1 /* ssl/t1_lib.c */ 2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) 3 * All rights reserved. 4 * 5 * This package is an SSL implementation written 6 * by Eric Young (eay@cryptsoft.com). 7 * The implementation was written so as to conform with Netscapes SSL. 8 * 9 * This library is free for commercial and non-commercial use as long as 10 * the following conditions are aheared to. The following conditions 11 * apply to all code found in this distribution, be it the RC4, RSA, 12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation 13 * included with this distribution is covered by the same copyright terms 14 * except that the holder is Tim Hudson (tjh@cryptsoft.com). 15 * 16 * Copyright remains Eric Young's, and as such any Copyright notices in 17 * the code are not to be removed. 18 * If this package is used in a product, Eric Young should be given attribution 19 * as the author of the parts of the library used. 20 * This can be in the form of a textual message at program startup or 21 * in documentation (online or textual) provided with the package. 22 * 23 * Redistribution and use in source and binary forms, with or without 24 * modification, are permitted provided that the following conditions 25 * are met: 26 * 1. Redistributions of source code must retain the copyright 27 * notice, this list of conditions and the following disclaimer. 28 * 2. Redistributions in binary form must reproduce the above copyright 29 * notice, this list of conditions and the following disclaimer in the 30 * documentation and/or other materials provided with the distribution. 31 * 3. All advertising materials mentioning features or use of this software 32 * must display the following acknowledgement: 33 * "This product includes cryptographic software written by 34 * Eric Young (eay@cryptsoft.com)" 35 * The word 'cryptographic' can be left out if the rouines from the library 36 * being used are not cryptographic related :-). 37 * 4. If you include any Windows specific code (or a derivative thereof) from 38 * the apps directory (application code) you must include an acknowledgement: 39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" 40 * 41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND 42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 51 * SUCH DAMAGE. 52 * 53 * The licence and distribution terms for any publically available version or 54 * derivative of this code cannot be changed. i.e. this code cannot simply be 55 * copied and put under another distribution licence 56 * [including the GNU Public Licence.] 57 */ 58 /* ==================================================================== 59 * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved. 60 * 61 * Redistribution and use in source and binary forms, with or without 62 * modification, are permitted provided that the following conditions 63 * are met: 64 * 65 * 1. Redistributions of source code must retain the above copyright 66 * notice, this list of conditions and the following disclaimer. 67 * 68 * 2. Redistributions in binary form must reproduce the above copyright 69 * notice, this list of conditions and the following disclaimer in 70 * the documentation and/or other materials provided with the 71 * distribution. 72 * 73 * 3. All advertising materials mentioning features or use of this 74 * software must display the following acknowledgment: 75 * "This product includes software developed by the OpenSSL Project 76 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" 77 * 78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to 79 * endorse or promote products derived from this software without 80 * prior written permission. For written permission, please contact 81 * openssl-core@openssl.org. 82 * 83 * 5. Products derived from this software may not be called "OpenSSL" 84 * nor may "OpenSSL" appear in their names without prior written 85 * permission of the OpenSSL Project. 86 * 87 * 6. Redistributions of any form whatsoever must retain the following 88 * acknowledgment: 89 * "This product includes software developed by the OpenSSL Project 90 * for use in the OpenSSL Toolkit (http://www.openssl.org/)" 91 * 92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY 93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 95 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR 96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED 103 * OF THE POSSIBILITY OF SUCH DAMAGE. 104 * ==================================================================== 105 * 106 * This product includes cryptographic software written by Eric Young 107 * (eay@cryptsoft.com). This product includes software written by Tim 108 * Hudson (tjh@cryptsoft.com). 109 * 110 */ 111 112 #include <stdio.h> 113 #include <openssl/objects.h> 114 #include <openssl/evp.h> 115 #include <openssl/hmac.h> 116 #ifndef OPENSSL_NO_EC 117 #ifdef OPENSSL_NO_EC2M 118 # include <openssl/ec.h> 119 #endif 120 #endif 121 #include <openssl/ocsp.h> 122 #include <openssl/rand.h> 123 #include "ssl_locl.h" 124 125 const char tls1_version_str[] = "TLSv1" OPENSSL_VERSION_PTEXT; 126 127 #ifndef OPENSSL_NO_TLSEXT 128 static int tls_decrypt_ticket(SSL *s, const unsigned char *tick, int ticklen, 129 const unsigned char *sess_id, int sesslen, 130 SSL_SESSION **psess); 131 static int ssl_check_clienthello_tlsext_early(SSL *s); 132 int ssl_check_serverhello_tlsext(SSL *s); 133 #endif 134 135 SSL3_ENC_METHOD TLSv1_enc_data = { 136 tls1_enc, 137 tls1_mac, 138 tls1_setup_key_block, 139 tls1_generate_master_secret, 140 tls1_change_cipher_state, 141 tls1_final_finish_mac, 142 TLS1_FINISH_MAC_LENGTH, 143 tls1_cert_verify_mac, 144 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE, 145 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE, 146 tls1_alert_code, 147 tls1_export_keying_material, 148 0, 149 SSL3_HM_HEADER_LENGTH, 150 ssl3_set_handshake_header, 151 ssl3_handshake_write 152 }; 153 154 SSL3_ENC_METHOD TLSv1_1_enc_data = { 155 tls1_enc, 156 tls1_mac, 157 tls1_setup_key_block, 158 tls1_generate_master_secret, 159 tls1_change_cipher_state, 160 tls1_final_finish_mac, 161 TLS1_FINISH_MAC_LENGTH, 162 tls1_cert_verify_mac, 163 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE, 164 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE, 165 tls1_alert_code, 166 tls1_export_keying_material, 167 SSL_ENC_FLAG_EXPLICIT_IV, 168 SSL3_HM_HEADER_LENGTH, 169 ssl3_set_handshake_header, 170 ssl3_handshake_write 171 }; 172 173 SSL3_ENC_METHOD TLSv1_2_enc_data = { 174 tls1_enc, 175 tls1_mac, 176 tls1_setup_key_block, 177 tls1_generate_master_secret, 178 tls1_change_cipher_state, 179 tls1_final_finish_mac, 180 TLS1_FINISH_MAC_LENGTH, 181 tls1_cert_verify_mac, 182 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE, 183 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE, 184 tls1_alert_code, 185 tls1_export_keying_material, 186 SSL_ENC_FLAG_EXPLICIT_IV | SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF 187 | SSL_ENC_FLAG_TLS1_2_CIPHERS, 188 SSL3_HM_HEADER_LENGTH, 189 ssl3_set_handshake_header, 190 ssl3_handshake_write 191 }; 192 193 long tls1_default_timeout(void) 194 { 195 /* 196 * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for 197 * http, the cache would over fill 198 */ 199 return (60 * 60 * 2); 200 } 201 202 int tls1_new(SSL *s) 203 { 204 if (!ssl3_new(s)) 205 return (0); 206 s->method->ssl_clear(s); 207 return (1); 208 } 209 210 void tls1_free(SSL *s) 211 { 212 #ifndef OPENSSL_NO_TLSEXT 213 if (s->tlsext_session_ticket) { 214 OPENSSL_free(s->tlsext_session_ticket); 215 } 216 #endif /* OPENSSL_NO_TLSEXT */ 217 ssl3_free(s); 218 } 219 220 void tls1_clear(SSL *s) 221 { 222 ssl3_clear(s); 223 s->version = s->method->version; 224 } 225 226 #ifndef OPENSSL_NO_EC 227 228 static int nid_list[] = { 229 NID_sect163k1, /* sect163k1 (1) */ 230 NID_sect163r1, /* sect163r1 (2) */ 231 NID_sect163r2, /* sect163r2 (3) */ 232 NID_sect193r1, /* sect193r1 (4) */ 233 NID_sect193r2, /* sect193r2 (5) */ 234 NID_sect233k1, /* sect233k1 (6) */ 235 NID_sect233r1, /* sect233r1 (7) */ 236 NID_sect239k1, /* sect239k1 (8) */ 237 NID_sect283k1, /* sect283k1 (9) */ 238 NID_sect283r1, /* sect283r1 (10) */ 239 NID_sect409k1, /* sect409k1 (11) */ 240 NID_sect409r1, /* sect409r1 (12) */ 241 NID_sect571k1, /* sect571k1 (13) */ 242 NID_sect571r1, /* sect571r1 (14) */ 243 NID_secp160k1, /* secp160k1 (15) */ 244 NID_secp160r1, /* secp160r1 (16) */ 245 NID_secp160r2, /* secp160r2 (17) */ 246 NID_secp192k1, /* secp192k1 (18) */ 247 NID_X9_62_prime192v1, /* secp192r1 (19) */ 248 NID_secp224k1, /* secp224k1 (20) */ 249 NID_secp224r1, /* secp224r1 (21) */ 250 NID_secp256k1, /* secp256k1 (22) */ 251 NID_X9_62_prime256v1, /* secp256r1 (23) */ 252 NID_secp384r1, /* secp384r1 (24) */ 253 NID_secp521r1, /* secp521r1 (25) */ 254 NID_brainpoolP256r1, /* brainpoolP256r1 (26) */ 255 NID_brainpoolP384r1, /* brainpoolP384r1 (27) */ 256 NID_brainpoolP512r1 /* brainpool512r1 (28) */ 257 }; 258 259 static const unsigned char ecformats_default[] = { 260 TLSEXT_ECPOINTFORMAT_uncompressed, 261 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime, 262 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2 263 }; 264 265 /* The client's default curves / the server's 'auto' curves. */ 266 static const unsigned char eccurves_auto[] = { 267 /* Prefer P-256 which has the fastest and most secure implementations. */ 268 0, 23, /* secp256r1 (23) */ 269 /* Other >= 256-bit prime curves. */ 270 0, 25, /* secp521r1 (25) */ 271 0, 28, /* brainpool512r1 (28) */ 272 0, 27, /* brainpoolP384r1 (27) */ 273 0, 24, /* secp384r1 (24) */ 274 0, 26, /* brainpoolP256r1 (26) */ 275 0, 22, /* secp256k1 (22) */ 276 # ifndef OPENSSL_NO_EC2M 277 /* >= 256-bit binary curves. */ 278 0, 14, /* sect571r1 (14) */ 279 0, 13, /* sect571k1 (13) */ 280 0, 11, /* sect409k1 (11) */ 281 0, 12, /* sect409r1 (12) */ 282 0, 9, /* sect283k1 (9) */ 283 0, 10, /* sect283r1 (10) */ 284 # endif 285 }; 286 287 static const unsigned char eccurves_all[] = { 288 /* Prefer P-256 which has the fastest and most secure implementations. */ 289 0, 23, /* secp256r1 (23) */ 290 /* Other >= 256-bit prime curves. */ 291 0, 25, /* secp521r1 (25) */ 292 0, 28, /* brainpool512r1 (28) */ 293 0, 27, /* brainpoolP384r1 (27) */ 294 0, 24, /* secp384r1 (24) */ 295 0, 26, /* brainpoolP256r1 (26) */ 296 0, 22, /* secp256k1 (22) */ 297 # ifndef OPENSSL_NO_EC2M 298 /* >= 256-bit binary curves. */ 299 0, 14, /* sect571r1 (14) */ 300 0, 13, /* sect571k1 (13) */ 301 0, 11, /* sect409k1 (11) */ 302 0, 12, /* sect409r1 (12) */ 303 0, 9, /* sect283k1 (9) */ 304 0, 10, /* sect283r1 (10) */ 305 # endif 306 /* 307 * Remaining curves disabled by default but still permitted if set 308 * via an explicit callback or parameters. 