sizeof(gcb)); 1602 gcb.tuple_mode = 1; /* We prepare to collect the first tuple */ 1603 gcb.ignore_unknown_default = 0; 1604 gcb.gidmax = GROUPLIST_INCREMENT; 1605 gcb.tplmax = GROUPLIST_INCREMENT; 1606 gcb.ksidmax = GROUPLIST_INCREMENT; 1607 gcb.ctx = ctx; 1608 1609 /* Prepare initial chunks of memory for groups, tuples and keyshares groupIDs */ 1610 gcb.gid_arr = OPENSSL_malloc(gcb.gidmax * sizeof(*gcb.gid_arr)); 1611 if (gcb.gid_arr == NULL) 1612 goto end; 1613 gcb.tuplcnt_arr = OPENSSL_malloc(gcb.tplmax * sizeof(*gcb.tuplcnt_arr)); 1614 if (gcb.tuplcnt_arr == NULL) 1615 goto end; 1616 gcb.tuplcnt_arr[0] = 0; 1617 gcb.ksid_arr = OPENSSL_malloc(gcb.ksidmax * sizeof(*gcb.ksid_arr)); 1618 if (gcb.ksid_arr == NULL) 1619 goto end; 1620 1621 while (str[0] != '\0' && isspace((unsigned char)*str)) 1622 str++; 1623 if (str[0] == '\0') 1624 goto empty_list; 1625 1626 /* 1627 * Start the (potentially recursive) tuple processing by calling CONF_parse_list 1628 * with the TUPLE_DELIMITER_CHARACTER (which will call tuple_cb after cleaning spaces) 1629 */ 1630 parse_ret = CONF_parse_list(str, TUPLE_DELIMITER_CHARACTER, 1, tuple_cb, &gcb); 1631 1632 if (parse_ret == 0) 1633 goto end; 1634 if (parse_ret == -1) { 1635 ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT, 1636 "Syntax error in '%s'", str); 1637 goto end; 1638 } 1639 1640 /* 1641 * We check whether a tuple was completly emptied by using "-" prefix 1642 * excessively, in which case we remove the tuple 1643 */ 1644 for (i = j = 0; j < gcb.tplcnt; j++) { 1645 if (gcb.tuplcnt_arr[j] == 0) 1646 continue; 1647 /* If there's a gap, move to first unfilled slot */ 1648 if (j == i) 1649 ++i; 1650 else 1651 gcb.tuplcnt_arr[i++] = gcb.tuplcnt_arr[j]; 1652 } 1653 gcb.tplcnt = i; 1654 1655 if (gcb.ksidcnt > OPENSSL_CLIENT_MAX_KEY_SHARES) { 1656 ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT, 1657 "To many keyshares requested in '%s' (max = %d)", 1658 str, OPENSSL_CLIENT_MAX_KEY_SHARES); 1659 goto end; 1660 } 1661 1662 /* 1663 * For backward compatibility we let the rest of the code know that a key share 1664 * for the first valid group should be added if no "*" prefix was used anywhere 1665 */ 1666 if (gcb.gidcnt > 0 && gcb.ksidcnt == 0) { 1667 /* 1668 * No key share group prefix character was used, hence we indicate that a single 1669 * key share should be sent and flag that it should come from the supported_groups list 1670 */ 1671 gcb.ksidcnt = 1; 1672 gcb.ksid_arr[0] = 0; 1673 } 1674 1675 empty_list: 1676 /* 1677 * A call to tls1_set_groups_list with any of the args (other than ctx) set 1678 * to NULL only does a syntax check, hence we're done here and report success 1679 */ 1680 if (grpext == NULL || ksext == NULL || tplext == NULL || 1681 grpextlen == NULL || ksextlen == NULL || tplextlen == NULL) { 1682 ret = 1; 1683 goto end; 1684 } 1685 1686 /* 1687 * tuple_cb and gid_cb combo ensures there are no duplicates or unknown groups so we 1688 * can just go ahead and set the results (after diposing the existing) 1689 */ 1690 OPENSSL_free(*grpext); 1691 *grpext = gcb.gid_arr; 1692 *grpextlen = gcb.gidcnt; 1693 OPENSSL_free(*ksext); 1694 *ksext = gcb.ksid_arr; 1695 *ksextlen = gcb.ksidcnt; 1696 OPENSSL_free(*tplext); 1697 *tplext = gcb.tuplcnt_arr; 1698 *tplextlen = gcb.tplcnt; 1699 1700 return 1; 1701 1702 end: 1703 OPENSSL_free(gcb.gid_arr); 1704 OPENSSL_free(gcb.tuplcnt_arr); 1705 OPENSSL_free(gcb.ksid_arr); 1706 return ret; 1707 } 1708 1709 /* Check a group id matches preferences */ 1710 int tls1_check_group_id(SSL_CONNECTION *s, uint16_t group_id, 1711 int check_own_groups) 1712 { 1713 const uint16_t *groups; 1714 size_t groups_len; 1715 1716 if (group_id == 0) 1717 return 0; 1718 1719 /* Check for Suite B compliance */ 1720 if (tls1_suiteb(s) && s->s3.tmp.new_cipher != NULL) { 1721 unsigned long cid = s->s3.tmp.new_cipher->id; 1722 1723 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) { 1724 if (group_id != OSSL_TLS_GROUP_ID_secp256r1) 1725 return 0; 1726 } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) { 1727 if (group_id != OSSL_TLS_GROUP_ID_secp384r1) 1728 return 0; 1729 } else { 1730 /* Should never happen */ 1731 return 0; 1732 } 1733 } 1734 1735 if (check_own_groups) { 1736 /* Check group is one of our preferences */ 1737 tls1_get_supported_groups(s, &groups, &groups_len); 1738 if (!tls1_in_list(group_id, groups, groups_len)) 1739 return 0; 1740 } 1741 1742 if (!tls_group_allowed(s, group_id, SSL_SECOP_CURVE_CHECK)) 1743 return 0; 1744 1745 /* For clients, nothing more to check */ 1746 if (!s->server) 1747 return 1; 1748 1749 /* Check group is one of peers preferences */ 1750 tls1_get_peer_groups(s, &groups, &groups_len); 1751 1752 /* 1753 * RFC 4492 does not require the supported elliptic curves extension 1754 * so if it is not sent we can just choose any curve. 1755 * It is invalid to send an empty list in the supported groups 1756 * extension, so groups_len == 0 always means no extension. 1757 */ 1758 if (groups_len == 0) 1759 return 1; 1760 return tls1_in_list(group_id, groups, groups_len); 1761 } 1762 1763 void tls1_get_formatlist(SSL_CONNECTION *s, const unsigned char **pformats, 1764 size_t *num_formats) 1765 { 1766 /* 1767 * If we have a custom point format list use it otherwise use default 1768 */ 1769 if (s->ext.ecpointformats) { 1770 *pformats = s->ext.ecpointformats; 1771 *num_formats = s->ext.ecpointformats_len; 1772 } else { 1773 *pformats = ecformats_default; 1774 /* For Suite B we don't support char2 fields */ 1775 if (tls1_suiteb(s)) 1776 *num_formats = sizeof(ecformats_default) - 1; 1777 else 1778 *num_formats = sizeof(ecformats_default); 1779 } 1780 } 1781 1782 /* Check a key is compatible with compression extension */ 1783 static int tls1_check_pkey_comp(SSL_CONNECTION *s, EVP_PKEY *pkey) 1784 { 1785 unsigned char comp_id; 1786 size_t i; 1787 int point_conv; 1788 1789 /* If not an EC key nothing to check */ 1790 if (!EVP_PKEY_is_a(pkey, "EC")) 1791 return 1; 1792 1793 1794 /* Get required compression id */ 1795 point_conv = EVP_PKEY_get_ec_point_conv_form(pkey); 1796 if (point_conv == 0) 1797 return 0; 1798 if (point_conv == POINT_CONVERSION_UNCOMPRESSED) { 1799 comp_id = TLSEXT_ECPOINTFORMAT_uncompressed; 1800 } else if (SSL_CONNECTION_IS_TLS13(s)) { 1801 /* 1802 * ec_point_formats extension is not used in TLSv1.3 so we ignore 1803 * this check. 1804 */ 1805 return 1; 1806 } else { 1807 int field_type = EVP_PKEY_get_field_type(pkey); 1808 1809 if (field_type == NID_X9_62_prime_field) 1810 comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime; 1811 else if (field_type == NID_X9_62_characteristic_two_field) 1812 comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2; 1813 else 1814 return 0; 1815 } 1816 /* 1817 * If point formats extension present check it, otherwise everything is 1818 * supported (see RFC4492). 1819 */ 1820 if (s->ext.peer_ecpointformats == NULL) 1821 return 1; 1822 1823 for (i = 0; i < s->ext.peer_ecpointformats_len; i++) { 1824 if (s->ext.peer_ecpointformats[i] == comp_id) 1825 return 1; 1826 } 1827 return 0; 1828 } 1829 1830 /* Return group id of a key */ 1831 static uint16_t tls1_get_group_id(EVP_PKEY *pkey) 1832 { 1833 int curve_nid = ssl_get_EC_curve_nid(pkey); 1834 1835 if (curve_nid == NID_undef) 1836 return 0; 1837 return tls1_nid2group_id(curve_nid); 1838 } 1839 1840 /* 1841 * Check cert parameters compatible with extensions: currently just checks EC 1842 * certificates have compatible curves and compression. 1843 */ 1844 static int tls1_check_cert_param(SSL_CONNECTION *s, X509 *x, int check_ee_md) 1845 { 1846 uint16_t group_id; 1847 EVP_PKEY *pkey; 1848 pkey = X509_get0_pubkey(x); 1849 if (pkey == NULL) 1850 return 0; 1851 /* If not EC nothing to do */ 1852 if (!EVP_PKEY_is_a(pkey, "EC")) 1853 return 1; 1854 /* Check compression */ 1855 if (!tls1_check_pkey_comp(s, pkey)) 1856 return 0; 1857 group_id = tls1_get_group_id(pkey); 1858 /* 1859 * For a server we allow the certificate to not be in our list of supported 1860 * groups. 1861 */ 1862 if (!tls1_check_group_id(s, group_id, !s->server)) 1863 return 0; 1864 /* 1865 * Special case for suite B. We *MUST* sign using SHA256+P-256 or 1866 * SHA384+P-384. 1867 */ 1868 if (check_ee_md && tls1_suiteb(s)) { 1869 int check_md; 1870 size_t i; 1871 1872 /* Check to see we have necessary signing algorithm */ 1873 if (group_id == OSSL_TLS_GROUP_ID_secp256r1) 1874 check_md = NID_ecdsa_with_SHA256; 1875 else if (group_id == OSSL_TLS_GROUP_ID_secp384r1) 1876 check_md = NID_ecdsa_with_SHA384; 1877 else 1878 return 0; /* Should never happen */ 1879 for (i = 0; i < s->shared_sigalgslen; i++) { 1880 if (check_md == s->shared_sigalgs[i]->sigandhash) 1881 return 1; 1882 } 1883 return 0; 1884 } 1885 return 1; 1886 } 1887 1888 /* 1889 * tls1_check_ec_tmp_key - Check EC temporary key compatibility 1890 * @s: SSL connection 1891 * @cid: Cipher ID we're considering using 1892 * 1893 * Checks that the kECDHE cipher suite we're considering using 1894 * is compatible with the client extensions. 1895 * 1896 * Returns 0 when the cipher can't be used or 1 when it can. 1897 */ 1898 int tls1_check_ec_tmp_key(SSL_CONNECTION *s, unsigned long cid) 1899 { 1900 /* If not Suite B just need a shared group */ 1901 if (!tls1_suiteb(s)) 1902 return tls1_shared_group(s, 0) != 0; 1903 /* 1904 * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other 1905 * curves permitted. 1906 */ 1907 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) 1908 return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp256r1, 1); 1909 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) 1910 return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp384r1, 1); 1911 1912 return 0; 1913 } 1914 1915 /* Default sigalg schemes */ 1916 static const uint16_t tls12_sigalgs[] = { 1917 TLSEXT_SIGALG_mldsa65, 1918 TLSEXT_SIGALG_mldsa87, 1919 TLSEXT_SIGALG_mldsa44, 1920 TLSEXT_SIGALG_ecdsa_secp256r1_sha256, 1921 TLSEXT_SIGALG_ecdsa_secp384r1_sha384, 1922 TLSEXT_SIGALG_ecdsa_secp521r1_sha512, 1923 TLSEXT_SIGALG_ed25519, 1924 TLSEXT_SIGALG_ed448, 1925 TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256, 1926 TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384, 1927 TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512, 1928 1929 TLSEXT_SIGALG_rsa_pss_pss_sha256, 1930 TLSEXT_SIGALG_rsa_pss_pss_sha384, 1931 TLSEXT_SIGALG_rsa_pss_pss_sha512, 1932 TLSEXT_SIGALG_rsa_pss_rsae_sha256, 1933 TLSEXT_SIGALG_rsa_pss_rsae_sha384, 1934 TLSEXT_SIGALG_rsa_pss_rsae_sha512, 1935 1936 TLSEXT_SIGALG_rsa_pkcs1_sha256, 1937 TLSEXT_SIGALG_rsa_pkcs1_sha384, 1938 TLSEXT_SIGALG_rsa_pkcs1_sha512, 1939 1940 TLSEXT_SIGALG_ecdsa_sha224, 1941 TLSEXT_SIGALG_ecdsa_sha1, 1942 1943 TLSEXT_SIGALG_rsa_pkcs1_sha224, 1944 TLSEXT_SIGALG_rsa_pkcs1_sha1, 1945 1946 TLSEXT_SIGALG_dsa_sha224, 1947 TLSEXT_SIGALG_dsa_sha1, 1948 1949 TLSEXT_SIGALG_dsa_sha256, 1950 TLSEXT_SIGALG_dsa_sha384, 1951 TLSEXT_SIGALG_dsa_sha512, 1952 1953 #ifndef OPENSSL_NO_GOST 1954 TLSEXT_SIGALG_gostr34102012_256_intrinsic, 1955 TLSEXT_SIGALG_gostr34102012_512_intrinsic, 1956 TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256, 1957 TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512, 1958 TLSEXT_SIGALG_gostr34102001_gostr3411, 1959 #endif 1960 }; 1961 1962 1963 static const uint16_t suiteb_sigalgs[] = { 1964 TLSEXT_SIGALG_ecdsa_secp256r1_sha256, 1965 TLSEXT_SIGALG_ecdsa_secp384r1_sha384 1966 }; 1967 1968 static const SIGALG_LOOKUP sigalg_lookup_tbl[] = { 1969 {TLSEXT_SIGALG_ecdsa_secp256r1_sha256_name, 1970 "ECDSA+SHA256", TLSEXT_SIGALG_ecdsa_secp256r1_sha256, 1971 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC, 1972 NID_ecdsa_with_SHA256, NID_X9_62_prime256v1, 1, 0, 1973 TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0}, 1974 {TLSEXT_SIGALG_ecdsa_secp384r1_sha384_name, 1975 "ECDSA+SHA384", TLSEXT_SIGALG_ecdsa_secp384r1_sha384, 1976 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC, 1977 NID_ecdsa_with_SHA384, NID_secp384r1, 1, 0, 1978 TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0}, 1979 {TLSEXT_SIGALG_ecdsa_secp521r1_sha512_name, 1980 "ECDSA+SHA512", TLSEXT_SIGALG_ecdsa_secp521r1_sha512, 1981 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC, 1982 NID_ecdsa_with_SHA512, NID_secp521r1, 1, 0, 1983 TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0}, 1984 1985 {TLSEXT_SIGALG_ed25519_name, 1986 NULL, TLSEXT_SIGALG_ed25519, 1987 NID_undef, -1, EVP_PKEY_ED25519, SSL_PKEY_ED25519, 1988 NID_undef, NID_undef, 1, 0, 1989 TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0}, 1990 {TLSEXT_SIGALG_ed448_name, 1991 NULL, TLSEXT_SIGALG_ed448, 1992 NID_undef, -1, EVP_PKEY_ED448, SSL_PKEY_ED448, 1993 NID_undef, NID_undef, 1, 0, 1994 TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0}, 1995 1996 {TLSEXT_SIGALG_ecdsa_sha224_name, 1997 "ECDSA+SHA224", TLSEXT_SIGALG_ecdsa_sha224, 1998 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_EC, SSL_PKEY_ECC, 1999 NID_ecdsa_with_SHA224, NID_undef, 1, 0, 2000 TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION}, 2001 {TLSEXT_SIGALG_ecdsa_sha1_name, 2002 "ECDSA+SHA1", TLSEXT_SIGALG_ecdsa_sha1, 2003 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC, 2004 NID_ecdsa_with_SHA1, NID_undef, 1, 0, 2005 TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION}, 2006 2007 {TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256_name, 2008 TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256_alias, 2009 TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256, 2010 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC, 2011 NID_ecdsa_with_SHA256, NID_brainpoolP256r1, 1, 0, 2012 TLS1_3_VERSION, 0, -1, -1}, 2013 {TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384_name, 2014 TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384_alias, 2015 TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384, 2016 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC, 2017 NID_ecdsa_with_SHA384, NID_brainpoolP384r1, 1, 0, 2018 TLS1_3_VERSION, 0, -1, -1}, 2019 {TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512_name, 2020 TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512_alias, 2021 TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512, 2022 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC, 2023 NID_ecdsa_with_SHA512, NID_brainpoolP512r1, 1, 0, 2024 TLS1_3_VERSION, 0, -1, -1}, 2025 2026 {TLSEXT_SIGALG_rsa_pss_rsae_sha256_name, 2027 "PSS+SHA256", TLSEXT_SIGALG_rsa_pss_rsae_sha256, 2028 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA, 2029 NID_undef, NID_undef, 1, 0, 2030 TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0}, 2031 {TLSEXT_SIGALG_rsa_pss_rsae_sha384_name, 2032 "PSS+SHA384", TLSEXT_SIGALG_rsa_pss_rsae_sha384, 2033 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA, 2034 NID_undef, NID_undef, 1, 0, 2035 TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0}, 2036 {TLSEXT_SIGALG_rsa_pss_rsae_sha512_name, 2037 "PSS+SHA512", TLSEXT_SIGALG_rsa_pss_rsae_sha512, 2038 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA, 2039 NID_undef, NID_undef, 1, 0, 2040 TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0}, 2041 2042 {TLSEXT_SIGALG_rsa_pss_pss_sha256_name, 2043 NULL, TLSEXT_SIGALG_rsa_pss_pss_sha256, 2044 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN, 2045 NID_undef, NID_undef, 1, 0, 2046 TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0}, 2047 {TLSEXT_SIGALG_rsa_pss_pss_sha384_name, 2048 NULL, TLSEXT_SIGALG_rsa_pss_pss_sha384, 2049 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN, 2050 NID_undef, NID_undef, 1, 0, 2051 TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0}, 2052 {TLSEXT_SIGALG_rsa_pss_pss_sha512_name, 2053 NULL, TLSEXT_SIGALG_rsa_pss_pss_sha512, 2054 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN, 2055 NID_undef, NID_undef, 1, 0, 2056 TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0}, 2057 2058 {TLSEXT_SIGALG_rsa_pkcs1_sha256_name, 2059 "RSA+SHA256", TLSEXT_SIGALG_rsa_pkcs1_sha256, 2060 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA, 2061 NID_sha256WithRSAEncryption, NID_undef, 1, 0, 2062 TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0}, 2063 {TLSEXT_SIGALG_rsa_pkcs1_sha384_name, 2064 "RSA+SHA384", TLSEXT_SIGALG_rsa_pkcs1_sha384, 2065 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA, 2066 NID_sha384WithRSAEncryption, NID_undef, 1, 0, 2067 TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0}, 2068 {TLSEXT_SIGALG_rsa_pkcs1_sha512_name, 2069 "RSA+SHA512", TLSEXT_SIGALG_rsa_pkcs1_sha512, 2070 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA, 2071 NID_sha512WithRSAEncryption, NID_undef, 1, 0, 2072 TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0}, 2073 2074 {TLSEXT_SIGALG_rsa_pkcs1_sha224_name, 2075 "RSA+SHA224", TLSEXT_SIGALG_rsa_pkcs1_sha224, 2076 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA, 2077 NID_sha224WithRSAEncryption, NID_undef, 1, 0, 2078 TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION}, 2079 {TLSEXT_SIGALG_rsa_pkcs1_sha1_name, 2080 "RSA+SHA1", TLSEXT_SIGALG_rsa_pkcs1_sha1, 2081 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA, 2082 NID_sha1WithRSAEncryption, NID_undef, 1, 0, 2083 TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION}, 2084 2085 {TLSEXT_SIGALG_dsa_sha256_name, 2086 "DSA+SHA256", TLSEXT_SIGALG_dsa_sha256, 2087 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN, 2088 NID_dsa_with_SHA256, NID_undef, 1, 0, 2089 TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION}, 2090 {TLSEXT_SIGALG_dsa_sha384_name, 2091 "DSA+SHA384", TLSEXT_SIGALG_dsa_sha384, 2092 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN, 2093 NID_undef, NID_undef, 1, 0, 2094 TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION}, 2095 {TLSEXT_SIGALG_dsa_sha512_name, 2096 "DSA+SHA512", TLSEXT_SIGALG_dsa_sha512, 2097 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN, 2098 NID_undef, NID_undef, 1, 0, 2099 TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION}, 2100 {TLSEXT_SIGALG_dsa_sha224_name, 2101 "DSA+SHA224", TLSEXT_SIGALG_dsa_sha224, 2102 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN, 2103 NID_undef, NID_undef, 1, 0, 2104 TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION}, 2105 {TLSEXT_SIGALG_dsa_sha1_name, 2106 "DSA+SHA1", TLSEXT_SIGALG_dsa_sha1, 2107 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN, 2108 NID_dsaWithSHA1, NID_undef, 1, 0, 2109 TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION}, 2110 2111 #ifndef OPENSSL_NO_GOST 2112 {TLSEXT_SIGALG_gostr34102012_256_intrinsic_alias, /* RFC9189 */ 2113 TLSEXT_SIGALG_gostr34102012_256_intrinsic_name, 2114 TLSEXT_SIGALG_gostr34102012_256_intrinsic, 2115 NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX, 2116 NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256, 2117 NID_undef, NID_undef, 1, 0, 2118 TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION}, 2119 {TLSEXT_SIGALG_gostr34102012_256_intrinsic_alias, /* RFC9189 */ 2120 TLSEXT_SIGALG_gostr34102012_256_intrinsic_name, 2121 TLSEXT_SIGALG_gostr34102012_512_intrinsic, 2122 NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX, 2123 NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512, 2124 NID_undef, NID_undef, 1, 0, 2125 TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION}, 2126 2127 {TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256_name, 2128 NULL, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256, 2129 NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX, 2130 NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256, 2131 NID_undef, NID_undef, 1, 0, 2132 TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION}, 2133 {TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512_name, 2134 NULL, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512, 2135 NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX, 2136 NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512, 2137 NID_undef, NID_undef, 1, 0, 2138 TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION}, 2139 {TLSEXT_SIGALG_gostr34102001_gostr3411_name, 2140 NULL, TLSEXT_SIGALG_gostr34102001_gostr3411, 2141 NID_id_GostR3411_94, SSL_MD_GOST94_IDX, 2142 NID_id_GostR3410_2001, SSL_PKEY_GOST01, 2143 NID_undef, NID_undef, 1, 0, 2144 TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION}, 2145 #endif 2146 }; 2147 /* Legacy sigalgs for TLS < 1.2 RSA TLS signatures */ 2148 static const SIGALG_LOOKUP legacy_rsa_sigalg = { 2149 "rsa_pkcs1_md5_sha1", NULL, 0, 2150 NID_md5_sha1, SSL_MD_MD5_SHA1_IDX, 2151 EVP_PKEY_RSA, SSL_PKEY_RSA, 2152 NID_undef, NID_undef, 1, 0, 2153 TLS1_VERSION, TLS1_2_VERSION, DTLS1_VERSION, DTLS1_2_VERSION 2154 }; 2155 2156 /* 2157 * Default signature algorithm values used if signature algorithms not present. 2158 * From RFC5246. Note: order must match certificate index order. 2159 */ 2160 static const uint16_t tls_default_sigalg[] = { 2161 TLSEXT_SIGALG_rsa_pkcs1_sha1, /* SSL_PKEY_RSA */ 2162 0, /* SSL_PKEY_RSA_PSS_SIGN */ 2163 TLSEXT_SIGALG_dsa_sha1, /* SSL_PKEY_DSA_SIGN */ 2164 TLSEXT_SIGALG_ecdsa_sha1, /* SSL_PKEY_ECC */ 2165 TLSEXT_SIGALG_gostr34102001_gostr3411, /* SSL_PKEY_GOST01 */ 2166 TLSEXT_SIGALG_gostr34102012_256_intrinsic, /* SSL_PKEY_GOST12_256 */ 2167 TLSEXT_SIGALG_gostr34102012_512_intrinsic, /* SSL_PKEY_GOST12_512 */ 2168 0, /* SSL_PKEY_ED25519 */ 2169 0, /* SSL_PKEY_ED448 */ 2170 }; 2171 2172 int ssl_setup_sigalgs(SSL_CTX *ctx) 2173 { 2174 size_t i, cache_idx, sigalgs_len, enabled; 2175 const SIGALG_LOOKUP *lu; 2176 SIGALG_LOOKUP *cache = NULL; 2177 uint16_t *tls12_sigalgs_list = NULL; 2178 EVP_PKEY *tmpkey = EVP_PKEY_new(); 2179 int istls; 2180 int ret = 0; 2181 2182 if (ctx == NULL) 2183 goto err; 2184 2185 istls = !SSL_CTX_IS_DTLS(ctx); 2186 2187 sigalgs_len = OSSL_NELEM(sigalg_lookup_tbl) + ctx->sigalg_list_len; 2188 2189 cache = OPENSSL_zalloc(sizeof(const SIGALG_LOOKUP) * sigalgs_len); 2190 if (cache == NULL || tmpkey == NULL) 2191 goto err; 2192 2193 tls12_sigalgs_list = OPENSSL_zalloc(sizeof(uint16_t) * sigalgs_len); 2194 if (tls12_sigalgs_list == NULL) 2195 goto err; 2196 2197 ERR_set_mark(); 2198 /* First fill cache and tls12_sigalgs list from legacy algorithm list */ 2199 for (i = 0, lu = sigalg_lookup_tbl; 2200 i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) { 2201 EVP_PKEY_CTX *pctx; 2202 2203 cache[i] = *lu; 2204 2205 /* 2206 * Check hash is available. 2207 * This test is not perfect. A provider could have support 2208 * for a signature scheme, but not a particular hash. However the hash 2209 * could be available from some other loaded provider. In that case it 2210 * could be that the signature is available, and the hash is available 2211 * independently - but not as a combination. We ignore this for now. 2212 */ 2213 if (lu->hash != NID_undef 2214 && ctx->ssl_digest_methods[lu->hash_idx] == NULL) { 2215 cache[i].available = 0; 2216 continue; 2217 } 2218 2219 if (!EVP_PKEY_set_type(tmpkey, lu->sig)) { 2220 cache[i].available = 0; 2221 continue; 2222 } 2223 pctx = EVP_PKEY_CTX_new_from_pkey(ctx->libctx, tmpkey, ctx->propq); 2224 /* If unable to create pctx we assume the sig algorithm is unavailable */ 2225 if (pctx == NULL) 2226 cache[i].available = 0; 2227 EVP_PKEY_CTX_free(pctx); 2228 } 2229 2230 /* Now complete cache and tls12_sigalgs list with provider sig information */ 2231 cache_idx = OSSL_NELEM(sigalg_lookup_tbl); 2232 for (i = 0; i < ctx->sigalg_list_len; i++) { 2233 TLS_SIGALG_INFO si = ctx->sigalg_list[i]; 2234 cache[cache_idx].name = si.name; 2235 cache[cache_idx].name12 = si.sigalg_name; 2236 cache[cache_idx].sigalg = si.code_point; 2237 tls12_sigalgs_list[cache_idx] = si.code_point; 2238 cache[cache_idx].hash = si.hash_name?OBJ_txt2nid(si.hash_name):NID_undef; 2239 cache[cache_idx].hash_idx = ssl_get_md_idx(cache[cache_idx].hash); 2240 cache[cache_idx].sig = OBJ_txt2nid(si.sigalg_name); 2241 cache[cache_idx].sig_idx = i + SSL_PKEY_NUM; 2242 cache[cache_idx].sigandhash = OBJ_txt2nid(si.sigalg_name); 2243 cache[cache_idx].curve = NID_undef; 2244 cache[cache_idx].mintls = TLS1_3_VERSION; 2245 cache[cache_idx].maxtls = TLS1_3_VERSION; 2246 cache[cache_idx].mindtls = -1; 2247 cache[cache_idx].maxdtls = -1; 2248 /* Compatibility with TLS 1.3 is checked on load */ 2249 cache[cache_idx].available = istls; 2250 cache[cache_idx].advertise = 0; 2251 cache_idx++; 2252 } 2253 ERR_pop_to_mark(); 2254 2255 enabled = 0; 2256 for (i = 0; i < OSSL_NELEM(tls12_sigalgs); ++i) { 2257 SIGALG_LOOKUP *ent = cache; 2258 size_t j; 2259 2260 for (j = 0; j < sigalgs_len; ent++, j++) { 2261 if (ent->sigalg != tls12_sigalgs[i]) 2262 continue; 2263 /* Dedup by marking cache entry as default enabled. */ 2264 if (ent->available && !ent->advertise) { 2265 ent->advertise = 1; 2266 tls12_sigalgs_list[enabled++] = tls12_sigalgs[i]; 2267 } 2268 break; 2269 } 2270 } 2271 2272 /* Append any provider sigalgs not yet handled */ 2273 for (i = OSSL_NELEM(sigalg_lookup_tbl); i < sigalgs_len; ++i) { 2274 SIGALG_LOOKUP *ent = &cache[i]; 2275 2276 if (ent->available && !ent->advertise) 2277 tls12_sigalgs_list[enabled++] = ent->sigalg; 2278 } 2279 2280 ctx->sigalg_lookup_cache = cache; 2281 ctx->sigalg_lookup_cache_len = sigalgs_len; 2282 ctx->tls12_sigalgs = tls12_sigalgs_list; 2283 ctx->tls12_sigalgs_len = enabled; 2284 cache = NULL; 2285 tls12_sigalgs_list = NULL; 2286 2287 ret = 1; 2288 err: 2289 OPENSSL_free(cache); 2290 OPENSSL_free(tls12_sigalgs_list); 2291 EVP_PKEY_free(tmpkey); 2292 return ret; 2293 } 2294 2295 #define SIGLEN_BUF_INCREMENT 100 2296 2297 char *SSL_get1_builtin_sigalgs(OSSL_LIB_CTX *libctx) 2298 { 2299 size_t i, maxretlen = SIGLEN_BUF_INCREMENT; 2300 const SIGALG_LOOKUP *lu; 2301 EVP_PKEY *tmpkey = EVP_PKEY_new(); 2302 char *retval = OPENSSL_malloc(maxretlen); 2303 2304 if (retval == NULL) 2305 return NULL; 2306 2307 /* ensure retval string is NUL terminated */ 2308 retval[0] = (char)0; 2309 2310 for (i = 0, lu = sigalg_lookup_tbl; 2311 i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) { 2312 EVP_PKEY_CTX *pctx; 2313 int enabled = 1; 2314 2315 ERR_set_mark(); 2316 /* Check hash is available in some provider. */ 2317 if (lu->hash != NID_undef) { 2318 EVP_MD *hash = EVP_MD_fetch(libctx, OBJ_nid2ln(lu->hash), NULL); 2319 2320 /* If unable to create we assume the hash algorithm is unavailable */ 2321 if (hash == NULL) { 2322 enabled = 0; 2323 ERR_pop_to_mark(); 2324 continue; 2325 } 2326 EVP_MD_free(hash); 2327 } 2328 2329 if (!EVP_PKEY_set_type(tmpkey, lu->sig)) { 2330 enabled = 0; 2331 ERR_pop_to_mark(); 2332 continue; 2333 } 2334 pctx = EVP_PKEY_CTX_new_from_pkey(libctx, tmpkey, NULL); 2335 /* If unable to create pctx we assume the sig algorithm is unavailable */ 2336 if (pctx == NULL) 2337 enabled = 0; 2338 ERR_pop_to_mark(); 2339 EVP_PKEY_CTX_free(pctx); 2340 2341 if (enabled) { 2342 const char *sa = lu->name; 2343 2344 if (sa != NULL) { 2345 if (strlen(sa) + strlen(retval) + 1 >= maxretlen) { 2346 char *tmp; 2347 2348 maxretlen += SIGLEN_BUF_INCREMENT; 2349 tmp = OPENSSL_realloc(retval, maxretlen); 2350 if (tmp == NULL) { 2351 OPENSSL_free(retval); 2352 return NULL; 2353 } 2354 retval = tmp; 2355 } 2356 if (strlen(retval) > 0) 2357 OPENSSL_strlcat(retval, ":", maxretlen); 2358 OPENSSL_strlcat(retval, sa, maxretlen); 2359 } else { 2360 /* lu->name must not be NULL */ 2361 ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR); 2362 } 2363 } 2364 } 2365 2366 EVP_PKEY_free(tmpkey); 2367 return retval; 2368 } 2369 2370 /* Lookup TLS signature algorithm */ 2371 static const SIGALG_LOOKUP *tls1_lookup_sigalg(const SSL_CTX *ctx, 2372 uint16_t sigalg) 2373 { 2374 size_t i; 2375 const SIGALG_LOOKUP *lu = ctx->sigalg_lookup_cache; 2376 2377 for (i = 0; i < ctx->sigalg_lookup_cache_len; lu++, i++) { 2378 if (lu->sigalg == sigalg) { 2379 if (!lu->available) 2380 return NULL; 2381 return lu; 2382 } 2383 } 2384 return NULL; 2385 } 2386 2387 /* Lookup hash: return 0 if invalid or not enabled */ 2388 int tls1_lookup_md(SSL_CTX *ctx, const SIGALG_LOOKUP *lu, const EVP_MD **pmd) 2389 { 2390 const EVP_MD *md; 2391 2392 if (lu == NULL) 2393 return 0; 2394 /* lu->hash == NID_undef means no associated digest */ 2395 if (lu->hash == NID_undef) { 2396 md = NULL; 2397 } else { 2398 md = ssl_md(ctx, lu->hash_idx); 2399 if (md == NULL) 2400 return 0; 2401 } 2402 if (pmd) 2403 *pmd = md; 2404 return 1; 2405 } 2406 2407 /* 2408 * Check if key is large enough to generate RSA-PSS signature. 