xref: /freebsd/crypto/openssl/ssl/t1_lib.c (revision 9f23cbd6cae82fd77edfad7173432fa8dccd0a95)
1 /*
2  * Copyright 1995-2023 The OpenSSL Project Authors. All Rights Reserved.
3  *
4  * Licensed under the Apache License 2.0 (the "License").  You may not use
5  * this file except in compliance with the License.  You can obtain a copy
6  * in the file LICENSE in the source distribution or at
7  * https://www.openssl.org/source/license.html
8  */
9 
10 #include <stdio.h>
11 #include <stdlib.h>
12 #include <openssl/objects.h>
13 #include <openssl/evp.h>
14 #include <openssl/hmac.h>
15 #include <openssl/core_names.h>
16 #include <openssl/ocsp.h>
17 #include <openssl/conf.h>
18 #include <openssl/x509v3.h>
19 #include <openssl/dh.h>
20 #include <openssl/bn.h>
21 #include <openssl/provider.h>
22 #include <openssl/param_build.h>
23 #include "internal/nelem.h"
24 #include "internal/sizes.h"
25 #include "internal/tlsgroups.h"
26 #include "ssl_local.h"
27 #include <openssl/ct.h>
28 
29 static const SIGALG_LOOKUP *find_sig_alg(SSL *s, X509 *x, EVP_PKEY *pkey);
30 static int tls12_sigalg_allowed(const SSL *s, int op, const SIGALG_LOOKUP *lu);
31 
32 SSL3_ENC_METHOD const TLSv1_enc_data = {
33     tls1_enc,
34     tls1_mac,
35     tls1_setup_key_block,
36     tls1_generate_master_secret,
37     tls1_change_cipher_state,
38     tls1_final_finish_mac,
39     TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
40     TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
41     tls1_alert_code,
42     tls1_export_keying_material,
43     0,
44     ssl3_set_handshake_header,
45     tls_close_construct_packet,
46     ssl3_handshake_write
47 };
48 
49 SSL3_ENC_METHOD const TLSv1_1_enc_data = {
50     tls1_enc,
51     tls1_mac,
52     tls1_setup_key_block,
53     tls1_generate_master_secret,
54     tls1_change_cipher_state,
55     tls1_final_finish_mac,
56     TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
57     TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
58     tls1_alert_code,
59     tls1_export_keying_material,
60     SSL_ENC_FLAG_EXPLICIT_IV,
61     ssl3_set_handshake_header,
62     tls_close_construct_packet,
63     ssl3_handshake_write
64 };
65 
66 SSL3_ENC_METHOD const TLSv1_2_enc_data = {
67     tls1_enc,
68     tls1_mac,
69     tls1_setup_key_block,
70     tls1_generate_master_secret,
71     tls1_change_cipher_state,
72     tls1_final_finish_mac,
73     TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
74     TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
75     tls1_alert_code,
76     tls1_export_keying_material,
77     SSL_ENC_FLAG_EXPLICIT_IV | SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF
78         | SSL_ENC_FLAG_TLS1_2_CIPHERS,
79     ssl3_set_handshake_header,
80     tls_close_construct_packet,
81     ssl3_handshake_write
82 };
83 
84 SSL3_ENC_METHOD const TLSv1_3_enc_data = {
85     tls13_enc,
86     tls1_mac,
87     tls13_setup_key_block,
88     tls13_generate_master_secret,
89     tls13_change_cipher_state,
90     tls13_final_finish_mac,
91     TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
92     TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
93     tls13_alert_code,
94     tls13_export_keying_material,
95     SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF,
96     ssl3_set_handshake_header,
97     tls_close_construct_packet,
98     ssl3_handshake_write
99 };
100 
101 long tls1_default_timeout(void)
102 {
103     /*
104      * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for
105      * http, the cache would over fill
106      */
107     return (60 * 60 * 2);
108 }
109 
110 int tls1_new(SSL *s)
111 {
112     if (!ssl3_new(s))
113         return 0;
114     if (!s->method->ssl_clear(s))
115         return 0;
116 
117     return 1;
118 }
119 
120 void tls1_free(SSL *s)
121 {
122     OPENSSL_free(s->ext.session_ticket);
123     ssl3_free(s);
124 }
125 
126 int tls1_clear(SSL *s)
127 {
128     if (!ssl3_clear(s))
129         return 0;
130 
131     if (s->method->version == TLS_ANY_VERSION)
132         s->version = TLS_MAX_VERSION_INTERNAL;
133     else
134         s->version = s->method->version;
135 
136     return 1;
137 }
138 
139 /* Legacy NID to group_id mapping. Only works for groups we know about */
140 static struct {
141     int nid;
142     uint16_t group_id;
143 } nid_to_group[] = {
144     {NID_sect163k1, OSSL_TLS_GROUP_ID_sect163k1},
145     {NID_sect163r1, OSSL_TLS_GROUP_ID_sect163r1},
146     {NID_sect163r2, OSSL_TLS_GROUP_ID_sect163r2},
147     {NID_sect193r1, OSSL_TLS_GROUP_ID_sect193r1},
148     {NID_sect193r2, OSSL_TLS_GROUP_ID_sect193r2},
149     {NID_sect233k1, OSSL_TLS_GROUP_ID_sect233k1},
150     {NID_sect233r1, OSSL_TLS_GROUP_ID_sect233r1},
151     {NID_sect239k1, OSSL_TLS_GROUP_ID_sect239k1},
152     {NID_sect283k1, OSSL_TLS_GROUP_ID_sect283k1},
153     {NID_sect283r1, OSSL_TLS_GROUP_ID_sect283r1},
154     {NID_sect409k1, OSSL_TLS_GROUP_ID_sect409k1},
155     {NID_sect409r1, OSSL_TLS_GROUP_ID_sect409r1},
156     {NID_sect571k1, OSSL_TLS_GROUP_ID_sect571k1},
157     {NID_sect571r1, OSSL_TLS_GROUP_ID_sect571r1},
158     {NID_secp160k1, OSSL_TLS_GROUP_ID_secp160k1},
159     {NID_secp160r1, OSSL_TLS_GROUP_ID_secp160r1},
160     {NID_secp160r2, OSSL_TLS_GROUP_ID_secp160r2},
161     {NID_secp192k1, OSSL_TLS_GROUP_ID_secp192k1},
162     {NID_X9_62_prime192v1, OSSL_TLS_GROUP_ID_secp192r1},
163     {NID_secp224k1, OSSL_TLS_GROUP_ID_secp224k1},
164     {NID_secp224r1, OSSL_TLS_GROUP_ID_secp224r1},
165     {NID_secp256k1, OSSL_TLS_GROUP_ID_secp256k1},
166     {NID_X9_62_prime256v1, OSSL_TLS_GROUP_ID_secp256r1},
167     {NID_secp384r1, OSSL_TLS_GROUP_ID_secp384r1},
168     {NID_secp521r1, OSSL_TLS_GROUP_ID_secp521r1},
169     {NID_brainpoolP256r1, OSSL_TLS_GROUP_ID_brainpoolP256r1},
170     {NID_brainpoolP384r1, OSSL_TLS_GROUP_ID_brainpoolP384r1},
171     {NID_brainpoolP512r1, OSSL_TLS_GROUP_ID_brainpoolP512r1},
172     {EVP_PKEY_X25519, OSSL_TLS_GROUP_ID_x25519},
173     {EVP_PKEY_X448, OSSL_TLS_GROUP_ID_x448},
174     {NID_id_tc26_gost_3410_2012_256_paramSetA, 0x0022},
175     {NID_id_tc26_gost_3410_2012_256_paramSetB, 0x0023},
176     {NID_id_tc26_gost_3410_2012_256_paramSetC, 0x0024},
177     {NID_id_tc26_gost_3410_2012_256_paramSetD, 0x0025},
178     {NID_id_tc26_gost_3410_2012_512_paramSetA, 0x0026},
179     {NID_id_tc26_gost_3410_2012_512_paramSetB, 0x0027},
180     {NID_id_tc26_gost_3410_2012_512_paramSetC, 0x0028},
181     {NID_ffdhe2048, OSSL_TLS_GROUP_ID_ffdhe2048},
182     {NID_ffdhe3072, OSSL_TLS_GROUP_ID_ffdhe3072},
183     {NID_ffdhe4096, OSSL_TLS_GROUP_ID_ffdhe4096},
184     {NID_ffdhe6144, OSSL_TLS_GROUP_ID_ffdhe6144},
185     {NID_ffdhe8192, OSSL_TLS_GROUP_ID_ffdhe8192}
186 };
187 
188 static const unsigned char ecformats_default[] = {
189     TLSEXT_ECPOINTFORMAT_uncompressed,
190     TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime,
191     TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2
192 };
193 
194 /* The default curves */
195 static const uint16_t supported_groups_default[] = {
196     29,                      /* X25519 (29) */
197     23,                      /* secp256r1 (23) */
198     30,                      /* X448 (30) */
199     25,                      /* secp521r1 (25) */
200     24,                      /* secp384r1 (24) */
201     34,                      /* GC256A (34) */
202     35,                      /* GC256B (35) */
203     36,                      /* GC256C (36) */
204     37,                      /* GC256D (37) */
205     38,                      /* GC512A (38) */
206     39,                      /* GC512B (39) */
207     40,                      /* GC512C (40) */
208     0x100,                   /* ffdhe2048 (0x100) */
209     0x101,                   /* ffdhe3072 (0x101) */
210     0x102,                   /* ffdhe4096 (0x102) */
211     0x103,                   /* ffdhe6144 (0x103) */
212     0x104,                   /* ffdhe8192 (0x104) */
213 };
214 
215 static const uint16_t suiteb_curves[] = {
216     TLSEXT_curve_P_256,
217     TLSEXT_curve_P_384
218 };
219 
220 struct provider_group_data_st {
221     SSL_CTX *ctx;
222     OSSL_PROVIDER *provider;
223 };
224 
225 #define TLS_GROUP_LIST_MALLOC_BLOCK_SIZE        10
226 static OSSL_CALLBACK add_provider_groups;
227 static int add_provider_groups(const OSSL_PARAM params[], void *data)
228 {
229     struct provider_group_data_st *pgd = data;
230     SSL_CTX *ctx = pgd->ctx;
231     OSSL_PROVIDER *provider = pgd->provider;
232     const OSSL_PARAM *p;
233     TLS_GROUP_INFO *ginf = NULL;
234     EVP_KEYMGMT *keymgmt;
235     unsigned int gid;
236     unsigned int is_kem = 0;
237     int ret = 0;
238 
239     if (ctx->group_list_max_len == ctx->group_list_len) {
240         TLS_GROUP_INFO *tmp = NULL;
241 
242         if (ctx->group_list_max_len == 0)
243             tmp = OPENSSL_malloc(sizeof(TLS_GROUP_INFO)
244                                  * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
245         else
246             tmp = OPENSSL_realloc(ctx->group_list,
247                                   (ctx->group_list_max_len
248                                    + TLS_GROUP_LIST_MALLOC_BLOCK_SIZE)
249                                   * sizeof(TLS_GROUP_INFO));
250         if (tmp == NULL) {
251             ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
252             return 0;
253         }
254         ctx->group_list = tmp;
255         memset(tmp + ctx->group_list_max_len,
256                0,
257                sizeof(TLS_GROUP_INFO) * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
258         ctx->group_list_max_len += TLS_GROUP_LIST_MALLOC_BLOCK_SIZE;
259     }
260 
261     ginf = &ctx->group_list[ctx->group_list_len];
262 
263     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME);
264     if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
265         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
266         goto err;
267     }
268     ginf->tlsname = OPENSSL_strdup(p->data);
269     if (ginf->tlsname == NULL) {
270         ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
271         goto err;
272     }
273 
274     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME_INTERNAL);
275     if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
276         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
277         goto err;
278     }
279     ginf->realname = OPENSSL_strdup(p->data);
280     if (ginf->realname == NULL) {
281         ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
282         goto err;
283     }
284 
285     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ID);
286     if (p == NULL || !OSSL_PARAM_get_uint(p, &gid) || gid > UINT16_MAX) {
287         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
288         goto err;
289     }
290     ginf->group_id = (uint16_t)gid;
291 
292     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ALG);
293     if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
294         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
295         goto err;
296     }
297     ginf->algorithm = OPENSSL_strdup(p->data);
298     if (ginf->algorithm == NULL) {
299         ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
300         goto err;
301     }
302 
303     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_SECURITY_BITS);
304     if (p == NULL || !OSSL_PARAM_get_uint(p, &ginf->secbits)) {
305         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
306         goto err;
307     }
308 
309     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_IS_KEM);
310     if (p != NULL && (!OSSL_PARAM_get_uint(p, &is_kem) || is_kem > 1)) {
311         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
312         goto err;
313     }
314     ginf->is_kem = 1 & is_kem;
315 
316     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_TLS);
317     if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mintls)) {
318         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
319         goto err;
320     }
321 
322     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_TLS);
323     if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxtls)) {
324         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
325         goto err;
326     }
327 
328     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_DTLS);
329     if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mindtls)) {
330         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
331         goto err;
332     }
333 
334     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_DTLS);
335     if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxdtls)) {
336         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
337         goto err;
338     }
339     /*
340      * Now check that the algorithm is actually usable for our property query
341      * string. Regardless of the result we still return success because we have
342      * successfully processed this group, even though we may decide not to use
343      * it.
344      */
345     ret = 1;
346     ERR_set_mark();
347     keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, ginf->algorithm, ctx->propq);
348     if (keymgmt != NULL) {
349         /*
350          * We have successfully fetched the algorithm - however if the provider
351          * doesn't match this one then we ignore it.
352          *
353          * Note: We're cheating a little here. Technically if the same algorithm
354          * is available from more than one provider then it is undefined which
355          * implementation you will get back. Theoretically this could be
356          * different every time...we assume here that you'll always get the
357          * same one back if you repeat the exact same fetch. Is this a reasonable
358          * assumption to make (in which case perhaps we should document this
359          * behaviour)?
360          */
361         if (EVP_KEYMGMT_get0_provider(keymgmt) == provider) {
362             /* We have a match - so we will use this group */
363             ctx->group_list_len++;
364             ginf = NULL;
365         }
366         EVP_KEYMGMT_free(keymgmt);
367     }
368     ERR_pop_to_mark();
369  err:
370     if (ginf != NULL) {
371         OPENSSL_free(ginf->tlsname);
372         OPENSSL_free(ginf->realname);
373         OPENSSL_free(ginf->algorithm);
374         ginf->algorithm = ginf->tlsname = ginf->realname = NULL;
375     }
376     return ret;
377 }
378 
379 static int discover_provider_groups(OSSL_PROVIDER *provider, void *vctx)
380 {
381     struct provider_group_data_st pgd;
382 
383     pgd.ctx = vctx;
384     pgd.provider = provider;
385     return OSSL_PROVIDER_get_capabilities(provider, "TLS-GROUP",
386                                           add_provider_groups, &pgd);
387 }
388 
389 int ssl_load_groups(SSL_CTX *ctx)
390 {
391     size_t i, j, num_deflt_grps = 0;
392     uint16_t tmp_supp_groups[OSSL_NELEM(supported_groups_default)];
393 
394     if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_groups, ctx))
395         return 0;
396 
397     for (i = 0; i < OSSL_NELEM(supported_groups_default); i++) {
398         for (j = 0; j < ctx->group_list_len; j++) {
399             if (ctx->group_list[j].group_id == supported_groups_default[i]) {
400                 tmp_supp_groups[num_deflt_grps++] = ctx->group_list[j].group_id;
401                 break;
402             }
403         }
404     }
405 
406     if (num_deflt_grps == 0)
407         return 1;
408 
409     ctx->ext.supported_groups_default
410         = OPENSSL_malloc(sizeof(uint16_t) * num_deflt_grps);
411 
412     if (ctx->ext.supported_groups_default == NULL) {
413         ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
414         return 0;
415     }
416 
417     memcpy(ctx->ext.supported_groups_default,
418            tmp_supp_groups,
419            num_deflt_grps * sizeof(tmp_supp_groups[0]));
420     ctx->ext.supported_groups_default_len = num_deflt_grps;
421 
422     return 1;
423 }
424 
425 static uint16_t tls1_group_name2id(SSL_CTX *ctx, const char *name)
426 {
427     size_t i;
428 
429     for (i = 0; i < ctx->group_list_len; i++) {
430         if (strcmp(ctx->group_list[i].tlsname, name) == 0
431                 || strcmp(ctx->group_list[i].realname, name) == 0)
432             return ctx->group_list[i].group_id;
433     }
434 
435     return 0;
436 }
437 
438 const TLS_GROUP_INFO *tls1_group_id_lookup(SSL_CTX *ctx, uint16_t group_id)
439 {
440     size_t i;
441 
442     for (i = 0; i < ctx->group_list_len; i++) {
443         if (ctx->group_list[i].group_id == group_id)
444             return &ctx->group_list[i];
445     }
446 
447     return NULL;
448 }
449 
450 int tls1_group_id2nid(uint16_t group_id, int include_unknown)
451 {
452     size_t i;
453 
454     if (group_id == 0)
455         return NID_undef;
456 
457     /*
458      * Return well known Group NIDs - for backwards compatibility. This won't
459      * work for groups we don't know about.