309 */ 310 0, 20, /* secp224k1 (20) */ 311 0, 21, /* secp224r1 (21) */ 312 0, 18, /* secp192k1 (18) */ 313 0, 19, /* secp192r1 (19) */ 314 0, 15, /* secp160k1 (15) */ 315 0, 16, /* secp160r1 (16) */ 316 0, 17, /* secp160r2 (17) */ 317 # ifndef OPENSSL_NO_EC2M 318 0, 8, /* sect239k1 (8) */ 319 0, 6, /* sect233k1 (6) */ 320 0, 7, /* sect233r1 (7) */ 321 0, 4, /* sect193r1 (4) */ 322 0, 5, /* sect193r2 (5) */ 323 0, 1, /* sect163k1 (1) */ 324 0, 2, /* sect163r1 (2) */ 325 0, 3, /* sect163r2 (3) */ 326 # endif 327 }; 328 329 static const unsigned char suiteb_curves[] = { 330 0, TLSEXT_curve_P_256, 331 0, TLSEXT_curve_P_384 332 }; 333 334 # ifdef OPENSSL_FIPS 335 /* Brainpool not allowed in FIPS mode */ 336 static const unsigned char fips_curves_default[] = { 337 # ifndef OPENSSL_NO_EC2M 338 0, 14, /* sect571r1 (14) */ 339 0, 13, /* sect571k1 (13) */ 340 # endif 341 0, 25, /* secp521r1 (25) */ 342 # ifndef OPENSSL_NO_EC2M 343 0, 11, /* sect409k1 (11) */ 344 0, 12, /* sect409r1 (12) */ 345 # endif 346 0, 24, /* secp384r1 (24) */ 347 # ifndef OPENSSL_NO_EC2M 348 0, 9, /* sect283k1 (9) */ 349 0, 10, /* sect283r1 (10) */ 350 # endif 351 0, 22, /* secp256k1 (22) */ 352 0, 23, /* secp256r1 (23) */ 353 # ifndef OPENSSL_NO_EC2M 354 0, 8, /* sect239k1 (8) */ 355 0, 6, /* sect233k1 (6) */ 356 0, 7, /* sect233r1 (7) */ 357 # endif 358 0, 20, /* secp224k1 (20) */ 359 0, 21, /* secp224r1 (21) */ 360 # ifndef OPENSSL_NO_EC2M 361 0, 4, /* sect193r1 (4) */ 362 0, 5, /* sect193r2 (5) */ 363 # endif 364 0, 18, /* secp192k1 (18) */ 365 0, 19, /* secp192r1 (19) */ 366 # ifndef OPENSSL_NO_EC2M 367 0, 1, /* sect163k1 (1) */ 368 0, 2, /* sect163r1 (2) */ 369 0, 3, /* sect163r2 (3) */ 370 # endif 371 0, 15, /* secp160k1 (15) */ 372 0, 16, /* secp160r1 (16) */ 373 0, 17, /* secp160r2 (17) */ 374 }; 375 # endif 376 377 int tls1_ec_curve_id2nid(int curve_id) 378 { 379 /* ECC curves from RFC 4492 and RFC 7027 */ 380 if ((curve_id < 1) || ((unsigned int)curve_id > 381 sizeof(nid_list) / sizeof(nid_list[0]))) 382 return 0; 383 return nid_list[curve_id - 1]; 384 } 385 386 int tls1_ec_nid2curve_id(int nid) 387 { 388 /* ECC curves from RFC 4492 and RFC 7027 */ 389 switch (nid) { 390 case NID_sect163k1: /* sect163k1 (1) */ 391 return 1; 392 case NID_sect163r1: /* sect163r1 (2) */ 393 return 2; 394 case NID_sect163r2: /* sect163r2 (3) */ 395 return 3; 396 case NID_sect193r1: /* sect193r1 (4) */ 397 return 4; 398 case NID_sect193r2: /* sect193r2 (5) */ 399 return 5; 400 case NID_sect233k1: /* sect233k1 (6) */ 401 return 6; 402 case NID_sect233r1: /* sect233r1 (7) */ 403 return 7; 404 case NID_sect239k1: /* sect239k1 (8) */ 405 return 8; 406 case NID_sect283k1: /* sect283k1 (9) */ 407 return 9; 408 case NID_sect283r1: /* sect283r1 (10) */ 409 return 10; 410 case NID_sect409k1: /* sect409k1 (11) */ 411 return 11; 412 case NID_sect409r1: /* sect409r1 (12) */ 413 return 12; 414 case NID_sect571k1: /* sect571k1 (13) */ 415 return 13; 416 case NID_sect571r1: /* sect571r1 (14) */ 417 return 14; 418 case NID_secp160k1: /* secp160k1 (15) */ 419 return 15; 420 case NID_secp160r1: /* secp160r1 (16) */ 421 return 16; 422 case NID_secp160r2: /* secp160r2 (17) */ 423 return 17; 424 case NID_secp192k1: /* secp192k1 (18) */ 425 return 18; 426 case NID_X9_62_prime192v1: /* secp192r1 (19) */ 427 return 19; 428 case NID_secp224k1: /* secp224k1 (20) */ 429 return 20; 430 case NID_secp224r1: /* secp224r1 (21) */ 431 return 21; 432 case NID_secp256k1: /* secp256k1 (22) */ 433 return 22; 434 case NID_X9_62_prime256v1: /* secp256r1 (23) */ 435 return 23; 436 case NID_secp384r1: /* secp384r1 (24) */ 437 return 24; 438 case NID_secp521r1: /* secp521r1 (25) */ 439 return 25; 440 case NID_brainpoolP256r1: /* brainpoolP256r1 (26) */ 441 return 26; 442 case NID_brainpoolP384r1: /* brainpoolP384r1 (27) */ 443 return 27; 444 case NID_brainpoolP512r1: /* brainpool512r1 (28) */ 445 return 28; 446 default: 447 return 0; 448 } 449 } 450 451 /* 452 * Get curves list, if "sess" is set return client curves otherwise 453 * preferred list. 454 * Sets |num_curves| to the number of curves in the list, i.e., 455 * the length of |pcurves| is 2 * num_curves. 456 * Returns 1 on success and 0 if the client curves list has invalid format. 457 * The latter indicates an internal error: we should not be accepting such 458 * lists in the first place. 459 * TODO(emilia): we should really be storing the curves list in explicitly 460 * parsed form instead. (However, this would affect binary compatibility 461 * so cannot happen in the 1.0.x series.) 462 */ 463 static int tls1_get_curvelist(SSL *s, int sess, 464 const unsigned char **pcurves, 465 size_t *num_curves) 466 { 467 size_t pcurveslen = 0; 468 if (sess) { 469 *pcurves = s->session->tlsext_ellipticcurvelist; 470 pcurveslen = s->session->tlsext_ellipticcurvelist_length; 471 } else { 472 /* For Suite B mode only include P-256, P-384 */ 473 switch (tls1_suiteb(s)) { 474 case SSL_CERT_FLAG_SUITEB_128_LOS: 475 *pcurves = suiteb_curves; 476 pcurveslen = sizeof(suiteb_curves); 477 break; 478 479 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY: 480 *pcurves = suiteb_curves; 481 pcurveslen = 2; 482 break; 483 484 case SSL_CERT_FLAG_SUITEB_192_LOS: 485 *pcurves = suiteb_curves + 2; 486 pcurveslen = 2; 487 break; 488 default: 489 *pcurves = s->tlsext_ellipticcurvelist; 490 pcurveslen = s->tlsext_ellipticcurvelist_length; 491 } 492 if (!*pcurves) { 493 # ifdef OPENSSL_FIPS 494 if (FIPS_mode()) { 495 *pcurves = fips_curves_default; 496 pcurveslen = sizeof(fips_curves_default); 497 } else 498 # endif 499 { 500 if (!s->server || s->cert->ecdh_tmp_auto) { 501 *pcurves = eccurves_auto; 502 pcurveslen = sizeof(eccurves_auto); 503 } else { 504 *pcurves = eccurves_all; 505 pcurveslen = sizeof(eccurves_all); 506 } 507 } 508 } 509 } 510 /* We do not allow odd length arrays to enter the system. */ 511 if (pcurveslen & 1) { 512 SSLerr(SSL_F_TLS1_GET_CURVELIST, ERR_R_INTERNAL_ERROR); 513 *num_curves = 0; 514 return 0; 515 } else { 516 *num_curves = pcurveslen / 2; 517 return 1; 518 } 519 } 520 521 /* Check a curve is one of our preferences */ 522 int tls1_check_curve(SSL *s, const unsigned char *p, size_t len) 523 { 524 const unsigned char *curves; 525 size_t num_curves, i; 526 unsigned int suiteb_flags = tls1_suiteb(s); 527 if (len != 3 || p[0] != NAMED_CURVE_TYPE) 528 return 0; 529 /* Check curve matches Suite B preferences */ 530 if (suiteb_flags) { 531 unsigned long cid = s->s3->tmp.new_cipher->id; 532 if (p[1]) 533 return 0; 534 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) { 535 if (p[2] != TLSEXT_curve_P_256) 536 return 0; 537 } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) { 538 if (p[2] != TLSEXT_curve_P_384) 539 return 0; 540 } else /* Should never happen */ 541 return 0; 542 } 543 if (!tls1_get_curvelist(s, 0, &curves, &num_curves)) 544 return 0; 545 for (i = 0; i < num_curves; i++, curves += 2) { 546 if (p[1] == curves[0] && p[2] == curves[1]) 547 return 1; 548 } 549 return 0; 550 } 551 552 /*- 553 * Return |nmatch|th shared curve or NID_undef if there is no match. 554 * For nmatch == -1, return number of matches 555 * For nmatch == -2, return the NID of the curve to use for 556 * an EC tmp key, or NID_undef if there is no match. 557 */ 558 int tls1_shared_curve(SSL *s, int nmatch) 559 { 560 const unsigned char *pref, *supp; 561 size_t num_pref, num_supp, i, j; 562 int k; 563 /* Can't do anything on client side */ 564 if (s->server == 0) 565 return -1; 566 if (nmatch == -2) { 567 if (tls1_suiteb(s)) { 568 /* 569 * For Suite B ciphersuite determines curve: we already know 570 * these are acceptable due to previous checks. 571 */ 572 unsigned long cid = s->s3->tmp.new_cipher->id; 573 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) 574 return NID_X9_62_prime256v1; /* P-256 */ 575 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) 576 return NID_secp384r1; /* P-384 */ 577 /* Should never happen */ 578 return NID_undef; 579 } 580 /* If not Suite B just return first preference shared curve */ 581 nmatch = 0; 582 } 583 /* 584 * Avoid truncation. tls1_get_curvelist takes an int 585 * but s->options is a long... 586 */ 587 if (!tls1_get_curvelist 588 (s, (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) != 0, &supp, 589 &num_supp)) 590 /* In practice, NID_undef == 0 but let's be precise. */ 591 return nmatch == -1 ? 0 : NID_undef; 592 if (!tls1_get_curvelist 593 (s, !(s->options & SSL_OP_CIPHER_SERVER_PREFERENCE), &pref, 594 &num_pref)) 595 return nmatch == -1 ? 0 : NID_undef; 596 597 /* 598 * If the client didn't send the elliptic_curves extension all of them 599 * are allowed. 600 */ 601 if (num_supp == 0 && (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) != 0) { 602 supp = eccurves_all; 603 num_supp = sizeof(eccurves_all) / 2; 604 } else if (num_pref == 0 && 605 (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) == 0) { 606 pref = eccurves_all; 607 num_pref = sizeof(eccurves_all) / 2; 608 } 609 610 k = 0; 611 for (i = 0; i < num_pref; i++, pref += 2) { 612 const unsigned char *tsupp = supp; 613 for (j = 0; j < num_supp; j++, tsupp += 2) { 614 if (pref[0] == tsupp[0] && pref[1] == tsupp[1]) { 615 if (nmatch == k) { 616 int id = (pref[0] << 8) | pref[1]; 617 return tls1_ec_curve_id2nid(id); 618 } 619 k++; 620 } 621 } 622 } 623 if (nmatch == -1) 624 return k; 625 /* Out of range (nmatch > k). */ 626 return NID_undef; 627 } 628 629 int tls1_set_curves(unsigned char **pext, size_t *pextlen, 630 int *curves, size_t ncurves) 631 { 632 unsigned char *clist, *p; 633 size_t i; 634 /* 635 * Bitmap of curves included to detect duplicates: only works while curve 636 * ids < 32 637 */ 638 unsigned long dup_list = 0; 639 # ifdef OPENSSL_NO_EC2M 640 EC_GROUP *curve; 641 # endif 642 643 clist = OPENSSL_malloc(ncurves * 2); 644 if (!clist) 645 return 0; 646 for (i = 0, p = clist; i < ncurves; i++) { 647 unsigned long idmask; 648 int id; 649 id = tls1_ec_nid2curve_id(curves[i]); 650 # ifdef OPENSSL_FIPS 651 /* NB: 25 is last curve ID supported by FIPS module */ 652 if (FIPS_mode() && id > 25) { 653 OPENSSL_free(clist); 654 return 0; 655 } 656 # endif 657 # ifdef OPENSSL_NO_EC2M 658 curve = EC_GROUP_new_by_curve_name(curves[i]); 659 if (!curve || EC_METHOD_get_field_type(EC_GROUP_method_of(curve)) 660 == NID_X9_62_characteristic_two_field) { 661 if (curve) 662 EC_GROUP_free(curve); 663 OPENSSL_free(clist); 664 return 0; 665 } else 666 EC_GROUP_free(curve); 667 # endif 668 idmask = 1L << id; 669 if (!id || (dup_list & idmask)) { 670 OPENSSL_free(clist); 671 return 0; 672 } 673 dup_list |= idmask; 674 s2n(id, p); 675 } 676 if (*pext) 677 OPENSSL_free(*pext); 678 *pext = clist; 679 *pextlen = ncurves * 2; 680 return 1; 681 } 682 683 # define MAX_CURVELIST 28 684 685 typedef struct { 686 size_t nidcnt; 687 int nid_arr[MAX_CURVELIST]; 688 } nid_cb_st; 689 690 static int nid_cb(const char *elem, int len, void *arg) 691 { 692 nid_cb_st *narg = arg; 693 size_t i; 694 int nid; 695 char etmp[20]; 696 if (elem == NULL) 697 return 0; 698 if (narg->nidcnt == MAX_CURVELIST) 699 return 0; 700 if (len > (int)(sizeof(etmp) - 1)) 701 return 0; 702 memcpy(etmp, elem, len); 703 etmp[len] = 0; 704 nid = EC_curve_nist2nid(etmp); 705 if (nid == NID_undef) 706 nid = OBJ_sn2nid(etmp); 707 if (nid == NID_undef) 708 nid = OBJ_ln2nid(etmp); 709 if (nid == NID_undef) 710 return 0; 711 for (i = 0; i < narg->nidcnt; i++) 712 if (narg->nid_arr[i] == nid) 713 return 0; 714 narg->nid_arr[narg->nidcnt++] = nid; 715 return 1; 716 } 717 718 /* Set curves based on