2409 * 2410 * The key must greater than or equal to 2 * hash length + 2. 2411 * SHA512 has a hash length of 64 bytes, which is incompatible 2412 * with a 128 byte (1024 bit) key. 2413 */ 2414 #define RSA_PSS_MINIMUM_KEY_SIZE(md) (2 * EVP_MD_get_size(md) + 2) 2415 static int rsa_pss_check_min_key_size(SSL_CTX *ctx, const EVP_PKEY *pkey, 2416 const SIGALG_LOOKUP *lu) 2417 { 2418 const EVP_MD *md; 2419 2420 if (pkey == NULL) 2421 return 0; 2422 if (!tls1_lookup_md(ctx, lu, &md) || md == NULL) 2423 return 0; 2424 if (EVP_MD_get_size(md) <= 0) 2425 return 0; 2426 if (EVP_PKEY_get_size(pkey) < RSA_PSS_MINIMUM_KEY_SIZE(md)) 2427 return 0; 2428 return 1; 2429 } 2430 2431 /* 2432 * Returns a signature algorithm when the peer did not send a list of supported 2433 * signature algorithms. The signature algorithm is fixed for the certificate 2434 * type. |idx| is a certificate type index (SSL_PKEY_*). When |idx| is -1 the 2435 * certificate type from |s| will be used. 2436 * Returns the signature algorithm to use, or NULL on error. 2437 */ 2438 static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL_CONNECTION *s, 2439 int idx) 2440 { 2441 if (idx == -1) { 2442 if (s->server) { 2443 size_t i; 2444 2445 /* Work out index corresponding to ciphersuite */ 2446 for (i = 0; i < s->ssl_pkey_num; i++) { 2447 const SSL_CERT_LOOKUP *clu 2448 = ssl_cert_lookup_by_idx(i, SSL_CONNECTION_GET_CTX(s)); 2449 2450 if (clu == NULL) 2451 continue; 2452 if (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) { 2453 idx = i; 2454 break; 2455 } 2456 } 2457 2458 /* 2459 * Some GOST ciphersuites allow more than one signature algorithms 2460 * */ 2461 if (idx == SSL_PKEY_GOST01 && s->s3.tmp.new_cipher->algorithm_auth != SSL_aGOST01) { 2462 int real_idx; 2463 2464 for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST01; 2465 real_idx--) { 2466 if (s->cert->pkeys[real_idx].privatekey != NULL) { 2467 idx = real_idx; 2468 break; 2469 } 2470 } 2471 } 2472 /* 2473 * As both SSL_PKEY_GOST12_512 and SSL_PKEY_GOST12_256 indices can be used 2474 * with new (aGOST12-only) ciphersuites, we should find out which one is available really. 2475 */ 2476 else if (idx == SSL_PKEY_GOST12_256) { 2477 int real_idx; 2478 2479 for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST12_256; 2480 real_idx--) { 2481 if (s->cert->pkeys[real_idx].privatekey != NULL) { 2482 idx = real_idx; 2483 break; 2484 } 2485 } 2486 } 2487 } else { 2488 idx = s->cert->key - s->cert->pkeys; 2489 } 2490 } 2491 if (idx < 0 || idx >= (int)OSSL_NELEM(tls_default_sigalg)) 2492 return NULL; 2493 2494 if (SSL_USE_SIGALGS(s) || idx != SSL_PKEY_RSA) { 2495 const SIGALG_LOOKUP *lu = 2496 tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), 2497 tls_default_sigalg[idx]); 2498 2499 if (lu == NULL) 2500 return NULL; 2501 if (!tls1_lookup_md(SSL_CONNECTION_GET_CTX(s), lu, NULL)) 2502 return NULL; 2503 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu)) 2504 return NULL; 2505 return lu; 2506 } 2507 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, &legacy_rsa_sigalg)) 2508 return NULL; 2509 return &legacy_rsa_sigalg; 2510 } 2511 /* Set peer sigalg based key type */ 2512 int tls1_set_peer_legacy_sigalg(SSL_CONNECTION *s, const EVP_PKEY *pkey) 2513 { 2514 size_t idx; 2515 const SIGALG_LOOKUP *lu; 2516 2517 if (ssl_cert_lookup_by_pkey(pkey, &idx, SSL_CONNECTION_GET_CTX(s)) == NULL) 2518 return 0; 2519 lu = tls1_get_legacy_sigalg(s, idx); 2520 if (lu == NULL) 2521 return 0; 2522 s->s3.tmp.peer_sigalg = lu; 2523 return 1; 2524 } 2525 2526 size_t tls12_get_psigalgs(SSL_CONNECTION *s, int sent, const uint16_t **psigs) 2527 { 2528 /* 2529 * If Suite B mode use Suite B sigalgs only, ignore any other 2530 * preferences. 2531 */ 2532 switch (tls1_suiteb(s)) { 2533 case SSL_CERT_FLAG_SUITEB_128_LOS: 2534 *psigs = suiteb_sigalgs; 2535 return OSSL_NELEM(suiteb_sigalgs); 2536 2537 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY: 2538 *psigs = suiteb_sigalgs; 2539 return 1; 2540 2541 case SSL_CERT_FLAG_SUITEB_192_LOS: 2542 *psigs = suiteb_sigalgs + 1; 2543 return 1; 2544 } 2545 /* 2546 * We use client_sigalgs (if not NULL) if we're a server 2547 * and sending a certificate request or if we're a client and 2548 * determining which shared algorithm to use. 2549 */ 2550 if ((s->server == sent) && s->cert->client_sigalgs != NULL) { 2551 *psigs = s->cert->client_sigalgs; 2552 return s->cert->client_sigalgslen; 2553 } else if (s->cert->conf_sigalgs) { 2554 *psigs = s->cert->conf_sigalgs; 2555 return s->cert->conf_sigalgslen; 2556 } else { 2557 *psigs = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs; 2558 return SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len; 2559 } 2560 } 2561 2562 /* 2563 * Called by servers only. Checks that we have a sig alg that supports the 2564 * specified EC curve. 2565 */ 2566 int tls_check_sigalg_curve(const SSL_CONNECTION *s, int curve) 2567 { 2568 const uint16_t *sigs; 2569 size_t siglen, i; 2570 2571 if (s->cert->conf_sigalgs) { 2572 sigs = s->cert->conf_sigalgs; 2573 siglen = s->cert->conf_sigalgslen; 2574 } else { 2575 sigs = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs; 2576 siglen = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len; 2577 } 2578 2579 for (i = 0; i < siglen; i++) { 2580 const SIGALG_LOOKUP *lu = 2581 tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), sigs[i]); 2582 2583 if (lu == NULL) 2584 continue; 2585 if (lu->sig == EVP_PKEY_EC 2586 && lu->curve != NID_undef 2587 && curve == lu->curve) 2588 return 1; 2589 } 2590 2591 return 0; 2592 } 2593 2594 /* 2595 * Return the number of security bits for the signature algorithm, or 0 on 2596 * error. 2597 */ 2598 static int sigalg_security_bits(SSL_CTX *ctx, const SIGALG_LOOKUP *lu) 2599 { 2600 const EVP_MD *md = NULL; 2601 int secbits = 0; 2602 2603 if (!tls1_lookup_md(ctx, lu, &md)) 2604 return 0; 2605 if (md != NULL) 2606 { 2607 int md_type = EVP_MD_get_type(md); 2608 2609 /* Security bits: half digest bits */ 2610 secbits = EVP_MD_get_size(md) * 4; 2611 if (secbits <= 0) 2612 return 0; 2613 /* 2614 * SHA1 and MD5 are known to be broken. Reduce security bits so that 2615 * they're no longer accepted at security level 1. The real values don't 2616 * really matter as long as they're lower than 80, which is our 2617 * security level 1. 2618 * https://eprint.iacr.org/2020/014 puts a chosen-prefix attack for 2619 * SHA1 at 2^63.4 and MD5+SHA1 at 2^67.2 2620 * https://documents.epfl.ch/users/l/le/lenstra/public/papers/lat.pdf 2621 * puts a chosen-prefix attack for MD5 at 2^39. 2622 */ 2623 if (md_type == NID_sha1) 2624 secbits = 64; 2625 else if (md_type == NID_md5_sha1) 2626 secbits = 67; 2627 else if (md_type == NID_md5) 2628 secbits = 39; 2629 } else { 2630 /* Values from https://tools.ietf.org/html/rfc8032#section-8.5 */ 2631 if (lu->sigalg == TLSEXT_SIGALG_ed25519) 2632 secbits = 128; 2633 else if (lu->sigalg == TLSEXT_SIGALG_ed448) 2634 secbits = 224; 2635 } 2636 /* 2637 * For provider-based sigalgs we have secbits information available 2638 * in the (provider-loaded) sigalg_list structure 2639 */ 2640 if ((secbits == 0) && (lu->sig_idx >= SSL_PKEY_NUM) 2641 && ((lu->sig_idx - SSL_PKEY_NUM) < (int)ctx->sigalg_list_len)) { 2642 secbits = ctx->sigalg_list[lu->sig_idx - SSL_PKEY_NUM].secbits; 2643 } 2644 return secbits; 2645 } 2646 2647 static int tls_sigalg_compat(SSL_CONNECTION *sc, const SIGALG_LOOKUP *lu) 2648 { 2649 int minversion, maxversion; 2650 int minproto, maxproto; 2651 2652 if (!lu->available) 2653 return 0; 2654 2655 if (SSL_CONNECTION_IS_DTLS(sc)) { 2656 if (sc->ssl.method->version == DTLS_ANY_VERSION) { 2657 minproto = sc->min_proto_version; 2658 maxproto = sc->max_proto_version; 2659 } else { 2660 maxproto = minproto = sc->version; 2661 } 2662 minversion = lu->mindtls; 2663 maxversion = lu->maxdtls; 2664 } else { 2665 if (sc->ssl.method->version == TLS_ANY_VERSION) { 2666 minproto = sc->min_proto_version; 2667 maxproto = sc->max_proto_version; 2668 } else { 2669 maxproto = minproto = sc->version; 2670 } 2671 minversion = lu->mintls; 2672 maxversion = lu->maxtls; 2673 } 2674 if (minversion == -1 || maxversion == -1 2675 || (minversion != 0 && maxproto != 0 2676 && ssl_version_cmp(sc, minversion, maxproto) > 0) 2677 || (maxversion != 0 && minproto != 0 2678 && ssl_version_cmp(sc, maxversion, minproto) < 0) 2679 || !tls12_sigalg_allowed(sc, SSL_SECOP_SIGALG_SUPPORTED, lu)) 2680 return 0; 2681 return 1; 2682 } 2683 2684 /* 2685 * Check signature algorithm is consistent with sent supported signature 2686 * algorithms and if so set relevant digest and signature scheme in 2687 * s. 2688 */ 2689 int tls12_check_peer_sigalg(SSL_CONNECTION *s, uint16_t sig, EVP_PKEY *pkey) 2690 { 2691 const uint16_t *sent_sigs; 2692 const EVP_MD *md = NULL; 2693 char sigalgstr[2]; 2694 size_t sent_sigslen, i, cidx; 2695 int pkeyid = -1; 2696 const SIGALG_LOOKUP *lu; 2697 int secbits = 0; 2698 2699 pkeyid = EVP_PKEY_get_id(pkey); 2700 2701 if (SSL_CONNECTION_IS_TLS13(s)) { 2702 /* Disallow DSA for TLS 1.3 */ 2703 if (pkeyid == EVP_PKEY_DSA) { 2704 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE); 2705 return 0; 2706 } 2707 /* Only allow PSS for TLS 1.3 */ 2708 if (pkeyid == EVP_PKEY_RSA) 2709 pkeyid = EVP_PKEY_RSA_PSS; 2710 } 2711 2712 /* Is this code point available and compatible with the protocol */ 2713 lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), sig); 2714 if (lu == NULL || !tls_sigalg_compat(s, lu)) { 2715 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE); 2716 return 0; 2717 } 2718 2719 /* if this sigalg is loaded, set so far unknown pkeyid to its sig NID */ 2720 if (pkeyid == EVP_PKEY_KEYMGMT) 2721 pkeyid = lu->sig; 2722 2723 /* Should never happen */ 2724 if (pkeyid == -1) { 2725 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE); 2726 return -1; 2727 } 2728 2729 /* 2730 * Check sigalgs is known. Disallow SHA1/SHA224 with TLS 1.3. Check key type 2731 * is consistent with signature: RSA keys can be used for RSA-PSS 2732 */ 2733 if ((SSL_CONNECTION_IS_TLS13(s) 2734 && (lu->hash == NID_sha1 || lu->hash == NID_sha224)) 2735 || (pkeyid != lu->sig 2736 && (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) { 2737 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE); 2738 return 0; 2739 } 2740 /* Check the sigalg is consistent with the key OID */ 2741 if (!ssl_cert_lookup_by_nid( 2742 (pkeyid == EVP_PKEY_RSA_PSS) ? EVP_PKEY_get_id(pkey) : pkeyid, 2743 &cidx, SSL_CONNECTION_GET_CTX(s)) 2744 || lu->sig_idx != (int)cidx) { 2745 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE); 2746 return 0; 2747 } 2748 2749 if (pkeyid == EVP_PKEY_EC) { 2750 2751 /* Check point compression is permitted */ 2752 if (!tls1_check_pkey_comp(s, pkey)) { 2753 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, 2754 SSL_R_ILLEGAL_POINT_COMPRESSION); 2755 return 0; 2756 } 2757 2758 /* For TLS 1.3 or Suite B check curve matches signature algorithm */ 2759 if (SSL_CONNECTION_IS_TLS13(s) || tls1_suiteb(s)) { 2760 int curve = ssl_get_EC_curve_nid(pkey); 2761 2762 if (lu->curve != NID_undef && curve != lu->curve) { 2763 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE); 2764 return 0; 2765 } 2766 } 2767 if (!SSL_CONNECTION_IS_TLS13(s)) { 2768 /* Check curve matches extensions */ 2769 if (!tls1_check_group_id(s, tls1_get_group_id(pkey), 1)) { 2770 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE); 2771 return 0; 2772 } 2773 if (tls1_suiteb(s)) { 2774 /* Check sigalg matches a permissible Suite B value */ 2775 if (sig != TLSEXT_SIGALG_ecdsa_secp256r1_sha256 2776 && sig != TLSEXT_SIGALG_ecdsa_secp384r1_sha384) { 2777 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, 2778 SSL_R_WRONG_SIGNATURE_TYPE); 2779 return 0; 2780 } 2781 } 2782 } 2783 } else if (tls1_suiteb(s)) { 2784 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE); 2785 return 0; 2786 } 2787 2788 /* Check signature matches a type we sent */ 2789 sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs); 2790 for (i = 0; i < sent_sigslen; i++, sent_sigs++) { 2791 if (sig == *sent_sigs) 2792 break; 2793 } 2794 /* Allow fallback to SHA1 if not strict mode */ 2795 if (i == sent_sigslen && (lu->hash != NID_sha1 2796 || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) { 2797 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE); 2798 return 0; 2799 } 2800 if (!tls1_lookup_md(SSL_CONNECTION_GET_CTX(s), lu, &md)) { 2801 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_UNKNOWN_DIGEST); 2802 return 0; 2803 } 2804 /* 2805 * Make sure security callback allows algorithm. For historical 2806 * reasons we have to pass the sigalg as a two byte char array. 