460      */
461     for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
462     {
463         if (nid_to_group[i].group_id == group_id)
464             return nid_to_group[i].nid;
465     }
466     if (!include_unknown)
467         return NID_undef;
468     return TLSEXT_nid_unknown | (int)group_id;
469 }
470 
471 uint16_t tls1_nid2group_id(int nid)
472 {
473     size_t i;
474 
475     /*
476      * Return well known Group ids - for backwards compatibility. This won't
477      * work for groups we don't know about.
478      */
479     for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
480     {
481         if (nid_to_group[i].nid == nid)
482             return nid_to_group[i].group_id;
483     }
484 
485     return 0;
486 }
487 
488 /*
489  * Set *pgroups to the supported groups list and *pgroupslen to
490  * the number of groups supported.
491  */
492 void tls1_get_supported_groups(SSL *s, const uint16_t **pgroups,
493                                size_t *pgroupslen)
494 {
495     /* For Suite B mode only include P-256, P-384 */
496     switch (tls1_suiteb(s)) {
497     case SSL_CERT_FLAG_SUITEB_128_LOS:
498         *pgroups = suiteb_curves;
499         *pgroupslen = OSSL_NELEM(suiteb_curves);
500         break;
501 
502     case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
503         *pgroups = suiteb_curves;
504         *pgroupslen = 1;
505         break;
506 
507     case SSL_CERT_FLAG_SUITEB_192_LOS:
508         *pgroups = suiteb_curves + 1;
509         *pgroupslen = 1;
510         break;
511 
512     default:
513         if (s->ext.supportedgroups == NULL) {
514             *pgroups = s->ctx->ext.supported_groups_default;
515             *pgroupslen = s->ctx->ext.supported_groups_default_len;
516         } else {
517             *pgroups = s->ext.supportedgroups;
518             *pgroupslen = s->ext.supportedgroups_len;
519         }
520         break;
521     }
522 }
523 
524 int tls_valid_group(SSL *s, uint16_t group_id, int minversion, int maxversion,
525                     int isec, int *okfortls13)
526 {
527     const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(s->ctx, group_id);
528     int ret;
529 
530     if (okfortls13 != NULL)
531         *okfortls13 = 0;
532 
533     if (ginfo == NULL)
534         return 0;
535 
536     if (SSL_IS_DTLS(s)) {
537         if (ginfo->mindtls < 0 || ginfo->maxdtls < 0)
538             return 0;
539         if (ginfo->maxdtls == 0)
540             ret = 1;
541         else
542             ret = DTLS_VERSION_LE(minversion, ginfo->maxdtls);
543         if (ginfo->mindtls > 0)
544             ret &= DTLS_VERSION_GE(maxversion, ginfo->mindtls);
545     } else {
546         if (ginfo->mintls < 0 || ginfo->maxtls < 0)
547             return 0;
548         if (ginfo->maxtls == 0)
549             ret = 1;
550         else
551             ret = (minversion <= ginfo->maxtls);
552         if (ginfo->mintls > 0)
553             ret &= (maxversion >= ginfo->mintls);
554         if (ret && okfortls13 != NULL && maxversion == TLS1_3_VERSION)
555             *okfortls13 = (ginfo->maxtls == 0)
556                           || (ginfo->maxtls >= TLS1_3_VERSION);
557     }
558     ret &= !isec
559            || strcmp(ginfo->algorithm, "EC") == 0
560            || strcmp(ginfo->algorithm, "X25519") == 0
561            || strcmp(ginfo->algorithm, "X448") == 0;
562 
563     return ret;
564 }
565 
566 /* See if group is allowed by security callback */
567 int tls_group_allowed(SSL *s, uint16_t group, int op)
568 {
569     const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(s->ctx, group);
570     unsigned char gtmp[2];
571 
572     if (ginfo == NULL)
573         return 0;
574 
575     gtmp[0] = group >> 8;
576     gtmp[1] = group & 0xff;
577     return ssl_security(s, op, ginfo->secbits,
578                         tls1_group_id2nid(ginfo->group_id, 0), (void *)gtmp);
579 }
580 
581 /* Return 1 if "id" is in "list" */
582 static int tls1_in_list(uint16_t id, const uint16_t *list, size_t listlen)
583 {
584     size_t i;
585     for (i = 0; i < listlen; i++)
586         if (list[i] == id)
587             return 1;
588     return 0;
589 }
590 
591 /*-
592  * For nmatch >= 0, return the id of the |nmatch|th shared group or 0
593  * if there is no match.
594  * For nmatch == -1, return number of matches
595  * For nmatch == -2, return the id of the group to use for
596  * a tmp key, or 0 if there is no match.
597  */
598 uint16_t tls1_shared_group(SSL *s, int nmatch)
599 {
600     const uint16_t *pref, *supp;
601     size_t num_pref, num_supp, i;
602     int k;
603 
604     /* Can't do anything on client side */
605     if (s->server == 0)
606         return 0;
607     if (nmatch == -2) {
608         if (tls1_suiteb(s)) {
609             /*
610              * For Suite B ciphersuite determines curve: we already know
611              * these are acceptable due to previous checks.
612              */
613             unsigned long cid = s->s3.tmp.new_cipher->id;
614 
615             if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
616                 return TLSEXT_curve_P_256;
617             if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
618                 return TLSEXT_curve_P_384;
619             /* Should never happen */
620             return 0;
621         }
622         /* If not Suite B just return first preference shared curve */
623         nmatch = 0;
624     }
625     /*
626      * If server preference set, our groups are the preference order
627      * otherwise peer decides.
628      */
629     if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) {
630         tls1_get_supported_groups(s, &pref, &num_pref);
631         tls1_get_peer_groups(s, &supp, &num_supp);
632     } else {
633         tls1_get_peer_groups(s, &pref, &num_pref);
634         tls1_get_supported_groups(s, &supp, &num_supp);
635     }
636 
637     for (k = 0, i = 0; i < num_pref; i++) {
638         uint16_t id = pref[i];
639 
640         if (!tls1_in_list(id, supp, num_supp)
641             || !tls_group_allowed(s, id, SSL_SECOP_CURVE_SHARED))
642                     continue;
643         if (nmatch == k)
644             return id;
645          k++;
646     }
647     if (nmatch == -1)
648         return k;
649     /* Out of range (nmatch > k). */
650     return 0;
651 }
652 
653 int tls1_set_groups(uint16_t **pext, size_t *pextlen,
654                     int *groups, size_t ngroups)
655 {
656     uint16_t *glist;
657     size_t i;
658     /*
659      * Bitmap of groups included to detect duplicates: two variables are added
660      * to detect duplicates as some values are more than 32.
661      */
662     unsigned long *dup_list = NULL;
663     unsigned long dup_list_egrp = 0;
664     unsigned long dup_list_dhgrp = 0;
665 
666     if (ngroups == 0) {
667         ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH);
668         return 0;
669     }
670     if ((glist = OPENSSL_malloc(ngroups * sizeof(*glist))) == NULL) {
671         ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
672         return 0;
673     }
674     for (i = 0; i < ngroups; i++) {
675         unsigned long idmask;
676         uint16_t id;
677         id = tls1_nid2group_id(groups[i]);
678         if ((id & 0x00FF) >= (sizeof(unsigned long) * 8))
679             goto err;
680         idmask = 1L << (id & 0x00FF);
681         dup_list = (id < 0x100) ? &dup_list_egrp : &dup_list_dhgrp;
682         if (!id || ((*dup_list) & idmask))
683             goto err;
684         *dup_list |= idmask;
685         glist[i] = id;
686     }
687     OPENSSL_free(*pext);
688     *pext = glist;
689     *pextlen = ngroups;
690     return 1;
691 err:
692     OPENSSL_free(glist);
693     return 0;
694 }
695 
696 # define GROUPLIST_INCREMENT   40
697 # define GROUP_NAME_BUFFER_LENGTH 64
698 typedef struct {
699     SSL_CTX *ctx;
700     size_t gidcnt;
701     size_t gidmax;
702     uint16_t *gid_arr;
703 } gid_cb_st;
704 
705 static int gid_cb(const char *elem, int len, void *arg)
706 {
707     gid_cb_st *garg = arg;
708     size_t i;
709     uint16_t gid = 0;
710     char etmp[GROUP_NAME_BUFFER_LENGTH];
711 
712     if (elem == NULL)
713         return 0;
714     if (garg->gidcnt == garg->gidmax) {
715         uint16_t *tmp =
716             OPENSSL_realloc(garg->gid_arr, garg->gidmax + GROUPLIST_INCREMENT);
717         if (tmp == NULL)
718             return 0;
719         garg->gidmax += GROUPLIST_INCREMENT;
720         garg->gid_arr = tmp;
721     }
722     if (len > (int)(sizeof(etmp) - 1))
723         return 0;
724     memcpy(etmp, elem, len);
725     etmp[len] = 0;
726 
727     gid = tls1_group_name2id(garg->ctx, etmp);
728     if (gid == 0) {
729         ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
730                        "group '%s' cannot be set", etmp);
731         return 0;
732     }
733     for (i = 0; i < garg->gidcnt; i++)
734         if (garg->gid_arr[i] == gid)
735             return 0;
736     garg->gid_arr[garg->gidcnt++] = gid;
737     return 1;
738 }
739 
740 /* Set groups based on a colon separated list */
741 int tls1_set_groups_list(SSL_CTX *ctx, uint16_t **pext, size_t *pextlen,
742                          const char *str)
743 {
744     gid_cb_st gcb;
745     uint16_t *tmparr;
746     int ret = 0;
747 
748     gcb.gidcnt = 0;
749     gcb.gidmax = GROUPLIST_INCREMENT;
750     gcb.gid_arr = OPENSSL_malloc(gcb.gidmax * sizeof(*gcb.gid_arr));
751     if (gcb.gid_arr == NULL)
752         return 0;
753     gcb.ctx = ctx;
754     if (!CONF_parse_list(str, ':', 1, gid_cb, &gcb))
755         goto end;
756     if (pext == NULL) {
757         ret = 1;
758         goto end;
759     }
760 
761     /*
762      * gid_cb ensurse there are no duplicates so we can just go ahead and set
763      * the result
764      */
765     tmparr = OPENSSL_memdup(gcb.gid_arr, gcb.gidcnt * sizeof(*tmparr));
766     if (tmparr == NULL)
767         goto end;
768     OPENSSL_free(*pext);
769     *pext = tmparr;
770     *pextlen = gcb.gidcnt;
771     ret = 1;
772  end:
773     OPENSSL_free(gcb.gid_arr);
774     return ret;
775 }
776 
777 /* Check a group id matches preferences */
778 int tls1_check_group_id(SSL *s, uint16_t group_id, int check_own_groups)
779     {
780     const uint16_t *groups;
781     size_t groups_len;
782 
783     if (group_id == 0)
784         return 0;
785 
786     /* Check for Suite B compliance */
787     if (tls1_suiteb(s) && s->s3.tmp.new_cipher != NULL) {
788         unsigned long cid = s->s3.tmp.new_cipher->id;
789 
790         if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) {
791             if (group_id != TLSEXT_curve_P_256)
792                 return 0;
793         } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) {
794             if (group_id != TLSEXT_curve_P_384)
795                 return 0;
796         } else {
797             /* Should never happen */
798             return 0;
799         }
800     }
801 
802     if (check_own_groups) {
803         /* Check group is one of our preferences */
804         tls1_get_supported_groups(s, &groups, &groups_len);
805         if (!tls1_in_list(group_id, groups, groups_len))
806             return 0;
807     }
808 
809     if (!tls_group_allowed(s, group_id, SSL_SECOP_CURVE_CHECK))
810         return 0;
811 
812     /* For clients, nothing more to check */
813     if (!s->server)
814         return 1;
815 
816     /* Check group is one of peers preferences */
817     tls1_get_peer_groups(s, &groups, &groups_len);
818 
819     /*
820      * RFC 4492 does not require the supported elliptic curves extension
821      * so if it is not sent we can just choose any curve.
822      * It is invalid to send an empty list in the supported groups
823      * extension, so groups_len == 0 always means no extension.
824      */
825     if (groups_len == 0)
826             return 1;
827     return tls1_in_list(group_id, groups, groups_len);
828 }
829 
830 void tls1_get_formatlist(SSL *s, const unsigned char **pformats,
831                          size_t *num_formats)
832 {
833     /*
834      * If we have a custom point format list use it otherwise use default
835      */
836     if (s->ext.ecpointformats) {
837         *pformats = s->ext.ecpointformats;
838         *num_formats = s->ext.ecpointformats_len;
839     } else {
840         *pformats = ecformats_default;
841         /* For Suite B we don't support char2 fields */
842         if (tls1_suiteb(s))
843             *num_formats = sizeof(ecformats_default) - 1;
844         else
845             *num_formats = sizeof(ecformats_default);
846     }
847 }
848 
849 /* Check a key is compatible with compression extension */
850 static int tls1_check_pkey_comp(SSL *s, EVP_PKEY *pkey)
851 {
852     unsigned char comp_id;
853     size_t i;
854     int point_conv;
855 
856     /* If not an EC key nothing to check */
857     if (!EVP_PKEY_is_a(pkey, "EC"))
858         return 1;
859 
860 
861     /* Get required compression id */
862     point_conv = EVP_PKEY_get_ec_point_conv_form(pkey);
863     if (point_conv == 0)
864         return 0;
865     if (point_conv == POINT_CONVERSION_UNCOMPRESSED) {
866             comp_id = TLSEXT_ECPOINTFORMAT_uncompressed;
867     } else if (SSL_IS_TLS13(s)) {
868         /*
869          * ec_point_formats extension is not used in TLSv1.3 so we ignore
870          * this check.
871          */
872         return 1;
873     } else {
874         int field_type = EVP_PKEY_get_field_type(pkey);
875 
876         if (field_type == NID_X9_62_prime_field)
877             comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime;
878         else if (field_type == NID_X9_62_characteristic_two_field)
879             comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2;
880         else
881             return 0;
882     }
883     /*
884      * If point formats extension present check it, otherwise everything is
885      * supported (see RFC4492).
886      */
887     if (s->ext.peer_ecpointformats == NULL)
888         return 1;
889 
890     for (i = 0; i < s->ext.peer_ecpointformats_len; i++) {
891         if (s->ext.peer_ecpointformats[i] == comp_id)
892             return 1;
893     }
894     return 0;
895 }
896 
897 /* Return group id of a key */
898 static uint16_t tls1_get_group_id(EVP_PKEY *pkey)
899 {
900     int curve_nid = ssl_get_EC_curve_nid(pkey);
901 
902     if (curve_nid == NID_undef)
903         return 0;
904     return tls1_nid2group_id(curve_nid);
905 }
906 
907 /*
908  * Check cert parameters compatible with extensions: currently just checks EC
909  * certificates have compatible curves and compression.
910  */
911 static int tls1_check_cert_param(SSL *s, X509 *x, int check_ee_md)
912 {
913     uint16_t group_id;
914     EVP_PKEY *pkey;
915     pkey = X509_get0_pubkey(x);
916     if (pkey == NULL)
917         return 0;
918     /* If not EC nothing to do */
919     if (!EVP_PKEY_is_a(pkey, "EC"))
920         return 1;
921     /* Check compression */
922     if (!tls1_check_pkey_comp(s, pkey))
923         return 0;
924     group_id = tls1_get_group_id(pkey);
925     /*
926      * For a server we allow the certificate to not be in our list of supported
927      * groups.
928      */
929     if (!tls1_check_group_id(s, group_id, !s->server))
930         return 0;
931     /*
932      * Special case for suite B. We *MUST* sign using SHA256+P-256 or
933      * SHA384+P-384.
934      */
935     if (check_ee_md && tls1_suiteb(s)) {
936         int check_md;
937         size_t i;
938 
939         /* Check to see we have necessary signing algorithm */
940         if (group_id == TLSEXT_curve_P_256)
941             check_md = NID_ecdsa_with_SHA256;
942         else if (group_id == TLSEXT_curve_P_384)
943             check_md = NID_ecdsa_with_SHA384;
944         else
945             return 0;           /* Should never happen */
946         for (i = 0; i < s->shared_sigalgslen; i++) {
947             if (check_md == s->shared_sigalgs[i]->sigandhash)
948                 return 1;;
949         }
950         return 0;
951     }
952     return 1;
953 }
954 
955 /*
956  * tls1_check_ec_tmp_key - Check EC temporary key compatibility
957  * @s: SSL connection
958  * @cid: Cipher ID we're considering using
959  *
960  * Checks that the kECDHE cipher suite we're considering using
961  * is compatible with the client extensions.