a colon separate list */ 719 int tls1_set_curves_list(unsigned char **pext, size_t *pextlen, 720 const char *str) 721 { 722 nid_cb_st ncb; 723 ncb.nidcnt = 0; 724 if (!CONF_parse_list(str, ':', 1, nid_cb, &ncb)) 725 return 0; 726 if (pext == NULL) 727 return 1; 728 return tls1_set_curves(pext, pextlen, ncb.nid_arr, ncb.nidcnt); 729 } 730 731 /* For an EC key set TLS id and required compression based on parameters */ 732 static int tls1_set_ec_id(unsigned char *curve_id, unsigned char *comp_id, 733 EC_KEY *ec) 734 { 735 int is_prime, id; 736 const EC_GROUP *grp; 737 const EC_METHOD *meth; 738 if (!ec) 739 return 0; 740 /* Determine if it is a prime field */ 741 grp = EC_KEY_get0_group(ec); 742 if (!grp) 743 return 0; 744 meth = EC_GROUP_method_of(grp); 745 if (!meth) 746 return 0; 747 if (EC_METHOD_get_field_type(meth) == NID_X9_62_prime_field) 748 is_prime = 1; 749 else 750 is_prime = 0; 751 /* Determine curve ID */ 752 id = EC_GROUP_get_curve_name(grp); 753 id = tls1_ec_nid2curve_id(id); 754 /* If we have an ID set it, otherwise set arbitrary explicit curve */ 755 if (id) { 756 curve_id[0] = 0; 757 curve_id[1] = (unsigned char)id; 758 } else { 759 curve_id[0] = 0xff; 760 if (is_prime) 761 curve_id[1] = 0x01; 762 else 763 curve_id[1] = 0x02; 764 } 765 if (comp_id) { 766 if (EC_KEY_get0_public_key(ec) == NULL) 767 return 0; 768 if (EC_KEY_get_conv_form(ec) == POINT_CONVERSION_COMPRESSED) { 769 if (is_prime) 770 *comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime; 771 else 772 *comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2; 773 } else 774 *comp_id = TLSEXT_ECPOINTFORMAT_uncompressed; 775 } 776 return 1; 777 } 778 779 /* Check an EC key is compatible with extensions */ 780 static int tls1_check_ec_key(SSL *s, 781 unsigned char *curve_id, unsigned char *comp_id) 782 { 783 const unsigned char *pformats, *pcurves; 784 size_t num_formats, num_curves, i; 785 int j; 786 /* 787 * If point formats extension present check it, otherwise everything is 788 * supported (see RFC4492). 789 */ 790 if (comp_id && s->session->tlsext_ecpointformatlist) { 791 pformats = s->session->tlsext_ecpointformatlist; 792 num_formats = s->session->tlsext_ecpointformatlist_length; 793 for (i = 0; i < num_formats; i++, pformats++) { 794 if (*comp_id == *pformats) 795 break; 796 } 797 if (i == num_formats) 798 return 0; 799 } 800 if (!curve_id) 801 return 1; 802 /* Check curve is consistent with client and server preferences */ 803 for (j = 0; j <= 1; j++) { 804 if (!tls1_get_curvelist(s, j, &pcurves, &num_curves)) 805 return 0; 806 if (j == 1 && num_curves == 0) { 807 /* 808 * If we've not received any curves then skip this check. 809 * RFC 4492 does not require the supported elliptic curves extension 810 * so if it is not sent we can just choose any curve. 811 * It is invalid to send an empty list in the elliptic curves 812 * extension, so num_curves == 0 always means no extension. 813 */ 814 break; 815 } 816 for (i = 0; i < num_curves; i++, pcurves += 2) { 817 if (pcurves[0] == curve_id[0] && pcurves[1] == curve_id[1]) 818 break; 819 } 820 if (i == num_curves) 821 return 0; 822 /* For clients can only check sent curve list */ 823 if (!s->server) 824 return 1; 825 } 826 return 1; 827 } 828 829 static void tls1_get_formatlist(SSL *s, const unsigned char **pformats, 830 size_t *num_formats) 831 { 832 /* 833 * If we have a custom point format list use it otherwise use default 834 */ 835 if (s->tlsext_ecpointformatlist) { 836 *pformats = s->tlsext_ecpointformatlist; 837 *num_formats = s->tlsext_ecpointformatlist_length; 838 } else { 839 *pformats = ecformats_default; 840 /* For Suite B we don't support char2 fields */ 841 if (tls1_suiteb(s)) 842 *num_formats = sizeof(ecformats_default) - 1; 843 else 844 *num_formats = sizeof(ecformats_default); 845 } 846 } 847 848 /* 849 * Check cert parameters compatible with extensions: currently just checks EC 850 * certificates have compatible curves and compression. 851 */ 852 static int tls1_check_cert_param(SSL *s, X509 *x, int set_ee_md) 853 { 854 unsigned char comp_id, curve_id[2]; 855 EVP_PKEY *pkey; 856 int rv; 857 pkey = X509_get_pubkey(x); 858 if (!pkey) 859 return 0; 860 /* If not EC nothing to do */ 861 if (pkey->type != EVP_PKEY_EC) { 862 EVP_PKEY_free(pkey); 863 return 1; 864 } 865 rv = tls1_set_ec_id(curve_id, &comp_id, pkey->pkey.ec); 866 EVP_PKEY_free(pkey); 867 if (!rv) 868 return 0; 869 /* 870 * Can't check curve_id for client certs as we don't have a supported 871 * curves extension. 872 */ 873 rv = tls1_check_ec_key(s, s->server ? curve_id : NULL, &comp_id); 874 if (!rv) 875 return 0; 876 /* 877 * Special case for suite B. We *MUST* sign using SHA256+P-256 or 878 * SHA384+P-384, adjust digest if necessary. 879 */ 880 if (set_ee_md && tls1_suiteb(s)) { 881 int check_md; 882 size_t i; 883 CERT *c = s->cert; 884 if (curve_id[0]) 885 return 0; 886 /* Check to see we have necessary signing algorithm */ 887 if (curve_id[1] == TLSEXT_curve_P_256) 888 check_md = NID_ecdsa_with_SHA256; 889 else if (curve_id[1] == TLSEXT_curve_P_384) 890 check_md = NID_ecdsa_with_SHA384; 891 else 892 return 0; /* Should never happen */ 893 for (i = 0; i < c->shared_sigalgslen; i++) 894 if (check_md == c->shared_sigalgs[i].signandhash_nid) 895 break; 896 if (i == c->shared_sigalgslen) 897 return 0; 898 if (set_ee_md == 2) { 899 if (check_md == NID_ecdsa_with_SHA256) 900 c->pkeys[SSL_PKEY_ECC].digest = EVP_sha256(); 901 else 902 c->pkeys[SSL_PKEY_ECC].digest = EVP_sha384(); 903 } 904 } 905 return rv; 906 } 907 908 # ifndef OPENSSL_NO_ECDH 909 /* Check EC temporary key is compatible with client extensions */ 910 int tls1_check_ec_tmp_key(SSL *s, unsigned long cid) 911 { 912 unsigned char curve_id[2]; 913 EC_KEY *ec = s->cert->ecdh_tmp; 914 # ifdef OPENSSL_SSL_DEBUG_BROKEN_PROTOCOL 915 /* Allow any curve: not just those peer supports */ 916 if (s->cert->cert_flags & SSL_CERT_FLAG_BROKEN_PROTOCOL) 917 return 1; 918 # endif 919 /* 920 * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other 921 * curves permitted. 922 */ 923 if (tls1_suiteb(s)) { 924 /* Curve to check determined by ciphersuite */ 925 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) 926 curve_id[1] = TLSEXT_curve_P_256; 927 else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) 928 curve_id[1] = TLSEXT_curve_P_384; 929 else 930 return 0; 931 curve_id[0] = 0; 932 /* Check this curve is acceptable */ 933 if (!tls1_check_ec_key(s, curve_id, NULL)) 934 return 0; 935 /* If auto or setting curve from callback assume OK */ 936 if (s->cert->ecdh_tmp_auto || s->cert->ecdh_tmp_cb) 937 return 1; 938 /* Otherwise check curve is acceptable */ 939 else { 940 unsigned char curve_tmp[2]; 941 if (!ec) 942 return 0; 943 if (!tls1_set_ec_id(curve_tmp, NULL, ec)) 944 return 0; 945 if (!curve_tmp[0] || curve_tmp[1] == curve_id[1]) 946 return 1; 947 return 0; 948 } 949 950 } 951 if (s->cert->ecdh_tmp_auto) { 952 /* Need a shared curve */ 953 if (tls1_shared_curve(s, 0)) 954 return 1; 955 else 956 return 0; 957 } 958 if (!ec) { 959 if (s->cert->ecdh_tmp_cb) 960 return 1; 961 else 962 return 0; 963 } 964 if (!tls1_set_ec_id(curve_id, NULL, ec)) 965 return 0; 966 /* Set this to allow use of invalid curves for testing */ 967 # if 0 968 return 1; 969 # else 970 return tls1_check_ec_key(s, curve_id, NULL); 971 # endif 972 } 973 # endif /* OPENSSL_NO_ECDH */ 974 975 #else 976 977 static int tls1_check_cert_param(SSL *s, X509 *x, int set_ee_md) 978 { 979 return 1; 980 } 981 982 #endif /* OPENSSL_NO_EC */ 983 984 #ifndef OPENSSL_NO_TLSEXT 985 986 /* 987 * List of supported signature algorithms and hashes. Should make this 988 * customisable at some point, for now include everything we support. 989 */ 990 991 # ifdef OPENSSL_NO_RSA 992 # define tlsext_sigalg_rsa(md) /* */ 993 # else 994 # define tlsext_sigalg_rsa(md) md, TLSEXT_signature_rsa, 995 # endif 996 997 # ifdef OPENSSL_NO_DSA 998 # define tlsext_sigalg_dsa(md) /* */ 999 # else 1000 # define tlsext_sigalg_dsa(md) md, TLSEXT_signature_dsa, 1001 # endif 1002 1003 # ifdef OPENSSL_NO_ECDSA 1004 # define tlsext_sigalg_ecdsa(md) 1005 /* */ 1006 # else 1007 # define tlsext_sigalg_ecdsa(md) md, TLSEXT_signature_ecdsa, 1008 # endif 1009 1010 # define tlsext_sigalg(md) \ 1011 tlsext_sigalg_rsa(md) \ 1012 tlsext_sigalg_dsa(md) \ 1013 tlsext_sigalg_ecdsa(md) 1014 1015 static unsigned char tls12_sigalgs[] = { 1016 # ifndef OPENSSL_NO_SHA512 1017 tlsext_sigalg(TLSEXT_hash_sha512) 1018 tlsext_sigalg(TLSEXT_hash_sha384) 1019 # endif 1020 # ifndef OPENSSL_NO_SHA256 1021 tlsext_sigalg(TLSEXT_hash_sha256) 1022 tlsext_sigalg(TLSEXT_hash_sha224) 1023 # endif 1024 # ifndef OPENSSL_NO_SHA 1025 tlsext_sigalg(TLSEXT_hash_sha1) 1026 # endif 1027 }; 1028 1029 # ifndef OPENSSL_NO_ECDSA 1030 static unsigned char suiteb_sigalgs[] = { 1031 tlsext_sigalg_ecdsa(TLSEXT_hash_sha256) 1032 tlsext_sigalg_ecdsa(TLSEXT_hash_sha384) 1033 }; 1034 # endif 1035 size_t tls12_get_psigalgs(SSL *s, const unsigned char **psigs) 1036 { 1037 /* 1038 * If Suite B mode use Suite B sigalgs only, ignore any other 1039 * preferences. 1040 */ 1041 # ifndef OPENSSL_NO_EC 1042 switch (tls1_suiteb(s)) { 1043 case SSL_CERT_FLAG_SUITEB_128_LOS: 1044 *psigs = suiteb_sigalgs; 1045 return sizeof(suiteb_sigalgs); 1046 1047 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY: 1048 *psigs = suiteb_sigalgs; 1049 return 2; 1050 1051 case SSL_CERT_FLAG_SUITEB_192_LOS: 1052 *psigs = suiteb_sigalgs + 2; 1053 return 2; 1054 } 1055 # endif 1056 /* If server use client authentication sigalgs if not NULL */ 1057 if (s->server && s->cert->client_sigalgs) { 1058 *psigs = s->cert->client_sigalgs; 1059 return s->cert->client_sigalgslen; 1060 } else if (s->cert->conf_sigalgs) { 1061 *psigs = s->cert->conf_sigalgs; 1062 return s->cert->conf_sigalgslen; 1063 } else { 1064 *psigs = tls12_sigalgs; 1065 return sizeof(tls12_sigalgs); 1066 } 1067 } 1068 1069 /* 1070 * Check signature algorithm is consistent with sent supported signature 1071 * algorithms and if so return relevant digest. 