2807 */ 2808 sigalgstr[0] = (sig >> 8) & 0xff; 2809 sigalgstr[1] = sig & 0xff; 2810 secbits = sigalg_security_bits(SSL_CONNECTION_GET_CTX(s), lu); 2811 if (secbits == 0 || 2812 !ssl_security(s, SSL_SECOP_SIGALG_CHECK, secbits, 2813 md != NULL ? EVP_MD_get_type(md) : NID_undef, 2814 (void *)sigalgstr)) { 2815 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE); 2816 return 0; 2817 } 2818 /* Store the sigalg the peer uses */ 2819 s->s3.tmp.peer_sigalg = lu; 2820 return 1; 2821 } 2822 2823 int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid) 2824 { 2825 const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s); 2826 2827 if (sc == NULL) 2828 return 0; 2829 2830 if (sc->s3.tmp.peer_sigalg == NULL) 2831 return 0; 2832 *pnid = sc->s3.tmp.peer_sigalg->sig; 2833 return 1; 2834 } 2835 2836 int SSL_get_signature_type_nid(const SSL *s, int *pnid) 2837 { 2838 const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s); 2839 2840 if (sc == NULL) 2841 return 0; 2842 2843 if (sc->s3.tmp.sigalg == NULL) 2844 return 0; 2845 *pnid = sc->s3.tmp.sigalg->sig; 2846 return 1; 2847 } 2848 2849 /* 2850 * Set a mask of disabled algorithms: an algorithm is disabled if it isn't 2851 * supported, doesn't appear in supported signature algorithms, isn't supported 2852 * by the enabled protocol versions or by the security level. 2853 * 2854 * This function should only be used for checking which ciphers are supported 2855 * by the client. 2856 * 2857 * Call ssl_cipher_disabled() to check that it's enabled or not. 2858 */ 2859 int ssl_set_client_disabled(SSL_CONNECTION *s) 2860 { 2861 s->s3.tmp.mask_a = 0; 2862 s->s3.tmp.mask_k = 0; 2863 ssl_set_sig_mask(&s->s3.tmp.mask_a, s, SSL_SECOP_SIGALG_MASK); 2864 if (ssl_get_min_max_version(s, &s->s3.tmp.min_ver, 2865 &s->s3.tmp.max_ver, NULL) != 0) 2866 return 0; 2867 #ifndef OPENSSL_NO_PSK 2868 /* with PSK there must be client callback set */ 2869 if (!s->psk_client_callback) { 2870 s->s3.tmp.mask_a |= SSL_aPSK; 2871 s->s3.tmp.mask_k |= SSL_PSK; 2872 } 2873 #endif /* OPENSSL_NO_PSK */ 2874 #ifndef OPENSSL_NO_SRP 2875 if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) { 2876 s->s3.tmp.mask_a |= SSL_aSRP; 2877 s->s3.tmp.mask_k |= SSL_kSRP; 2878 } 2879 #endif 2880 return 1; 2881 } 2882 2883 /* 2884 * ssl_cipher_disabled - check that a cipher is disabled or not 2885 * @s: SSL connection that you want to use the cipher on 2886 * @c: cipher to check 2887 * @op: Security check that you want to do 2888 * @ecdhe: If set to 1 then TLSv1 ECDHE ciphers are also allowed in SSLv3 2889 * 2890 * Returns 1 when it's disabled, 0 when enabled. 2891 */ 2892 int ssl_cipher_disabled(const SSL_CONNECTION *s, const SSL_CIPHER *c, 2893 int op, int ecdhe) 2894 { 2895 int minversion = SSL_CONNECTION_IS_DTLS(s) ? c->min_dtls : c->min_tls; 2896 int maxversion = SSL_CONNECTION_IS_DTLS(s) ? c->max_dtls : c->max_tls; 2897 2898 if (c->algorithm_mkey & s->s3.tmp.mask_k 2899 || c->algorithm_auth & s->s3.tmp.mask_a) 2900 return 1; 2901 if (s->s3.tmp.max_ver == 0) 2902 return 1; 2903 2904 if (SSL_IS_QUIC_INT_HANDSHAKE(s)) 2905 /* For QUIC, only allow these ciphersuites. */ 2906 switch (SSL_CIPHER_get_id(c)) { 2907 case TLS1_3_CK_AES_128_GCM_SHA256: 2908 case TLS1_3_CK_AES_256_GCM_SHA384: 2909 case TLS1_3_CK_CHACHA20_POLY1305_SHA256: 2910 break; 2911 default: 2912 return 1; 2913 } 2914 2915 /* 2916 * For historical reasons we will allow ECHDE to be selected by a server 2917 * in SSLv3 if we are a client 2918 */ 2919 if (minversion == TLS1_VERSION 2920 && ecdhe 2921 && (c->algorithm_mkey & (SSL_kECDHE | SSL_kECDHEPSK)) != 0) 2922 minversion = SSL3_VERSION; 2923 2924 if (ssl_version_cmp(s, minversion, s->s3.tmp.max_ver) > 0 2925 || ssl_version_cmp(s, maxversion, s->s3.tmp.min_ver) < 0) 2926 return 1; 2927 2928 return !ssl_security(s, op, c->strength_bits, 0, (void *)c); 2929 } 2930 2931 int tls_use_ticket(SSL_CONNECTION *s) 2932 { 2933 if ((s->options & SSL_OP_NO_TICKET)) 2934 return 0; 2935 return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL); 2936 } 2937 2938 int tls1_set_server_sigalgs(SSL_CONNECTION *s) 2939 { 2940 size_t i; 2941 2942 /* Clear any shared signature algorithms */ 2943 OPENSSL_free(s->shared_sigalgs); 2944 s->shared_sigalgs = NULL; 2945 s->shared_sigalgslen = 0; 2946 2947 /* Clear certificate validity flags */ 2948 if (s->s3.tmp.valid_flags) 2949 memset(s->s3.tmp.valid_flags, 0, s->ssl_pkey_num * sizeof(uint32_t)); 2950 else 2951 s->s3.tmp.valid_flags = OPENSSL_zalloc(s->ssl_pkey_num * sizeof(uint32_t)); 2952 if (s->s3.tmp.valid_flags == NULL) 2953 return 0; 2954 /* 2955 * If peer sent no signature algorithms check to see if we support 2956 * the default algorithm for each certificate type 2957 */ 2958 if (s->s3.tmp.peer_cert_sigalgs == NULL 2959 && s->s3.tmp.peer_sigalgs == NULL) { 2960 const uint16_t *sent_sigs; 2961 size_t sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs); 2962 2963 for (i = 0; i < s->ssl_pkey_num; i++) { 2964 const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, i); 2965 size_t j; 2966 2967 if (lu == NULL) 2968 continue; 2969 /* Check default matches a type we sent */ 2970 for (j = 0; j < sent_sigslen; j++) { 2971 if (lu->sigalg == sent_sigs[j]) { 2972 s->s3.tmp.valid_flags[i] = CERT_PKEY_SIGN; 2973 break; 2974 } 2975 } 2976 } 2977 return 1; 2978 } 2979 2980 if (!tls1_process_sigalgs(s)) { 2981 SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); 2982 return 0; 2983 } 2984 if (s->shared_sigalgs != NULL) 2985 return 1; 2986 2987 /* Fatal error if no shared signature algorithms */ 2988 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, 2989 SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS); 2990 return 0; 2991 } 2992 2993 /*- 2994 * Gets the ticket information supplied by the client if any. 2995 * 2996 * hello: The parsed ClientHello data 2997 * ret: (output) on return, if a ticket was decrypted, then this is set to 2998 * point to the resulting session. 2999 */ 3000 SSL_TICKET_STATUS tls_get_ticket_from_client(SSL_CONNECTION *s, 3001 CLIENTHELLO_MSG *hello, 3002 SSL_SESSION **ret) 3003 { 3004 size_t size; 3005 RAW_EXTENSION *ticketext; 3006 3007 *ret = NULL; 3008 s->ext.ticket_expected = 0; 3009 3010 /* 3011 * If tickets disabled or not supported by the protocol version 3012 * (e.g. TLSv1.3) behave as if no ticket present to permit stateful 3013 * resumption. 3014 */ 3015 if (s->version <= SSL3_VERSION || !tls_use_ticket(s)) 3016 return SSL_TICKET_NONE; 3017 3018 ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket]; 3019 if (!ticketext->present) 3020 return SSL_TICKET_NONE; 3021 3022 size = PACKET_remaining(&ticketext->data); 3023 3024 return tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size, 3025 hello->session_id, hello->session_id_len, ret); 3026 } 3027 3028 /*- 3029 * tls_decrypt_ticket attempts to decrypt a session ticket. 3030 * 3031 * If s->tls_session_secret_cb is set and we're not doing TLSv1.3 then we are 3032 * expecting a pre-shared key ciphersuite, in which case we have no use for 3033 * session tickets and one will never be decrypted, nor will 3034 * s->ext.ticket_expected be set to 1. 3035 * 3036 * Side effects: 3037 * Sets s->ext.ticket_expected to 1 if the server will have to issue 3038 * a new session ticket to the client because the client indicated support 3039 * (and s->tls_session_secret_cb is NULL) but the client either doesn't have 3040 * a session ticket or we couldn't use the one it gave us, or if 3041 * s->ctx->ext.ticket_key_cb asked to renew the client's ticket. 3042 * Otherwise, s->ext.ticket_expected is set to 0. 3043 * 3044 * etick: points to the body of the session ticket extension. 3045 * eticklen: the length of the session tickets extension. 3046 * sess_id: points at the session ID. 3047 * sesslen: the length of the session ID. 3048 * psess: (output) on return, if a ticket was decrypted, then this is set to 3049 * point to the resulting session. 3050 */ 3051 SSL_TICKET_STATUS tls_decrypt_ticket(SSL_CONNECTION *s, 3052 const unsigned char *etick, 3053 size_t eticklen, 3054 const unsigned char *sess_id, 3055 size_t sesslen, SSL_SESSION **psess) 3056 { 3057 SSL_SESSION *sess = NULL; 3058 unsigned char *sdec; 3059 const unsigned char *p; 3060 int slen, ivlen, renew_ticket = 0, declen; 3061 SSL_TICKET_STATUS ret = SSL_TICKET_FATAL_ERR_OTHER; 3062 size_t mlen; 3063 unsigned char tick_hmac[EVP_MAX_MD_SIZE]; 3064 SSL_HMAC *hctx = NULL; 3065 EVP_CIPHER_CTX *ctx = NULL; 3066 SSL_CTX *tctx = s->session_ctx; 3067 SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s); 3068 3069 if (eticklen == 0) { 3070 /* 3071 * The client will accept a ticket but doesn't currently have 3072 * one (TLSv1.2 and below), or treated as a fatal error in TLSv1.3 3073 */ 3074 ret = SSL_TICKET_EMPTY; 3075 goto end; 3076 } 3077 if (!SSL_CONNECTION_IS_TLS13(s) && s->ext.session_secret_cb) { 3078 /* 3079 * Indicate that the ticket couldn't be decrypted rather than 3080 * generating the session from ticket now, trigger 3081 * abbreviated handshake based on external mechanism to 3082 * calculate the master secret later. 3083 */ 3084 ret = SSL_TICKET_NO_DECRYPT; 3085 goto end; 3086 } 3087 3088 /* Need at least keyname + iv */ 3089 if (eticklen < TLSEXT_KEYNAME_LENGTH + EVP_MAX_IV_LENGTH) { 3090 ret = SSL_TICKET_NO_DECRYPT; 3091 goto end; 3092 } 3093 3094 /* Initialize session ticket encryption and HMAC contexts */ 3095 hctx = ssl_hmac_new(tctx); 3096 if (hctx == NULL) { 3097 ret = SSL_TICKET_FATAL_ERR_MALLOC; 3098 goto end; 3099 } 3100 ctx = EVP_CIPHER_CTX_new(); 3101 if (ctx == NULL) { 3102 ret = SSL_TICKET_FATAL_ERR_MALLOC; 3103 goto end; 3104 } 3105 #ifndef OPENSSL_NO_DEPRECATED_3_0 3106 if (tctx->ext.ticket_key_evp_cb != NULL || tctx->ext.ticket_key_cb != NULL) 3107 #else 3108 if (tctx->ext.ticket_key_evp_cb != NULL) 3109 #endif 3110 { 3111 unsigned char *nctick = (unsigned char *)etick; 3112 int rv = 0; 3113 3114 if (tctx->ext.ticket_key_evp_cb != NULL) 3115 rv = tctx->ext.ticket_key_evp_cb(SSL_CONNECTION_GET_USER_SSL(s), 3116 nctick, 3117 nctick + TLSEXT_KEYNAME_LENGTH, 3118 ctx, 3119 ssl_hmac_get0_EVP_MAC_CTX(hctx), 3120 0); 3121 #ifndef OPENSSL_NO_DEPRECATED_3_0 3122 else if (tctx->ext.ticket_key_cb != NULL) 3123 /* if 0 is returned, write an empty ticket */ 3124 rv = tctx->ext.ticket_key_cb(SSL_CONNECTION_GET_USER_SSL(s), nctick, 3125 nctick + TLSEXT_KEYNAME_LENGTH, 3126 ctx, ssl_hmac_get0_HMAC_CTX(hctx), 0); 3127 #endif 3128 if (rv < 0) { 3129 ret = SSL_TICKET_FATAL_ERR_OTHER; 3130 goto end; 3131 } 3132 if (rv == 0) { 3133 ret = SSL_TICKET_NO_DECRYPT; 3134 goto end; 3135 } 3136 if (rv == 2) 3137 renew_ticket = 1; 3138 } else { 3139 EVP_CIPHER *aes256cbc = NULL; 3140 3141 /* Check key name matches */ 3142 if (memcmp(etick, tctx->ext.tick_key_name, 3143 TLSEXT_KEYNAME_LENGTH) != 0) { 3144 ret = SSL_TICKET_NO_DECRYPT; 3145 goto end; 3146 } 3147 3148 aes256cbc = EVP_CIPHER_fetch(sctx->libctx, "AES-256-CBC", 3149 sctx->propq); 3150 if (aes256cbc == NULL 3151 || ssl_hmac_init(hctx, tctx->ext.secure->tick_hmac_key, 3152 sizeof(tctx->ext.secure->tick_hmac_key), 3153 "SHA256") <= 0 3154 || EVP_DecryptInit_ex(ctx, aes256cbc, NULL, 3155 tctx->ext.secure->tick_aes_key, 3156 etick + TLSEXT_KEYNAME_LENGTH) <= 0) { 3157 EVP_CIPHER_free(aes256cbc); 3158 ret = SSL_TICKET_FATAL_ERR_OTHER; 3159 goto end; 3160 } 3161 EVP_CIPHER_free(aes256cbc); 3162 if (SSL_CONNECTION_IS_TLS13(s)) 3163 renew_ticket = 1; 3164 } 3165 /* 3166 * Attempt to process session ticket, first conduct sanity and integrity 3167 * checks on ticket. 