962  *
963  * Returns 0 when the cipher can't be used or 1 when it can.
964  */
965 int tls1_check_ec_tmp_key(SSL *s, unsigned long cid)
966 {
967     /* If not Suite B just need a shared group */
968     if (!tls1_suiteb(s))
969         return tls1_shared_group(s, 0) != 0;
970     /*
971      * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other
972      * curves permitted.
973      */
974     if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
975         return tls1_check_group_id(s, TLSEXT_curve_P_256, 1);
976     if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
977         return tls1_check_group_id(s, TLSEXT_curve_P_384, 1);
978 
979     return 0;
980 }
981 
982 /* Default sigalg schemes */
983 static const uint16_t tls12_sigalgs[] = {
984     TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
985     TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
986     TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
987     TLSEXT_SIGALG_ed25519,
988     TLSEXT_SIGALG_ed448,
989 
990     TLSEXT_SIGALG_rsa_pss_pss_sha256,
991     TLSEXT_SIGALG_rsa_pss_pss_sha384,
992     TLSEXT_SIGALG_rsa_pss_pss_sha512,
993     TLSEXT_SIGALG_rsa_pss_rsae_sha256,
994     TLSEXT_SIGALG_rsa_pss_rsae_sha384,
995     TLSEXT_SIGALG_rsa_pss_rsae_sha512,
996 
997     TLSEXT_SIGALG_rsa_pkcs1_sha256,
998     TLSEXT_SIGALG_rsa_pkcs1_sha384,
999     TLSEXT_SIGALG_rsa_pkcs1_sha512,
1000 
1001     TLSEXT_SIGALG_ecdsa_sha224,
1002     TLSEXT_SIGALG_ecdsa_sha1,
1003 
1004     TLSEXT_SIGALG_rsa_pkcs1_sha224,
1005     TLSEXT_SIGALG_rsa_pkcs1_sha1,
1006 
1007     TLSEXT_SIGALG_dsa_sha224,
1008     TLSEXT_SIGALG_dsa_sha1,
1009 
1010     TLSEXT_SIGALG_dsa_sha256,
1011     TLSEXT_SIGALG_dsa_sha384,
1012     TLSEXT_SIGALG_dsa_sha512,
1013 
1014 #ifndef OPENSSL_NO_GOST
1015     TLSEXT_SIGALG_gostr34102012_256_intrinsic,
1016     TLSEXT_SIGALG_gostr34102012_512_intrinsic,
1017     TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
1018     TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
1019     TLSEXT_SIGALG_gostr34102001_gostr3411,
1020 #endif
1021 };
1022 
1023 
1024 static const uint16_t suiteb_sigalgs[] = {
1025     TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1026     TLSEXT_SIGALG_ecdsa_secp384r1_sha384
1027 };
1028 
1029 static const SIGALG_LOOKUP sigalg_lookup_tbl[] = {
1030     {"ecdsa_secp256r1_sha256", TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1031      NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1032      NID_ecdsa_with_SHA256, NID_X9_62_prime256v1, 1},
1033     {"ecdsa_secp384r1_sha384", TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
1034      NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1035      NID_ecdsa_with_SHA384, NID_secp384r1, 1},
1036     {"ecdsa_secp521r1_sha512", TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
1037      NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1038      NID_ecdsa_with_SHA512, NID_secp521r1, 1},
1039     {"ed25519", TLSEXT_SIGALG_ed25519,
1040      NID_undef, -1, EVP_PKEY_ED25519, SSL_PKEY_ED25519,
1041      NID_undef, NID_undef, 1},
1042     {"ed448", TLSEXT_SIGALG_ed448,
1043      NID_undef, -1, EVP_PKEY_ED448, SSL_PKEY_ED448,
1044      NID_undef, NID_undef, 1},
1045     {NULL, TLSEXT_SIGALG_ecdsa_sha224,
1046      NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1047      NID_ecdsa_with_SHA224, NID_undef, 1},
1048     {NULL, TLSEXT_SIGALG_ecdsa_sha1,
1049      NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1050      NID_ecdsa_with_SHA1, NID_undef, 1},
1051     {"rsa_pss_rsae_sha256", TLSEXT_SIGALG_rsa_pss_rsae_sha256,
1052      NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1053      NID_undef, NID_undef, 1},
1054     {"rsa_pss_rsae_sha384", TLSEXT_SIGALG_rsa_pss_rsae_sha384,
1055      NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1056      NID_undef, NID_undef, 1},
1057     {"rsa_pss_rsae_sha512", TLSEXT_SIGALG_rsa_pss_rsae_sha512,
1058      NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1059      NID_undef, NID_undef, 1},
1060     {"rsa_pss_pss_sha256", TLSEXT_SIGALG_rsa_pss_pss_sha256,
1061      NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1062      NID_undef, NID_undef, 1},
1063     {"rsa_pss_pss_sha384", TLSEXT_SIGALG_rsa_pss_pss_sha384,
1064      NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1065      NID_undef, NID_undef, 1},
1066     {"rsa_pss_pss_sha512", TLSEXT_SIGALG_rsa_pss_pss_sha512,
1067      NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1068      NID_undef, NID_undef, 1},
1069     {"rsa_pkcs1_sha256", TLSEXT_SIGALG_rsa_pkcs1_sha256,
1070      NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1071      NID_sha256WithRSAEncryption, NID_undef, 1},
1072     {"rsa_pkcs1_sha384", TLSEXT_SIGALG_rsa_pkcs1_sha384,
1073      NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1074      NID_sha384WithRSAEncryption, NID_undef, 1},
1075     {"rsa_pkcs1_sha512", TLSEXT_SIGALG_rsa_pkcs1_sha512,
1076      NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1077      NID_sha512WithRSAEncryption, NID_undef, 1},
1078     {"rsa_pkcs1_sha224", TLSEXT_SIGALG_rsa_pkcs1_sha224,
1079      NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1080      NID_sha224WithRSAEncryption, NID_undef, 1},
1081     {"rsa_pkcs1_sha1", TLSEXT_SIGALG_rsa_pkcs1_sha1,
1082      NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1083      NID_sha1WithRSAEncryption, NID_undef, 1},
1084     {NULL, TLSEXT_SIGALG_dsa_sha256,
1085      NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1086      NID_dsa_with_SHA256, NID_undef, 1},
1087     {NULL, TLSEXT_SIGALG_dsa_sha384,
1088      NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1089      NID_undef, NID_undef, 1},
1090     {NULL, TLSEXT_SIGALG_dsa_sha512,
1091      NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1092      NID_undef, NID_undef, 1},
1093     {NULL, TLSEXT_SIGALG_dsa_sha224,
1094      NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1095      NID_undef, NID_undef, 1},
1096     {NULL, TLSEXT_SIGALG_dsa_sha1,
1097      NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1098      NID_dsaWithSHA1, NID_undef, 1},
1099 #ifndef OPENSSL_NO_GOST
1100     {NULL, TLSEXT_SIGALG_gostr34102012_256_intrinsic,
1101      NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
1102      NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
1103      NID_undef, NID_undef, 1},
1104     {NULL, TLSEXT_SIGALG_gostr34102012_512_intrinsic,
1105      NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
1106      NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
1107      NID_undef, NID_undef, 1},
1108     {NULL, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
1109      NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
1110      NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
1111      NID_undef, NID_undef, 1},
1112     {NULL, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
1113      NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
1114      NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
1115      NID_undef, NID_undef, 1},
1116     {NULL, TLSEXT_SIGALG_gostr34102001_gostr3411,
1117      NID_id_GostR3411_94, SSL_MD_GOST94_IDX,
1118      NID_id_GostR3410_2001, SSL_PKEY_GOST01,
1119      NID_undef, NID_undef, 1}
1120 #endif
1121 };
1122 /* Legacy sigalgs for TLS < 1.2 RSA TLS signatures */
1123 static const SIGALG_LOOKUP legacy_rsa_sigalg = {
1124     "rsa_pkcs1_md5_sha1", 0,
1125      NID_md5_sha1, SSL_MD_MD5_SHA1_IDX,
1126      EVP_PKEY_RSA, SSL_PKEY_RSA,
1127      NID_undef, NID_undef, 1
1128 };
1129 
1130 /*
1131  * Default signature algorithm values used if signature algorithms not present.
1132  * From RFC5246. Note: order must match certificate index order.
1133  */
1134 static const uint16_t tls_default_sigalg[] = {
1135     TLSEXT_SIGALG_rsa_pkcs1_sha1, /* SSL_PKEY_RSA */
1136     0, /* SSL_PKEY_RSA_PSS_SIGN */
1137     TLSEXT_SIGALG_dsa_sha1, /* SSL_PKEY_DSA_SIGN */
1138     TLSEXT_SIGALG_ecdsa_sha1, /* SSL_PKEY_ECC */
1139     TLSEXT_SIGALG_gostr34102001_gostr3411, /* SSL_PKEY_GOST01 */
1140     TLSEXT_SIGALG_gostr34102012_256_intrinsic, /* SSL_PKEY_GOST12_256 */
1141     TLSEXT_SIGALG_gostr34102012_512_intrinsic, /* SSL_PKEY_GOST12_512 */
1142     0, /* SSL_PKEY_ED25519 */
1143     0, /* SSL_PKEY_ED448 */
1144 };
1145 
1146 int ssl_setup_sig_algs(SSL_CTX *ctx)
1147 {
1148     size_t i;
1149     const SIGALG_LOOKUP *lu;
1150     SIGALG_LOOKUP *cache
1151         = OPENSSL_malloc(sizeof(*lu) * OSSL_NELEM(sigalg_lookup_tbl));
1152     EVP_PKEY *tmpkey = EVP_PKEY_new();
1153     int ret = 0;
1154 
1155     if (cache == NULL || tmpkey == NULL)
1156         goto err;
1157 
1158     ERR_set_mark();
1159     for (i = 0, lu = sigalg_lookup_tbl;
1160          i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) {
1161         EVP_PKEY_CTX *pctx;
1162 
1163         cache[i] = *lu;
1164 
1165         /*
1166          * Check hash is available.
1167          * This test is not perfect. A provider could have support
1168          * for a signature scheme, but not a particular hash. However the hash
1169          * could be available from some other loaded provider. In that case it
1170          * could be that the signature is available, and the hash is available
1171          * independently - but not as a combination. We ignore this for now.
1172          */
1173         if (lu->hash != NID_undef
1174                 && ctx->ssl_digest_methods[lu->hash_idx] == NULL) {
1175             cache[i].enabled = 0;
1176             continue;
1177         }
1178 
1179         if (!EVP_PKEY_set_type(tmpkey, lu->sig)) {
1180             cache[i].enabled = 0;
1181             continue;
1182         }
1183         pctx = EVP_PKEY_CTX_new_from_pkey(ctx->libctx, tmpkey, ctx->propq);
1184         /* If unable to create pctx we assume the sig algorithm is unavailable */
1185         if (pctx == NULL)
1186             cache[i].enabled = 0;
1187         EVP_PKEY_CTX_free(pctx);
1188     }
1189     ERR_pop_to_mark();
1190     ctx->sigalg_lookup_cache = cache;
1191     cache = NULL;
1192 
1193     ret = 1;
1194  err:
1195     OPENSSL_free(cache);
1196     EVP_PKEY_free(tmpkey);
1197     return ret;
1198 }
1199 
1200 /* Lookup TLS signature algorithm */
1201 static const SIGALG_LOOKUP *tls1_lookup_sigalg(const SSL *s, uint16_t sigalg)
1202 {
1203     size_t i;
1204     const SIGALG_LOOKUP *lu;
1205 
1206     for (i = 0, lu = s->ctx->sigalg_lookup_cache;
1207          /* cache should have the same number of elements as sigalg_lookup_tbl */
1208          i < OSSL_NELEM(sigalg_lookup_tbl);
1209          lu++, i++) {
1210         if (lu->sigalg == sigalg) {
1211             if (!lu->enabled)
1212                 return NULL;
1213             return lu;
1214         }
1215     }
1216     return NULL;
1217 }
1218 /* Lookup hash: return 0 if invalid or not enabled */
1219 int tls1_lookup_md(SSL_CTX *ctx, const SIGALG_LOOKUP *lu, const EVP_MD **pmd)
1220 {
1221     const EVP_MD *md;
1222     if (lu == NULL)
1223         return 0;
1224     /* lu->hash == NID_undef means no associated digest */
1225     if (lu->hash == NID_undef) {
1226         md = NULL;
1227     } else {
1228         md = ssl_md(ctx, lu->hash_idx);
1229         if (md == NULL)
1230             return 0;
1231     }
1232     if (pmd)
1233         *pmd = md;
1234     return 1;
1235 }
1236 
1237 /*
1238  * Check if key is large enough to generate RSA-PSS signature.
1239  *
1240  * The key must greater than or equal to 2 * hash length + 2.
1241  * SHA512 has a hash length of 64 bytes, which is incompatible
1242  * with a 128 byte (1024 bit) key.
1243  */
1244 #define RSA_PSS_MINIMUM_KEY_SIZE(md) (2 * EVP_MD_get_size(md) + 2)
1245 static int rsa_pss_check_min_key_size(SSL_CTX *ctx, const EVP_PKEY *pkey,
1246                                       const SIGALG_LOOKUP *lu)
1247 {
1248     const EVP_MD *md;
1249 
1250     if (pkey == NULL)
1251         return 0;
1252     if (!tls1_lookup_md(ctx, lu, &md) || md == NULL)
1253         return 0;
1254     if (EVP_PKEY_get_size(pkey) < RSA_PSS_MINIMUM_KEY_SIZE(md))
1255         return 0;
1256     return 1;
1257 }
1258 
1259 /*
1260  * Returns a signature algorithm when the peer did not send a list of supported
1261  * signature algorithms. The signature algorithm is fixed for the certificate
1262  * type. |idx| is a certificate type index (SSL_PKEY_*). When |idx| is -1 the
1263  * certificate type from |s| will be used.
1264  * Returns the signature algorithm to use, or NULL on error.
1265  */
1266 static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL *s, int idx)
1267 {
1268     if (idx == -1) {
1269         if (s->server) {
1270             size_t i;
1271 
1272             /* Work out index corresponding to ciphersuite */
1273             for (i = 0; i < SSL_PKEY_NUM; i++) {
1274                 const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(i);
1275 
1276                 if (clu == NULL)
1277                     continue;
1278                 if (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) {
1279                     idx = i;
1280                     break;
1281                 }
1282             }
1283 
1284             /*
1285              * Some GOST ciphersuites allow more than one signature algorithms
1286              * */
1287             if (idx == SSL_PKEY_GOST01 && s->s3.tmp.new_cipher->algorithm_auth != SSL_aGOST01) {
1288                 int real_idx;
1289 
1290                 for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST01;
1291                      real_idx--) {
1292                     if (s->cert->pkeys[real_idx].privatekey != NULL) {
1293                         idx = real_idx;
1294                         break;
1295                     }
1296                 }
1297             }
1298             /*
1299              * As both SSL_PKEY_GOST12_512 and SSL_PKEY_GOST12_256 indices can be used
1300              * with new (aGOST12-only) ciphersuites, we should find out which one is available really.
1301              */
1302             else if (idx == SSL_PKEY_GOST12_256) {
1303                 int real_idx;
1304 
1305                 for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST12_256;
1306                      real_idx--) {
1307                      if (s->cert->pkeys[real_idx].privatekey != NULL) {
1308                          idx = real_idx;
1309                          break;
1310                      }
1311                 }
1312             }
1313         } else {
1314             idx = s->cert->key - s->cert->pkeys;
1315         }
1316     }
1317     if (idx < 0 || idx >= (int)OSSL_NELEM(tls_default_sigalg))
1318         return NULL;
1319     if (SSL_USE_SIGALGS(s) || idx != SSL_PKEY_RSA) {
1320         const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, tls_default_sigalg[idx]);
1321 
1322         if (lu == NULL)
1323             return NULL;
1324         if (!tls1_lookup_md(s->ctx, lu, NULL))
1325             return NULL;
1326         if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
1327             return NULL;
1328         return lu;
1329     }
1330     if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, &legacy_rsa_sigalg))
1331         return NULL;
1332     return &legacy_rsa_sigalg;
1333 }
1334 /* Set peer sigalg based key type */
1335 int tls1_set_peer_legacy_sigalg(SSL *s, const EVP_PKEY *pkey)
1336 {
1337     size_t idx;
1338     const SIGALG_LOOKUP *lu;
1339 
1340     if (ssl_cert_lookup_by_pkey(pkey, &idx) == NULL)
1341         return 0;
1342     lu = tls1_get_legacy_sigalg(s, idx);
1343     if (lu == NULL)
1344         return 0;
1345     s->s3.tmp.peer_sigalg = lu;
1346     return 1;
1347 }
1348 
1349 size_t tls12_get_psigalgs(SSL *s, int sent, const uint16_t **psigs)
1350 {
1351     /*
1352      * If Suite B mode use Suite B sigalgs only, ignore any other
1353      * preferences.