1072 */ 1073 int tls12_check_peer_sigalg(const EVP_MD **pmd, SSL *s, 1074 const unsigned char *sig, EVP_PKEY *pkey) 1075 { 1076 const unsigned char *sent_sigs; 1077 size_t sent_sigslen, i; 1078 int sigalg = tls12_get_sigid(pkey); 1079 /* Should never happen */ 1080 if (sigalg == -1) 1081 return -1; 1082 /* Check key type is consistent with signature */ 1083 if (sigalg != (int)sig[1]) { 1084 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_SIGNATURE_TYPE); 1085 return 0; 1086 } 1087 # ifndef OPENSSL_NO_EC 1088 if (pkey->type == EVP_PKEY_EC) { 1089 unsigned char curve_id[2], comp_id; 1090 /* Check compression and curve matches extensions */ 1091 if (!tls1_set_ec_id(curve_id, &comp_id, pkey->pkey.ec)) 1092 return 0; 1093 if (!s->server && !tls1_check_ec_key(s, curve_id, &comp_id)) { 1094 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_CURVE); 1095 return 0; 1096 } 1097 /* If Suite B only P-384+SHA384 or P-256+SHA-256 allowed */ 1098 if (tls1_suiteb(s)) { 1099 if (curve_id[0]) 1100 return 0; 1101 if (curve_id[1] == TLSEXT_curve_P_256) { 1102 if (sig[0] != TLSEXT_hash_sha256) { 1103 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, 1104 SSL_R_ILLEGAL_SUITEB_DIGEST); 1105 return 0; 1106 } 1107 } else if (curve_id[1] == TLSEXT_curve_P_384) { 1108 if (sig[0] != TLSEXT_hash_sha384) { 1109 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, 1110 SSL_R_ILLEGAL_SUITEB_DIGEST); 1111 return 0; 1112 } 1113 } else 1114 return 0; 1115 } 1116 } else if (tls1_suiteb(s)) 1117 return 0; 1118 # endif 1119 1120 /* Check signature matches a type we sent */ 1121 sent_sigslen = tls12_get_psigalgs(s, &sent_sigs); 1122 for (i = 0; i < sent_sigslen; i += 2, sent_sigs += 2) { 1123 if (sig[0] == sent_sigs[0] && sig[1] == sent_sigs[1]) 1124 break; 1125 } 1126 /* Allow fallback to SHA1 if not strict mode */ 1127 if (i == sent_sigslen 1128 && (sig[0] != TLSEXT_hash_sha1 1129 || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) { 1130 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_SIGNATURE_TYPE); 1131 return 0; 1132 } 1133 *pmd = tls12_get_hash(sig[0]); 1134 if (*pmd == NULL) { 1135 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_UNKNOWN_DIGEST); 1136 return 0; 1137 } 1138 /* 1139 * Store the digest used so applications can retrieve it if they wish. 1140 */ 1141 if (s->session && s->session->sess_cert) 1142 s->session->sess_cert->peer_key->digest = *pmd; 1143 return 1; 1144 } 1145 1146 /* 1147 * Get a mask of disabled algorithms: an algorithm is disabled if it isn't 1148 * supported or doesn't appear in supported signature algorithms. Unlike 1149 * ssl_cipher_get_disabled this applies to a specific session and not global 1150 * settings. 1151 */ 1152 void ssl_set_client_disabled(SSL *s) 1153 { 1154 CERT *c = s->cert; 1155 const unsigned char *sigalgs; 1156 size_t i, sigalgslen; 1157 int have_rsa = 0, have_dsa = 0, have_ecdsa = 0; 1158 c->mask_a = 0; 1159 c->mask_k = 0; 1160 /* Don't allow TLS 1.2 only ciphers if we don't suppport them */ 1161 if (!SSL_CLIENT_USE_TLS1_2_CIPHERS(s)) 1162 c->mask_ssl = SSL_TLSV1_2; 1163 else 1164 c->mask_ssl = 0; 1165 /* 1166 * Now go through all signature algorithms seeing if we support any for 1167 * RSA, DSA, ECDSA. Do this for all versions not just TLS 1.2. 1168 */ 1169 sigalgslen = tls12_get_psigalgs(s, &sigalgs); 1170 for (i = 0; i < sigalgslen; i += 2, sigalgs += 2) { 1171 switch (sigalgs[1]) { 1172 # ifndef OPENSSL_NO_RSA 1173 case TLSEXT_signature_rsa: 1174 have_rsa = 1; 1175 break; 1176 # endif 1177 # ifndef OPENSSL_NO_DSA 1178 case TLSEXT_signature_dsa: 1179 have_dsa = 1; 1180 break; 1181 # endif 1182 # ifndef OPENSSL_NO_ECDSA 1183 case TLSEXT_signature_ecdsa: 1184 have_ecdsa = 1; 1185 break; 1186 # endif 1187 } 1188 } 1189 /* 1190 * Disable auth and static DH if we don't include any appropriate 1191 * signature algorithms. 1192 */ 1193 if (!have_rsa) { 1194 c->mask_a |= SSL_aRSA; 1195 c->mask_k |= SSL_kDHr | SSL_kECDHr; 1196 } 1197 if (!have_dsa) { 1198 c->mask_a |= SSL_aDSS; 1199 c->mask_k |= SSL_kDHd; 1200 } 1201 if (!have_ecdsa) { 1202 c->mask_a |= SSL_aECDSA; 1203 c->mask_k |= SSL_kECDHe; 1204 } 1205 # ifndef OPENSSL_NO_KRB5 1206 if (!kssl_tgt_is_available(s->kssl_ctx)) { 1207 c->mask_a |= SSL_aKRB5; 1208 c->mask_k |= SSL_kKRB5; 1209 } 1210 # endif 1211 # ifndef OPENSSL_NO_PSK 1212 /* with PSK there must be client callback set */ 1213 if (!s->psk_client_callback) { 1214 c->mask_a |= SSL_aPSK; 1215 c->mask_k |= SSL_kPSK; 1216 } 1217 # endif /* OPENSSL_NO_PSK */ 1218 # ifndef OPENSSL_NO_SRP 1219 if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) { 1220 c->mask_a |= SSL_aSRP; 1221 c->mask_k |= SSL_kSRP; 1222 } 1223 # endif 1224 c->valid = 1; 1225 } 1226 1227 unsigned char *ssl_add_clienthello_tlsext(SSL *s, unsigned char *buf, 1228 unsigned char *limit, int *al) 1229 { 1230 int extdatalen = 0; 1231 unsigned char *orig = buf; 1232 unsigned char *ret = buf; 1233 # ifndef OPENSSL_NO_EC 1234 /* See if we support any ECC ciphersuites */ 1235 int using_ecc = 0; 1236 if (s->version >= TLS1_VERSION || SSL_IS_DTLS(s)) { 1237 int i; 1238 unsigned long alg_k, alg_a; 1239 STACK_OF(SSL_CIPHER) *cipher_stack = SSL_get_ciphers(s); 1240 1241 for (i = 0; i < sk_SSL_CIPHER_num(cipher_stack); i++) { 1242 SSL_CIPHER *c = sk_SSL_CIPHER_value(cipher_stack, i); 1243 1244 alg_k = c->algorithm_mkey; 1245 alg_a = c->algorithm_auth; 1246 if ((alg_k & (SSL_kEECDH | SSL_kECDHr | SSL_kECDHe) 1247 || (alg_a & SSL_aECDSA))) { 1248 using_ecc = 1; 1249 break; 1250 } 1251 } 1252 } 1253 # endif 1254 1255 /* don't add extensions for SSLv3 unless doing secure renegotiation */ 1256 if (s->client_version == SSL3_VERSION && !s->s3->send_connection_binding) 1257 return orig; 1258 1259 ret += 2; 1260 1261 if (ret >= limit) 1262 return NULL; /* this really never occurs, but ... */ 1263 1264 if (s->tlsext_hostname != NULL) { 1265 /* Add TLS extension servername to the Client Hello message */ 1266 unsigned long size_str; 1267 long lenmax; 1268 1269 /*- 1270 * check for enough space. 1271 * 4 for the servername type and entension length 1272 * 2 for servernamelist length 1273 * 1 for the hostname type 1274 * 2 for hostname length 1275 * + hostname length 1276 */ 1277 1278 if ((lenmax = limit - ret - 9) < 0 1279 || (size_str = 1280 strlen(s->tlsext_hostname)) > (unsigned long)lenmax) 1281 return NULL; 1282 1283 /* extension type and length */ 1284 s2n(TLSEXT_TYPE_server_name, ret); 1285 s2n(size_str + 5, ret); 1286 1287 /* length of servername list */ 1288 s2n(size_str + 3, ret); 1289 1290 /* hostname type, length and hostname */ 1291 *(ret++) = (unsigned char)TLSEXT_NAMETYPE_host_name; 1292 s2n(size_str, ret); 1293 memcpy(ret, s->tlsext_hostname, size_str); 1294 ret += size_str; 1295 } 1296 1297 /* Add RI if renegotiating */ 1298 if (s->renegotiate) { 1299 int el; 1300 1301 if (!ssl_add_clienthello_renegotiate_ext(s, 0, &el, 0)) { 1302 SSLerr(SSL_F_SSL_ADD_CLIENTHELLO_TLSEXT, ERR_R_INTERNAL_ERROR); 1303 return NULL; 1304 } 1305 1306 if ((limit - ret - 4 - el) < 0) 1307 return NULL; 1308 1309 s2n(TLSEXT_TYPE_renegotiate, ret); 1310 s2n(el, ret); 1311 1312 if (!ssl_add_clienthello_renegotiate_ext(s, ret, &el, el)) { 1313 SSLerr(SSL_F_SSL_ADD_CLIENTHELLO_TLSEXT, ERR_R_INTERNAL_ERROR); 1314 return NULL; 1315 } 1316 1317 ret += el; 1318 } 1319 # ifndef OPENSSL_NO_SRP 1320 /* Add SRP username if there is one */ 1321 if (s->srp_ctx.login != NULL) { /* Add TLS extension SRP username to the 1322 * Client Hello message */ 1323 1324 int login_len = strlen(s->srp_ctx.login); 1325 if (login_len > 255 || login_len == 0) { 1326 SSLerr(SSL_F_SSL_ADD_CLIENTHELLO_TLSEXT, ERR_R_INTERNAL_ERROR); 1327 return NULL; 1328 } 1329 1330 /*- 1331 * check for enough space. 1332 * 4 for the srp type type and entension length 1333 * 1 for the srp user identity 1334 * + srp user identity length 1335 */ 1336 if ((limit - ret - 5 - login_len) < 0) 1337 return NULL; 1338 1339 /* fill in the extension */ 1340 s2n(TLSEXT_TYPE_srp, ret); 1341 s2n(login_len + 1, ret); 1342 (*ret++) = (unsigned char)login_len; 1343 memcpy(ret, s->srp_ctx.login, login_len); 1344 ret += login_len; 1345 } 1346 # endif 1347 1348 # ifndef OPENSSL_NO_EC 1349 if (using_ecc) { 1350 /* 1351 * Add TLS extension ECPointFormats to the ClientHello message 1352 */ 1353 long lenmax; 1354 const unsigned char *pcurves, *pformats; 1355 size_t num_curves, num_formats, curves_list_len; 1356 1357 tls1_get_formatlist(s, &pformats, &num_formats); 1358 1359 if ((lenmax = limit - ret - 5) < 0) 1360 return NULL; 1361 if (num_formats > (size_t)lenmax) 1362 return NULL; 1363 if (num_formats > 255) { 1364 SSLerr(SSL_F_SSL_ADD_CLIENTHELLO_TLSEXT, ERR_R_INTERNAL_ERROR); 1365 return NULL; 1366 } 1367 1368 s2n(TLSEXT_TYPE_ec_point_formats, ret); 1369 /* The point format list has 1-byte length. */ 1370 s2n(num_formats + 1, ret); 1371 *(ret++) = (unsigned char)num_formats; 1372 memcpy(ret, pformats, num_formats); 1373 ret += num_formats; 1374 1375 /* 1376 * Add TLS extension EllipticCurves to the ClientHello message 1377 */ 1378 pcurves = s->tlsext_ellipticcurvelist; 1379 if (!tls1_get_curvelist(s, 0, &pcurves, &num_curves)) 1380 return NULL; 1381 1382 if ((lenmax = limit - ret - 6) < 0) 1383 return NULL; 1384 if (num_curves > (size_t)lenmax / 2) 1385 return NULL; 1386 if (num_curves > 65532 / 2) { 1387 SSLerr(SSL_F_SSL_ADD_CLIENTHELLO_TLSEXT, ERR_R_INTERNAL_ERROR); 1388 return NULL; 1389 } 1390 curves_list_len = 2 * num_curves; 1391 s2n(TLSEXT_TYPE_elliptic_curves, ret); 1392 s2n(curves_list_len + 2, ret); 1393 s2n(curves_list_len, ret); 1394 memcpy(ret, pcurves, curves_list_len); 1395 ret += curves_list_len; 1396 } 1397 # endif /* OPENSSL_NO_EC */ 1398 1399 if (!(SSL_get_options(s) & SSL_OP_NO_TICKET)) { 1400 int ticklen; 1401 if (!s->new_session && s->session && s->session->tlsext_tick) 1402 ticklen = s->session->tlsext_ticklen; 1403 else if (s->session && s->tlsext_session_ticket && 1404 s->tlsext_session_ticket->data) { 1405 ticklen = s->tlsext_session_ticket->length; 1406 s->session->tlsext_tick = OPENSSL_malloc(ticklen); 1407 if (!s->session->tlsext_tick) 1408 return NULL; 1409 memcpy(s->session->tlsext_tick, 1410 s->tlsext_session_ticket->data, ticklen); 1411 s->session->tlsext_ticklen = ticklen; 1412 } else 1413 ticklen = 0; 1414 if (ticklen == 0 && s->tlsext_session_ticket && 1415 s->tlsext_session_ticket->data == NULL) 1416 goto skip_ext; 1417 /* 1418 * Check for enough room 2 for extension type, 2 for len rest for 1419 * ticket 1420 */ 1421 if ((long)(limit - ret - 4 - ticklen) < 0) 1422 return NULL; 1423 s2n(TLSEXT_TYPE_session_ticket, ret); 1424 s2n(ticklen, ret); 1425 if (ticklen) { 1426 memcpy(ret, s->session->tlsext_tick, ticklen); 1427 ret += ticklen; 1428 } 1429 } 1430 skip_ext: 1431 1432 if (SSL_USE_SIGALGS(s)) { 1433 size_t salglen; 1434 const unsigned char *salg; 1435 salglen = tls12_get_psigalgs(s, &salg); 1436 if ((size_t)(limit - ret) < salglen + 6) 1437 return NULL; 1438 s2n(TLSEXT_TYPE_signature_algorithms, ret); 1439 s2n(salglen + 2, ret); 1440 s2n(salglen, ret); 1441 memcpy(ret, salg, salglen); 1442 ret += salglen; 1443 } 1444 # ifdef TLSEXT_TYPE_opaque_prf_input 1445 if (s->s3->client_opaque_prf_input != NULL) { 1446 size_t col = s->s3->client_opaque_prf_input_len; 1447 1448 if ((long)(limit - ret - 6 - col < 0)) 1449 return NULL; 1450 if (col > 0xFFFD) /* can't happen */ 1451 return NULL; 1452 1453 s2n(TLSEXT_TYPE_opaque_prf_input, ret); 1454 s2n(col + 2, ret); 1455 s2n(col, ret); 1456 memcpy(ret, s->s3->client_opaque_prf_input, col); 1457 ret += col; 1458 } 1459 # endif 1460 1461 if (s->tlsext_status_type == TLSEXT_STATUSTYPE_ocsp) { 1462 int i; 1463 long extlen, idlen, itmp; 1464 OCSP_RESPID *id; 1465 1466 idlen = 0; 1467 for (i = 0; i < sk_OCSP_RESPID_num(s->tlsext_ocsp_ids); i++) { 1468 id = sk_OCSP_RESPID_value(s->tlsext_ocsp_ids, i); 1469 itmp = i2d_OCSP_RESPID(id, NULL); 1470 if (itmp <= 0) 1471 return NULL; 1472 idlen += itmp + 2; 1473 } 1474 1475 if (s->tlsext_ocsp_exts) { 1476 extlen = i2d_X509_EXTENSIONS(s->tlsext_ocsp_exts, NULL); 1477 if (extlen < 0) 1478 return NULL; 1479 } else 1480 extlen = 0; 1481 1482 if ((long)(limit - ret - 7 - extlen - idlen) < 0) 1483 return NULL; 1484 s2n(TLSEXT_TYPE_status_request, ret); 1485 if (extlen + idlen > 0xFFF0) 1486 return NULL; 1487 s2n(extlen + idlen + 5, ret); 1488 *(ret++) = TLSEXT_STATUSTYPE_ocsp; 1489 s2n(idlen, ret); 1490 for (i = 0; i < sk_OCSP_RESPID_num(s->tlsext_ocsp_ids); i++) { 1491 /* save position of id len */ 1492 unsigned char *q = ret; 1493 id = sk_OCSP_RESPID_value(s->tlsext_ocsp_ids, i); 1494 /* skip over id len */ 1495 ret += 2; 1496 itmp = i2d_OCSP_RESPID(id, &ret); 1497 /* write id len */ 1498 s2n(itmp, q); 1499 } 1500 s2n(extlen, ret); 1501 if (extlen > 0) 1502 i2d_X509_EXTENSIONS(s->tlsext_ocsp_exts, &ret); 1503 } 1504 # ifndef OPENSSL_NO_HEARTBEATS 1505 /* Add Heartbeat extension */ 1506 if ((limit - ret - 4 - 1) < 0) 1507 return NULL; 1508 s2n(TLSEXT_TYPE_heartbeat, ret); 1509 s2n(1, ret); 1510 /*- 1511 * Set mode: 1512 * 1: peer may send requests 1513 * 2: peer not allowed to send requests 1514 */ 1515 if (s->tlsext_heartbeat & SSL_TLSEXT_HB_DONT_RECV_REQUESTS) 1516 *(ret++) = SSL_TLSEXT_HB_DONT_SEND_REQUESTS; 1517 else 1518 *(ret++) = SSL_TLSEXT_HB_ENABLED; 1519 # endif 1520 1521 # ifndef OPENSSL_NO_NEXTPROTONEG 1522 if (s->ctx->next_proto_select_cb && !s->s3->tmp.finish_md_len) { 1523 /* 1524 * The client advertises an emtpy extension to indicate its support 1525 * for Next Protocol Negotiation 1526 */ 1527 if (limit - ret - 4 < 0) 1528 return NULL; 1529 s2n(TLSEXT_TYPE_next_proto_neg, ret); 1530 s2n(0, ret); 1531 } 1532 # endif 1533 1534 if (s->alpn_client_proto_list && !s->s3->tmp.finish_md_len) { 1535 if ((size_t)(limit - ret) < 6 + s->alpn_client_proto_list_len) 1536 return NULL; 1537 s2n(TLSEXT_TYPE_application_layer_protocol_negotiation, ret); 1538 s2n(2 + s->alpn_client_proto_list_len, ret); 1539 s2n(s->alpn_client_proto_list_len, ret); 1540 memcpy(ret, s->alpn_client_proto_list, s->alpn_client_proto_list_len); 1541 ret += s->alpn_client_proto_list_len; 1542 s->cert->alpn_sent = 1; 1543 } 1544 # ifndef OPENSSL_NO_SRTP 1545 if (SSL_IS_DTLS(s) && SSL_get_srtp_profiles(s)) { 1546 int el; 1547 1548 ssl_add_clienthello_use_srtp_ext(s, 0, &el, 0); 1549 1550 if ((limit - ret - 4 - el) < 0) 1551 return NULL; 1552 1553 s2n(TLSEXT_TYPE_use_srtp, ret); 1554 s2n(el, ret); 1555 1556 if (ssl_add_clienthello_use_srtp_ext(s, ret, &el, el)) { 1557 SSLerr(SSL_F_SSL_ADD_CLIENTHELLO_TLSEXT, ERR_R_INTERNAL_ERROR); 1558 return NULL; 1559 } 1560 ret += el; 1561 } 1562 # endif 1563 custom_ext_init(&s->cert->cli_ext); 1564 /* Add custom TLS Extensions to ClientHello */ 1565 if (!custom_ext_add(s, 0, &ret, limit, al)) 1566 return NULL; 1567 1568 /* 1569 * Add padding to workaround bugs in F5 terminators. See 1570 * https://tools.ietf.org/html/draft-agl-tls-padding-03 NB: because this 1571 * code works out the length of all existing extensions it MUST always 1572 * appear last. 1573 */ 1574 if (s->options & SSL_OP_TLSEXT_PADDING) { 1575 int hlen = ret - (unsigned char *)s->init_buf->data; 1576 /* 1577 * The code in s23_clnt.c to build ClientHello messages includes the 1578 * 5-byte record header in the buffer, while the code in s3_clnt.c 1579 * does not. 1580 */ 1581 if (s->state == SSL23_ST_CW_CLNT_HELLO_A) 1582 hlen -= 5; 1583 if (hlen > 0xff && hlen < 0x200) { 1584 hlen = 0x200 - hlen; 1585 if (hlen >= 4) 1586 hlen -= 4; 1587 else 1588 hlen = 0; 1589 1590 s2n(TLSEXT_TYPE_padding, ret); 1591 s2n(hlen, ret); 1592 memset(ret, 0, hlen); 1593 ret += hlen; 1594 } 1595 } 1596 1597 if ((extdatalen = ret - orig - 2) == 0) 1598 return orig; 1599 1600 s2n(extdatalen, orig); 1601 return ret; 1602 } 1603 1604 unsigned char *ssl_add_serverhello_tlsext(SSL *s, unsigned char *buf, 1605 unsigned char *limit, int *al) 1606 { 1607 int extdatalen = 0; 1608 unsigned char *orig = buf; 1609 unsigned char *ret = buf; 1610 # ifndef OPENSSL_NO_NEXTPROTONEG 1611 int next_proto_neg_seen; 1612 # endif 1613 # ifndef OPENSSL_NO_EC 1614 unsigned long alg_k = s->s3->tmp.new_cipher->algorithm_mkey; 1615 unsigned long alg_a = s->s3->tmp.new_cipher->algorithm_auth; 1616 int using_ecc = (alg_k & (SSL_kEECDH | SSL_kECDHr | SSL_kECDHe)) 1617 || (alg_a & SSL_aECDSA); 1618 using_ecc = using_ecc && (s->session->tlsext_ecpointformatlist != NULL); 1619 # endif 1620 /* 1621 * don't add extensions for SSLv3, unless doing secure renegotiation 1622 */ 1623 if (s->version == SSL3_VERSION && !s->s3->send_connection_binding) 1624 return orig; 1625 1626 ret += 2; 1627 if (ret >= limit) 1628 return NULL; /* this really never occurs, but ... */ 1629 1630 if (!s->hit && s->servername_done == 1 1631 && s->session->tlsext_hostname != NULL) { 1632 if ((long)(limit - ret - 4) < 0) 1633 return NULL; 1634 1635 s2n(TLSEXT_TYPE_server_name, ret); 1636 s2n(0, ret); 1637 } 1638 1639 if (s->s3->send_connection_binding) { 1640 int el; 1641 1642 if (!ssl_add_serverhello_renegotiate_ext(s, 0, &el, 0)) { 1643 SSLerr(SSL_F_SSL_ADD_SERVERHELLO_TLSEXT, ERR_R_INTERNAL_ERROR); 1644 return NULL; 1645 } 1646 1647 if ((limit - ret - 4 - el) < 0) 1648 return NULL; 1649 1650 s2n(TLSEXT_TYPE_renegotiate, ret); 1651 s2n(el, ret); 1652 1653 if (!ssl_add_serverhello_renegotiate_ext(s, ret, &el, el)) { 1654 SSLerr(SSL_F_SSL_ADD_SERVERHELLO_TLSEXT, ERR_R_INTERNAL_ERROR); 1655 return NULL; 1656 } 1657 1658 ret += el; 1659 } 1660 # ifndef OPENSSL_NO_EC 1661 if (using_ecc) { 1662 const unsigned char *plist; 1663 size_t plistlen; 1664 /* 1665 * Add TLS extension ECPointFormats to the ServerHello message 1666 */ 1667 long lenmax; 1668 1669 tls1_get_formatlist(s, &plist, &plistlen); 1670 1671 if ((lenmax = limit - ret - 5) < 0) 1672 return NULL; 1673 if (plistlen > (size_t)lenmax) 1674 return NULL; 1675 if (plistlen > 255) { 1676 SSLerr(SSL_F_SSL_ADD_SERVERHELLO_TLSEXT, ERR_R_INTERNAL_ERROR); 1677 return NULL; 1678 } 1679 1680 s2n(TLSEXT_TYPE_ec_point_formats, ret); 1681 s2n(plistlen + 1, ret); 1682 *(ret++) = (unsigned char)plistlen; 1683 memcpy(ret, plist, plistlen); 1684 ret += plistlen; 1685 1686 } 1687 /* 1688 * Currently the server should not respond with a SupportedCurves 1689 * extension 1690 */ 1691 # endif /* OPENSSL_NO_EC */ 1692 1693 if (s->tlsext_ticket_expected && !(SSL_get_options(s) & SSL_OP_NO_TICKET)) { 1694 if ((long)(limit - ret - 4) < 0) 1695 return NULL; 1696 s2n(TLSEXT_TYPE_session_ticket, ret); 1697 s2n(0, ret); 1698 } 1699 1700 if (s->tlsext_status_expected) { 1701 if ((long)(limit - ret - 4) < 0) 1702 return NULL; 1703 s2n(TLSEXT_TYPE_status_request, ret); 1704 s2n(0, ret); 1705 } 1706 # ifdef TLSEXT_TYPE_opaque_prf_input 1707 if (s->s3->server_opaque_prf_input != NULL) { 1708 size_t sol = s->s3->server_opaque_prf_input_len; 1709 1710 if ((long)(limit - ret - 6 - sol) < 0) 1711 return NULL; 1712 if (sol > 0xFFFD) /* can't happen */ 1713 return NULL; 1714 1715 s2n(TLSEXT_TYPE_opaque_prf_input, ret); 1716 s2n(sol + 2, ret); 1717 s2n(sol, ret); 1718 memcpy(ret, s->s3->server_opaque_prf_input, sol); 1719 ret += sol; 1720 } 1721 # endif 1722 1723 # ifndef OPENSSL_NO_SRTP 1724 if (SSL_IS_DTLS(s) && s->srtp_profile) { 1725 int el; 1726 1727 ssl_add_serverhello_use_srtp_ext(s, 0, &el, 0); 1728 1729 if ((limit - ret - 4 - el) < 0) 1730 return NULL; 1731 1732 s2n(TLSEXT_TYPE_use_srtp, ret); 1733 s2n(el, ret); 1734 1735 if (ssl_add_serverhello_use_srtp_ext(s, ret, &el, el)) { 1736 SSLerr(SSL_F_SSL_ADD_SERVERHELLO_TLSEXT, ERR_R_INTERNAL_ERROR); 1737 return NULL; 1738 } 1739 ret += el; 1740 } 1741 # endif 1742 1743 if (((s->s3->tmp.new_cipher->id & 0xFFFF) == 0x80 1744 || (s->s3->tmp.new_cipher->id & 0xFFFF) == 0x81) 1745 && (SSL_get_options(s) & SSL_OP_CRYPTOPRO_TLSEXT_BUG)) { 1746 const unsigned char cryptopro_ext[36] = { 1747 0xfd, 0xe8, /* 65000 */ 1748 0x00, 0x20, /* 32 bytes length */ 1749 0x30, 0x1e, 0x30, 0x08, 0x06, 0x06, 0x2a, 0x85, 1750 0x03, 0x02, 0x02, 0x09, 0x30, 0x08, 0x06, 0x06, 1751 0x2a, 0x85, 0x03, 0x02, 0x02, 0x16, 0x30, 0x08, 1752 0x06, 0x06, 0x2a, 0x85, 0x03, 0x02, 0x02, 0x17 1753 }; 1754 if (limit - ret < 36) 1755 return NULL; 1756 memcpy(ret, cryptopro_ext, 36); 1757 ret += 36; 1758 1759 } 1760 # ifndef OPENSSL_NO_HEARTBEATS 1761 /* Add Heartbeat extension if we've received one */ 1762 if (s->tlsext_heartbeat & SSL_TLSEXT_HB_ENABLED) { 1763 if ((limit - ret - 4 - 1) < 0) 1764 return NULL; 1765 s2n(TLSEXT_TYPE_heartbeat, ret); 1766 s2n(1, ret); 1767 /*- 1768 * Set mode: 1769 * 1: peer may send requests 1770 * 2: peer not allowed to send requests 1771 */ 1772 if (s->tlsext_heartbeat & SSL_TLSEXT_HB_DONT_RECV_REQUESTS) 1773 *(ret++) = SSL_TLSEXT_HB_DONT_SEND_REQUESTS; 1774 else 1775 *(ret++) = SSL_TLSEXT_HB_ENABLED; 1776 1777 } 1778 # endif 1779 1780 # ifndef OPENSSL_NO_NEXTPROTONEG 1781 next_proto_neg_seen = s->s3->next_proto_neg_seen; 1782 s->s3->next_proto_neg_seen = 0; 1783 if (next_proto_neg_seen && s->ctx->next_protos_advertised_cb) { 1784 const unsigned char *npa; 1785 unsigned int npalen; 1786 int r; 1787 1788 r = s->ctx->next_protos_advertised_cb(s, &npa, &npalen, 1789 s-> 1790 ctx->next_protos_advertised_cb_arg); 1791 if (r == SSL_TLSEXT_ERR_OK) { 1792 if ((long)(limit - ret - 4 - npalen) < 0) 1793 return NULL; 1794 s2n(TLSEXT_TYPE_next_proto_neg, ret); 1795 s2n(npalen, ret); 1796 memcpy(ret, npa, npalen); 1797 ret += npalen; 1798 s->s3->next_proto_neg_seen = 1; 1799 } 1800 } 1801 # endif 1802 if (!custom_ext_add(s, 1, &ret, limit, al)) 1803 return NULL; 1804 1805 if (s->s3->alpn_selected) { 1806 const unsigned char *selected = s->s3->alpn_selected; 1807 unsigned len = s->s3->alpn_selected_len; 1808 1809 if ((long)(limit - ret - 4 - 2 - 1 - len) < 0) 1810 return NULL; 1811 s2n(TLSEXT_TYPE_application_layer_protocol_negotiation, ret); 1812 s2n(3 + len, ret); 1813 s2n(1 + len, ret); 1814 *ret++ = len; 1815 memcpy(ret, selected, len); 1816 ret += len; 1817 } 1818 1819 if ((extdatalen = ret - orig - 2) == 0) 1820 return orig; 1821 1822 s2n(extdatalen, orig); 1823 return ret; 1824 } 1825 1826 # ifndef OPENSSL_NO_EC 1827 /*- 1828 * ssl_check_for_safari attempts to fingerprint Safari using OS X 1829 * SecureTransport using the TLS extension block in |d|, of length |n|. 1830 * Safari, since 10.6, sends exactly these extensions, in this order: 1831 * SNI, 1832 * elliptic_curves 1833 * ec_point_formats 1834 * 1835 * We wish to fingerprint Safari because they broke ECDHE-ECDSA support in 10.8, 1836 * but they advertise support. So enabling ECDHE-ECDSA ciphers breaks them. 1837 * Sadly we cannot differentiate 10.6, 10.7 and 10.8.4 (which work), from 1838 * 10.8..10.8.3 (which don't work). 