3168 */ 3169 mlen = ssl_hmac_size(hctx); 3170 if (mlen == 0) { 3171 ret = SSL_TICKET_FATAL_ERR_OTHER; 3172 goto end; 3173 } 3174 3175 ivlen = EVP_CIPHER_CTX_get_iv_length(ctx); 3176 if (ivlen < 0) { 3177 ret = SSL_TICKET_FATAL_ERR_OTHER; 3178 goto end; 3179 } 3180 3181 /* Sanity check ticket length: must exceed keyname + IV + HMAC */ 3182 if (eticklen <= TLSEXT_KEYNAME_LENGTH + ivlen + mlen) { 3183 ret = SSL_TICKET_NO_DECRYPT; 3184 goto end; 3185 } 3186 eticklen -= mlen; 3187 /* Check HMAC of encrypted ticket */ 3188 if (ssl_hmac_update(hctx, etick, eticklen) <= 0 3189 || ssl_hmac_final(hctx, tick_hmac, NULL, sizeof(tick_hmac)) <= 0) { 3190 ret = SSL_TICKET_FATAL_ERR_OTHER; 3191 goto end; 3192 } 3193 3194 if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) { 3195 ret = SSL_TICKET_NO_DECRYPT; 3196 goto end; 3197 } 3198 /* Attempt to decrypt session data */ 3199 /* Move p after IV to start of encrypted ticket, update length */ 3200 p = etick + TLSEXT_KEYNAME_LENGTH + ivlen; 3201 eticklen -= TLSEXT_KEYNAME_LENGTH + ivlen; 3202 sdec = OPENSSL_malloc(eticklen); 3203 if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p, 3204 (int)eticklen) <= 0) { 3205 OPENSSL_free(sdec); 3206 ret = SSL_TICKET_FATAL_ERR_OTHER; 3207 goto end; 3208 } 3209 if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) { 3210 OPENSSL_free(sdec); 3211 ret = SSL_TICKET_NO_DECRYPT; 3212 goto end; 3213 } 3214 slen += declen; 3215 p = sdec; 3216 3217 sess = d2i_SSL_SESSION_ex(NULL, &p, slen, sctx->libctx, sctx->propq); 3218 slen -= p - sdec; 3219 OPENSSL_free(sdec); 3220 if (sess) { 3221 /* Some additional consistency checks */ 3222 if (slen != 0) { 3223 SSL_SESSION_free(sess); 3224 sess = NULL; 3225 ret = SSL_TICKET_NO_DECRYPT; 3226 goto end; 3227 } 3228 /* 3229 * The session ID, if non-empty, is used by some clients to detect 3230 * that the ticket has been accepted. So we copy it to the session 3231 * structure. If it is empty set length to zero as required by 3232 * standard. 3233 */ 3234 if (sesslen) { 3235 memcpy(sess->session_id, sess_id, sesslen); 3236 sess->session_id_length = sesslen; 3237 } 3238 if (renew_ticket) 3239 ret = SSL_TICKET_SUCCESS_RENEW; 3240 else 3241 ret = SSL_TICKET_SUCCESS; 3242 goto end; 3243 } 3244 ERR_clear_error(); 3245 /* 3246 * For session parse failure, indicate that we need to send a new ticket. 3247 */ 3248 ret = SSL_TICKET_NO_DECRYPT; 3249 3250 end: 3251 EVP_CIPHER_CTX_free(ctx); 3252 ssl_hmac_free(hctx); 3253 3254 /* 3255 * If set, the decrypt_ticket_cb() is called unless a fatal error was 3256 * detected above. The callback is responsible for checking |ret| before it 3257 * performs any action 3258 */ 3259 if (s->session_ctx->decrypt_ticket_cb != NULL 3260 && (ret == SSL_TICKET_EMPTY 3261 || ret == SSL_TICKET_NO_DECRYPT 3262 || ret == SSL_TICKET_SUCCESS 3263 || ret == SSL_TICKET_SUCCESS_RENEW)) { 3264 size_t keyname_len = eticklen; 3265 int retcb; 3266 3267 if (keyname_len > TLSEXT_KEYNAME_LENGTH) 3268 keyname_len = TLSEXT_KEYNAME_LENGTH; 3269 retcb = s->session_ctx->decrypt_ticket_cb(SSL_CONNECTION_GET_SSL(s), 3270 sess, etick, keyname_len, 3271 ret, 3272 s->session_ctx->ticket_cb_data); 3273 switch (retcb) { 3274 case SSL_TICKET_RETURN_ABORT: 3275 ret = SSL_TICKET_FATAL_ERR_OTHER; 3276 break; 3277 3278 case SSL_TICKET_RETURN_IGNORE: 3279 ret = SSL_TICKET_NONE; 3280 SSL_SESSION_free(sess); 3281 sess = NULL; 3282 break; 3283 3284 case SSL_TICKET_RETURN_IGNORE_RENEW: 3285 if (ret != SSL_TICKET_EMPTY && ret != SSL_TICKET_NO_DECRYPT) 3286 ret = SSL_TICKET_NO_DECRYPT; 3287 /* else the value of |ret| will already do the right thing */ 3288 SSL_SESSION_free(sess); 3289 sess = NULL; 3290 break; 3291 3292 case SSL_TICKET_RETURN_USE: 3293 case SSL_TICKET_RETURN_USE_RENEW: 3294 if (ret != SSL_TICKET_SUCCESS 3295 && ret != SSL_TICKET_SUCCESS_RENEW) 3296 ret = SSL_TICKET_FATAL_ERR_OTHER; 3297 else if (retcb == SSL_TICKET_RETURN_USE) 3298 ret = SSL_TICKET_SUCCESS; 3299 else 3300 ret = SSL_TICKET_SUCCESS_RENEW; 3301 break; 3302 3303 default: 3304 ret = SSL_TICKET_FATAL_ERR_OTHER; 3305 } 3306 } 3307 3308 if (s->ext.session_secret_cb == NULL || SSL_CONNECTION_IS_TLS13(s)) { 3309 switch (ret) { 3310 case SSL_TICKET_NO_DECRYPT: 3311 case SSL_TICKET_SUCCESS_RENEW: 3312 case SSL_TICKET_EMPTY: 3313 s->ext.ticket_expected = 1; 3314 } 3315 } 3316 3317 *psess = sess; 3318 3319 return ret; 3320 } 3321 3322 /* Check to see if a signature algorithm is allowed */ 3323 static int tls12_sigalg_allowed(const SSL_CONNECTION *s, int op, 3324 const SIGALG_LOOKUP *lu) 3325 { 3326 unsigned char sigalgstr[2]; 3327 int secbits; 3328 3329 if (lu == NULL || !lu->available) 3330 return 0; 3331 /* DSA is not allowed in TLS 1.3 */ 3332 if (SSL_CONNECTION_IS_TLS13(s) && lu->sig == EVP_PKEY_DSA) 3333 return 0; 3334 /* 3335 * At some point we should fully axe DSA/etc. in ClientHello as per TLS 1.3 3336 * spec 3337 */ 3338 if (!s->server && !SSL_CONNECTION_IS_DTLS(s) 3339 && s->s3.tmp.min_ver >= TLS1_3_VERSION 3340 && (lu->sig == EVP_PKEY_DSA || lu->hash_idx == SSL_MD_SHA1_IDX 3341 || lu->hash_idx == SSL_MD_MD5_IDX 3342 || lu->hash_idx == SSL_MD_SHA224_IDX)) 3343 return 0; 3344 3345 /* See if public key algorithm allowed */ 3346 if (ssl_cert_is_disabled(SSL_CONNECTION_GET_CTX(s), lu->sig_idx)) 3347 return 0; 3348 3349 if (lu->sig == NID_id_GostR3410_2012_256 3350 || lu->sig == NID_id_GostR3410_2012_512 3351 || lu->sig == NID_id_GostR3410_2001) { 3352 /* We never allow GOST sig algs on the server with TLSv1.3 */ 3353 if (s->server && SSL_CONNECTION_IS_TLS13(s)) 3354 return 0; 3355 if (!s->server 3356 && SSL_CONNECTION_GET_SSL(s)->method->version == TLS_ANY_VERSION 3357 && s->s3.tmp.max_ver >= TLS1_3_VERSION) { 3358 int i, num; 3359 STACK_OF(SSL_CIPHER) *sk; 3360 3361 /* 3362 * We're a client that could negotiate TLSv1.3. We only allow GOST 3363 * sig algs if we could negotiate TLSv1.2 or below and we have GOST 3364 * ciphersuites enabled. 3365 */ 3366 3367 if (s->s3.tmp.min_ver >= TLS1_3_VERSION) 3368 return 0; 3369 3370 sk = SSL_get_ciphers(SSL_CONNECTION_GET_SSL(s)); 3371 num = sk != NULL ? sk_SSL_CIPHER_num(sk) : 0; 3372 for (i = 0; i < num; i++) { 3373 const SSL_CIPHER *c; 3374 3375 c = sk_SSL_CIPHER_value(sk, i); 3376 /* Skip disabled ciphers */ 3377 if (ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0)) 3378 continue; 3379 3380 if ((c->algorithm_mkey & (SSL_kGOST | SSL_kGOST18)) != 0) 3381 break; 3382 } 3383 if (i == num) 3384 return 0; 3385 } 3386 } 3387 3388 /* Finally see if security callback allows it */ 3389 secbits = sigalg_security_bits(SSL_CONNECTION_GET_CTX(s), lu); 3390 sigalgstr[0] = (lu->sigalg >> 8) & 0xff; 3391 sigalgstr[1] = lu->sigalg & 0xff; 3392 return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr); 3393 } 3394 3395 /* 3396 * Get a mask of disabled public key algorithms based on supported signature 3397 * algorithms. For example if no signature algorithm supports RSA then RSA is 3398 * disabled. 3399 */ 3400 3401 void ssl_set_sig_mask(uint32_t *pmask_a, SSL_CONNECTION *s, int op) 3402 { 3403 const uint16_t *sigalgs; 3404 size_t i, sigalgslen; 3405 uint32_t disabled_mask = SSL_aRSA | SSL_aDSS | SSL_aECDSA; 3406 /* 3407 * Go through all signature algorithms seeing if we support any 3408 * in disabled_mask. 3409 */ 3410 sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs); 3411 for (i = 0; i < sigalgslen; i++, sigalgs++) { 3412 const SIGALG_LOOKUP *lu = 3413 tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *sigalgs); 3414 const SSL_CERT_LOOKUP *clu; 3415 3416 if (lu == NULL) 3417 continue; 3418 3419 clu = ssl_cert_lookup_by_idx(lu->sig_idx, 3420 SSL_CONNECTION_GET_CTX(s)); 3421 if (clu == NULL) 3422 continue; 3423 3424 /* If algorithm is disabled see if we can enable it */ 3425 if ((clu->amask & disabled_mask) != 0 3426 && tls12_sigalg_allowed(s, op, lu)) 3427 disabled_mask &= ~clu->amask; 3428 } 3429 *pmask_a |= disabled_mask; 3430 } 3431 3432 int tls12_copy_sigalgs(SSL_CONNECTION *s, WPACKET *pkt, 3433 const uint16_t *psig, size_t psiglen) 3434 { 3435 size_t i; 3436 int rv = 0; 3437 3438 for (i = 0; i < psiglen; i++, psig++) { 3439 const SIGALG_LOOKUP *lu = 3440 tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *psig); 3441 3442 if (lu == NULL || !tls_sigalg_compat(s, lu)) 3443 continue; 3444 if (!WPACKET_put_bytes_u16(pkt, *psig)) 3445 return 0; 3446 /* 3447 * If TLS 1.3 must have at least one valid TLS 1.3 message 3448 * signing algorithm: i.e. neither RSA nor SHA1/SHA224 3449 */ 3450 if (rv == 0 && (!SSL_CONNECTION_IS_TLS13(s) 3451 || (lu->sig != EVP_PKEY_RSA 3452 && lu->hash != NID_sha1 3453 && lu->hash != NID_sha224))) 3454 rv = 1; 3455 } 3456 if (rv == 0) 3457 ERR_raise(ERR_LIB_SSL, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM); 3458 return rv; 3459 } 3460 3461 /* Given preference and allowed sigalgs set shared sigalgs */ 3462 static size_t tls12_shared_sigalgs(SSL_CONNECTION *s, 3463 const SIGALG_LOOKUP **shsig, 3464 const uint16_t *pref, size_t preflen, 3465 const uint16_t *allow, size_t allowlen) 3466 { 3467 const uint16_t *ptmp, *atmp; 3468 size_t i, j, nmatch = 0; 3469 for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) { 3470 const SIGALG_LOOKUP *lu = 3471 tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *ptmp); 3472 3473 /* Skip disabled hashes or signature algorithms */ 3474 if (lu == NULL 3475 || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, lu)) 3476 continue; 3477 for (j = 0, atmp = allow; j < allowlen; j++, atmp++) { 3478 if (*ptmp == *atmp) { 3479 nmatch++; 3480 if (shsig) 3481 *shsig++ = lu; 3482 break; 3483 } 3484 } 3485 } 3486 return nmatch; 3487 } 3488 3489 /* Set shared signature algorithms for SSL structures */ 3490 static int tls1_set_shared_sigalgs(SSL_CONNECTION *s) 3491 { 3492 const uint16_t *pref, *allow, *conf; 3493 size_t preflen, allowlen, conflen; 3494 size_t nmatch; 3495 const SIGALG_LOOKUP **salgs = NULL; 3496 CERT *c = s->cert; 3497 unsigned int is_suiteb = tls1_suiteb(s); 3498 3499 OPENSSL_free(s->shared_sigalgs); 3500 s->shared_sigalgs = NULL; 3501 s->shared_sigalgslen = 0; 3502 /* If client use client signature algorithms if not NULL */ 3503 if (!s->server && c->client_sigalgs && !is_suiteb) { 3504 conf = c->client_sigalgs; 3505 conflen = c->client_sigalgslen; 3506 } else if (c->conf_sigalgs && !is_suiteb) { 3507 conf = c->conf_sigalgs; 3508 conflen = c->conf_sigalgslen; 3509 } else 3510 conflen = tls12_get_psigalgs(s, 0, &conf); 3511 if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) { 3512 pref = conf; 3513 preflen = conflen; 3514 allow = s->s3.tmp.peer_sigalgs; 3515 allowlen = s->s3.tmp.peer_sigalgslen; 3516 } else { 3517 allow = conf; 3518 allowlen = conflen; 3519 pref = s->s3.tmp.peer_sigalgs; 3520 preflen = s->s3.tmp.peer_sigalgslen; 3521 } 3522 nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen); 3523 if (nmatch) { 3524 if ((salgs = OPENSSL_malloc(nmatch * sizeof(*salgs))) == NULL) 3525 return 0; 3526 nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen); 3527 } else { 3528 salgs = NULL; 3529 } 3530 s->shared_sigalgs = salgs; 3531 s->shared_sigalgslen = nmatch; 3532 return 1; 3533 } 3534 3535 int tls1_save_u16(PACKET *pkt, uint16_t **pdest, size_t *pdestlen) 3536 { 3537 unsigned int stmp; 3538 size_t size, i; 3539 uint16_t *buf; 3540 3541 size = PACKET_remaining(pkt); 3542 3543 /* Invalid data length */ 3544 if (size == 0 || (size & 1) != 0) 3545 return 0; 3546 3547 size >>= 1; 3548 3549 if ((buf = OPENSSL_malloc(size * sizeof(*buf))) == NULL) 3550 return 0; 3551 for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++) 3552 buf[i] = stmp; 3553 3554 if (i != size) { 3555 OPENSSL_free(buf); 3556 return 0; 3557 } 3558 3559 OPENSSL_free(*pdest); 3560 *pdest = buf; 3561 *pdestlen = size; 3562 3563 return 1; 3564 } 3565 3566 int tls1_save_sigalgs(SSL_CONNECTION *s, PACKET *pkt, int cert) 3567 { 3568 /* Extension ignored for inappropriate versions */ 3569 if (!SSL_USE_SIGALGS(s)) 3570 return 1; 3571 /* Should never happen */ 3572 if (s->cert == NULL) 3573 return 0; 3574 3575 if (cert) 3576 return tls1_save_u16(pkt, &s->s3.tmp.peer_cert_sigalgs, 3577 &s->s3.tmp.peer_cert_sigalgslen); 3578 else 3579 return tls1_save_u16(pkt, &s->s3.tmp.peer_sigalgs, 3580 &s->s3.tmp.peer_sigalgslen); 3581 3582 } 3583 3584 /* Set preferred digest for each key type */ 3585 3586 int tls1_process_sigalgs(SSL_CONNECTION *s) 3587 { 3588 size_t i; 3589 uint32_t *pvalid = s->s3.tmp.valid_flags; 3590 3591 if (!tls1_set_shared_sigalgs(s)) 3592 return 0; 3593 3594 for (i = 0; i < s->ssl_pkey_num; i++) 3595 pvalid[i] = 0; 3596 3597 for (i = 0; i < s->shared_sigalgslen; i++) { 3598 const SIGALG_LOOKUP *sigptr = s->shared_sigalgs[i]; 3599 int idx = sigptr->sig_idx; 3600 3601 /* Ignore PKCS1 based sig algs in TLSv1.3 */ 3602 if (SSL_CONNECTION_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA) 3603 continue; 3604 /* If not disabled indicate we can explicitly sign */ 3605 if (pvalid[idx] == 0 3606 && !ssl_cert_is_disabled(SSL_CONNECTION_GET_CTX(s), idx)) 3607 pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN; 3608 } 3609 return 1; 3610 } 3611 3612 int SSL_get_sigalgs(SSL *s, int idx, 3613 int *psign, int *phash, int *psignhash, 3614 unsigned char *rsig, unsigned char *rhash) 3615 { 3616 uint16_t *psig; 3617 size_t numsigalgs; 3618 SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); 3619 3620 if (sc == NULL) 3621 return 0; 3622 3623 psig = sc->s3.tmp.peer_sigalgs; 3624 numsigalgs = sc->s3.tmp.peer_sigalgslen; 3625 3626 if (psig == NULL || numsigalgs > INT_MAX) 3627 return 0; 3628 if (idx >= 0) { 3629 const SIGALG_LOOKUP *lu; 3630 3631 if (idx >= (int)numsigalgs) 3632 return 0; 3633 psig += idx; 3634 if (rhash != NULL) 