1354      */
1355     switch (tls1_suiteb(s)) {
1356     case SSL_CERT_FLAG_SUITEB_128_LOS:
1357         *psigs = suiteb_sigalgs;
1358         return OSSL_NELEM(suiteb_sigalgs);
1359 
1360     case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
1361         *psigs = suiteb_sigalgs;
1362         return 1;
1363 
1364     case SSL_CERT_FLAG_SUITEB_192_LOS:
1365         *psigs = suiteb_sigalgs + 1;
1366         return 1;
1367     }
1368     /*
1369      *  We use client_sigalgs (if not NULL) if we're a server
1370      *  and sending a certificate request or if we're a client and
1371      *  determining which shared algorithm to use.
1372      */
1373     if ((s->server == sent) && s->cert->client_sigalgs != NULL) {
1374         *psigs = s->cert->client_sigalgs;
1375         return s->cert->client_sigalgslen;
1376     } else if (s->cert->conf_sigalgs) {
1377         *psigs = s->cert->conf_sigalgs;
1378         return s->cert->conf_sigalgslen;
1379     } else {
1380         *psigs = tls12_sigalgs;
1381         return OSSL_NELEM(tls12_sigalgs);
1382     }
1383 }
1384 
1385 /*
1386  * Called by servers only. Checks that we have a sig alg that supports the
1387  * specified EC curve.
1388  */
1389 int tls_check_sigalg_curve(const SSL *s, int curve)
1390 {
1391    const uint16_t *sigs;
1392    size_t siglen, i;
1393 
1394     if (s->cert->conf_sigalgs) {
1395         sigs = s->cert->conf_sigalgs;
1396         siglen = s->cert->conf_sigalgslen;
1397     } else {
1398         sigs = tls12_sigalgs;
1399         siglen = OSSL_NELEM(tls12_sigalgs);
1400     }
1401 
1402     for (i = 0; i < siglen; i++) {
1403         const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, sigs[i]);
1404 
1405         if (lu == NULL)
1406             continue;
1407         if (lu->sig == EVP_PKEY_EC
1408                 && lu->curve != NID_undef
1409                 && curve == lu->curve)
1410             return 1;
1411     }
1412 
1413     return 0;
1414 }
1415 
1416 /*
1417  * Return the number of security bits for the signature algorithm, or 0 on
1418  * error.
1419  */
1420 static int sigalg_security_bits(SSL_CTX *ctx, const SIGALG_LOOKUP *lu)
1421 {
1422     const EVP_MD *md = NULL;
1423     int secbits = 0;
1424 
1425     if (!tls1_lookup_md(ctx, lu, &md))
1426         return 0;
1427     if (md != NULL)
1428     {
1429         int md_type = EVP_MD_get_type(md);
1430 
1431         /* Security bits: half digest bits */
1432         secbits = EVP_MD_get_size(md) * 4;
1433         /*
1434          * SHA1 and MD5 are known to be broken. Reduce security bits so that
1435          * they're no longer accepted at security level 1. The real values don't
1436          * really matter as long as they're lower than 80, which is our
1437          * security level 1.
1438          * https://eprint.iacr.org/2020/014 puts a chosen-prefix attack for
1439          * SHA1 at 2^63.4 and MD5+SHA1 at 2^67.2
1440          * https://documents.epfl.ch/users/l/le/lenstra/public/papers/lat.pdf
1441          * puts a chosen-prefix attack for MD5 at 2^39.
1442          */
1443         if (md_type == NID_sha1)
1444             secbits = 64;
1445         else if (md_type == NID_md5_sha1)
1446             secbits = 67;
1447         else if (md_type == NID_md5)
1448             secbits = 39;
1449     } else {
1450         /* Values from https://tools.ietf.org/html/rfc8032#section-8.5 */
1451         if (lu->sigalg == TLSEXT_SIGALG_ed25519)
1452             secbits = 128;
1453         else if (lu->sigalg == TLSEXT_SIGALG_ed448)
1454             secbits = 224;
1455     }
1456     return secbits;
1457 }
1458 
1459 /*
1460  * Check signature algorithm is consistent with sent supported signature
1461  * algorithms and if so set relevant digest and signature scheme in
1462  * s.
1463  */
1464 int tls12_check_peer_sigalg(SSL *s, uint16_t sig, EVP_PKEY *pkey)
1465 {
1466     const uint16_t *sent_sigs;
1467     const EVP_MD *md = NULL;
1468     char sigalgstr[2];
1469     size_t sent_sigslen, i, cidx;
1470     int pkeyid = -1;
1471     const SIGALG_LOOKUP *lu;
1472     int secbits = 0;
1473 
1474     pkeyid = EVP_PKEY_get_id(pkey);
1475     /* Should never happen */
1476     if (pkeyid == -1)
1477         return -1;
1478     if (SSL_IS_TLS13(s)) {
1479         /* Disallow DSA for TLS 1.3 */
1480         if (pkeyid == EVP_PKEY_DSA) {
1481             SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
1482             return 0;
1483         }
1484         /* Only allow PSS for TLS 1.3 */
1485         if (pkeyid == EVP_PKEY_RSA)
1486             pkeyid = EVP_PKEY_RSA_PSS;
1487     }
1488     lu = tls1_lookup_sigalg(s, sig);
1489     /*
1490      * Check sigalgs is known. Disallow SHA1/SHA224 with TLS 1.3. Check key type
1491      * is consistent with signature: RSA keys can be used for RSA-PSS
1492      */
1493     if (lu == NULL
1494         || (SSL_IS_TLS13(s) && (lu->hash == NID_sha1 || lu->hash == NID_sha224))
1495         || (pkeyid != lu->sig
1496         && (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) {
1497         SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
1498         return 0;
1499     }
1500     /* Check the sigalg is consistent with the key OID */
1501     if (!ssl_cert_lookup_by_nid(EVP_PKEY_get_id(pkey), &cidx)
1502             || lu->sig_idx != (int)cidx) {
1503         SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
1504         return 0;
1505     }
1506 
1507     if (pkeyid == EVP_PKEY_EC) {
1508 
1509         /* Check point compression is permitted */
1510         if (!tls1_check_pkey_comp(s, pkey)) {
1511             SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
1512                      SSL_R_ILLEGAL_POINT_COMPRESSION);
1513             return 0;
1514         }
1515 
1516         /* For TLS 1.3 or Suite B check curve matches signature algorithm */
1517         if (SSL_IS_TLS13(s) || tls1_suiteb(s)) {
1518             int curve = ssl_get_EC_curve_nid(pkey);
1519 
1520             if (lu->curve != NID_undef && curve != lu->curve) {
1521                 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
1522                 return 0;
1523             }
1524         }
1525         if (!SSL_IS_TLS13(s)) {
1526             /* Check curve matches extensions */
1527             if (!tls1_check_group_id(s, tls1_get_group_id(pkey), 1)) {
1528                 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
1529                 return 0;
1530             }
1531             if (tls1_suiteb(s)) {
1532                 /* Check sigalg matches a permissible Suite B value */
1533                 if (sig != TLSEXT_SIGALG_ecdsa_secp256r1_sha256
1534                     && sig != TLSEXT_SIGALG_ecdsa_secp384r1_sha384) {
1535                     SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
1536                              SSL_R_WRONG_SIGNATURE_TYPE);
1537                     return 0;
1538                 }
1539             }
1540         }
1541     } else if (tls1_suiteb(s)) {
1542         SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
1543         return 0;
1544     }
1545 
1546     /* Check signature matches a type we sent */
1547     sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
1548     for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
1549         if (sig == *sent_sigs)
1550             break;
1551     }
1552     /* Allow fallback to SHA1 if not strict mode */
1553     if (i == sent_sigslen && (lu->hash != NID_sha1
1554         || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) {
1555         SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
1556         return 0;
1557     }
1558     if (!tls1_lookup_md(s->ctx, lu, &md)) {
1559         SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_UNKNOWN_DIGEST);
1560         return 0;
1561     }
1562     /*
1563      * Make sure security callback allows algorithm. For historical
1564      * reasons we have to pass the sigalg as a two byte char array.
1565      */
1566     sigalgstr[0] = (sig >> 8) & 0xff;
1567     sigalgstr[1] = sig & 0xff;
1568     secbits = sigalg_security_bits(s->ctx, lu);
1569     if (secbits == 0 ||
1570         !ssl_security(s, SSL_SECOP_SIGALG_CHECK, secbits,
1571                       md != NULL ? EVP_MD_get_type(md) : NID_undef,
1572                       (void *)sigalgstr)) {
1573         SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
1574         return 0;
1575     }
1576     /* Store the sigalg the peer uses */
1577     s->s3.tmp.peer_sigalg = lu;
1578     return 1;
1579 }
1580 
1581 int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid)
1582 {
1583     if (s->s3.tmp.peer_sigalg == NULL)
1584         return 0;
1585     *pnid = s->s3.tmp.peer_sigalg->sig;
1586     return 1;
1587 }
1588 
1589 int SSL_get_signature_type_nid(const SSL *s, int *pnid)
1590 {
1591     if (s->s3.tmp.sigalg == NULL)
1592         return 0;
1593     *pnid = s->s3.tmp.sigalg->sig;
1594     return 1;
1595 }
1596 
1597 /*
1598  * Set a mask of disabled algorithms: an algorithm is disabled if it isn't
1599  * supported, doesn't appear in supported signature algorithms, isn't supported
1600  * by the enabled protocol versions or by the security level.
1601  *
1602  * This function should only be used for checking which ciphers are supported
1603  * by the client.
1604  *
1605  * Call ssl_cipher_disabled() to check that it's enabled or not.
1606  */
1607 int ssl_set_client_disabled(SSL *s)
1608 {
1609     s->s3.tmp.mask_a = 0;
1610     s->s3.tmp.mask_k = 0;
1611     ssl_set_sig_mask(&s->s3.tmp.mask_a, s, SSL_SECOP_SIGALG_MASK);
1612     if (ssl_get_min_max_version(s, &s->s3.tmp.min_ver,
1613                                 &s->s3.tmp.max_ver, NULL) != 0)
1614         return 0;
1615 #ifndef OPENSSL_NO_PSK
1616     /* with PSK there must be client callback set */
1617     if (!s->psk_client_callback) {
1618         s->s3.tmp.mask_a |= SSL_aPSK;
1619         s->s3.tmp.mask_k |= SSL_PSK;
1620     }
1621 #endif                          /* OPENSSL_NO_PSK */
1622 #ifndef OPENSSL_NO_SRP
1623     if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) {
1624         s->s3.tmp.mask_a |= SSL_aSRP;
1625         s->s3.tmp.mask_k |= SSL_kSRP;
1626     }
1627 #endif
1628     return 1;
1629 }
1630 
1631 /*
1632  * ssl_cipher_disabled - check that a cipher is disabled or not
1633  * @s: SSL connection that you want to use the cipher on
1634  * @c: cipher to check
1635  * @op: Security check that you want to do
1636  * @ecdhe: If set to 1 then TLSv1 ECDHE ciphers are also allowed in SSLv3
1637  *
1638  * Returns 1 when it's disabled, 0 when enabled.
1639  */
1640 int ssl_cipher_disabled(const SSL *s, const SSL_CIPHER *c, int op, int ecdhe)
1641 {
1642     if (c->algorithm_mkey & s->s3.tmp.mask_k
1643         || c->algorithm_auth & s->s3.tmp.mask_a)
1644         return 1;
1645     if (s->s3.tmp.max_ver == 0)
1646         return 1;
1647     if (!SSL_IS_DTLS(s)) {
1648         int min_tls = c->min_tls;
1649 
1650         /*
1651          * For historical reasons we will allow ECHDE to be selected by a server
1652          * in SSLv3 if we are a client
1653          */
1654         if (min_tls == TLS1_VERSION && ecdhe
1655                 && (c->algorithm_mkey & (SSL_kECDHE | SSL_kECDHEPSK)) != 0)
1656             min_tls = SSL3_VERSION;
1657 
1658         if ((min_tls > s->s3.tmp.max_ver) || (c->max_tls < s->s3.tmp.min_ver))
1659             return 1;
1660     }
1661     if (SSL_IS_DTLS(s) && (DTLS_VERSION_GT(c->min_dtls, s->s3.tmp.max_ver)
1662                            || DTLS_VERSION_LT(c->max_dtls, s->s3.tmp.min_ver)))
1663         return 1;
1664 
1665     return !ssl_security(s, op, c->strength_bits, 0, (void *)c);
1666 }
1667 
1668 int tls_use_ticket(SSL *s)
1669 {
1670     if ((s->options & SSL_OP_NO_TICKET))
1671         return 0;
1672     return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL);
1673 }
1674 
1675 int tls1_set_server_sigalgs(SSL *s)
1676 {
1677     size_t i;
1678 
1679     /* Clear any shared signature algorithms */
1680     OPENSSL_free(s->shared_sigalgs);
1681     s->shared_sigalgs = NULL;
1682     s->shared_sigalgslen = 0;
1683     /* Clear certificate validity flags */
1684     for (i = 0; i < SSL_PKEY_NUM; i++)
1685         s->s3.tmp.valid_flags[i] = 0;
1686     /*
1687      * If peer sent no signature algorithms check to see if we support
1688      * the default algorithm for each certificate type
1689      */
1690     if (s->s3.tmp.peer_cert_sigalgs == NULL
1691             && s->s3.tmp.peer_sigalgs == NULL) {
1692         const uint16_t *sent_sigs;
1693         size_t sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
1694 
1695         for (i = 0; i < SSL_PKEY_NUM; i++) {
1696             const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, i);
1697             size_t j;
1698 
1699             if (lu == NULL)
1700                 continue;
1701             /* Check default matches a type we sent */
1702             for (j = 0; j < sent_sigslen; j++) {
1703                 if (lu->sigalg == sent_sigs[j]) {
1704                         s->s3.tmp.valid_flags[i] = CERT_PKEY_SIGN;
1705                         break;
1706                 }
1707             }
1708         }
1709         return 1;
1710     }
1711 
1712     if (!tls1_process_sigalgs(s)) {
1713         SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
1714         return 0;
1715     }
1716     if (s->shared_sigalgs != NULL)
1717         return 1;
1718 
1719     /* Fatal error if no shared signature algorithms */
1720     SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
1721              SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS);
1722     return 0;
1723 }
1724 
1725 /*-
1726  * Gets the ticket information supplied by the client if any.
1727  *
1728  *   hello: The parsed ClientHello data
1729  *   ret: (output) on return, if a ticket was decrypted, then this is set to
1730  *       point to the resulting session.
1731  */
1732 SSL_TICKET_STATUS tls_get_ticket_from_client(SSL *s, CLIENTHELLO_MSG *hello,
1733                                              SSL_SESSION **ret)
1734 {
1735     size_t size;
1736     RAW_EXTENSION *ticketext;
1737 
1738     *ret = NULL;
1739     s->ext.ticket_expected = 0;
1740 
1741     /*
1742      * If tickets disabled or not supported by the protocol version
1743      * (e.g. TLSv1.3) behave as if no ticket present to permit stateful
1744      * resumption.
1745      */
1746     if (s->version <= SSL3_VERSION || !tls_use_ticket(s))
1747         return SSL_TICKET_NONE;
1748 
1749     ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket];
1750     if (!ticketext->present)
1751         return SSL_TICKET_NONE;
1752 
1753     size = PACKET_remaining(&ticketext->data);
1754 
1755     return tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size,
1756                               hello->session_id, hello->session_id_len, ret);
1757 }
1758 
1759 /*-
1760  * tls_decrypt_ticket attempts to decrypt a session ticket.
1761  *
1762  * If s->tls_session_secret_cb is set and we're not doing TLSv1.3 then we are
1763  * expecting a pre-shared key ciphersuite, in which case we have no use for
1764  * session tickets and one will never be decrypted, nor will
1765  * s->ext.ticket_expected be set to 1.
1766  *
1767  * Side effects:
1768  *   Sets s->ext.ticket_expected to 1 if the server will have to issue
1769  *   a new session ticket to the client because the client indicated support
1770  *   (and s->tls_session_secret_cb is NULL) but the client either doesn't have
1771  *   a session ticket or we couldn't use the one it gave us, or if
1772  *   s->ctx->ext.ticket_key_cb asked to renew the client's ticket.