1839 */ 1840 static void ssl_check_for_safari(SSL *s, const unsigned char *data, 1841 const unsigned char *limit) 1842 { 1843 unsigned short type, size; 1844 static const unsigned char kSafariExtensionsBlock[] = { 1845 0x00, 0x0a, /* elliptic_curves extension */ 1846 0x00, 0x08, /* 8 bytes */ 1847 0x00, 0x06, /* 6 bytes of curve ids */ 1848 0x00, 0x17, /* P-256 */ 1849 0x00, 0x18, /* P-384 */ 1850 0x00, 0x19, /* P-521 */ 1851 1852 0x00, 0x0b, /* ec_point_formats */ 1853 0x00, 0x02, /* 2 bytes */ 1854 0x01, /* 1 point format */ 1855 0x00, /* uncompressed */ 1856 }; 1857 1858 /* The following is only present in TLS 1.2 */ 1859 static const unsigned char kSafariTLS12ExtensionsBlock[] = { 1860 0x00, 0x0d, /* signature_algorithms */ 1861 0x00, 0x0c, /* 12 bytes */ 1862 0x00, 0x0a, /* 10 bytes */ 1863 0x05, 0x01, /* SHA-384/RSA */ 1864 0x04, 0x01, /* SHA-256/RSA */ 1865 0x02, 0x01, /* SHA-1/RSA */ 1866 0x04, 0x03, /* SHA-256/ECDSA */ 1867 0x02, 0x03, /* SHA-1/ECDSA */ 1868 }; 1869 1870 if (data >= (limit - 2)) 1871 return; 1872 data += 2; 1873 1874 if (data > (limit - 4)) 1875 return; 1876 n2s(data, type); 1877 n2s(data, size); 1878 1879 if (type != TLSEXT_TYPE_server_name) 1880 return; 1881 1882 if (data + size > limit) 1883 return; 1884 data += size; 1885 1886 if (TLS1_get_client_version(s) >= TLS1_2_VERSION) { 1887 const size_t len1 = sizeof(kSafariExtensionsBlock); 1888 const size_t len2 = sizeof(kSafariTLS12ExtensionsBlock); 1889 1890 if (data + len1 + len2 != limit) 1891 return; 1892 if (memcmp(data, kSafariExtensionsBlock, len1) != 0) 1893 return; 1894 if (memcmp(data + len1, kSafariTLS12ExtensionsBlock, len2) != 0) 1895 return; 1896 } else { 1897 const size_t len = sizeof(kSafariExtensionsBlock); 1898 1899 if (data + len != limit) 1900 return; 1901 if (memcmp(data, kSafariExtensionsBlock, len) != 0) 1902 return; 1903 } 1904 1905 s->s3->is_probably_safari = 1; 1906 } 1907 # endif /* !OPENSSL_NO_EC */ 1908 1909 /* 1910 * tls1_alpn_handle_client_hello is called to save the ALPN extension in a 1911 * ClientHello. data: the contents of the extension, not including the type 1912 * and length. data_len: the number of bytes in |data| al: a pointer to the 1913 * alert value to send in the event of a non-zero return. returns: 0 on 1914 * success. 1915 */ 1916 static int tls1_alpn_handle_client_hello(SSL *s, const unsigned char *data, 1917 unsigned data_len, int *al) 1918 { 1919 unsigned i; 1920 unsigned proto_len; 1921 1922 if (data_len < 2) 1923 goto parse_error; 1924 1925 /* 1926 * data should contain a uint16 length followed by a series of 8-bit, 1927 * length-prefixed strings. 1928 */ 1929 i = ((unsigned)data[0]) << 8 | ((unsigned)data[1]); 1930 data_len -= 2; 1931 data += 2; 1932 if (data_len != i) 1933 goto parse_error; 1934 1935 if (data_len < 2) 1936 goto parse_error; 1937 1938 for (i = 0; i < data_len;) { 1939 proto_len = data[i]; 1940 i++; 1941 1942 if (proto_len == 0) 1943 goto parse_error; 1944 1945 if (i + proto_len < i || i + proto_len > data_len) 1946 goto parse_error; 1947 1948 i += proto_len; 1949 } 1950 1951 if (s->cert->alpn_proposed != NULL) 1952 OPENSSL_free(s->cert->alpn_proposed); 1953 s->cert->alpn_proposed = OPENSSL_malloc(data_len); 1954 if (s->cert->alpn_proposed == NULL) { 1955 *al = SSL_AD_INTERNAL_ERROR; 1956 return -1; 1957 } 1958 memcpy(s->cert->alpn_proposed, data, data_len); 1959 s->cert->alpn_proposed_len = data_len; 1960 return 0; 1961 1962 parse_error: 1963 *al = SSL_AD_DECODE_ERROR; 1964 return -1; 1965 } 1966 1967 /* 1968 * Process the ALPN extension in a ClientHello. 1969 * ret: a pointer to the TLSEXT return value: SSL_TLSEXT_ERR_* 1970 * al: a pointer to the alert value to send in the event of a failure. 1971 * returns 1 on success, 0 on failure: al/ret set only on failure 1972 */ 1973 static int tls1_alpn_handle_client_hello_late(SSL *s, int *ret, int *al) 1974 { 1975 const unsigned char *selected = NULL; 1976 unsigned char selected_len = 0; 1977 1978 if (s->ctx->alpn_select_cb != NULL && s->cert->alpn_proposed != NULL) { 1979 int r = s->ctx->alpn_select_cb(s, &selected, &selected_len, 1980 s->cert->alpn_proposed, 1981 s->cert->alpn_proposed_len, 1982 s->ctx->alpn_select_cb_arg); 1983 1984 if (r == SSL_TLSEXT_ERR_OK) { 1985 OPENSSL_free(s->s3->alpn_selected); 1986 s->s3->alpn_selected = OPENSSL_malloc(selected_len); 1987 if (s->s3->alpn_selected == NULL) { 1988 *al = SSL_AD_INTERNAL_ERROR; 1989 *ret = SSL_TLSEXT_ERR_ALERT_FATAL; 1990 return 0; 1991 } 1992 memcpy(s->s3->alpn_selected, selected, selected_len); 1993 s->s3->alpn_selected_len = selected_len; 1994 # ifndef OPENSSL_NO_NEXTPROTONEG 1995 /* ALPN takes precedence over NPN. */ 1996 s->s3->next_proto_neg_seen = 0; 1997 # endif 1998 } 1999 } 2000 2001 return 1; 2002 } 2003 2004 static int ssl_scan_clienthello_tlsext(SSL *s, unsigned char **p, 2005 unsigned char *limit, int *al) 2006 { 2007 unsigned short type; 2008 unsigned short size; 2009 unsigned short len; 2010 unsigned char *data = *p; 2011 int renegotiate_seen = 0; 2012 2013 s->servername_done = 0; 2014 s->tlsext_status_type = -1; 2015 # ifndef OPENSSL_NO_NEXTPROTONEG 2016 s->s3->next_proto_neg_seen = 0; 2017 # endif 2018 2019 if (s->s3->alpn_selected) { 2020 OPENSSL_free(s->s3->alpn_selected); 2021 s->s3->alpn_selected = NULL; 2022 } 2023 s->s3->alpn_selected_len = 0; 2024 if (s->cert->alpn_proposed) { 2025 OPENSSL_free(s->cert->alpn_proposed); 2026 s->cert->alpn_proposed = NULL; 2027 } 2028 s->cert->alpn_proposed_len = 0; 2029 # ifndef OPENSSL_NO_HEARTBEATS 2030 s->tlsext_heartbeat &= ~(SSL_TLSEXT_HB_ENABLED | 2031 SSL_TLSEXT_HB_DONT_SEND_REQUESTS); 2032 # endif 2033 2034 # ifndef OPENSSL_NO_EC 2035 if (s->options & SSL_OP_SAFARI_ECDHE_ECDSA_BUG) 2036 ssl_check_for_safari(s, data, limit); 2037 # endif /* !OPENSSL_NO_EC */ 2038 2039 /* Clear any signature algorithms extension received */ 2040 if (s->cert->peer_sigalgs) { 2041 OPENSSL_free(s->cert->peer_sigalgs); 2042 s->cert->peer_sigalgs = NULL; 2043 } 2044 # ifndef OPENSSL_NO_SRP 2045 if (s->srp_ctx.login != NULL) { 2046 OPENSSL_free(s->srp_ctx.login); 2047 s->srp_ctx.login = NULL; 2048 } 2049 # endif 2050 2051 s->srtp_profile = NULL; 2052 2053 if (data == limit) 2054 goto ri_check; 2055 2056 if (data > (limit - 2)) 2057 goto err; 2058 2059 n2s(data, len); 2060 2061 if (data + len != limit) 2062 goto err; 2063 2064 while (data <= (limit - 4)) { 2065 n2s(data, type); 2066 n2s(data, size); 2067 2068 if (data + size > (limit)) 2069 goto err; 2070 # if 0 2071 fprintf(stderr, "Received extension type %d size %d\n", type, size); 2072 # endif 2073 if (s->tlsext_debug_cb) 2074 s->tlsext_debug_cb(s, 0, type, data, size, s->tlsext_debug_arg); 2075 /*- 2076 * The servername extension is treated as follows: 2077 * 2078 * - Only the hostname type is supported with a maximum length of 255. 2079 * - The servername is rejected if too long or if it contains zeros, 2080 * in which case an fatal alert is generated. 2081 * - The servername field is maintained together with the session cache. 2082 * - When a session is resumed, the servername call back invoked in order 2083 * to allow the application to position itself to the right context. 2084 * - The servername is acknowledged if it is new for a session or when 2085 * it is identical to a previously used for the same session. 2086 * Applications can control the behaviour. They can at any time 2087 * set a 'desirable' servername for a new SSL object. This can be the 2088 * case for example with HTTPS when a Host: header field is received and 2089 * a renegotiation is requested. In this case, a possible servername 2090 * presented in the new client hello is only acknowledged if it matches 2091 * the value of the Host: field. 2092 * - Applications must use SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION 2093 * if they provide for changing an explicit servername context for the 2094 * session, i.e. when the session has been established with a servername 2095 * extension. 2096 * - On session reconnect, the servername extension may be absent. 2097 * 2098 */ 2099 2100 if (type == TLSEXT_TYPE_server_name) { 2101 unsigned char *sdata; 2102 int servname_type; 2103 int dsize; 2104 2105 if (size < 2) 2106 goto err; 2107 n2s(data, dsize); 2108 size -= 2; 2109 if (dsize > size) 2110 goto err; 2111 2112 sdata = data; 2113 while (dsize > 3) { 2114 servname_type = *(sdata++); 2115 n2s(sdata, len); 2116 dsize -= 3; 2117 2118 if (len > dsize) 2119 goto err; 2120 2121 if (s->servername_done == 0) 2122 switch (servname_type) { 2123 case TLSEXT_NAMETYPE_host_name: 2124 if (!s->hit) { 2125 if (s->session->tlsext_hostname) 2126 goto err; 2127 2128 if (len > TLSEXT_MAXLEN_host_name) { 2129 *al = TLS1_AD_UNRECOGNIZED_NAME; 2130 return 0; 2131 } 2132 if ((s->session->tlsext_hostname = 2133 OPENSSL_malloc(len + 1)) == NULL) { 2134 *al = TLS1_AD_INTERNAL_ERROR; 2135 return 0; 2136 } 2137 memcpy(s->session->tlsext_hostname, sdata, len); 2138 s->session->tlsext_hostname[len] = '\0'; 2139 if (strlen(s->session->tlsext_hostname) != len) { 2140 OPENSSL_free(s->session->tlsext_hostname); 2141 s->session->tlsext_hostname = NULL; 2142 *al = TLS1_AD_UNRECOGNIZED_NAME; 2143 return 0; 2144 } 2145 s->servername_done = 1; 2146 2147 } else 2148 s->servername_done = s->session->tlsext_hostname 2149 && strlen(s->session->tlsext_hostname) == len 2150 && strncmp(s->session->tlsext_hostname, 2151 (char *)sdata, len) == 0; 2152 2153 break; 2154 2155 default: 2156 break; 2157 } 2158 2159 dsize -= len; 2160 } 2161 if (dsize != 0) 2162 goto err; 2163 2164 } 2165 # ifndef OPENSSL_NO_SRP 2166 else if (type == TLSEXT_TYPE_srp) { 2167 if (size == 0 || ((len = data[0])) != (size - 1)) 2168 goto err; 2169 if (s->srp_ctx.login != NULL) 2170 goto err; 2171 if ((s->srp_ctx.login = OPENSSL_malloc(len + 1)) == NULL) 2172 return -1; 2173 memcpy(s->srp_ctx.login, &data[1], len); 2174 s->srp_ctx.login[len] = '\0'; 2175 2176 if (strlen(s->srp_ctx.login) != len) 2177 goto err; 2178 } 2179 # endif 2180 2181 # ifndef OPENSSL_NO_EC 2182 else if (type == TLSEXT_TYPE_ec_point_formats) { 2183 unsigned char *sdata = data; 2184 int ecpointformatlist_length = *(sdata++); 2185 2186 if (ecpointformatlist_length != size - 1 || 2187 ecpointformatlist_length < 1) 2188 goto err; 2189 if (!s->hit) { 2190 if (s->session->tlsext_ecpointformatlist) { 2191 OPENSSL_free(s->session->tlsext_ecpointformatlist); 2192 s->session->tlsext_ecpointformatlist = NULL; 2193 } 2194 s->session->tlsext_ecpointformatlist_length = 0; 2195 if ((s->session->tlsext_ecpointformatlist = 2196 OPENSSL_malloc(ecpointformatlist_length)) == NULL) { 2197 *al = TLS1_AD_INTERNAL_ERROR; 2198 return 0; 2199 } 2200 s->session->tlsext_ecpointformatlist_length = 2201 ecpointformatlist_length; 2202 memcpy(s->session->tlsext_ecpointformatlist, sdata, 2203 ecpointformatlist_length); 2204 } 2205 # if 0 2206 fprintf(stderr, 2207 "ssl_parse_clienthello_tlsext s->session->tlsext_ecpointformatlist (length=%i) ", 2208 s->session->tlsext_ecpointformatlist_length); 2209 sdata = s->session->tlsext_ecpointformatlist; 2210 for (i = 0; i < s->session->tlsext_ecpointformatlist_length; i++) 2211 fprintf(stderr, "%i ", *(sdata++)); 2212 fprintf(stderr, "\n"); 2213 # endif 2214 } else if (type == TLSEXT_TYPE_elliptic_curves) { 2215 unsigned char *sdata = data; 2216 int ellipticcurvelist_length = (*(sdata++) << 8); 2217 ellipticcurvelist_length += (*(sdata++)); 2218 2219 if (ellipticcurvelist_length != size - 2 || 2220 ellipticcurvelist_length < 1 || 2221 /* Each NamedCurve is 2 bytes. */ 2222 ellipticcurvelist_length & 1) 2223 goto err; 2224 2225 if (!s->hit) { 2226 if (s->session->tlsext_ellipticcurvelist) 2227 goto err; 2228 2229 s->session->tlsext_ellipticcurvelist_length = 0; 2230 if ((s->session->tlsext_ellipticcurvelist = 2231 OPENSSL_malloc(ellipticcurvelist_length)) == NULL) { 2232 *al = TLS1_AD_INTERNAL_ERROR; 2233 return 0; 2234 } 2235 