3635 *rhash = (unsigned char)((*psig >> 8) & 0xff); 3636 if (rsig != NULL) 3637 *rsig = (unsigned char)(*psig & 0xff); 3638 lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(sc), *psig); 3639 if (psign != NULL) 3640 *psign = lu != NULL ? lu->sig : NID_undef; 3641 if (phash != NULL) 3642 *phash = lu != NULL ? lu->hash : NID_undef; 3643 if (psignhash != NULL) 3644 *psignhash = lu != NULL ? lu->sigandhash : NID_undef; 3645 } 3646 return (int)numsigalgs; 3647 } 3648 3649 int SSL_get_shared_sigalgs(SSL *s, int idx, 3650 int *psign, int *phash, int *psignhash, 3651 unsigned char *rsig, unsigned char *rhash) 3652 { 3653 const SIGALG_LOOKUP *shsigalgs; 3654 SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); 3655 3656 if (sc == NULL) 3657 return 0; 3658 3659 if (sc->shared_sigalgs == NULL 3660 || idx < 0 3661 || idx >= (int)sc->shared_sigalgslen 3662 || sc->shared_sigalgslen > INT_MAX) 3663 return 0; 3664 shsigalgs = sc->shared_sigalgs[idx]; 3665 if (phash != NULL) 3666 *phash = shsigalgs->hash; 3667 if (psign != NULL) 3668 *psign = shsigalgs->sig; 3669 if (psignhash != NULL) 3670 *psignhash = shsigalgs->sigandhash; 3671 if (rsig != NULL) 3672 *rsig = (unsigned char)(shsigalgs->sigalg & 0xff); 3673 if (rhash != NULL) 3674 *rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff); 3675 return (int)sc->shared_sigalgslen; 3676 } 3677 3678 /* Maximum possible number of unique entries in sigalgs array */ 3679 #define TLS_MAX_SIGALGCNT (OSSL_NELEM(sigalg_lookup_tbl) * 2) 3680 3681 typedef struct { 3682 size_t sigalgcnt; 3683 /* TLSEXT_SIGALG_XXX values */ 3684 uint16_t sigalgs[TLS_MAX_SIGALGCNT]; 3685 SSL_CTX *ctx; 3686 } sig_cb_st; 3687 3688 static void get_sigorhash(int *psig, int *phash, const char *str) 3689 { 3690 if (OPENSSL_strcasecmp(str, "RSA") == 0) { 3691 *psig = EVP_PKEY_RSA; 3692 } else if (OPENSSL_strcasecmp(str, "RSA-PSS") == 0 3693 || OPENSSL_strcasecmp(str, "PSS") == 0) { 3694 *psig = EVP_PKEY_RSA_PSS; 3695 } else if (OPENSSL_strcasecmp(str, "DSA") == 0) { 3696 *psig = EVP_PKEY_DSA; 3697 } else if (OPENSSL_strcasecmp(str, "ECDSA") == 0) { 3698 *psig = EVP_PKEY_EC; 3699 } else { 3700 *phash = OBJ_sn2nid(str); 3701 if (*phash == NID_undef) 3702 *phash = OBJ_ln2nid(str); 3703 } 3704 } 3705 /* Maximum length of a signature algorithm string component */ 3706 #define TLS_MAX_SIGSTRING_LEN 40 3707 3708 static int sig_cb(const char *elem, int len, void *arg) 3709 { 3710 sig_cb_st *sarg = arg; 3711 size_t i = 0; 3712 const SIGALG_LOOKUP *s; 3713 char etmp[TLS_MAX_SIGSTRING_LEN], *p; 3714 const char *iana, *alias; 3715 int sig_alg = NID_undef, hash_alg = NID_undef; 3716 int ignore_unknown = 0; 3717 3718 if (elem == NULL) 3719 return 0; 3720 if (elem[0] == '?') { 3721 ignore_unknown = 1; 3722 ++elem; 3723 --len; 3724 } 3725 if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT) 3726 return 0; 3727 if (len > (int)(sizeof(etmp) - 1)) 3728 return 0; 3729 memcpy(etmp, elem, len); 3730 etmp[len] = 0; 3731 p = strchr(etmp, '+'); 3732 /* 3733 * We only allow SignatureSchemes listed in the sigalg_lookup_tbl; 3734 * if there's no '+' in the provided name, look for the new-style combined 3735 * name. If not, match both sig+hash to find the needed SIGALG_LOOKUP. 3736 * Just sig+hash is not unique since TLS 1.3 adds rsa_pss_pss_* and 3737 * rsa_pss_rsae_* that differ only by public key OID; in such cases 3738 * we will pick the _rsae_ variant, by virtue of them appearing earlier 3739 * in the table. 3740 */ 3741 if (p == NULL) { 3742 if (sarg->ctx != NULL) { 3743 for (i = 0; i < sarg->ctx->sigalg_lookup_cache_len; i++) { 3744 iana = sarg->ctx->sigalg_lookup_cache[i].name; 3745 alias = sarg->ctx->sigalg_lookup_cache[i].name12; 3746 if ((alias != NULL && OPENSSL_strcasecmp(etmp, alias) == 0) 3747 || OPENSSL_strcasecmp(etmp, iana) == 0) { 3748 /* Ignore known, but unavailable sigalgs. */ 3749 if (!sarg->ctx->sigalg_lookup_cache[i].available) 3750 return 1; 3751 sarg->sigalgs[sarg->sigalgcnt++] = 3752 sarg->ctx->sigalg_lookup_cache[i].sigalg; 3753 goto found; 3754 } 3755 } 3756 } else { 3757 /* Syntax checks use the built-in sigalgs */ 3758 for (i = 0, s = sigalg_lookup_tbl; 3759 i < OSSL_NELEM(sigalg_lookup_tbl); i++, s++) { 3760 iana = s->name; 3761 alias = s->name12; 3762 if ((alias != NULL && OPENSSL_strcasecmp(etmp, alias) == 0) 3763 || OPENSSL_strcasecmp(etmp, iana) == 0) { 3764 sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg; 3765 goto found; 3766 } 3767 } 3768 } 3769 } else { 3770 *p = 0; 3771 p++; 3772 if (*p == 0) 3773 return 0; 3774 get_sigorhash(&sig_alg, &hash_alg, etmp); 3775 get_sigorhash(&sig_alg, &hash_alg, p); 3776 if (sig_alg != NID_undef && hash_alg != NID_undef) { 3777 if (sarg->ctx != NULL) { 3778 for (i = 0; i < sarg->ctx->sigalg_lookup_cache_len; i++) { 3779 s = &sarg->ctx->sigalg_lookup_cache[i]; 3780 if (s->hash == hash_alg && s->sig == sig_alg) { 3781 /* Ignore known, but unavailable sigalgs. */ 3782 if (!sarg->ctx->sigalg_lookup_cache[i].available) 3783 return 1; 3784 sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg; 3785 goto found; 3786 } 3787 } 3788 } else { 3789 for (i = 0; i < OSSL_NELEM(sigalg_lookup_tbl); i++) { 3790 s = &sigalg_lookup_tbl[i]; 3791 if (s->hash == hash_alg && s->sig == sig_alg) { 3792 sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg; 3793 goto found; 3794 } 3795 } 3796 } 3797 } 3798 } 3799 /* Ignore unknown algorithms if ignore_unknown */ 3800 return ignore_unknown; 3801 3802 found: 3803 /* Ignore duplicates */ 3804 for (i = 0; i < sarg->sigalgcnt - 1; i++) { 3805 if (sarg->sigalgs[i] == sarg->sigalgs[sarg->sigalgcnt - 1]) { 3806 sarg->sigalgcnt--; 3807 return 1; 3808 } 3809 } 3810 return 1; 3811 } 3812 3813 /* 3814 * Set supported signature algorithms based on a colon separated list of the 3815 * form sig+hash e.g. RSA+SHA512:DSA+SHA512 3816 */ 3817 int tls1_set_sigalgs_list(SSL_CTX *ctx, CERT *c, const char *str, int client) 3818 { 3819 sig_cb_st sig; 3820 sig.sigalgcnt = 0; 3821 3822 if (ctx != NULL) 3823 sig.ctx = ctx; 3824 if (!CONF_parse_list(str, ':', 1, sig_cb, &sig)) 3825 return 0; 3826 if (sig.sigalgcnt == 0) { 3827 ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT, 3828 "No valid signature algorithms in '%s'", str); 3829 return 0; 3830 } 3831 if (c == NULL) 3832 return 1; 3833 return tls1_set_raw_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client); 3834 } 3835 3836 int tls1_set_raw_sigalgs(CERT *c, const uint16_t *psigs, size_t salglen, 3837 int client) 3838 { 3839 uint16_t *sigalgs; 3840 3841 if ((sigalgs = OPENSSL_malloc(salglen * sizeof(*sigalgs))) == NULL) 3842 return 0; 3843 memcpy(sigalgs, psigs, salglen * sizeof(*sigalgs)); 3844 3845 if (client) { 3846 OPENSSL_free(c->client_sigalgs); 3847 c->client_sigalgs = sigalgs; 3848 c->client_sigalgslen = salglen; 3849 } else { 3850 OPENSSL_free(c->conf_sigalgs); 3851 c->conf_sigalgs = sigalgs; 3852 c->conf_sigalgslen = salglen; 3853 } 3854 3855 return 1; 3856 } 3857 3858 int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client) 3859 { 3860 uint16_t *sigalgs, *sptr; 3861 size_t i; 3862 3863 if (salglen & 1) 3864 return 0; 3865 if ((sigalgs = OPENSSL_malloc((salglen / 2) * sizeof(*sigalgs))) == NULL) 3866 return 0; 3867 for (i = 0, sptr = sigalgs; i < salglen; i += 2) { 3868 size_t j; 3869 const SIGALG_LOOKUP *curr; 3870 int md_id = *psig_nids++; 3871 int sig_id = *psig_nids++; 3872 3873 for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl); 3874 j++, curr++) { 3875 if (curr->hash == md_id && curr->sig == sig_id) { 3876 *sptr++ = curr->sigalg; 3877 break; 3878 } 3879 } 3880 3881 if (j == OSSL_NELEM(sigalg_lookup_tbl)) 3882 goto err; 3883 } 3884 3885 if (client) { 3886 OPENSSL_free(c->client_sigalgs); 3887 c->client_sigalgs = sigalgs; 3888 c->client_sigalgslen = salglen / 2; 3889 } else { 3890 OPENSSL_free(c->conf_sigalgs); 3891 c->conf_sigalgs = sigalgs; 3892 c->conf_sigalgslen = salglen / 2; 3893 } 3894 3895 return 1; 3896 3897 err: 3898 OPENSSL_free(sigalgs); 3899 return 0; 3900 } 3901 3902 static int tls1_check_sig_alg(SSL_CONNECTION *s, X509 *x, int default_nid) 3903 { 3904 int sig_nid, use_pc_sigalgs = 0; 3905 size_t i; 3906 const SIGALG_LOOKUP *sigalg; 3907 size_t sigalgslen; 3908 3909 /*- 3910 * RFC 8446, section 4.2.3: 3911 * 3912 * The signatures on certificates that are self-signed or certificates 3913 * that are trust anchors are not validated, since they begin a 3914 * certification path (see [RFC5280], Section 3.2). A certificate that 3915 * begins a certification path MAY use a signature algorithm that is not 3916 * advertised as being supported in the "signature_algorithms" 3917 * extension. 3918 */ 3919 if (default_nid == -1 || X509_self_signed(x, 0)) 3920 return 1; 3921 sig_nid = X509_get_signature_nid(x); 3922 if (default_nid) 3923 return sig_nid == default_nid ? 1 : 0; 3924 3925 if (SSL_CONNECTION_IS_TLS13(s) && s->s3.tmp.peer_cert_sigalgs != NULL) { 3926 /* 3927 * If we're in TLSv1.3 then we only get here if we're checking the 3928 * chain. If the peer has specified peer_cert_sigalgs then we use them 3929 * otherwise we default to normal sigalgs. 3930 */ 3931 sigalgslen = s->s3.tmp.peer_cert_sigalgslen; 3932 use_pc_sigalgs = 1; 3933 } else { 3934 sigalgslen = s->shared_sigalgslen; 3935 } 3936 for (i = 0; i < sigalgslen; i++) { 3937 int mdnid, pknid; 3938 3939 sigalg = use_pc_sigalgs 3940 ? tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), 3941 s->s3.tmp.peer_cert_sigalgs[i]) 3942 : s->shared_sigalgs[i]; 3943 if (sigalg == NULL) 3944 continue; 3945 if (sig_nid == sigalg->sigandhash) 3946 return 1; 3947 if (sigalg->sig != EVP_PKEY_RSA_PSS) 3948 continue; 3949 /* 3950 * Accept RSA PKCS#1 signatures in certificates when the signature 3951 * algorithms include RSA-PSS with a matching digest algorithm. 3952 * 3953 * When a TLS 1.3 peer inadvertently omits the legacy RSA PKCS#1 code 3954 * points, and we're doing strict checking of the certificate chain (in 3955 * a cert_cb via SSL_check_chain()) we may then reject RSA signed 3956 * certificates in the chain, but the TLS requirement on PSS should not 3957 * extend to certificates. Though the peer can in fact list the legacy 3958 * sigalgs for just this purpose, it is not likely that a better chain 3959 * signed with RSA-PSS is available. 3960 */ 3961 if (!OBJ_find_sigid_algs(sig_nid, &mdnid, &pknid)) 3962 continue; 3963 if (pknid == EVP_PKEY_RSA && mdnid == sigalg->hash) 3964 return 1; 3965 } 3966 return 0; 3967 } 3968 3969 /* Check to see if a certificate issuer name matches list of CA names */ 3970 static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x) 3971 { 3972 const X509_NAME *nm; 3973 int i; 3974 nm = X509_get_issuer_name(x); 3975 for (i = 0; i < sk_X509_NAME_num(names); i++) { 3976 if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i))) 3977 return 1; 3978 } 3979 return 0; 3980 } 3981 3982 /* 3983 * Check certificate chain is consistent with TLS extensions and is usable by 3984 * server. This servers two purposes: it allows users to check chains before 3985 * passing them to the server and it allows the server to check chains before 3986 * attempting to use them. 3987 */ 3988 3989 /* Flags which need to be set for a certificate when strict mode not set */ 3990 3991 #define CERT_PKEY_VALID_FLAGS \ 3992 (CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM) 3993 /* Strict mode flags */ 3994 #define CERT_PKEY_STRICT_FLAGS \ 3995 (CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \ 3996 | CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE) 3997 3998 int tls1_check_chain(SSL_CONNECTION *s, X509 *x, EVP_PKEY *pk, 3999 STACK_OF(X509) *chain, int idx) 4000 { 4001 int i; 4002 int rv = 0; 4003 int check_flags = 0, strict_mode; 4004 CERT_PKEY *cpk = NULL; 4005 CERT *c = s->cert; 4006 uint32_t *pvalid; 4007 unsigned int suiteb_flags = tls1_suiteb(s); 4008 4009 /* 4010 * Meaning of idx: 4011 * idx == -1 means SSL_check_chain() invocation 4012 * idx == -2 means checking client certificate chains 4013 * idx >= 0 means checking SSL_PKEY index 4014 * 4015 * For RPK, where there may be no cert, we ignore -1 4016 */ 4017 if (idx != -1) { 4018 if (idx == -2) { 4019 cpk = c->key; 4020 idx = (int)(cpk - c->pkeys); 4021 } else 4022 cpk = c->pkeys + idx; 4023 pvalid = s->s3.tmp.valid_flags + idx; 4024 x = cpk->x509; 4025 pk = cpk->privatekey; 4026 chain = cpk->chain; 4027 strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT; 4028 if (tls12_rpk_and_privkey(s, idx)) { 4029 if (EVP_PKEY_is_a(pk, "EC") && !tls1_check_pkey_comp(s, pk)) 4030 return 0; 4031 *pvalid = rv = CERT_PKEY_RPK; 4032 return rv; 4033 } 4034 /* If no cert or key, forget it */ 4035 if (x == NULL || pk == NULL) 4036 goto end; 4037 } else { 4038 size_t certidx; 4039 4040 if (x == NULL || pk == NULL) 4041 return 0; 4042 4043 if (ssl_cert_lookup_by_pkey(pk, &certidx, 4044 SSL_CONNECTION_GET_CTX(s)) == NULL) 4045 return 0; 4046 idx = certidx; 4047 pvalid = s->s3.tmp.valid_flags + idx; 4048 4049 if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT) 4050 check_flags = CERT_PKEY_STRICT_FLAGS; 4051 else 4052 check_flags = CERT_PKEY_VALID_FLAGS; 4053 strict_mode = 1; 4054 } 4055 4056 if (suiteb_flags) { 4057 int ok; 4058 if (check_flags) 4059 check_flags |= CERT_PKEY_SUITEB; 4060 ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags); 4061 if (ok == X509_V_OK) 4062 rv |= CERT_PKEY_SUITEB; 4063 else if (!check_flags) 4064 goto end; 4065 } 4066 4067 /* 4068 * Check all signature algorithms are consistent with signature 4069 * algorithms extension if TLS 1.2 or later and strict mode. 4070 */ 4071 if (TLS1_get_version(SSL_CONNECTION_GET_SSL(s)) >= TLS1_2_VERSION 4072 && strict_mode) { 4073 int default_nid; 4074 int rsign = 0; 4075 4076 if (s->s3.tmp.peer_cert_sigalgs != NULL 4077 || s->s3.tmp.peer_sigalgs != NULL) { 4078 default_nid = 0; 4079 /* If no sigalgs extension use defaults from RFC5246 */ 4080 } else { 4081 switch (idx) { 4082 case SSL_PKEY_RSA: 4083 rsign = EVP_PKEY_RSA; 4084 default_nid = NID_sha1WithRSAEncryption; 4085 break; 4086 4087 case SSL_PKEY_DSA_SIGN: 4088 rsign = EVP_PKEY_DSA; 4089 default_nid = NID_dsaWithSHA1; 4090 break; 4091 4092 case SSL_PKEY_ECC: 4093 rsign = EVP_PKEY_EC; 4094 default_nid = NID_ecdsa_with_SHA1; 4095 break; 4096 4097 case SSL_PKEY_GOST01: 4098 rsign = NID_id_GostR3410_2001; 4099 default_nid = NID_id_GostR3411_94_with_GostR3410_2001; 4100 break; 4101 4102 case SSL_PKEY_GOST12_256: 4103 rsign = NID_id_GostR3410_2012_256; 4104 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256; 4105 break; 4106 4107 case SSL_PKEY_GOST12_512: 4108 rsign = NID_id_GostR3410_2012_512; 4109 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512; 4110 break; 4111 4112 default: 4113 default_nid = -1; 4114 break; 4115 } 4116 } 4117 /* 4118 * If peer sent no signature algorithms extension and we have set 4119 * preferred signature algorithms check we support sha1. 