1773  *   Otherwise, s->ext.ticket_expected is set to 0.
1774  *
1775  *   etick: points to the body of the session ticket extension.
1776  *   eticklen: the length of the session tickets extension.
1777  *   sess_id: points at the session ID.
1778  *   sesslen: the length of the session ID.
1779  *   psess: (output) on return, if a ticket was decrypted, then this is set to
1780  *       point to the resulting session.
1781  */
1782 SSL_TICKET_STATUS tls_decrypt_ticket(SSL *s, const unsigned char *etick,
1783                                      size_t eticklen, const unsigned char *sess_id,
1784                                      size_t sesslen, SSL_SESSION **psess)
1785 {
1786     SSL_SESSION *sess = NULL;
1787     unsigned char *sdec;
1788     const unsigned char *p;
1789     int slen, ivlen, renew_ticket = 0, declen;
1790     SSL_TICKET_STATUS ret = SSL_TICKET_FATAL_ERR_OTHER;
1791     size_t mlen;
1792     unsigned char tick_hmac[EVP_MAX_MD_SIZE];
1793     SSL_HMAC *hctx = NULL;
1794     EVP_CIPHER_CTX *ctx = NULL;
1795     SSL_CTX *tctx = s->session_ctx;
1796 
1797     if (eticklen == 0) {
1798         /*
1799          * The client will accept a ticket but doesn't currently have
1800          * one (TLSv1.2 and below), or treated as a fatal error in TLSv1.3
1801          */
1802         ret = SSL_TICKET_EMPTY;
1803         goto end;
1804     }
1805     if (!SSL_IS_TLS13(s) && s->ext.session_secret_cb) {
1806         /*
1807          * Indicate that the ticket couldn't be decrypted rather than
1808          * generating the session from ticket now, trigger
1809          * abbreviated handshake based on external mechanism to
1810          * calculate the master secret later.
1811          */
1812         ret = SSL_TICKET_NO_DECRYPT;
1813         goto end;
1814     }
1815 
1816     /* Need at least keyname + iv */
1817     if (eticklen < TLSEXT_KEYNAME_LENGTH + EVP_MAX_IV_LENGTH) {
1818         ret = SSL_TICKET_NO_DECRYPT;
1819         goto end;
1820     }
1821 
1822     /* Initialize session ticket encryption and HMAC contexts */
1823     hctx = ssl_hmac_new(tctx);
1824     if (hctx == NULL) {
1825         ret = SSL_TICKET_FATAL_ERR_MALLOC;
1826         goto end;
1827     }
1828     ctx = EVP_CIPHER_CTX_new();
1829     if (ctx == NULL) {
1830         ret = SSL_TICKET_FATAL_ERR_MALLOC;
1831         goto end;
1832     }
1833 #ifndef OPENSSL_NO_DEPRECATED_3_0
1834     if (tctx->ext.ticket_key_evp_cb != NULL || tctx->ext.ticket_key_cb != NULL)
1835 #else
1836     if (tctx->ext.ticket_key_evp_cb != NULL)
1837 #endif
1838     {
1839         unsigned char *nctick = (unsigned char *)etick;
1840         int rv = 0;
1841 
1842         if (tctx->ext.ticket_key_evp_cb != NULL)
1843             rv = tctx->ext.ticket_key_evp_cb(s, nctick,
1844                                              nctick + TLSEXT_KEYNAME_LENGTH,
1845                                              ctx,
1846                                              ssl_hmac_get0_EVP_MAC_CTX(hctx),
1847                                              0);
1848 #ifndef OPENSSL_NO_DEPRECATED_3_0
1849         else if (tctx->ext.ticket_key_cb != NULL)
1850             /* if 0 is returned, write an empty ticket */
1851             rv = tctx->ext.ticket_key_cb(s, nctick,
1852                                          nctick + TLSEXT_KEYNAME_LENGTH,
1853                                          ctx, ssl_hmac_get0_HMAC_CTX(hctx), 0);
1854 #endif
1855         if (rv < 0) {
1856             ret = SSL_TICKET_FATAL_ERR_OTHER;
1857             goto end;
1858         }
1859         if (rv == 0) {
1860             ret = SSL_TICKET_NO_DECRYPT;
1861             goto end;
1862         }
1863         if (rv == 2)
1864             renew_ticket = 1;
1865     } else {
1866         EVP_CIPHER *aes256cbc = NULL;
1867 
1868         /* Check key name matches */
1869         if (memcmp(etick, tctx->ext.tick_key_name,
1870                    TLSEXT_KEYNAME_LENGTH) != 0) {
1871             ret = SSL_TICKET_NO_DECRYPT;
1872             goto end;
1873         }
1874 
1875         aes256cbc = EVP_CIPHER_fetch(s->ctx->libctx, "AES-256-CBC",
1876                                      s->ctx->propq);
1877         if (aes256cbc == NULL
1878             || ssl_hmac_init(hctx, tctx->ext.secure->tick_hmac_key,
1879                              sizeof(tctx->ext.secure->tick_hmac_key),
1880                              "SHA256") <= 0
1881             || EVP_DecryptInit_ex(ctx, aes256cbc, NULL,
1882                                   tctx->ext.secure->tick_aes_key,
1883                                   etick + TLSEXT_KEYNAME_LENGTH) <= 0) {
1884             EVP_CIPHER_free(aes256cbc);
1885             ret = SSL_TICKET_FATAL_ERR_OTHER;
1886             goto end;
1887         }
1888         EVP_CIPHER_free(aes256cbc);
1889         if (SSL_IS_TLS13(s))
1890             renew_ticket = 1;
1891     }
1892     /*
1893      * Attempt to process session ticket, first conduct sanity and integrity
1894      * checks on ticket.
1895      */
1896     mlen = ssl_hmac_size(hctx);
1897     if (mlen == 0) {
1898         ret = SSL_TICKET_FATAL_ERR_OTHER;
1899         goto end;
1900     }
1901 
1902     ivlen = EVP_CIPHER_CTX_get_iv_length(ctx);
1903     if (ivlen < 0) {
1904         ret = SSL_TICKET_FATAL_ERR_OTHER;
1905         goto end;
1906     }
1907 
1908     /* Sanity check ticket length: must exceed keyname + IV + HMAC */
1909     if (eticklen <= TLSEXT_KEYNAME_LENGTH + ivlen + mlen) {
1910         ret = SSL_TICKET_NO_DECRYPT;
1911         goto end;
1912     }
1913     eticklen -= mlen;
1914     /* Check HMAC of encrypted ticket */
1915     if (ssl_hmac_update(hctx, etick, eticklen) <= 0
1916         || ssl_hmac_final(hctx, tick_hmac, NULL, sizeof(tick_hmac)) <= 0) {
1917         ret = SSL_TICKET_FATAL_ERR_OTHER;
1918         goto end;
1919     }
1920 
1921     if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) {
1922         ret = SSL_TICKET_NO_DECRYPT;
1923         goto end;
1924     }
1925     /* Attempt to decrypt session data */
1926     /* Move p after IV to start of encrypted ticket, update length */
1927     p = etick + TLSEXT_KEYNAME_LENGTH + ivlen;
1928     eticklen -= TLSEXT_KEYNAME_LENGTH + ivlen;
1929     sdec = OPENSSL_malloc(eticklen);
1930     if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p,
1931                                           (int)eticklen) <= 0) {
1932         OPENSSL_free(sdec);
1933         ret = SSL_TICKET_FATAL_ERR_OTHER;
1934         goto end;
1935     }
1936     if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) {
1937         OPENSSL_free(sdec);
1938         ret = SSL_TICKET_NO_DECRYPT;
1939         goto end;
1940     }
1941     slen += declen;
1942     p = sdec;
1943 
1944     sess = d2i_SSL_SESSION(NULL, &p, slen);
1945     slen -= p - sdec;
1946     OPENSSL_free(sdec);
1947     if (sess) {
1948         /* Some additional consistency checks */
1949         if (slen != 0) {
1950             SSL_SESSION_free(sess);
1951             sess = NULL;
1952             ret = SSL_TICKET_NO_DECRYPT;
1953             goto end;
1954         }
1955         /*
1956          * The session ID, if non-empty, is used by some clients to detect
1957          * that the ticket has been accepted. So we copy it to the session
1958          * structure. If it is empty set length to zero as required by
1959          * standard.
1960          */
1961         if (sesslen) {
1962             memcpy(sess->session_id, sess_id, sesslen);
1963             sess->session_id_length = sesslen;
1964         }
1965         if (renew_ticket)
1966             ret = SSL_TICKET_SUCCESS_RENEW;
1967         else
1968             ret = SSL_TICKET_SUCCESS;
1969         goto end;
1970     }
1971     ERR_clear_error();
1972     /*
1973      * For session parse failure, indicate that we need to send a new ticket.
1974      */
1975     ret = SSL_TICKET_NO_DECRYPT;
1976 
1977  end:
1978     EVP_CIPHER_CTX_free(ctx);
1979     ssl_hmac_free(hctx);
1980 
1981     /*
1982      * If set, the decrypt_ticket_cb() is called unless a fatal error was
1983      * detected above. The callback is responsible for checking |ret| before it
1984      * performs any action
1985      */
1986     if (s->session_ctx->decrypt_ticket_cb != NULL
1987             && (ret == SSL_TICKET_EMPTY
1988                 || ret == SSL_TICKET_NO_DECRYPT
1989                 || ret == SSL_TICKET_SUCCESS
1990                 || ret == SSL_TICKET_SUCCESS_RENEW)) {
1991         size_t keyname_len = eticklen;
1992         int retcb;
1993 
1994         if (keyname_len > TLSEXT_KEYNAME_LENGTH)
1995             keyname_len = TLSEXT_KEYNAME_LENGTH;
1996         retcb = s->session_ctx->decrypt_ticket_cb(s, sess, etick, keyname_len,
1997                                                   ret,
1998                                                   s->session_ctx->ticket_cb_data);
1999         switch (retcb) {
2000         case SSL_TICKET_RETURN_ABORT:
2001             ret = SSL_TICKET_FATAL_ERR_OTHER;
2002             break;
2003 
2004         case SSL_TICKET_RETURN_IGNORE:
2005             ret = SSL_TICKET_NONE;
2006             SSL_SESSION_free(sess);
2007             sess = NULL;
2008             break;
2009 
2010         case SSL_TICKET_RETURN_IGNORE_RENEW:
2011             if (ret != SSL_TICKET_EMPTY && ret != SSL_TICKET_NO_DECRYPT)
2012                 ret = SSL_TICKET_NO_DECRYPT;
2013             /* else the value of |ret| will already do the right thing */
2014             SSL_SESSION_free(sess);
2015             sess = NULL;
2016             break;
2017 
2018         case SSL_TICKET_RETURN_USE:
2019         case SSL_TICKET_RETURN_USE_RENEW:
2020             if (ret != SSL_TICKET_SUCCESS
2021                     && ret != SSL_TICKET_SUCCESS_RENEW)
2022                 ret = SSL_TICKET_FATAL_ERR_OTHER;
2023             else if (retcb == SSL_TICKET_RETURN_USE)
2024                 ret = SSL_TICKET_SUCCESS;
2025             else
2026                 ret = SSL_TICKET_SUCCESS_RENEW;
2027             break;
2028 
2029         default:
2030             ret = SSL_TICKET_FATAL_ERR_OTHER;
2031         }
2032     }
2033 
2034     if (s->ext.session_secret_cb == NULL || SSL_IS_TLS13(s)) {
2035         switch (ret) {
2036         case SSL_TICKET_NO_DECRYPT:
2037         case SSL_TICKET_SUCCESS_RENEW:
2038         case SSL_TICKET_EMPTY:
2039             s->ext.ticket_expected = 1;
2040         }
2041     }
2042 
2043     *psess = sess;
2044 
2045     return ret;
2046 }
2047 
2048 /* Check to see if a signature algorithm is allowed */
2049 static int tls12_sigalg_allowed(const SSL *s, int op, const SIGALG_LOOKUP *lu)
2050 {
2051     unsigned char sigalgstr[2];
2052     int secbits;
2053 
2054     if (lu == NULL || !lu->enabled)
2055         return 0;
2056     /* DSA is not allowed in TLS 1.3 */
2057     if (SSL_IS_TLS13(s) && lu->sig == EVP_PKEY_DSA)
2058         return 0;
2059     /*
2060      * At some point we should fully axe DSA/etc. in ClientHello as per TLS 1.3
2061      * spec
2062      */
2063     if (!s->server && !SSL_IS_DTLS(s) && s->s3.tmp.min_ver >= TLS1_3_VERSION
2064         && (lu->sig == EVP_PKEY_DSA || lu->hash_idx == SSL_MD_SHA1_IDX
2065             || lu->hash_idx == SSL_MD_MD5_IDX
2066             || lu->hash_idx == SSL_MD_SHA224_IDX))
2067         return 0;
2068 
2069     /* See if public key algorithm allowed */
2070     if (ssl_cert_is_disabled(s->ctx, lu->sig_idx))
2071         return 0;
2072 
2073     if (lu->sig == NID_id_GostR3410_2012_256
2074             || lu->sig == NID_id_GostR3410_2012_512
2075             || lu->sig == NID_id_GostR3410_2001) {
2076         /* We never allow GOST sig algs on the server with TLSv1.3 */
2077         if (s->server && SSL_IS_TLS13(s))
2078             return 0;
2079         if (!s->server
2080                 && s->method->version == TLS_ANY_VERSION
2081                 && s->s3.tmp.max_ver >= TLS1_3_VERSION) {
2082             int i, num;
2083             STACK_OF(SSL_CIPHER) *sk;
2084 
2085             /*
2086              * We're a client that could negotiate TLSv1.3. We only allow GOST
2087              * sig algs if we could negotiate TLSv1.2 or below and we have GOST
2088              * ciphersuites enabled.
2089              */
2090 
2091             if (s->s3.tmp.min_ver >= TLS1_3_VERSION)
2092                 return 0;
2093 
2094             sk = SSL_get_ciphers(s);
2095             num = sk != NULL ? sk_SSL_CIPHER_num(sk) : 0;
2096             for (i = 0; i < num; i++) {
2097                 const SSL_CIPHER *c;
2098 
2099                 c = sk_SSL_CIPHER_value(sk, i);
2100                 /* Skip disabled ciphers */
2101                 if (ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0))
2102                     continue;
2103 
2104                 if ((c->algorithm_mkey & (SSL_kGOST | SSL_kGOST18)) != 0)
2105                     break;
2106             }
2107             if (i == num)
2108                 return 0;
2109         }
2110     }
2111 
2112     /* Finally see if security callback allows it */
2113     secbits = sigalg_security_bits(s->ctx, lu);
2114     sigalgstr[0] = (lu->sigalg >> 8) & 0xff;
2115     sigalgstr[1] = lu->sigalg & 0xff;
2116     return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr);
2117 }
2118 
2119 /*
2120  * Get a mask of disabled public key algorithms based on supported signature
2121  * algorithms. For example if no signature algorithm supports RSA then RSA is
2122  * disabled.
2123  */
2124 
2125 void ssl_set_sig_mask(uint32_t *pmask_a, SSL *s, int op)
2126 {
2127     const uint16_t *sigalgs;
2128     size_t i, sigalgslen;
2129     uint32_t disabled_mask = SSL_aRSA | SSL_aDSS | SSL_aECDSA;
2130     /*
2131      * Go through all signature algorithms seeing if we support any
2132      * in disabled_mask.