s->session->tlsext_ellipticcurvelist_length = 2236 ellipticcurvelist_length; 2237 memcpy(s->session->tlsext_ellipticcurvelist, sdata, 2238 ellipticcurvelist_length); 2239 } 2240 # if 0 2241 fprintf(stderr, 2242 "ssl_parse_clienthello_tlsext s->session->tlsext_ellipticcurvelist (length=%i) ", 2243 s->session->tlsext_ellipticcurvelist_length); 2244 sdata = s->session->tlsext_ellipticcurvelist; 2245 for (i = 0; i < s->session->tlsext_ellipticcurvelist_length; i++) 2246 fprintf(stderr, "%i ", *(sdata++)); 2247 fprintf(stderr, "\n"); 2248 # endif 2249 } 2250 # endif /* OPENSSL_NO_EC */ 2251 # ifdef TLSEXT_TYPE_opaque_prf_input 2252 else if (type == TLSEXT_TYPE_opaque_prf_input) { 2253 unsigned char *sdata = data; 2254 2255 if (size < 2) { 2256 *al = SSL_AD_DECODE_ERROR; 2257 return 0; 2258 } 2259 n2s(sdata, s->s3->client_opaque_prf_input_len); 2260 if (s->s3->client_opaque_prf_input_len != size - 2) { 2261 *al = SSL_AD_DECODE_ERROR; 2262 return 0; 2263 } 2264 2265 if (s->s3->client_opaque_prf_input != NULL) { 2266 /* shouldn't really happen */ 2267 OPENSSL_free(s->s3->client_opaque_prf_input); 2268 } 2269 2270 /* dummy byte just to get non-NULL */ 2271 if (s->s3->client_opaque_prf_input_len == 0) 2272 s->s3->client_opaque_prf_input = OPENSSL_malloc(1); 2273 else 2274 s->s3->client_opaque_prf_input = 2275 BUF_memdup(sdata, s->s3->client_opaque_prf_input_len); 2276 if (s->s3->client_opaque_prf_input == NULL) { 2277 *al = TLS1_AD_INTERNAL_ERROR; 2278 return 0; 2279 } 2280 } 2281 # endif 2282 else if (type == TLSEXT_TYPE_session_ticket) { 2283 if (s->tls_session_ticket_ext_cb && 2284 !s->tls_session_ticket_ext_cb(s, data, size, 2285 s->tls_session_ticket_ext_cb_arg)) 2286 { 2287 *al = TLS1_AD_INTERNAL_ERROR; 2288 return 0; 2289 } 2290 } else if (type == TLSEXT_TYPE_renegotiate) { 2291 if (!ssl_parse_clienthello_renegotiate_ext(s, data, size, al)) 2292 return 0; 2293 renegotiate_seen = 1; 2294 } else if (type == TLSEXT_TYPE_signature_algorithms) { 2295 int dsize; 2296 if (s->cert->peer_sigalgs || size < 2) 2297 goto err; 2298 n2s(data, dsize); 2299 size -= 2; 2300 if (dsize != size || dsize & 1 || !dsize) 2301 goto err; 2302 if (!tls1_save_sigalgs(s, data, dsize)) 2303 goto err; 2304 } else if (type == TLSEXT_TYPE_status_request) { 2305 2306 if (size < 5) 2307 goto err; 2308 2309 s->tlsext_status_type = *data++; 2310 size--; 2311 if (s->tlsext_status_type == TLSEXT_STATUSTYPE_ocsp) { 2312 const unsigned char *sdata; 2313 int dsize; 2314 /* Read in responder_id_list */ 2315 n2s(data, dsize); 2316 size -= 2; 2317 if (dsize > size) 2318 goto err; 2319 while (dsize > 0) { 2320 OCSP_RESPID *id; 2321 int idsize; 2322 if (dsize < 4) 2323 goto err; 2324 n2s(data, idsize); 2325 dsize -= 2 + idsize; 2326 size -= 2 + idsize; 2327 if (dsize < 0) 2328 goto err; 2329 sdata = data; 2330 data += idsize; 2331 id = d2i_OCSP_RESPID(NULL, &sdata, idsize); 2332 if (!id) 2333 goto err; 2334 if (data != sdata) { 2335 OCSP_RESPID_free(id); 2336 goto err; 2337 } 2338 if (!s->tlsext_ocsp_ids 2339 && !(s->tlsext_ocsp_ids = 2340 sk_OCSP_RESPID_new_null())) { 2341 OCSP_RESPID_free(id); 2342 *al = SSL_AD_INTERNAL_ERROR; 2343 return 0; 2344 } 2345 if (!sk_OCSP_RESPID_push(s->tlsext_ocsp_ids, id)) { 2346 OCSP_RESPID_free(id); 2347 *al = SSL_AD_INTERNAL_ERROR; 2348 return 0; 2349 } 2350 } 2351 2352 /* Read in request_extensions */ 2353 if (size < 2) 2354 goto err; 2355 n2s(data, dsize); 2356 size -= 2; 2357 if (dsize != size) 2358 goto err; 2359 sdata = data; 2360 if (dsize > 0) { 2361 if (s->tlsext_ocsp_exts) { 2362 sk_X509_EXTENSION_pop_free(s->tlsext_ocsp_exts, 2363 X509_EXTENSION_free); 2364 } 2365 2366 s->tlsext_ocsp_exts = 2367 d2i_X509_EXTENSIONS(NULL, &sdata, dsize); 2368 if (!s->tlsext_ocsp_exts || (data + dsize != sdata)) 2369 goto err; 2370 } 2371 } 2372 /* 2373 * We don't know what to do with any other type * so ignore it. 2374 */ 2375 else 2376 s->tlsext_status_type = -1; 2377 } 2378 # ifndef OPENSSL_NO_HEARTBEATS 2379 else if (type == TLSEXT_TYPE_heartbeat) { 2380 switch (data[0]) { 2381 case 0x01: /* Client allows us to send HB requests */ 2382 s->tlsext_heartbeat |= SSL_TLSEXT_HB_ENABLED; 2383 break; 2384 case 0x02: /* Client doesn't accept HB requests */ 2385 s->tlsext_heartbeat |= SSL_TLSEXT_HB_ENABLED; 2386 s->tlsext_heartbeat |= SSL_TLSEXT_HB_DONT_SEND_REQUESTS; 2387 break; 2388 default: 2389 *al = SSL_AD_ILLEGAL_PARAMETER; 2390 return 0; 2391 } 2392 } 2393 # endif 2394 # ifndef OPENSSL_NO_NEXTPROTONEG 2395 else if (type == TLSEXT_TYPE_next_proto_neg && 2396 s->s3->tmp.finish_md_len == 0) { 2397 /*- 2398 * We shouldn't accept this extension on a 2399 * renegotiation. 2400 * 2401 * s->new_session will be set on renegotiation, but we 2402 * probably shouldn't rely that it couldn't be set on 2403 * the initial renegotation too in certain cases (when 2404 * there's some other reason to disallow resuming an 2405 * earlier session -- the current code won't be doing 2406 * anything like that, but this might change). 2407 * 2408 * A valid sign that there's been a previous handshake 2409 * in this connection is if s->s3->tmp.finish_md_len > 2410 * 0. (We are talking about a check that will happen 2411 * in the Hello protocol round, well before a new 2412 * Finished message could have been computed.) 2413 */ 2414 s->s3->next_proto_neg_seen = 1; 2415 } 2416 # endif 2417 2418 else if (type == TLSEXT_TYPE_application_layer_protocol_negotiation && 2419 s->s3->tmp.finish_md_len == 0) { 2420 if (tls1_alpn_handle_client_hello(s, data, size, al) != 0) 2421 return 0; 2422 } 2423 2424 /* session ticket processed earlier */ 2425 # ifndef OPENSSL_NO_SRTP 2426 else if (SSL_IS_DTLS(s) && SSL_get_srtp_profiles(s) 2427 && type == TLSEXT_TYPE_use_srtp) { 2428 if (ssl_parse_clienthello_use_srtp_ext(s, data, size, al)) 2429 return 0; 2430 } 2431 # endif 2432 2433 data += size; 2434 } 2435 2436 /* Spurious data on the end */ 2437 if (data != limit) 2438 goto err; 2439 2440 *p = data; 2441 2442 ri_check: 2443 2444 /* Need RI if renegotiating */ 2445 2446 if (!renegotiate_seen && s->renegotiate && 2447 !(s->options & SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION)) { 2448 *al = SSL_AD_HANDSHAKE_FAILURE; 2449 SSLerr(SSL_F_SSL_SCAN_CLIENTHELLO_TLSEXT, 2450 SSL_R_UNSAFE_LEGACY_RENEGOTIATION_DISABLED); 2451 return 0; 2452 } 2453 2454 return 1; 2455 err: 2456 *al = SSL_AD_DECODE_ERROR; 2457 return 0; 2458 } 2459 2460 /* 2461 * Parse any custom extensions found. "data" is the start of the extension data 2462 * and "limit" is the end of the record. TODO: add strict syntax checking. 2463 */ 2464 2465 static int ssl_scan_clienthello_custom_tlsext(SSL *s, 2466 const unsigned char *data, 2467 const unsigned char *limit, 2468 int *al) 2469 { 2470 unsigned short type, size, len; 2471 /* If resumed session or no custom extensions nothing to do */ 2472 if (s->hit || s->cert->srv_ext.meths_count == 0) 2473 return 1; 2474 2475 if (data >= limit - 2) 2476 return 1; 2477 n2s(data, len); 2478 2479 if (data > limit - len) 2480 return 1; 2481 2482 while (data <= limit - 4) { 2483 n2s(data, type); 2484 n2s(data, size); 2485 2486 if (data + size > limit) 2487 return 1; 2488 if (custom_ext_parse(s, 1 /* server */ , type, data, size, al) <= 0) 2489 return 0; 2490 2491 data += size; 2492 } 2493 2494 return 1; 2495 } 2496 2497 int ssl_parse_clienthello_tlsext(SSL *s, unsigned char **p, 2498 unsigned char *limit) 2499 { 2500 int al = -1; 2501 unsigned char *ptmp = *p; 2502 /* 2503 * Internally supported extensions are parsed first so SNI can be handled 2504 * before custom extensions. An application processing SNI will typically 2505 * switch the parent context using SSL_set_SSL_CTX and custom extensions 2506 * need to be handled by the new SSL_CTX structure. 2507 */ 2508 if (ssl_scan_clienthello_tlsext(s, p, limit, &al) <= 0) { 2509 ssl3_send_alert(s, SSL3_AL_FATAL, al); 2510 return 0; 2511 } 2512 2513 if (ssl_check_clienthello_tlsext_early(s) <= 0) { 2514 SSLerr(SSL_F_SSL_PARSE_CLIENTHELLO_TLSEXT, SSL_R_CLIENTHELLO_TLSEXT); 2515 return 0; 2516 } 2517 2518 custom_ext_init(&s->cert->srv_ext); 2519 if (ssl_scan_clienthello_custom_tlsext(s, ptmp, limit, &al) <= 0) { 2520 ssl3_send_alert(s, SSL3_AL_FATAL, al); 2521 return 0; 2522 } 2523 2524 return 1; 2525 } 2526 2527 # ifndef OPENSSL_NO_NEXTPROTONEG 2528 /* 2529 * ssl_next_proto_validate validates a Next Protocol Negotiation block. No 2530 * elements of zero length are allowed and the set of elements must exactly 2531 * fill the length of the block. 2532 */ 2533 static char ssl_next_proto_validate(unsigned char *d, unsigned len) 2534 { 2535 unsigned int off = 0; 2536 2537 while (off < len) { 2538 if (d[off] == 0) 2539 return 0; 2540 off += d[off]; 2541 off++; 2542 } 2543 2544 return off == len; 2545 } 2546 # endif 2547 2548 static int ssl_scan_serverhello_tlsext(SSL *s, unsigned char **p, 2549 unsigned char *d, int n, int *al) 2550 { 2551 unsigned short length; 2552 unsigned short type; 2553 unsigned short size; 2554 unsigned char *data = *p; 2555 int tlsext_servername = 0; 2556 int renegotiate_seen = 0; 2557 2558 # ifndef OPENSSL_NO_NEXTPROTONEG 2559 s->s3->next_proto_neg_seen = 0; 2560 # endif 2561 s->tlsext_ticket_expected = 0; 2562 2563 if (s->s3->alpn_selected) { 2564 OPENSSL_free(s->s3->alpn_selected); 2565 s->s3->alpn_selected = NULL; 2566 } 2567 # ifndef OPENSSL_NO_HEARTBEATS 2568 s->tlsext_heartbeat &= ~(SSL_TLSEXT_HB_ENABLED | 2569 SSL_TLSEXT_HB_DONT_SEND_REQUESTS); 2570 # endif 2571 2572 if (data >= (d + n - 2)) 2573 goto ri_check; 2574 2575 n2s(data, length); 2576 if (data + length != d + n) { 2577 *al = SSL_AD_DECODE_ERROR; 2578 return 0; 2579 } 2580 2581 while (data <= (d + n - 4)) { 2582 n2s(data, type); 2583 n2s(data, size); 2584 2585 if (data + size > (d + n)) 2586 goto ri_check; 2587 2588 if (s->tlsext_debug_cb) 2589 s->tlsext_debug_cb(s, 1, type, data, size, s->tlsext_debug_arg); 2590 2591 if (type == TLSEXT_TYPE_server_name) { 2592 if (s->tlsext_hostname == NULL || size > 0) { 2593 *al = TLS1_AD_UNRECOGNIZED_NAME; 2594 return 0; 2595 } 2596 tlsext_servername = 1; 2597 } 2598 # ifndef OPENSSL_NO_EC 2599 else if (type == TLSEXT_TYPE_ec_point_formats) { 2600 unsigned char *sdata = data; 2601 int ecpointformatlist_length = *(sdata++); 2602 2603 if (ecpointformatlist_length != size - 1) { 2604 *al = TLS1_AD_DECODE_ERROR; 2605 return 0; 2606 } 2607 if (!s->hit) { 2608 s->session->tlsext_ecpointformatlist_length = 0; 2609 if (s->session->tlsext_ecpointformatlist != NULL) 2610 OPENSSL_free(s->session->tlsext_ecpointformatlist); 2611 if ((s->session->tlsext_ecpointformatlist = 2612 OPENSSL_malloc(ecpointformatlist_length)) == NULL) { 2613 *al = TLS1_AD_INTERNAL_ERROR; 2614 return 0; 2615 } 2616 s->session->tlsext_ecpointformatlist_length = 2617 ecpointformatlist_length; 2618 memcpy(s->session->tlsext_ecpointformatlist, sdata, 2619 ecpointformatlist_length); 2620 } 2621 # if 0 2622 fprintf(stderr, 2623 "ssl_parse_serverhello_tlsext s->session->tlsext_ecpointformatlist "); 2624 sdata = s->session->tlsext_ecpointformatlist; 2625 for (i = 0; i < s->session->tlsext_ecpointformatlist_length; i++) 2626 fprintf(stderr, "%i ", *(sdata++)); 2627 fprintf(stderr, "\n"); 2628 # endif 2629 } 2630 # endif /* OPENSSL_NO_EC */ 2631 2632 else if (type == TLSEXT_TYPE_session_ticket) { 2633 if (s->tls_session_ticket_ext_cb && 2634 !s->tls_session_ticket_ext_cb(s, data, size, 2635 s->tls_session_ticket_ext_cb_arg)) 2636 { 2637 *al = TLS1_AD_INTERNAL_ERROR; 2638 return 0; 2639 } 2640 if ((SSL_get_options(s) & SSL_OP_NO_TICKET) 2641 || (size > 0)) { 2642 *al = TLS1_AD_UNSUPPORTED_EXTENSION; 2643 return 0; 2644 } 2645 s->tlsext_ticket_expected = 1; 2646 } 2647 # ifdef TLSEXT_TYPE_opaque_prf_input 2648 else if (type == TLSEXT_TYPE_opaque_prf_input) { 2649 unsigned char *sdata = data; 2650 2651 if (size < 2) { 2652 *al = SSL_AD_DECODE_ERROR; 2653 return 0; 2654 } 2655 n2s(sdata, s->s3->server_opaque_prf_input_len); 2656 if (s->s3->server_opaque_prf_input_len != size - 2) { 2657 *al = SSL_AD_DECODE_ERROR; 2658 return 0; 2659 } 2660 2661 if (s->s3->server_opaque_prf_input != NULL) { 2662 /* shouldn't really happen */ 2663 OPENSSL_free(s->s3->server_opaque_prf_input); 2664 } 2665 if (s->s3->server_opaque_prf_input_len == 0) { 2666 /* dummy byte just to get non-NULL */ 2667 s->s3->server_opaque_prf_input = OPENSSL_malloc(1); 2668 } else { 2669 s->s3->server_opaque_prf_input = 2670 BUF_memdup(sdata, s->s3->server_opaque_prf_input_len); 2671 } 2672 2673 if (s->s3->server_opaque_prf_input == NULL) { 2674 *al = TLS1_AD_INTERNAL_ERROR; 2675 return 0; 2676 } 2677 } 2678 # endif 2679 else if (type == TLSEXT_TYPE_status_request) { 2680 /* 2681 * MUST be empty and only sent if we've requested a status 2682 * request message. 