4120 */ 4121 if (default_nid > 0 && c->conf_sigalgs) { 4122 size_t j; 4123 const uint16_t *p = c->conf_sigalgs; 4124 for (j = 0; j < c->conf_sigalgslen; j++, p++) { 4125 const SIGALG_LOOKUP *lu = 4126 tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *p); 4127 4128 if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign) 4129 break; 4130 } 4131 if (j == c->conf_sigalgslen) { 4132 if (check_flags) 4133 goto skip_sigs; 4134 else 4135 goto end; 4136 } 4137 } 4138 /* Check signature algorithm of each cert in chain */ 4139 if (SSL_CONNECTION_IS_TLS13(s)) { 4140 /* 4141 * We only get here if the application has called SSL_check_chain(), 4142 * so check_flags is always set. 4143 */ 4144 if (find_sig_alg(s, x, pk) != NULL) 4145 rv |= CERT_PKEY_EE_SIGNATURE; 4146 } else if (!tls1_check_sig_alg(s, x, default_nid)) { 4147 if (!check_flags) 4148 goto end; 4149 } else 4150 rv |= CERT_PKEY_EE_SIGNATURE; 4151 rv |= CERT_PKEY_CA_SIGNATURE; 4152 for (i = 0; i < sk_X509_num(chain); i++) { 4153 if (!tls1_check_sig_alg(s, sk_X509_value(chain, i), default_nid)) { 4154 if (check_flags) { 4155 rv &= ~CERT_PKEY_CA_SIGNATURE; 4156 break; 4157 } else 4158 goto end; 4159 } 4160 } 4161 } 4162 /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */ 4163 else if (check_flags) 4164 rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE; 4165 skip_sigs: 4166 /* Check cert parameters are consistent */ 4167 if (tls1_check_cert_param(s, x, 1)) 4168 rv |= CERT_PKEY_EE_PARAM; 4169 else if (!check_flags) 4170 goto end; 4171 if (!s->server) 4172 rv |= CERT_PKEY_CA_PARAM; 4173 /* In strict mode check rest of chain too */ 4174 else if (strict_mode) { 4175 rv |= CERT_PKEY_CA_PARAM; 4176 for (i = 0; i < sk_X509_num(chain); i++) { 4177 X509 *ca = sk_X509_value(chain, i); 4178 if (!tls1_check_cert_param(s, ca, 0)) { 4179 if (check_flags) { 4180 rv &= ~CERT_PKEY_CA_PARAM; 4181 break; 4182 } else 4183 goto end; 4184 } 4185 } 4186 } 4187 if (!s->server && strict_mode) { 4188 STACK_OF(X509_NAME) *ca_dn; 4189 int check_type = 0; 4190 4191 if (EVP_PKEY_is_a(pk, "RSA")) 4192 check_type = TLS_CT_RSA_SIGN; 4193 else if (EVP_PKEY_is_a(pk, "DSA")) 4194 check_type = TLS_CT_DSS_SIGN; 4195 else if (EVP_PKEY_is_a(pk, "EC")) 4196 check_type = TLS_CT_ECDSA_SIGN; 4197 4198 if (check_type) { 4199 const uint8_t *ctypes = s->s3.tmp.ctype; 4200 size_t j; 4201 4202 for (j = 0; j < s->s3.tmp.ctype_len; j++, ctypes++) { 4203 if (*ctypes == check_type) { 4204 rv |= CERT_PKEY_CERT_TYPE; 4205 break; 4206 } 4207 } 4208 if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags) 4209 goto end; 4210 } else { 4211 rv |= CERT_PKEY_CERT_TYPE; 4212 } 4213 4214 ca_dn = s->s3.tmp.peer_ca_names; 4215 4216 if (ca_dn == NULL 4217 || sk_X509_NAME_num(ca_dn) == 0 4218 || ssl_check_ca_name(ca_dn, x)) 4219 rv |= CERT_PKEY_ISSUER_NAME; 4220 else 4221 for (i = 0; i < sk_X509_num(chain); i++) { 4222 X509 *xtmp = sk_X509_value(chain, i); 4223 4224 if (ssl_check_ca_name(ca_dn, xtmp)) { 4225 rv |= CERT_PKEY_ISSUER_NAME; 4226 break; 4227 } 4228 } 4229 4230 if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME)) 4231 goto end; 4232 } else 4233 rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE; 4234 4235 if (!check_flags || (rv & check_flags) == check_flags) 4236 rv |= CERT_PKEY_VALID; 4237 4238 end: 4239 4240 if (TLS1_get_version(SSL_CONNECTION_GET_SSL(s)) >= TLS1_2_VERSION) 4241 rv |= *pvalid & (CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN); 4242 else 4243 rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN; 4244 4245 /* 4246 * When checking a CERT_PKEY structure all flags are irrelevant if the 4247 * chain is invalid. 4248 */ 4249 if (!check_flags) { 4250 if (rv & CERT_PKEY_VALID) { 4251 *pvalid = rv; 4252 } else { 4253 /* Preserve sign and explicit sign flag, clear rest */ 4254 *pvalid &= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN; 4255 return 0; 4256 } 4257 } 4258 return rv; 4259 } 4260 4261 /* Set validity of certificates in an SSL structure */ 4262 void tls1_set_cert_validity(SSL_CONNECTION *s) 4263 { 4264 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA); 4265 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_PSS_SIGN); 4266 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN); 4267 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC); 4268 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01); 4269 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256); 4270 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512); 4271 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED25519); 4272 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED448); 4273 } 4274 4275 /* User level utility function to check a chain is suitable */ 4276 int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain) 4277 { 4278 SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); 4279 4280 if (sc == NULL) 4281 return 0; 4282 4283 return tls1_check_chain(sc, x, pk, chain, -1); 4284 } 4285 4286 EVP_PKEY *ssl_get_auto_dh(SSL_CONNECTION *s) 4287 { 4288 EVP_PKEY *dhp = NULL; 4289 BIGNUM *p; 4290 int dh_secbits = 80, sec_level_bits; 4291 EVP_PKEY_CTX *pctx = NULL; 4292 OSSL_PARAM_BLD *tmpl = NULL; 4293 OSSL_PARAM *params = NULL; 4294 SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s); 4295 4296 if (s->cert->dh_tmp_auto != 2) { 4297 if (s->s3.tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) { 4298 if (s->s3.tmp.new_cipher->strength_bits == 256) 4299 dh_secbits = 128; 4300 else 4301 dh_secbits = 80; 4302 } else { 4303 if (s->s3.tmp.cert == NULL) 4304 return NULL; 4305 dh_secbits = EVP_PKEY_get_security_bits(s->s3.tmp.cert->privatekey); 4306 } 4307 } 4308 4309 /* Do not pick a prime that is too weak for the current security level */ 4310 sec_level_bits = ssl_get_security_level_bits(SSL_CONNECTION_GET_SSL(s), 4311 NULL, NULL); 4312 if (dh_secbits < sec_level_bits) 4313 dh_secbits = sec_level_bits; 4314 4315 if (dh_secbits >= 192) 4316 p = BN_get_rfc3526_prime_8192(NULL); 4317 else if (dh_secbits >= 152) 4318 p = BN_get_rfc3526_prime_4096(NULL); 4319 else if (dh_secbits >= 128) 4320 p = BN_get_rfc3526_prime_3072(NULL); 4321 else if (dh_secbits >= 112) 4322 p = BN_get_rfc3526_prime_2048(NULL); 4323 else 4324 p = BN_get_rfc2409_prime_1024(NULL); 4325 if (p == NULL) 4326 goto err; 4327 4328 pctx = EVP_PKEY_CTX_new_from_name(sctx->libctx, "DH", sctx->propq); 4329 if (pctx == NULL 4330 || EVP_PKEY_fromdata_init(pctx) != 1) 4331 goto err; 4332 4333 tmpl = OSSL_PARAM_BLD_new(); 4334 if (tmpl == NULL 4335 || !OSSL_PARAM_BLD_push_BN(tmpl, OSSL_PKEY_PARAM_FFC_P, p) 4336 || !OSSL_PARAM_BLD_push_uint(tmpl, OSSL_PKEY_PARAM_FFC_G, 2)) 4337 goto err; 4338 4339 params = OSSL_PARAM_BLD_to_param(tmpl); 4340 if (params == NULL 4341 || EVP_PKEY_fromdata(pctx, &dhp, EVP_PKEY_KEY_PARAMETERS, params) != 1) 4342 goto err; 4343 4344 err: 4345 OSSL_PARAM_free(params); 4346 OSSL_PARAM_BLD_free(tmpl); 4347 EVP_PKEY_CTX_free(pctx); 4348 BN_free(p); 4349 return dhp; 4350 } 4351 4352 static int ssl_security_cert_key(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x, 4353 int op) 4354 { 4355 int secbits = -1; 4356 EVP_PKEY *pkey = X509_get0_pubkey(x); 4357 4358 if (pkey) { 4359 /* 4360 * If no parameters this will return -1 and fail using the default 4361 * security callback for any non-zero security level. This will 4362 * reject keys which omit parameters but this only affects DSA and 4363 * omission of parameters is never (?) done in practice. 4364 */ 4365 secbits = EVP_PKEY_get_security_bits(pkey); 4366 } 4367 if (s != NULL) 4368 return ssl_security(s, op, secbits, 0, x); 4369 else 4370 return ssl_ctx_security(ctx, op, secbits, 0, x); 4371 } 4372 4373 static int ssl_security_cert_sig(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x, 4374 int op) 4375 { 4376 /* Lookup signature algorithm digest */ 4377 int secbits, nid, pknid; 4378 4379 /* Don't check signature if self signed */ 4380 if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0) 4381 return 1; 4382 if (!X509_get_signature_info(x, &nid, &pknid, &secbits, NULL)) 4383 secbits = -1; 4384 /* If digest NID not defined use signature NID */ 4385 if (nid == NID_undef) 4386 nid = pknid; 4387 if (s != NULL) 4388 return ssl_security(s, op, secbits, nid, x); 4389 else 4390 return ssl_ctx_security(ctx, op, secbits, nid, x); 4391 } 4392 4393 int ssl_security_cert(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x, int vfy, 4394 int is_ee) 4395 { 4396 if (vfy) 4397 vfy = SSL_SECOP_PEER; 4398 if (is_ee) { 4399 if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy)) 4400 return SSL_R_EE_KEY_TOO_SMALL; 4401 } else { 4402 if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy)) 4403 return SSL_R_CA_KEY_TOO_SMALL; 4404 } 4405 if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy)) 4406 return SSL_R_CA_MD_TOO_WEAK; 4407 return 1; 4408 } 4409 4410 /* 4411 * Check security of a chain, if |sk| includes the end entity certificate then 4412 * |x| is NULL. If |vfy| is 1 then we are verifying a peer chain and not sending 4413 * one to the peer. Return values: 1 if ok otherwise error code to use 4414 */ 4415 4416 int ssl_security_cert_chain(SSL_CONNECTION *s, STACK_OF(X509) *sk, 4417 X509 *x, int vfy) 4418 { 4419 int rv, start_idx, i; 4420 4421 if (x == NULL) { 4422 x = sk_X509_value(sk, 0); 4423 if (x == NULL) 4424 return ERR_R_INTERNAL_ERROR; 4425 start_idx = 1; 4426 } else 4427 start_idx = 0; 4428 4429 rv = ssl_security_cert(s, NULL, x, vfy, 1); 4430 if (rv != 1) 4431 return rv; 4432 4433 for (i = start_idx; i < sk_X509_num(sk); i++) { 4434 x = sk_X509_value(sk, i); 4435 rv = ssl_security_cert(s, NULL, x, vfy, 0); 4436 if (rv != 1) 4437 return rv; 4438 } 4439 return 1; 4440 } 4441 4442 /* 4443 * For TLS 1.2 servers check if we have a certificate which can be used 4444 * with the signature algorithm "lu" and return index of certificate. 4445 */ 4446 4447 static int tls12_get_cert_sigalg_idx(const SSL_CONNECTION *s, 4448 const SIGALG_LOOKUP *lu) 4449 { 4450 int sig_idx = lu->sig_idx; 4451 const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(sig_idx, 4452 SSL_CONNECTION_GET_CTX(s)); 4453 4454 /* If not recognised or not supported by cipher mask it is not suitable */ 4455 if (clu == NULL 4456 || (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) == 0 4457 || (clu->nid == EVP_PKEY_RSA_PSS 4458 && (s->s3.tmp.new_cipher->algorithm_mkey & SSL_kRSA) != 0)) 4459 return -1; 4460 4461 /* If doing RPK, the CERT_PKEY won't be "valid" */ 4462 if (tls12_rpk_and_privkey(s, sig_idx)) 4463 return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_RPK ? sig_idx : -1; 4464 4465 return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_VALID ? sig_idx : -1; 4466 } 4467 4468 /* 4469 * Checks the given cert against signature_algorithm_cert restrictions sent by 4470 * the peer (if any) as well as whether the hash from the sigalg is usable with 4471 * the key. 4472 * Returns true if the cert is usable and false otherwise. 4473 */ 4474 static int check_cert_usable(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, 4475 X509 *x, EVP_PKEY *pkey) 4476 { 4477 const SIGALG_LOOKUP *lu; 4478 int mdnid, pknid, supported; 4479 size_t i; 4480 const char *mdname = NULL; 4481 SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s); 4482 4483 /* 4484 * If the given EVP_PKEY cannot support signing with this digest, 4485 * the answer is simply 'no'. 4486 */ 4487 if (sig->hash != NID_undef) 4488 mdname = OBJ_nid2sn(sig->hash); 4489 supported = EVP_PKEY_digestsign_supports_digest(pkey, sctx->libctx, 4490 mdname, 4491 sctx->propq); 4492 if (supported <= 0) 4493 return 0; 4494 4495 /* 4496 * The TLS 1.3 signature_algorithms_cert extension places restrictions 4497 * on the sigalg with which the certificate was signed (by its issuer). 