2133      */
2134     sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs);
2135     for (i = 0; i < sigalgslen; i++, sigalgs++) {
2136         const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *sigalgs);
2137         const SSL_CERT_LOOKUP *clu;
2138 
2139         if (lu == NULL)
2140             continue;
2141 
2142         clu = ssl_cert_lookup_by_idx(lu->sig_idx);
2143         if (clu == NULL)
2144                 continue;
2145 
2146         /* If algorithm is disabled see if we can enable it */
2147         if ((clu->amask & disabled_mask) != 0
2148                 && tls12_sigalg_allowed(s, op, lu))
2149             disabled_mask &= ~clu->amask;
2150     }
2151     *pmask_a |= disabled_mask;
2152 }
2153 
2154 int tls12_copy_sigalgs(SSL *s, WPACKET *pkt,
2155                        const uint16_t *psig, size_t psiglen)
2156 {
2157     size_t i;
2158     int rv = 0;
2159 
2160     for (i = 0; i < psiglen; i++, psig++) {
2161         const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *psig);
2162 
2163         if (lu == NULL
2164                 || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
2165             continue;
2166         if (!WPACKET_put_bytes_u16(pkt, *psig))
2167             return 0;
2168         /*
2169          * If TLS 1.3 must have at least one valid TLS 1.3 message
2170          * signing algorithm: i.e. neither RSA nor SHA1/SHA224
2171          */
2172         if (rv == 0 && (!SSL_IS_TLS13(s)
2173             || (lu->sig != EVP_PKEY_RSA
2174                 && lu->hash != NID_sha1
2175                 && lu->hash != NID_sha224)))
2176             rv = 1;
2177     }
2178     if (rv == 0)
2179         ERR_raise(ERR_LIB_SSL, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
2180     return rv;
2181 }
2182 
2183 /* Given preference and allowed sigalgs set shared sigalgs */
2184 static size_t tls12_shared_sigalgs(SSL *s, const SIGALG_LOOKUP **shsig,
2185                                    const uint16_t *pref, size_t preflen,
2186                                    const uint16_t *allow, size_t allowlen)
2187 {
2188     const uint16_t *ptmp, *atmp;
2189     size_t i, j, nmatch = 0;
2190     for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) {
2191         const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *ptmp);
2192 
2193         /* Skip disabled hashes or signature algorithms */
2194         if (lu == NULL
2195                 || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, lu))
2196             continue;
2197         for (j = 0, atmp = allow; j < allowlen; j++, atmp++) {
2198             if (*ptmp == *atmp) {
2199                 nmatch++;
2200                 if (shsig)
2201                     *shsig++ = lu;
2202                 break;
2203             }
2204         }
2205     }
2206     return nmatch;
2207 }
2208 
2209 /* Set shared signature algorithms for SSL structures */
2210 static int tls1_set_shared_sigalgs(SSL *s)
2211 {
2212     const uint16_t *pref, *allow, *conf;
2213     size_t preflen, allowlen, conflen;
2214     size_t nmatch;
2215     const SIGALG_LOOKUP **salgs = NULL;
2216     CERT *c = s->cert;
2217     unsigned int is_suiteb = tls1_suiteb(s);
2218 
2219     OPENSSL_free(s->shared_sigalgs);
2220     s->shared_sigalgs = NULL;
2221     s->shared_sigalgslen = 0;
2222     /* If client use client signature algorithms if not NULL */
2223     if (!s->server && c->client_sigalgs && !is_suiteb) {
2224         conf = c->client_sigalgs;
2225         conflen = c->client_sigalgslen;
2226     } else if (c->conf_sigalgs && !is_suiteb) {
2227         conf = c->conf_sigalgs;
2228         conflen = c->conf_sigalgslen;
2229     } else
2230         conflen = tls12_get_psigalgs(s, 0, &conf);
2231     if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) {
2232         pref = conf;
2233         preflen = conflen;
2234         allow = s->s3.tmp.peer_sigalgs;
2235         allowlen = s->s3.tmp.peer_sigalgslen;
2236     } else {
2237         allow = conf;
2238         allowlen = conflen;
2239         pref = s->s3.tmp.peer_sigalgs;
2240         preflen = s->s3.tmp.peer_sigalgslen;
2241     }
2242     nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen);
2243     if (nmatch) {
2244         if ((salgs = OPENSSL_malloc(nmatch * sizeof(*salgs))) == NULL) {
2245             ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
2246             return 0;
2247         }
2248         nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen);
2249     } else {
2250         salgs = NULL;
2251     }
2252     s->shared_sigalgs = salgs;
2253     s->shared_sigalgslen = nmatch;
2254     return 1;
2255 }
2256 
2257 int tls1_save_u16(PACKET *pkt, uint16_t **pdest, size_t *pdestlen)
2258 {
2259     unsigned int stmp;
2260     size_t size, i;
2261     uint16_t *buf;
2262 
2263     size = PACKET_remaining(pkt);
2264 
2265     /* Invalid data length */
2266     if (size == 0 || (size & 1) != 0)
2267         return 0;
2268 
2269     size >>= 1;
2270 
2271     if ((buf = OPENSSL_malloc(size * sizeof(*buf))) == NULL)  {
2272         ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
2273         return 0;
2274     }
2275     for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++)
2276         buf[i] = stmp;
2277 
2278     if (i != size) {
2279         OPENSSL_free(buf);
2280         return 0;
2281     }
2282 
2283     OPENSSL_free(*pdest);
2284     *pdest = buf;
2285     *pdestlen = size;
2286 
2287     return 1;
2288 }
2289 
2290 int tls1_save_sigalgs(SSL *s, PACKET *pkt, int cert)
2291 {
2292     /* Extension ignored for inappropriate versions */
2293     if (!SSL_USE_SIGALGS(s))
2294         return 1;
2295     /* Should never happen */
2296     if (s->cert == NULL)
2297         return 0;
2298 
2299     if (cert)
2300         return tls1_save_u16(pkt, &s->s3.tmp.peer_cert_sigalgs,
2301                              &s->s3.tmp.peer_cert_sigalgslen);
2302     else
2303         return tls1_save_u16(pkt, &s->s3.tmp.peer_sigalgs,
2304                              &s->s3.tmp.peer_sigalgslen);
2305 
2306 }
2307 
2308 /* Set preferred digest for each key type */
2309 
2310 int tls1_process_sigalgs(SSL *s)
2311 {
2312     size_t i;
2313     uint32_t *pvalid = s->s3.tmp.valid_flags;
2314 
2315     if (!tls1_set_shared_sigalgs(s))
2316         return 0;
2317 
2318     for (i = 0; i < SSL_PKEY_NUM; i++)
2319         pvalid[i] = 0;
2320 
2321     for (i = 0; i < s->shared_sigalgslen; i++) {
2322         const SIGALG_LOOKUP *sigptr = s->shared_sigalgs[i];
2323         int idx = sigptr->sig_idx;
2324 
2325         /* Ignore PKCS1 based sig algs in TLSv1.3 */
2326         if (SSL_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA)
2327             continue;
2328         /* If not disabled indicate we can explicitly sign */
2329         if (pvalid[idx] == 0 && !ssl_cert_is_disabled(s->ctx, idx))
2330             pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
2331     }
2332     return 1;
2333 }
2334 
2335 int SSL_get_sigalgs(SSL *s, int idx,
2336                     int *psign, int *phash, int *psignhash,
2337                     unsigned char *rsig, unsigned char *rhash)
2338 {
2339     uint16_t *psig = s->s3.tmp.peer_sigalgs;
2340     size_t numsigalgs = s->s3.tmp.peer_sigalgslen;
2341     if (psig == NULL || numsigalgs > INT_MAX)
2342         return 0;
2343     if (idx >= 0) {
2344         const SIGALG_LOOKUP *lu;
2345 
2346         if (idx >= (int)numsigalgs)
2347             return 0;
2348         psig += idx;
2349         if (rhash != NULL)
2350             *rhash = (unsigned char)((*psig >> 8) & 0xff);
2351         if (rsig != NULL)
2352             *rsig = (unsigned char)(*psig & 0xff);
2353         lu = tls1_lookup_sigalg(s, *psig);
2354         if (psign != NULL)
2355             *psign = lu != NULL ? lu->sig : NID_undef;
2356         if (phash != NULL)
2357             *phash = lu != NULL ? lu->hash : NID_undef;
2358         if (psignhash != NULL)
2359             *psignhash = lu != NULL ? lu->sigandhash : NID_undef;
2360     }
2361     return (int)numsigalgs;
2362 }
2363 
2364 int SSL_get_shared_sigalgs(SSL *s, int idx,
2365                            int *psign, int *phash, int *psignhash,
2366                            unsigned char *rsig, unsigned char *rhash)
2367 {
2368     const SIGALG_LOOKUP *shsigalgs;
2369     if (s->shared_sigalgs == NULL
2370         || idx < 0
2371         || idx >= (int)s->shared_sigalgslen
2372         || s->shared_sigalgslen > INT_MAX)
2373         return 0;
2374     shsigalgs = s->shared_sigalgs[idx];
2375     if (phash != NULL)
2376         *phash = shsigalgs->hash;
2377     if (psign != NULL)
2378         *psign = shsigalgs->sig;
2379     if (psignhash != NULL)
2380         *psignhash = shsigalgs->sigandhash;
2381     if (rsig != NULL)
2382         *rsig = (unsigned char)(shsigalgs->sigalg & 0xff);
2383     if (rhash != NULL)
2384         *rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff);
2385     return (int)s->shared_sigalgslen;
2386 }
2387 
2388 /* Maximum possible number of unique entries in sigalgs array */
2389 #define TLS_MAX_SIGALGCNT (OSSL_NELEM(sigalg_lookup_tbl) * 2)
2390 
2391 typedef struct {
2392     size_t sigalgcnt;
2393     /* TLSEXT_SIGALG_XXX values */
2394     uint16_t sigalgs[TLS_MAX_SIGALGCNT];
2395 } sig_cb_st;
2396 
2397 static void get_sigorhash(int *psig, int *phash, const char *str)
2398 {
2399     if (strcmp(str, "RSA") == 0) {
2400         *psig = EVP_PKEY_RSA;
2401     } else if (strcmp(str, "RSA-PSS") == 0 || strcmp(str, "PSS") == 0) {
2402         *psig = EVP_PKEY_RSA_PSS;
2403     } else if (strcmp(str, "DSA") == 0) {
2404         *psig = EVP_PKEY_DSA;
2405     } else if (strcmp(str, "ECDSA") == 0) {
2406         *psig = EVP_PKEY_EC;
2407     } else {
2408         *phash = OBJ_sn2nid(str);
2409         if (*phash == NID_undef)
2410             *phash = OBJ_ln2nid(str);
2411     }
2412 }
2413 /* Maximum length of a signature algorithm string component */
2414 #define TLS_MAX_SIGSTRING_LEN   40
2415 
2416 static int sig_cb(const char *elem, int len, void *arg)
2417 {
2418     sig_cb_st *sarg = arg;
2419     size_t i;
2420     const SIGALG_LOOKUP *s;
2421     char etmp[TLS_MAX_SIGSTRING_LEN], *p;
2422     int sig_alg = NID_undef, hash_alg = NID_undef;
2423     if (elem == NULL)
2424         return 0;
2425     if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT)
2426         return 0;
2427     if (len > (int)(sizeof(etmp) - 1))
2428         return 0;
2429     memcpy(etmp, elem, len);
2430     etmp[len] = 0;
2431     p = strchr(etmp, '+');
2432     /*
2433      * We only allow SignatureSchemes listed in the sigalg_lookup_tbl;
2434      * if there's no '+' in the provided name, look for the new-style combined
2435      * name.  If not, match both sig+hash to find the needed SIGALG_LOOKUP.
2436      * Just sig+hash is not unique since TLS 1.3 adds rsa_pss_pss_* and
2437      * rsa_pss_rsae_* that differ only by public key OID; in such cases
2438      * we will pick the _rsae_ variant, by virtue of them appearing earlier
2439      * in the table.
2440      */
2441     if (p == NULL) {
2442         for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
2443              i++, s++) {
2444             if (s->name != NULL && strcmp(etmp, s->name) == 0) {
2445                 sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
2446                 break;
2447             }
2448         }
2449         if (i == OSSL_NELEM(sigalg_lookup_tbl))
2450             return 0;
2451     } else {
2452         *p = 0;
2453         p++;
2454         if (*p == 0)
2455             return 0;
2456         get_sigorhash(&sig_alg, &hash_alg, etmp);
2457         get_sigorhash(&sig_alg, &hash_alg, p);
2458         if (sig_alg == NID_undef || hash_alg == NID_undef)
2459             return 0;
2460         for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
2461              i++, s++) {
2462             if (s->hash == hash_alg && s->sig == sig_alg) {
2463                 sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
2464                 break;
2465             }
2466         }
2467         if (i == OSSL_NELEM(sigalg_lookup_tbl))
2468             return 0;
2469     }
2470 
2471     /* Reject duplicates */
2472     for (i = 0; i < sarg->sigalgcnt - 1; i++) {
2473         if (sarg->sigalgs[i] == sarg->sigalgs[sarg->sigalgcnt - 1]) {
2474             sarg->sigalgcnt--;
2475             return 0;
2476         }
2477     }
2478     return 1;
2479 }
2480 
2481 /*
2482  * Set supported signature algorithms based on a colon separated list of the
2483  * form sig+hash e.g. RSA+SHA512:DSA+SHA512
2484  */
2485 int tls1_set_sigalgs_list(CERT *c, const char *str, int client)
2486 {
2487     sig_cb_st sig;
2488     sig.sigalgcnt = 0;
2489     if (!CONF_parse_list(str, ':', 1, sig_cb, &sig))
2490         return 0;
2491     if (c == NULL)
2492         return 1;
2493     return tls1_set_raw_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client);
2494 }
2495 
2496 int tls1_set_raw_sigalgs(CERT *c, const uint16_t *psigs, size_t salglen,
2497                      int client)
2498 {
2499     uint16_t *sigalgs;
2500 
2501     if ((sigalgs = OPENSSL_malloc(salglen * sizeof(*sigalgs))) == NULL) {
2502         ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
2503         return 0;
2504     }
2505     memcpy(sigalgs, psigs, salglen * sizeof(*sigalgs));
2506 
2507     if (client) {
2508         OPENSSL_free(c->client_sigalgs);
2509         c->client_sigalgs = sigalgs;
2510         c->client_sigalgslen = salglen;
2511     } else {
2512         OPENSSL_free(c->conf_sigalgs);
2513         c->conf_sigalgs = sigalgs;
2514         c->conf_sigalgslen = salglen;
2515     }
2516 
2517     return 1;
2518 }
2519 
2520 int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client)
2521 {
2522     uint16_t *sigalgs, *sptr;
2523     size_t i;
2524 
2525     if (salglen & 1)
2526         return 0;
2527     if ((sigalgs = OPENSSL_malloc((salglen / 2) * sizeof(*sigalgs))) == NULL) {
2528         ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
2529         return 0;
2530     }
2531     for (i = 0, sptr = sigalgs; i < salglen; i += 2) {
2532         size_t j;
2533         const SIGALG_LOOKUP *curr;
2534         int md_id = *psig_nids++;
2535         int sig_id = *psig_nids++;
2536 
2537         for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl);
2538              j++, curr++) {
2539             if (curr->hash == md_id && curr->sig == sig_id) {
2540                 *sptr++ = curr->sigalg;
2541                 break;
2542             }
2543         }
2544 
2545         if (j == OSSL_NELEM(sigalg_lookup_tbl))
2546             goto err;
2547     }
2548 
2549     if (client) {
2550         OPENSSL_free(c->client_sigalgs);
2551         c->client_sigalgs = sigalgs;
2552         c->client_sigalgslen = salglen / 2;
2553     } else {
2554         OPENSSL_free(c->conf_sigalgs);
2555         c->conf_sigalgs = sigalgs;
2556         c->conf_sigalgslen = salglen / 2;
2557     }
2558 
2559     return 1;
2560 
2561  err:
2562     OPENSSL_free(sigalgs);
2563     return 0;
2564 }
2565 
2566 static int tls1_check_sig_alg(SSL *s, X509 *x, int default_nid)
2567 {
2568     int sig_nid, use_pc_sigalgs = 0;
2569     size_t i;
2570     const SIGALG_LOOKUP *sigalg;
2571     size_t sigalgslen;
2572     if (default_nid == -1)
2573         return 1;
2574     sig_nid = X509_get_signature_nid(x);
2575     if (default_nid)
2576         return sig_nid == default_nid ? 1 : 0;
2577 
2578     if (SSL_IS_TLS13(s) && s->s3.tmp.peer_cert_sigalgs != NULL) {
2579         /*
2580          * If we're in TLSv1.3 then we only get here if we're checking the
2581          * chain. If the peer has specified peer_cert_sigalgs then we use them
2582          * otherwise we default to normal sigalgs.
2583          */
2584         sigalgslen = s->s3.tmp.peer_cert_sigalgslen;
2585         use_pc_sigalgs = 1;
2586     } else {
2587         sigalgslen = s->shared_sigalgslen;
2588     }
2589     for (i = 0; i < sigalgslen; i++) {
2590         sigalg = use_pc_sigalgs
2591                  ? tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i])
2592                  : s->shared_sigalgs[i];
2593         if (sigalg != NULL && sig_nid == sigalg->sigandhash)
2594             return 1;
2595     }
2596     return 0;
2597 }
2598 
2599 /* Check to see if a certificate issuer name matches list of CA names */
2600 static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x)
2601 {
2602     const X509_NAME *nm;
2603     int i;
2604     nm = X509_get_issuer_name(x);
2605     for (i = 0; i < sk_X509_NAME_num(names); i++) {
2606         if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i)))
2607             return 1;
2608     }
2609     return 0;
2610 }
2611 
2612 /*
2613  * Check certificate chain is consistent with TLS extensions and is usable by
2614  * server. This servers two purposes: it allows users to check chains before
2615  * passing them to the server and it allows the server to check chains before
2616  * attempting to use them.
2617  */
2618 
2619 /* Flags which need to be set for a certificate when strict mode not set */
2620 
2621 #define CERT_PKEY_VALID_FLAGS \
2622         (CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM)
2623 /* Strict mode flags */
2624 #define CERT_PKEY_STRICT_FLAGS \
2625          (CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \
2626          | CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE)
2627 
2628 int tls1_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain,
2629                      int idx)
2630 {
2631     int i;
2632     int rv = 0;
2633     int check_flags = 0, strict_mode;
2634     CERT_PKEY *cpk = NULL;
2635     CERT *c = s->cert;
2636     uint32_t *pvalid;
2637     unsigned int suiteb_flags = tls1_suiteb(s);
2638     /* idx == -1 means checking server chains */
2639     if (idx != -1) {
2640         /* idx == -2 means checking client certificate chains */
2641         if (idx == -2) {
2642             cpk = c->key;
2643             idx = (int)(cpk - c->pkeys);
2644         } else
2645             cpk = c->pkeys + idx;
2646         pvalid = s->s3.tmp.valid_flags + idx;
2647         x = cpk->x509;
2648         pk = cpk->privatekey;
2649         chain = cpk->chain;
2650         strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT;
2651         /* If no cert or key, forget it */
2652         if (!x || !pk)
2653             goto end;
2654     } else {
2655         size_t certidx;
2656 
2657         if (!x || !pk)
2658             return 0;
2659 
2660         if (ssl_cert_lookup_by_pkey(pk, &certidx) == NULL)
2661             return 0;
2662         idx = certidx;
2663         pvalid = s->s3.tmp.valid_flags + idx;
2664 
2665         if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)
2666             check_flags = CERT_PKEY_STRICT_FLAGS;
2667         else
2668             check_flags = CERT_PKEY_VALID_FLAGS;
2669         strict_mode = 1;
2670     }
2671 
2672     if (suiteb_flags) {
2673         int ok;
2674         if (check_flags)
2675             check_flags |= CERT_PKEY_SUITEB;
2676         ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags);
2677         if (ok == X509_V_OK)
2678             rv |= CERT_PKEY_SUITEB;
2679         else if (!check_flags)
2680             goto end;
2681     }
2682 
2683     /*
2684      * Check all signature algorithms are consistent with signature
2685      * algorithms extension if TLS 1.2 or later and strict mode.
2686      */
2687     if (TLS1_get_version(s) >= TLS1_2_VERSION && strict_mode) {
2688         int default_nid;
2689         int rsign = 0;
2690         if (s->s3.tmp.peer_cert_sigalgs != NULL
2691                 || s->s3.tmp.peer_sigalgs != NULL) {
2692             default_nid = 0;
2693         /* If no sigalgs extension use defaults from RFC5246 */
2694         } else {
2695             switch (idx) {
2696             case SSL_PKEY_RSA:
2697                 rsign = EVP_PKEY_RSA;
2698                 default_nid = NID_sha1WithRSAEncryption;
2699                 break;
2700 
2701             case SSL_PKEY_DSA_SIGN:
2702                 rsign = EVP_PKEY_DSA;
2703                 default_nid = NID_dsaWithSHA1;
2704                 break;
2705 
2706             case SSL_PKEY_ECC:
2707                 rsign = EVP_PKEY_EC;
2708                 default_nid = NID_ecdsa_with_SHA1;
2709                 break;
2710 
2711             case SSL_PKEY_GOST01:
2712                 rsign = NID_id_GostR3410_2001;
2713                 default_nid = NID_id_GostR3411_94_with_GostR3410_2001;
2714                 break;
2715 
2716             case SSL_PKEY_GOST12_256:
2717                 rsign = NID_id_GostR3410_2012_256;
2718                 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256;
2719                 break;
2720 
2721             case SSL_PKEY_GOST12_512:
2722                 rsign = NID_id_GostR3410_2012_512;
2723                 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512;
2724                 break;
2725 
2726             default:
2727                 default_nid = -1;
2728                 break;
2729             }
2730         }
2731         /*
2732          * If peer sent no signature algorithms extension and we have set
2733          * preferred signature algorithms check we support sha1.
2734          */
2735         if (default_nid > 0 && c->conf_sigalgs) {
2736             size_t j;
2737             const uint16_t *p = c->conf_sigalgs;
2738             for (j = 0; j < c->conf_sigalgslen; j++, p++) {
2739                 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *p);
2740 
2741                 if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign)
2742                     break;
2743             }
2744             if (j == c->conf_sigalgslen) {
2745                 if (check_flags)
2746                     goto skip_sigs;
2747                 else
2748                     goto end;
2749             }
2750         }
2751         /* Check signature algorithm of each cert in chain */
2752         if (SSL_IS_TLS13(s)) {
2753             /*
2754              * We only get here if the application has called SSL_check_chain(),
2755              * so check_flags is always set.
2756              */
2757             if (find_sig_alg(s, x, pk) != NULL)
2758                 rv |= CERT_PKEY_EE_SIGNATURE;
2759         } else if (!tls1_check_sig_alg(s, x, default_nid)) {
2760             if (!check_flags)
2761                 goto end;
2762         } else
2763             rv |= CERT_PKEY_EE_SIGNATURE;
2764         rv |= CERT_PKEY_CA_SIGNATURE;
2765         for (i = 0; i < sk_X509_num(chain); i++) {
2766             if (!tls1_check_sig_alg(s, sk_X509_value(chain, i), default_nid)) {
2767                 if (check_flags) {
2768                     rv &= ~CERT_PKEY_CA_SIGNATURE;
2769                     break;
2770                 } else
2771                     goto end;
2772             }
2773         }
2774     }
2775     /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */
2776     else if (check_flags)
2777         rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE;
2778  skip_sigs:
2779     /* Check cert parameters are consistent */
2780     if (tls1_check_cert_param(s, x, 1))
2781         rv |= CERT_PKEY_EE_PARAM;
2782     else if (!check_flags)
2783         goto end;
2784     if (!s->server)
2785         rv |= CERT_PKEY_CA_PARAM;
2786     /* In strict mode check rest of chain too */
2787     else if (strict_mode) {
2788         rv |= CERT_PKEY_CA_PARAM;
2789         for (i = 0; i < sk_X509_num(chain); i++) {
2790             X509 *ca = sk_X509_value(chain, i);
2791             if (!tls1_check_cert_param(s, ca, 0)) {
2792                 if (check_flags) {
2793                     rv &= ~CERT_PKEY_CA_PARAM;
2794                     break;
2795                 } else
2796                     goto end;
2797             }
2798         }
2799     }
2800     if (!s->server && strict_mode) {
2801         STACK_OF(X509_NAME) *ca_dn;
2802         int check_type = 0;
2803 
2804         if (EVP_PKEY_is_a(pk, "RSA"))
2805             check_type = TLS_CT_RSA_SIGN;
2806         else if (EVP_PKEY_is_a(pk, "DSA"))
2807             check_type = TLS_CT_DSS_SIGN;
2808         else if (EVP_PKEY_is_a(pk, "EC"))
2809             check_type = TLS_CT_ECDSA_SIGN;
2810 
2811         if (check_type) {
2812             const uint8_t *ctypes = s->s3.tmp.ctype;
2813             size_t j;
2814 
2815             for (j = 0; j < s->s3.tmp.ctype_len; j++, ctypes++) {
2816                 if (*ctypes == check_type) {
2817                     rv |= CERT_PKEY_CERT_TYPE;
2818                     break;
2819                 }
2820             }
2821             if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags)
2822                 goto end;
2823         } else {
2824             rv |= CERT_PKEY_CERT_TYPE;
2825         }
2826 
2827         ca_dn = s->s3.tmp.peer_ca_names;
2828 
2829         if (ca_dn == NULL
2830             || sk_X509_NAME_num(ca_dn) == 0
2831             || ssl_check_ca_name(ca_dn, x))
2832             rv |= CERT_PKEY_ISSUER_NAME;
2833         else
2834             for (i = 0; i < sk_X509_num(chain); i++) {
2835                 X509 *xtmp = sk_X509_value(chain, i);
2836 
2837                 if (ssl_check_ca_name(ca_dn, xtmp)) {
2838                     rv |= CERT_PKEY_ISSUER_NAME;
2839                     break;
2840                 }
2841             }
2842 
2843         if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME))
2844             goto end;
2845     } else
2846         rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE;
2847 
2848     if (!check_flags || (rv & check_flags) == check_flags)
2849         rv |= CERT_PKEY_VALID;
2850 
2851  end:
2852 
2853     if (TLS1_get_version(s) >= TLS1_2_VERSION)
2854         rv |= *pvalid & (CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN);
2855     else
2856         rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN;
2857 
2858     /*
2859      * When checking a CERT_PKEY structure all flags are irrelevant if the
2860      * chain is invalid.
2861      */
2862     if (!check_flags) {
2863         if (rv & CERT_PKEY_VALID) {
2864             *pvalid = rv;
2865         } else {
2866             /* Preserve sign and explicit sign flag, clear rest */
2867             *pvalid &= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
2868             return 0;
2869         }
2870     }
2871     return rv;
2872 }
2873 
2874 /* Set validity of certificates in an SSL structure */
2875 void tls1_set_cert_validity(SSL *s)
2876 {
2877     tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA);
2878     tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_PSS_SIGN);
2879     tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN);
2880     tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC);
2881     tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01);
2882     tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256);
2883     tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512);
2884     tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED25519);
2885     tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED448);
2886 }
2887 
2888 /* User level utility function to check a chain is suitable */
2889 int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain)
2890 {
2891     return tls1_check_chain(s, x, pk, chain, -1);
2892 }
2893 
2894 EVP_PKEY *ssl_get_auto_dh(SSL *s)
2895 {
2896     EVP_PKEY *dhp = NULL;
2897     BIGNUM *p;
2898     int dh_secbits = 80, sec_level_bits;
2899     EVP_PKEY_CTX *pctx = NULL;
2900     OSSL_PARAM_BLD *tmpl = NULL;
2901     OSSL_PARAM *params = NULL;
2902 
2903     if (s->cert->dh_tmp_auto != 2) {
2904         if (s->s3.tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) {
2905             if (s->s3.tmp.new_cipher->strength_bits == 256)
2906                 dh_secbits = 128;
2907             else
2908                 dh_secbits = 80;
2909         } else {
2910             if (s->s3.tmp.cert == NULL)
2911                 return NULL;
2912             dh_secbits = EVP_PKEY_get_security_bits(s->s3.tmp.cert->privatekey);
2913         }
2914     }
2915 
2916     /* Do not pick a prime that is too weak for the current security level */
2917     sec_level_bits = ssl_get_security_level_bits(s, NULL, NULL);
2918     if (dh_secbits < sec_level_bits)
2919         dh_secbits = sec_level_bits;
2920 
2921     if (dh_secbits >= 192)
2922         p = BN_get_rfc3526_prime_8192(NULL);
2923     else if (dh_secbits >= 152)
2924         p = BN_get_rfc3526_prime_4096(NULL);
2925     else if (dh_secbits >= 128)
2926         p = BN_get_rfc3526_prime_3072(NULL);
2927     else if (dh_secbits >= 112)
2928         p = BN_get_rfc3526_prime_2048(NULL);
2929     else
2930         p = BN_get_rfc2409_prime_1024(NULL);
2931     if (p == NULL)
2932         goto err;
2933 
2934     pctx = EVP_PKEY_CTX_new_from_name(s->ctx->libctx, "DH", s->ctx->propq);
2935     if (pctx == NULL
2936             || EVP_PKEY_fromdata_init(pctx) != 1)
2937         goto err;
2938 
2939     tmpl = OSSL_PARAM_BLD_new();
2940     if (tmpl == NULL
2941             || !OSSL_PARAM_BLD_push_BN(tmpl, OSSL_PKEY_PARAM_FFC_P, p)
2942             || !OSSL_PARAM_BLD_push_uint(tmpl, OSSL_PKEY_PARAM_FFC_G, 2))
2943         goto err;
2944 
2945     params = OSSL_PARAM_BLD_to_param(tmpl);
2946     if (params == NULL
2947             || EVP_PKEY_fromdata(pctx, &dhp, EVP_PKEY_KEY_PARAMETERS, params) != 1)
2948         goto err;
2949 
2950 err:
2951     OSSL_PARAM_free(params);
2952     OSSL_PARAM_BLD_free(tmpl);
2953     EVP_PKEY_CTX_free(pctx);
2954     BN_free(p);
2955     return dhp;
2956 }
2957 
2958 static int ssl_security_cert_key(SSL *s, SSL_CTX *ctx, X509 *x, int op)
2959 {
2960     int secbits = -1;
2961     EVP_PKEY *pkey = X509_get0_pubkey(x);
2962     if (pkey) {
2963         /*
2964          * If no parameters this will return -1 and fail using the default
2965          * security callback for any non-zero security level. This will
2966          * reject keys which omit parameters but this only affects DSA and
2967          * omission of parameters is never (?) done in practice.
2968          */
2969         secbits = EVP_PKEY_get_security_bits(pkey);
2970     }
2971     if (s)
2972         return ssl_security(s, op, secbits, 0, x);
2973     else
2974         return ssl_ctx_security(ctx, op, secbits, 0, x);
2975 }
2976 
2977 static int ssl_security_cert_sig(SSL *s, SSL_CTX *ctx, X509 *x, int op)
2978 {
2979     /* Lookup signature algorithm digest */
2980     int secbits, nid, pknid;
2981     /* Don't check signature if self signed */
2982     if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0)
2983         return 1;
2984     if (!X509_get_signature_info(x, &nid, &pknid, &secbits, NULL))
2985         secbits = -1;
2986     /* If digest NID not defined use signature NID */
2987     if (nid == NID_undef)
2988         nid = pknid;
2989     if (s)
2990         return ssl_security(s, op, secbits, nid, x);
2991     else
2992         return ssl_ctx_security(ctx, op, secbits, nid, x);
2993 }
2994 
2995 int ssl_security_cert(SSL *s, SSL_CTX *ctx, X509 *x, int vfy, int is_ee)
2996 {
2997     if (vfy)
2998         vfy = SSL_SECOP_PEER;
2999     if (is_ee) {
3000         if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy))
3001             return SSL_R_EE_KEY_TOO_SMALL;
3002     } else {
3003         if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy))
3004             return SSL_R_CA_KEY_TOO_SMALL;
3005     }
3006     if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy))
3007         return SSL_R_CA_MD_TOO_WEAK;
3008     return 1;
3009 }
3010 
3011 /*
3012  * Check security of a chain, if |sk| includes the end entity certificate then
3013  * |x| is NULL. If |vfy| is 1 then we are verifying a peer chain and not sending
3014  * one to the peer. Return values: 1 if ok otherwise error code to use
3015  */
3016 
3017 int ssl_security_cert_chain(SSL *s, STACK_OF(X509) *sk, X509 *x, int vfy)
3018 {
3019     int rv, start_idx, i;
3020     if (x == NULL) {
3021         x = sk_X509_value(sk, 0);
3022         if (x == NULL)
3023             return ERR_R_INTERNAL_ERROR;
3024         start_idx = 1;
3025     } else
3026         start_idx = 0;
3027 
3028     rv = ssl_security_cert(s, NULL, x, vfy, 1);
3029     if (rv != 1)
3030         return rv;
3031 
3032     for (i = start_idx; i < sk_X509_num(sk); i++) {
3033         x = sk_X509_value(sk, i);
3034         rv = ssl_security_cert(s, NULL, x, vfy, 0);
3035         if (rv != 1)
3036             return rv;
3037     }
3038     return 1;
3039 }
3040 
3041 /*
3042  * For TLS 1.2 servers check if we have a certificate which can be used
3043  * with the signature algorithm "lu" and return index of certificate.
3044  */
3045 
3046 static int tls12_get_cert_sigalg_idx(const SSL *s, const SIGALG_LOOKUP *lu)
3047 {
3048     int sig_idx = lu->sig_idx;
3049     const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(sig_idx);
3050 
3051     /* If not recognised or not supported by cipher mask it is not suitable */
3052     if (clu == NULL
3053             || (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) == 0
3054             || (clu->nid == EVP_PKEY_RSA_PSS
3055                 && (s->s3.tmp.new_cipher->algorithm_mkey & SSL_kRSA) != 0))
3056         return -1;
3057 
3058     return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_VALID ? sig_idx : -1;
3059 }
3060 
3061 /*
3062  * Checks the given cert against signature_algorithm_cert restrictions sent by
3063  * the peer (if any) as well as whether the hash from the sigalg is usable with
3064  * the key.
3065  * Returns true if the cert is usable and false otherwise.