4498 */ 4499 if (s->s3.tmp.peer_cert_sigalgs != NULL) { 4500 if (!X509_get_signature_info(x, &mdnid, &pknid, NULL, NULL)) 4501 return 0; 4502 for (i = 0; i < s->s3.tmp.peer_cert_sigalgslen; i++) { 4503 lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), 4504 s->s3.tmp.peer_cert_sigalgs[i]); 4505 if (lu == NULL) 4506 continue; 4507 4508 /* 4509 * This does not differentiate between the 4510 * rsa_pss_pss_* and rsa_pss_rsae_* schemes since we do not 4511 * have a chain here that lets us look at the key OID in the 4512 * signing certificate. 4513 */ 4514 if (mdnid == lu->hash && pknid == lu->sig) 4515 return 1; 4516 } 4517 return 0; 4518 } 4519 4520 /* 4521 * Without signat_algorithms_cert, any certificate for which we have 4522 * a viable public key is permitted. 4523 */ 4524 return 1; 4525 } 4526 4527 /* 4528 * Returns true if |s| has a usable certificate configured for use 4529 * with signature scheme |sig|. 4530 * "Usable" includes a check for presence as well as applying 4531 * the signature_algorithm_cert restrictions sent by the peer (if any). 4532 * Returns false if no usable certificate is found. 4533 */ 4534 static int has_usable_cert(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, int idx) 4535 { 4536 /* TLS 1.2 callers can override sig->sig_idx, but not TLS 1.3 callers. */ 4537 if (idx == -1) 4538 idx = sig->sig_idx; 4539 if (!ssl_has_cert(s, idx)) 4540 return 0; 4541 4542 return check_cert_usable(s, sig, s->cert->pkeys[idx].x509, 4543 s->cert->pkeys[idx].privatekey); 4544 } 4545 4546 /* 4547 * Returns true if the supplied cert |x| and key |pkey| is usable with the 4548 * specified signature scheme |sig|, or false otherwise. 4549 */ 4550 static int is_cert_usable(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, X509 *x, 4551 EVP_PKEY *pkey) 4552 { 4553 size_t idx; 4554 4555 if (ssl_cert_lookup_by_pkey(pkey, &idx, SSL_CONNECTION_GET_CTX(s)) == NULL) 4556 return 0; 4557 4558 /* Check the key is consistent with the sig alg */ 4559 if ((int)idx != sig->sig_idx) 4560 return 0; 4561 4562 return check_cert_usable(s, sig, x, pkey); 4563 } 4564 4565 /* 4566 * Find a signature scheme that works with the supplied certificate |x| and key 4567 * |pkey|. |x| and |pkey| may be NULL in which case we additionally look at our 4568 * available certs/keys to find one that works. 4569 */ 4570 static const SIGALG_LOOKUP *find_sig_alg(SSL_CONNECTION *s, X509 *x, 4571 EVP_PKEY *pkey) 4572 { 4573 const SIGALG_LOOKUP *lu = NULL; 4574 size_t i; 4575 int curve = -1; 4576 EVP_PKEY *tmppkey; 4577 SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s); 4578 4579 /* Look for a shared sigalgs matching possible certificates */ 4580 for (i = 0; i < s->shared_sigalgslen; i++) { 4581 /* Skip SHA1, SHA224, DSA and RSA if not PSS */ 4582 lu = s->shared_sigalgs[i]; 4583 if (lu->hash == NID_sha1 4584 || lu->hash == NID_sha224 4585 || lu->sig == EVP_PKEY_DSA 4586 || lu->sig == EVP_PKEY_RSA 4587 || !tls_sigalg_compat(s, lu)) 4588 continue; 4589 4590 /* Check that we have a cert, and signature_algorithms_cert */ 4591 if (!tls1_lookup_md(sctx, lu, NULL)) 4592 continue; 4593 if ((pkey == NULL && !has_usable_cert(s, lu, -1)) 4594 || (pkey != NULL && !is_cert_usable(s, lu, x, pkey))) 4595 continue; 4596 4597 tmppkey = (pkey != NULL) ? pkey 4598 : s->cert->pkeys[lu->sig_idx].privatekey; 4599 4600 if (lu->sig == EVP_PKEY_EC) { 4601 if (curve == -1) 4602 curve = ssl_get_EC_curve_nid(tmppkey); 4603 if (lu->curve != NID_undef && curve != lu->curve) 4604 continue; 4605 } else if (lu->sig == EVP_PKEY_RSA_PSS) { 4606 /* validate that key is large enough for the signature algorithm */ 4607 if (!rsa_pss_check_min_key_size(sctx, tmppkey, lu)) 4608 continue; 4609 } 4610 break; 4611 } 4612 4613 if (i == s->shared_sigalgslen) 4614 return NULL; 4615 4616 return lu; 4617 } 4618 4619 /* 4620 * Choose an appropriate signature algorithm based on available certificates 4621 * Sets chosen certificate and signature algorithm. 4622 * 4623 * For servers if we fail to find a required certificate it is a fatal error, 4624 * an appropriate error code is set and a TLS alert is sent. 4625 * 4626 * For clients fatalerrs is set to 0. If a certificate is not suitable it is not 4627 * a fatal error: we will either try another certificate or not present one 4628 * to the server. In this case no error is set. 4629 */ 4630 int tls_choose_sigalg(SSL_CONNECTION *s, int fatalerrs) 4631 { 4632 const SIGALG_LOOKUP *lu = NULL; 4633 int sig_idx = -1; 4634 4635 s->s3.tmp.cert = NULL; 4636 s->s3.tmp.sigalg = NULL; 4637 4638 if (SSL_CONNECTION_IS_TLS13(s)) { 4639 lu = find_sig_alg(s, NULL, NULL); 4640 if (lu == NULL) { 4641 if (!fatalerrs) 4642 return 1; 4643 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, 4644 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM); 4645 return 0; 4646 } 4647 } else { 4648 /* If ciphersuite doesn't require a cert nothing to do */ 4649 if (!(s->s3.tmp.new_cipher->algorithm_auth & SSL_aCERT)) 4650 return 1; 4651 if (!s->server && !ssl_has_cert(s, s->cert->key - s->cert->pkeys)) 4652 return 1; 4653 4654 if (SSL_USE_SIGALGS(s)) { 4655 size_t i; 4656 if (s->s3.tmp.peer_sigalgs != NULL) { 4657 int curve = -1; 4658 SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s); 4659 4660 /* For Suite B need to match signature algorithm to curve */ 4661 if (tls1_suiteb(s)) 4662 curve = ssl_get_EC_curve_nid(s->cert->pkeys[SSL_PKEY_ECC] 4663 .privatekey); 4664 4665 /* 4666 * Find highest preference signature algorithm matching 4667 * cert type 4668 */ 4669 for (i = 0; i < s->shared_sigalgslen; i++) { 4670 /* Check the sigalg version bounds */ 4671 lu = s->shared_sigalgs[i]; 4672 if (!tls_sigalg_compat(s, lu)) 4673 continue; 4674 if (s->server) { 4675 if ((sig_idx = tls12_get_cert_sigalg_idx(s, lu)) == -1) 4676 continue; 4677 } else { 4678 int cc_idx = s->cert->key - s->cert->pkeys; 4679 4680 sig_idx = lu->sig_idx; 4681 if (cc_idx != sig_idx) 4682 continue; 4683 } 4684 /* Check that we have a cert, and sig_algs_cert */ 4685 if (!has_usable_cert(s, lu, sig_idx)) 4686 continue; 4687 if (lu->sig == EVP_PKEY_RSA_PSS) { 4688 /* validate that key is large enough for the signature algorithm */ 4689 EVP_PKEY *pkey = s->cert->pkeys[sig_idx].privatekey; 4690 4691 if (!rsa_pss_check_min_key_size(sctx, pkey, lu)) 4692 continue; 4693 } 4694 if (curve == -1 || lu->curve == curve) 4695 break; 4696 } 4697 #ifndef OPENSSL_NO_GOST 4698 /* 4699 * Some Windows-based implementations do not send GOST algorithms indication 4700 * in supported_algorithms extension, so when we have GOST-based ciphersuite, 4701 * we have to assume GOST support. 4702 */ 4703 if (i == s->shared_sigalgslen 4704 && (s->s3.tmp.new_cipher->algorithm_auth 4705 & (SSL_aGOST01 | SSL_aGOST12)) != 0) { 4706 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) { 4707 if (!fatalerrs) 4708 return 1; 4709 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, 4710 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM); 4711 return 0; 4712 } else { 4713 i = 0; 4714 sig_idx = lu->sig_idx; 4715 } 4716 } 4717 #endif 4718 if (i == s->shared_sigalgslen) { 4719 if (!fatalerrs) 4720 return 1; 4721 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, 4722 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM); 4723 return 0; 4724 } 4725 } else { 4726 /* 4727 * If we have no sigalg use defaults 4728 */ 4729 const uint16_t *sent_sigs; 4730 size_t sent_sigslen; 4731 4732 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) { 4733 if (!fatalerrs) 4734 return 1; 4735 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, 4736 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM); 4737 return 0; 4738 } 4739 4740 /* Check signature matches a type we sent */ 4741 sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs); 4742 for (i = 0; i < sent_sigslen; i++, sent_sigs++) { 4743 if (lu->sigalg == *sent_sigs 4744 && has_usable_cert(s, lu, lu->sig_idx)) 4745 break; 4746 } 4747 if (i == sent_sigslen) { 4748 if (!fatalerrs) 4749 return 1; 4750 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, 4751 SSL_R_WRONG_SIGNATURE_TYPE); 4752 return 0; 4753 } 4754 } 4755 } else { 4756 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) { 4757 if (!fatalerrs) 4758 return 1; 4759 SSLfatal(s, SSL_AD_INTERNAL_ERROR, 4760 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM); 4761 return 0; 4762 } 4763 } 4764 } 4765 if (sig_idx == -1) 4766 sig_idx = lu->sig_idx; 4767 s->s3.tmp.cert = &s->cert->pkeys[sig_idx]; 4768 s->cert->key = s->s3.tmp.cert; 4769 s->s3.tmp.sigalg = lu; 4770 return 1; 4771 } 4772 4773 int SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX *ctx, uint8_t mode) 4774 { 4775 if (mode != TLSEXT_max_fragment_length_DISABLED 4776 && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) { 4777 ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH); 4778 return 0; 4779 } 4780 4781 ctx->ext.max_fragment_len_mode = mode; 4782 return 1; 4783 } 4784 4785 int SSL_set_tlsext_max_fragment_length(SSL *ssl, uint8_t mode) 4786 { 4787 SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(ssl); 4788 4789 if (sc == NULL 4790 || (IS_QUIC(ssl) && mode != TLSEXT_max_fragment_length_DISABLED)) 4791 return 0; 4792 4793 if (mode != TLSEXT_max_fragment_length_DISABLED 4794 && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) { 4795 ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH); 4796 return 0; 4797 } 4798 4799 sc->ext.max_fragment_len_mode = mode; 4800 return 1; 4801 } 4802 4803 uint8_t SSL_SESSION_get_max_fragment_length(const SSL_SESSION *session) 4804 { 4805 if (session->ext.max_fragment_len_mode == TLSEXT_max_fragment_length_UNSPECIFIED) 4806 return TLSEXT_max_fragment_length_DISABLED; 4807 return session->ext.max_fragment_len_mode; 4808 } 4809 4810 /* 4811 * Helper functions for HMAC access with legacy support included. 4812 */ 4813 SSL_HMAC *ssl_hmac_new(const SSL_CTX *ctx) 4814 { 4815 SSL_HMAC *ret = OPENSSL_zalloc(sizeof(*ret)); 4816 EVP_MAC *mac = NULL; 4817 4818 if (ret == NULL) 4819 return NULL; 4820 #ifndef OPENSSL_NO_DEPRECATED_3_0 4821 if (ctx->ext.ticket_key_evp_cb == NULL 4822 && ctx->ext.ticket_key_cb != NULL) { 4823 if (!ssl_hmac_old_new(ret)) 4824 goto err; 4825 return ret; 4826 } 4827 #endif 4828 mac = EVP_MAC_fetch(ctx->libctx, "HMAC", ctx->propq); 4829 if (mac == NULL || (ret->ctx = EVP_MAC_CTX_new(mac)) == NULL) 4830 goto err; 4831 EVP_MAC_free(mac); 4832 return ret; 4833 err: 4834 EVP_MAC_CTX_free(ret->ctx); 4835 EVP_MAC_free(mac); 4836 OPENSSL_free(ret); 4837 return NULL; 4838 } 4839 4840 void ssl_hmac_free(SSL_HMAC *ctx) 4841 { 4842 if (ctx != NULL) { 4843 EVP_MAC_CTX_free(ctx->ctx); 4844 #ifndef OPENSSL_NO_DEPRECATED_3_0 4845 ssl_hmac_old_free(ctx); 4846 #endif 4847 OPENSSL_free(ctx); 4848 } 4849 } 4850 4851 EVP_MAC_CTX *ssl_hmac_get0_EVP_MAC_CTX(SSL_HMAC *ctx) 4852 { 4853 return ctx->ctx; 4854 } 4855 4856 int ssl_hmac_init(SSL_HMAC *ctx, void *key, size_t len, char *md) 4857 { 4858 OSSL_PARAM params[2], *p = params; 4859 4860 if (ctx->ctx != NULL) { 4861 *p++ = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, md, 0); 4862 *p = OSSL_PARAM_construct_end(); 4863 if (EVP_MAC_init(ctx->ctx, key, len, params)) 4864 return 1; 4865 } 4866 #ifndef OPENSSL_NO_DEPRECATED_3_0 4867 if (ctx->old_ctx != NULL) 4868 return ssl_hmac_old_init(ctx, key, len, md); 4869 #endif 4870 return 0; 4871 } 4872 4873 int ssl_hmac_update(SSL_HMAC *ctx, const unsigned char *data, size_t len) 4874 { 4875 if (ctx->ctx != NULL) 4876 return EVP_MAC_update(ctx->ctx, data, len); 4877 #ifndef OPENSSL_NO_DEPRECATED_3_0 4878 if (ctx->old_ctx != NULL) 4879 return ssl_hmac_old_update(ctx, data, len); 4880 #endif 4881 return 0; 4882 } 4883 4884 int ssl_hmac_final(SSL_HMAC *ctx, unsigned char *md, size_t *len, 4885 size_t max_size) 4886 { 4887 if (ctx->ctx != NULL) 4888 return EVP_MAC_final(ctx->ctx, md, len, max_size); 4889 #ifndef OPENSSL_NO_DEPRECATED_3_0 4890 if (ctx->old_ctx != NULL) 4891 return ssl_hmac_old_final(ctx, md, len); 4892 #endif 4893 return 0; 4894 } 4895 4896 size_t ssl_hmac_size(const SSL_HMAC *ctx) 4897 { 4898 if (ctx->ctx != NULL) 4899 return EVP_MAC_CTX_get_mac_size(ctx->ctx); 4900 #ifndef OPENSSL_NO_DEPRECATED_3_0 4901 if (ctx->old_ctx != NULL) 4902 return ssl_hmac_old_size(ctx); 4903 #endif 4904 return 0; 4905 } 4906 4907 int ssl_get_EC_curve_nid(const EVP_PKEY *pkey) 4908 { 4909 char gname[OSSL_MAX_NAME_SIZE]; 4910 4911 if (EVP_PKEY_get_group_name(pkey, gname, sizeof(gname), NULL) > 0) 4912 return OBJ_txt2nid(gname); 4913 4914 return NID_undef; 4915 } 4916 4917 __owur int tls13_set_encoded_pub_key(EVP_PKEY *pkey, 4918 const unsigned char *enckey, 4919 size_t enckeylen) 4920 { 4921 if (EVP_PKEY_is_a(pkey, "DH")) { 4922 int bits = EVP_PKEY_get_bits(pkey); 4923 4924 if (bits <= 0 || enckeylen != (size_t)bits / 8) 4925 /* the encoded key must be padded to the length of the p */ 4926 return 0; 4927 } else if (EVP_PKEY_is_a(pkey, "EC")) { 4928 if (enckeylen < 3 /* point format and at least 1 byte for x and y */ 4929 || enckey[0] != 0x04) 4930 return 0; 4931 } 4932 4933 return EVP_PKEY_set1_encoded_public_key(pkey, enckey, enckeylen); 4934 } 4935