3066  */
3067 static int check_cert_usable(SSL *s, const SIGALG_LOOKUP *sig, X509 *x,
3068                              EVP_PKEY *pkey)
3069 {
3070     const SIGALG_LOOKUP *lu;
3071     int mdnid, pknid, supported;
3072     size_t i;
3073     const char *mdname = NULL;
3074 
3075     /*
3076      * If the given EVP_PKEY cannot support signing with this digest,
3077      * the answer is simply 'no'.
3078      */
3079     if (sig->hash != NID_undef)
3080         mdname = OBJ_nid2sn(sig->hash);
3081     supported = EVP_PKEY_digestsign_supports_digest(pkey, s->ctx->libctx,
3082                                                     mdname,
3083                                                     s->ctx->propq);
3084     if (supported <= 0)
3085         return 0;
3086 
3087     /*
3088      * The TLS 1.3 signature_algorithms_cert extension places restrictions
3089      * on the sigalg with which the certificate was signed (by its issuer).
3090      */
3091     if (s->s3.tmp.peer_cert_sigalgs != NULL) {
3092         if (!X509_get_signature_info(x, &mdnid, &pknid, NULL, NULL))
3093             return 0;
3094         for (i = 0; i < s->s3.tmp.peer_cert_sigalgslen; i++) {
3095             lu = tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i]);
3096             if (lu == NULL)
3097                 continue;
3098 
3099             /*
3100              * This does not differentiate between the
3101              * rsa_pss_pss_* and rsa_pss_rsae_* schemes since we do not
3102              * have a chain here that lets us look at the key OID in the
3103              * signing certificate.
3104              */
3105             if (mdnid == lu->hash && pknid == lu->sig)
3106                 return 1;
3107         }
3108         return 0;
3109     }
3110 
3111     /*
3112      * Without signat_algorithms_cert, any certificate for which we have
3113      * a viable public key is permitted.
3114      */
3115     return 1;
3116 }
3117 
3118 /*
3119  * Returns true if |s| has a usable certificate configured for use
3120  * with signature scheme |sig|.
3121  * "Usable" includes a check for presence as well as applying
3122  * the signature_algorithm_cert restrictions sent by the peer (if any).
3123  * Returns false if no usable certificate is found.
3124  */
3125 static int has_usable_cert(SSL *s, const SIGALG_LOOKUP *sig, int idx)
3126 {
3127     /* TLS 1.2 callers can override sig->sig_idx, but not TLS 1.3 callers. */
3128     if (idx == -1)
3129         idx = sig->sig_idx;
3130     if (!ssl_has_cert(s, idx))
3131         return 0;
3132 
3133     return check_cert_usable(s, sig, s->cert->pkeys[idx].x509,
3134                              s->cert->pkeys[idx].privatekey);
3135 }
3136 
3137 /*
3138  * Returns true if the supplied cert |x| and key |pkey| is usable with the
3139  * specified signature scheme |sig|, or false otherwise.
3140  */
3141 static int is_cert_usable(SSL *s, const SIGALG_LOOKUP *sig, X509 *x,
3142                           EVP_PKEY *pkey)
3143 {
3144     size_t idx;
3145 
3146     if (ssl_cert_lookup_by_pkey(pkey, &idx) == NULL)
3147         return 0;
3148 
3149     /* Check the key is consistent with the sig alg */
3150     if ((int)idx != sig->sig_idx)
3151         return 0;
3152 
3153     return check_cert_usable(s, sig, x, pkey);
3154 }
3155 
3156 /*
3157  * Find a signature scheme that works with the supplied certificate |x| and key
3158  * |pkey|. |x| and |pkey| may be NULL in which case we additionally look at our
3159  * available certs/keys to find one that works.
3160  */
3161 static const SIGALG_LOOKUP *find_sig_alg(SSL *s, X509 *x, EVP_PKEY *pkey)
3162 {
3163     const SIGALG_LOOKUP *lu = NULL;
3164     size_t i;
3165     int curve = -1;
3166     EVP_PKEY *tmppkey;
3167 
3168     /* Look for a shared sigalgs matching possible certificates */
3169     for (i = 0; i < s->shared_sigalgslen; i++) {
3170         lu = s->shared_sigalgs[i];
3171 
3172         /* Skip SHA1, SHA224, DSA and RSA if not PSS */
3173         if (lu->hash == NID_sha1
3174             || lu->hash == NID_sha224
3175             || lu->sig == EVP_PKEY_DSA
3176             || lu->sig == EVP_PKEY_RSA)
3177             continue;
3178         /* Check that we have a cert, and signature_algorithms_cert */
3179         if (!tls1_lookup_md(s->ctx, lu, NULL))
3180             continue;
3181         if ((pkey == NULL && !has_usable_cert(s, lu, -1))
3182                 || (pkey != NULL && !is_cert_usable(s, lu, x, pkey)))
3183             continue;
3184 
3185         tmppkey = (pkey != NULL) ? pkey
3186                                  : s->cert->pkeys[lu->sig_idx].privatekey;
3187 
3188         if (lu->sig == EVP_PKEY_EC) {
3189             if (curve == -1)
3190                 curve = ssl_get_EC_curve_nid(tmppkey);
3191             if (lu->curve != NID_undef && curve != lu->curve)
3192                 continue;
3193         } else if (lu->sig == EVP_PKEY_RSA_PSS) {
3194             /* validate that key is large enough for the signature algorithm */
3195             if (!rsa_pss_check_min_key_size(s->ctx, tmppkey, lu))
3196                 continue;
3197         }
3198         break;
3199     }
3200 
3201     if (i == s->shared_sigalgslen)
3202         return NULL;
3203 
3204     return lu;
3205 }
3206 
3207 /*
3208  * Choose an appropriate signature algorithm based on available certificates
3209  * Sets chosen certificate and signature algorithm.
3210  *
3211  * For servers if we fail to find a required certificate it is a fatal error,
3212  * an appropriate error code is set and a TLS alert is sent.
3213  *
3214  * For clients fatalerrs is set to 0. If a certificate is not suitable it is not
3215  * a fatal error: we will either try another certificate or not present one
3216  * to the server. In this case no error is set.
3217  */
3218 int tls_choose_sigalg(SSL *s, int fatalerrs)
3219 {
3220     const SIGALG_LOOKUP *lu = NULL;
3221     int sig_idx = -1;
3222 
3223     s->s3.tmp.cert = NULL;
3224     s->s3.tmp.sigalg = NULL;
3225 
3226     if (SSL_IS_TLS13(s)) {
3227         lu = find_sig_alg(s, NULL, NULL);
3228         if (lu == NULL) {
3229             if (!fatalerrs)
3230                 return 1;
3231             SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3232                      SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3233             return 0;
3234         }
3235     } else {
3236         /* If ciphersuite doesn't require a cert nothing to do */
3237         if (!(s->s3.tmp.new_cipher->algorithm_auth & SSL_aCERT))
3238             return 1;
3239         if (!s->server && !ssl_has_cert(s, s->cert->key - s->cert->pkeys))
3240                 return 1;
3241 
3242         if (SSL_USE_SIGALGS(s)) {
3243             size_t i;
3244             if (s->s3.tmp.peer_sigalgs != NULL) {
3245                 int curve = -1;
3246 
3247                 /* For Suite B need to match signature algorithm to curve */
3248                 if (tls1_suiteb(s))
3249                     curve = ssl_get_EC_curve_nid(s->cert->pkeys[SSL_PKEY_ECC]
3250                                                  .privatekey);
3251 
3252                 /*
3253                  * Find highest preference signature algorithm matching
3254                  * cert type
3255                  */
3256                 for (i = 0; i < s->shared_sigalgslen; i++) {
3257                     lu = s->shared_sigalgs[i];
3258 
3259                     if (s->server) {
3260                         if ((sig_idx = tls12_get_cert_sigalg_idx(s, lu)) == -1)
3261                             continue;
3262                     } else {
3263                         int cc_idx = s->cert->key - s->cert->pkeys;
3264 
3265                         sig_idx = lu->sig_idx;
3266                         if (cc_idx != sig_idx)
3267                             continue;
3268                     }
3269                     /* Check that we have a cert, and sig_algs_cert */
3270                     if (!has_usable_cert(s, lu, sig_idx))
3271                         continue;
3272                     if (lu->sig == EVP_PKEY_RSA_PSS) {
3273                         /* validate that key is large enough for the signature algorithm */
3274                         EVP_PKEY *pkey = s->cert->pkeys[sig_idx].privatekey;
3275 
3276                         if (!rsa_pss_check_min_key_size(s->ctx, pkey, lu))
3277                             continue;
3278                     }
3279                     if (curve == -1 || lu->curve == curve)
3280                         break;
3281                 }
3282 #ifndef OPENSSL_NO_GOST
3283                 /*
3284                  * Some Windows-based implementations do not send GOST algorithms indication
3285                  * in supported_algorithms extension, so when we have GOST-based ciphersuite,
3286                  * we have to assume GOST support.
3287                  */
3288                 if (i == s->shared_sigalgslen && s->s3.tmp.new_cipher->algorithm_auth & (SSL_aGOST01 | SSL_aGOST12)) {
3289                   if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3290                     if (!fatalerrs)
3291                       return 1;
3292                     SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3293                              SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3294                     return 0;
3295                   } else {
3296                     i = 0;
3297                     sig_idx = lu->sig_idx;
3298                   }
3299                 }
3300 #endif
3301                 if (i == s->shared_sigalgslen) {
3302                     if (!fatalerrs)
3303                         return 1;
3304                     SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3305                              SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3306                     return 0;
3307                 }
3308             } else {
3309                 /*
3310                  * If we have no sigalg use defaults
3311                  */
3312                 const uint16_t *sent_sigs;
3313                 size_t sent_sigslen;
3314 
3315                 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3316                     if (!fatalerrs)
3317                         return 1;
3318                     SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3319                              SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3320                     return 0;
3321                 }
3322 
3323                 /* Check signature matches a type we sent */
3324                 sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
3325                 for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
3326                     if (lu->sigalg == *sent_sigs
3327                             && has_usable_cert(s, lu, lu->sig_idx))
3328                         break;
3329                 }
3330                 if (i == sent_sigslen) {
3331                     if (!fatalerrs)
3332                         return 1;
3333                     SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3334                              SSL_R_WRONG_SIGNATURE_TYPE);
3335                     return 0;
3336                 }
3337             }
3338         } else {
3339             if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3340                 if (!fatalerrs)
3341                     return 1;
3342                 SSLfatal(s, SSL_AD_INTERNAL_ERROR,
3343                          SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3344                 return 0;
3345             }
3346         }
3347     }
3348     if (sig_idx == -1)
3349         sig_idx = lu->sig_idx;
3350     s->s3.tmp.cert = &s->cert->pkeys[sig_idx];
3351     s->cert->key = s->s3.tmp.cert;
3352     s->s3.tmp.sigalg = lu;
3353     return 1;
3354 }
3355 
3356 int SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX *ctx, uint8_t mode)
3357 {
3358     if (mode != TLSEXT_max_fragment_length_DISABLED
3359             && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
3360         ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
3361         return 0;
3362     }
3363 
3364     ctx->ext.max_fragment_len_mode = mode;
3365     return 1;
3366 }
3367 
3368 int SSL_set_tlsext_max_fragment_length(SSL *ssl, uint8_t mode)
3369 {
3370     if (mode != TLSEXT_max_fragment_length_DISABLED
3371             && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
3372         ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
3373         return 0;
3374     }
3375 
3376     ssl->ext.max_fragment_len_mode = mode;
3377     return 1;
3378 }
3379 
3380 uint8_t SSL_SESSION_get_max_fragment_length(const SSL_SESSION *session)
3381 {
3382     return session->ext.max_fragment_len_mode;
3383 }
3384 
3385 /*
3386  * Helper functions for HMAC access with legacy support included.
3387  */
3388 SSL_HMAC *ssl_hmac_new(const SSL_CTX *ctx)
3389 {
3390     SSL_HMAC *ret = OPENSSL_zalloc(sizeof(*ret));
3391     EVP_MAC *mac = NULL;
3392 
3393     if (ret == NULL)
3394         return NULL;
3395 #ifndef OPENSSL_NO_DEPRECATED_3_0
3396     if (ctx->ext.ticket_key_evp_cb == NULL
3397             && ctx->ext.ticket_key_cb != NULL) {
3398         if (!ssl_hmac_old_new(ret))
3399             goto err;
3400         return ret;
3401     }
3402 #endif
3403     mac = EVP_MAC_fetch(ctx->libctx, "HMAC", ctx->propq);
3404     if (mac == NULL || (ret->ctx = EVP_MAC_CTX_new(mac)) == NULL)
3405         goto err;
3406     EVP_MAC_free(mac);
3407     return ret;
3408  err:
3409     EVP_MAC_CTX_free(ret->ctx);
3410     EVP_MAC_free(mac);
3411     OPENSSL_free(ret);
3412     return NULL;
3413 }
3414 
3415 void ssl_hmac_free(SSL_HMAC *ctx)
3416 {
3417     if (ctx != NULL) {
3418         EVP_MAC_CTX_free(ctx->ctx);
3419 #ifndef OPENSSL_NO_DEPRECATED_3_0
3420         ssl_hmac_old_free(ctx);
3421 #endif
3422         OPENSSL_free(ctx);
3423     }
3424 }
3425 
3426 EVP_MAC_CTX *ssl_hmac_get0_EVP_MAC_CTX(SSL_HMAC *ctx)
3427 {
3428     return ctx->ctx;
3429 }
3430 
3431 int ssl_hmac_init(SSL_HMAC *ctx, void *key, size_t len, char *md)
3432 {
3433     OSSL_PARAM params[2], *p = params;
3434 
3435     if (ctx->ctx != NULL) {
3436         *p++ = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, md, 0);
3437         *p = OSSL_PARAM_construct_end();
3438         if (EVP_MAC_init(ctx->ctx, key, len, params))
3439             return 1;
3440     }
3441 #ifndef OPENSSL_NO_DEPRECATED_3_0
3442     if (ctx->old_ctx != NULL)
3443         return ssl_hmac_old_init(ctx, key, len, md);
3444 #endif
3445     return 0;
3446 }
3447 
3448 int ssl_hmac_update(SSL_HMAC *ctx, const unsigned char *data, size_t len)
3449 {
3450     if (ctx->ctx != NULL)
3451         return EVP_MAC_update(ctx->ctx, data, len);
3452 #ifndef OPENSSL_NO_DEPRECATED_3_0
3453     if (ctx->old_ctx != NULL)
3454         return ssl_hmac_old_update(ctx, data, len);
3455 #endif
3456     return 0;
3457 }
3458 
3459 int ssl_hmac_final(SSL_HMAC *ctx, unsigned char *md, size_t *len,
3460                    size_t max_size)
3461 {
3462     if (ctx->ctx != NULL)
3463         return EVP_MAC_final(ctx->ctx, md, len, max_size);
3464 #ifndef OPENSSL_NO_DEPRECATED_3_0
3465     if (ctx->old_ctx != NULL)
3466         return ssl_hmac_old_final(ctx, md, len);
3467 #endif
3468     return 0;
3469 }
3470 
3471 size_t ssl_hmac_size(const SSL_HMAC *ctx)
3472 {
3473     if (ctx->ctx != NULL)
3474         return EVP_MAC_CTX_get_mac_size(ctx->ctx);
3475 #ifndef OPENSSL_NO_DEPRECATED_3_0
3476     if (ctx->old_ctx != NULL)
3477         return ssl_hmac_old_size(ctx);
3478 #endif
3479     return 0;
3480 }
3481 
3482 int ssl_get_EC_curve_nid(const EVP_PKEY *pkey)
3483 {
3484     char gname[OSSL_MAX_NAME_SIZE];
3485 
3486     if (EVP_PKEY_get_group_name(pkey, gname, sizeof(gname), NULL) > 0)
3487         return OBJ_txt2nid(gname);
3488 
3489     return NID_undef;
3490 }
3491 
3492 __owur int tls13_set_encoded_pub_key(EVP_PKEY *pkey,
3493                                      const unsigned char *enckey,
3494                                      size_t enckeylen)
3495 {
3496     if (EVP_PKEY_is_a(pkey, "DH")) {
3497         int bits = EVP_PKEY_get_bits(pkey);
3498 
3499         if (bits <= 0 || enckeylen != (size_t)bits / 8)
3500             /* the encoded key must be padded to the length of the p */
3501             return 0;
3502     } else if (EVP_PKEY_is_a(pkey, "EC")) {
3503         if (enckeylen < 3 /* point format and at least 1 byte for x and y */
3504             || enckey[0] != 0x04)
3505             return 0;
3506     }
3507 
3508     return EVP_PKEY_set1_encoded_public_key(pkey, enckey, enckeylen);
3509 }
3510