2683 */ 2684 if ((s->tlsext_status_type == -1) || (size > 0)) { 2685 *al = TLS1_AD_UNSUPPORTED_EXTENSION; 2686 return 0; 2687 } 2688 /* Set flag to expect CertificateStatus message */ 2689 s->tlsext_status_expected = 1; 2690 } 2691 # ifndef OPENSSL_NO_NEXTPROTONEG 2692 else if (type == TLSEXT_TYPE_next_proto_neg && 2693 s->s3->tmp.finish_md_len == 0) { 2694 unsigned char *selected; 2695 unsigned char selected_len; 2696 2697 /* We must have requested it. */ 2698 if (s->ctx->next_proto_select_cb == NULL) { 2699 *al = TLS1_AD_UNSUPPORTED_EXTENSION; 2700 return 0; 2701 } 2702 /* The data must be valid */ 2703 if (!ssl_next_proto_validate(data, size)) { 2704 *al = TLS1_AD_DECODE_ERROR; 2705 return 0; 2706 } 2707 if (s-> 2708 ctx->next_proto_select_cb(s, &selected, &selected_len, data, 2709 size, 2710 s->ctx->next_proto_select_cb_arg) != 2711 SSL_TLSEXT_ERR_OK) { 2712 *al = TLS1_AD_INTERNAL_ERROR; 2713 return 0; 2714 } 2715 s->next_proto_negotiated = OPENSSL_malloc(selected_len); 2716 if (!s->next_proto_negotiated) { 2717 *al = TLS1_AD_INTERNAL_ERROR; 2718 return 0; 2719 } 2720 memcpy(s->next_proto_negotiated, selected, selected_len); 2721 s->next_proto_negotiated_len = selected_len; 2722 s->s3->next_proto_neg_seen = 1; 2723 } 2724 # endif 2725 2726 else if (type == TLSEXT_TYPE_application_layer_protocol_negotiation) { 2727 unsigned len; 2728 2729 /* We must have requested it. */ 2730 if (!s->cert->alpn_sent) { 2731 *al = TLS1_AD_UNSUPPORTED_EXTENSION; 2732 return 0; 2733 } 2734 if (size < 4) { 2735 *al = TLS1_AD_DECODE_ERROR; 2736 return 0; 2737 } 2738 /*- 2739 * The extension data consists of: 2740 * uint16 list_length 2741 * uint8 proto_length; 2742 * uint8 proto[proto_length]; 2743 */ 2744 len = data[0]; 2745 len <<= 8; 2746 len |= data[1]; 2747 if (len != (unsigned)size - 2) { 2748 *al = TLS1_AD_DECODE_ERROR; 2749 return 0; 2750 } 2751 len = data[2]; 2752 if (len != (unsigned)size - 3) { 2753 *al = TLS1_AD_DECODE_ERROR; 2754 return 0; 2755 } 2756 if (s->s3->alpn_selected) 2757 OPENSSL_free(s->s3->alpn_selected); 2758 s->s3->alpn_selected = OPENSSL_malloc(len); 2759 if (!s->s3->alpn_selected) { 2760 *al = TLS1_AD_INTERNAL_ERROR; 2761 return 0; 2762 } 2763 memcpy(s->s3->alpn_selected, data + 3, len); 2764 s->s3->alpn_selected_len = len; 2765 } 2766 2767 else if (type == TLSEXT_TYPE_renegotiate) { 2768 if (!ssl_parse_serverhello_renegotiate_ext(s, data, size, al)) 2769 return 0; 2770 renegotiate_seen = 1; 2771 } 2772 # ifndef OPENSSL_NO_HEARTBEATS 2773 else if (type == TLSEXT_TYPE_heartbeat) { 2774 switch (data[0]) { 2775 case 0x01: /* Server allows us to send HB requests */ 2776 s->tlsext_heartbeat |= SSL_TLSEXT_HB_ENABLED; 2777 break; 2778 case 0x02: /* Server doesn't accept HB requests */ 2779 s->tlsext_heartbeat |= SSL_TLSEXT_HB_ENABLED; 2780 s->tlsext_heartbeat |= SSL_TLSEXT_HB_DONT_SEND_REQUESTS; 2781 break; 2782 default: 2783 *al = SSL_AD_ILLEGAL_PARAMETER; 2784 return 0; 2785 } 2786 } 2787 # endif 2788 # ifndef OPENSSL_NO_SRTP 2789 else if (SSL_IS_DTLS(s) && type == TLSEXT_TYPE_use_srtp) { 2790 if (ssl_parse_serverhello_use_srtp_ext(s, data, size, al)) 2791 return 0; 2792 } 2793 # endif 2794 /* 2795 * If this extension type was not otherwise handled, but matches a 2796 * custom_cli_ext_record, then send it to the c callback 2797 */ 2798 else if (custom_ext_parse(s, 0, type, data, size, al) <= 0) 2799 return 0; 2800 2801 data += size; 2802 } 2803 2804 if (data != d + n) { 2805 *al = SSL_AD_DECODE_ERROR; 2806 return 0; 2807 } 2808 2809 if (!s->hit && tlsext_servername == 1) { 2810 if (s->tlsext_hostname) { 2811 if (s->session->tlsext_hostname == NULL) { 2812 s->session->tlsext_hostname = BUF_strdup(s->tlsext_hostname); 2813 if (!s->session->tlsext_hostname) { 2814 *al = SSL_AD_UNRECOGNIZED_NAME; 2815 return 0; 2816 } 2817 } else { 2818 *al = SSL_AD_DECODE_ERROR; 2819 return 0; 2820 } 2821 } 2822 } 2823 2824 *p = data; 2825 2826 ri_check: 2827 2828 /* 2829 * Determine if we need to see RI. Strictly speaking if we want to avoid 2830 * an attack we should *always* see RI even on initial server hello 2831 * because the client doesn't see any renegotiation during an attack. 2832 * However this would mean we could not connect to any server which 2833 * doesn't support RI so for the immediate future tolerate RI absence on 2834 * initial connect only. 2835 */ 2836 if (!renegotiate_seen && !(s->options & SSL_OP_LEGACY_SERVER_CONNECT) 2837 && !(s->options & SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION)) { 2838 *al = SSL_AD_HANDSHAKE_FAILURE; 2839 SSLerr(SSL_F_SSL_SCAN_SERVERHELLO_TLSEXT, 2840 SSL_R_UNSAFE_LEGACY_RENEGOTIATION_DISABLED); 2841 return 0; 2842 } 2843 2844 return 1; 2845 } 2846 2847 int ssl_prepare_clienthello_tlsext(SSL *s) 2848 { 2849 2850 # ifdef TLSEXT_TYPE_opaque_prf_input 2851 { 2852 int r = 1; 2853 2854 if (s->ctx->tlsext_opaque_prf_input_callback != 0) { 2855 r = s->ctx->tlsext_opaque_prf_input_callback(s, NULL, 0, 2856 s-> 2857 ctx->tlsext_opaque_prf_input_callback_arg); 2858 if (!r) 2859 return -1; 2860 } 2861 2862 if (s->tlsext_opaque_prf_input != NULL) { 2863 if (s->s3->client_opaque_prf_input != NULL) { 2864 /* shouldn't really happen */ 2865 OPENSSL_free(s->s3->client_opaque_prf_input); 2866 } 2867 2868 if (s->tlsext_opaque_prf_input_len == 0) { 2869 /* dummy byte just to get non-NULL */ 2870 s->s3->client_opaque_prf_input = OPENSSL_malloc(1); 2871 } else { 2872 s->s3->client_opaque_prf_input = 2873 BUF_memdup(s->tlsext_opaque_prf_input, 2874 s->tlsext_opaque_prf_input_len); 2875 } 2876 if (s->s3->client_opaque_prf_input == NULL) { 2877 SSLerr(SSL_F_SSL_PREPARE_CLIENTHELLO_TLSEXT, 2878 ERR_R_MALLOC_FAILURE); 2879 return -1; 2880 } 2881 s->s3->client_opaque_prf_input_len = 2882 s->tlsext_opaque_prf_input_len; 2883 } 2884 2885 if (r == 2) 2886 /* 2887 * at callback's request, insist on receiving an appropriate 2888 * server opaque PRF input 2889 */ 2890 s->s3->server_opaque_prf_input_len = 2891 s->tlsext_opaque_prf_input_len; 2892 } 2893 # endif 2894 2895 s->cert->alpn_sent = 0; 2896 return 1; 2897 } 2898 2899 int ssl_prepare_serverhello_tlsext(SSL *s) 2900 { 2901 return 1; 2902 } 2903 2904 static int ssl_check_clienthello_tlsext_early(SSL *s) 2905 { 2906 int ret = SSL_TLSEXT_ERR_NOACK; 2907 int al = SSL_AD_UNRECOGNIZED_NAME; 2908 2909 # ifndef OPENSSL_NO_EC 2910 /* 2911 * The handling of the ECPointFormats extension is done elsewhere, namely 2912 * in ssl3_choose_cipher in s3_lib.c. 2913 */ 2914 /* 2915 * The handling of the EllipticCurves extension is done elsewhere, namely 2916 * in ssl3_choose_cipher in s3_lib.c. 2917 */ 2918 # endif 2919 2920 if (s->ctx != NULL && s->ctx->tlsext_servername_callback != 0) 2921 ret = 2922 s->ctx->tlsext_servername_callback(s, &al, 2923 s->ctx->tlsext_servername_arg); 2924 else if (s->initial_ctx != NULL 2925 && s->initial_ctx->tlsext_servername_callback != 0) 2926 ret = 2927 s->initial_ctx->tlsext_servername_callback(s, &al, 2928 s-> 2929 initial_ctx->tlsext_servername_arg); 2930 2931 # ifdef TLSEXT_TYPE_opaque_prf_input 2932 { 2933 /* 2934 * This sort of belongs into ssl_prepare_serverhello_tlsext(), but we 2935 * might be sending an alert in response to the client hello, so this 2936 * has to happen here in ssl_check_clienthello_tlsext_early(). 2937 */ 2938 2939 int r = 1; 2940 2941 if (s->ctx->tlsext_opaque_prf_input_callback != 0) { 2942 r = s->ctx->tlsext_opaque_prf_input_callback(s, NULL, 0, 2943 s-> 2944 ctx->tlsext_opaque_prf_input_callback_arg); 2945 if (!r) { 2946 ret = SSL_TLSEXT_ERR_ALERT_FATAL; 2947 al = SSL_AD_INTERNAL_ERROR; 2948 goto err; 2949 } 2950 } 2951 2952 if (s->s3->server_opaque_prf_input != NULL) { 2953 /* shouldn't really happen */ 2954 OPENSSL_free(s->s3->server_opaque_prf_input); 2955 } 2956 s->s3->server_opaque_prf_input = NULL; 2957 2958 if (s->tlsext_opaque_prf_input != NULL) { 2959 if (s->s3->client_opaque_prf_input != NULL && 2960 s->s3->client_opaque_prf_input_len == 2961 s->tlsext_opaque_prf_input_len) { 2962 /* 2963 * can only use this extension if we have a server opaque PRF 2964 * input of the same length as the client opaque PRF input! 2965 */ 2966 2967 if (s->tlsext_opaque_prf_input_len == 0) { 2968 /* dummy byte just to get non-NULL */ 2969 s->s3->server_opaque_prf_input = OPENSSL_malloc(1); 2970 } else { 2971 s->s3->server_opaque_prf_input = 2972 BUF_memdup(s->tlsext_opaque_prf_input, 2973 s->tlsext_opaque_prf_input_len); 2974 } 2975 if (s->s3->server_opaque_prf_input == NULL) { 2976 ret = SSL_TLSEXT_ERR_ALERT_FATAL; 2977 al = SSL_AD_INTERNAL_ERROR; 2978 goto err; 2979 } 2980 s->s3->server_opaque_prf_input_len = 2981 s->tlsext_opaque_prf_input_len; 2982 } 2983 } 2984 2985 if (r == 2 && s->s3->server_opaque_prf_input == NULL) { 2986 /* 2987 * The callback wants to enforce use of the extension, but we 2988 * can't do that with the client opaque PRF input; abort the 2989 * handshake. 2990 */ 2991 ret = SSL_TLSEXT_ERR_ALERT_FATAL; 2992 al = SSL_AD_HANDSHAKE_FAILURE; 2993 } 2994 } 2995 2996 err: 2997 # endif 2998 switch (ret) { 2999 case SSL_TLSEXT_ERR_ALERT_FATAL: 3000 ssl3_send_alert(s, SSL3_AL_FATAL, al); 3001 return -1; 3002 3003 case SSL_TLSEXT_ERR_ALERT_WARNING: 3004 ssl3_send_alert(s, SSL3_AL_WARNING, al); 3005 return 1; 3006 3007 case SSL_TLSEXT_ERR_NOACK: 3008 s->servername_done = 0; 3009 default: 3010 return 1; 3011 } 3012 } 3013 3014 int tls1_set_server_sigalgs(SSL *s) 3015 { 3016 int al; 3017 size_t i; 3018 /* Clear any shared sigtnature algorithms */ 3019 if (s->cert->shared_sigalgs) { 3020 OPENSSL_free(s->cert->shared_sigalgs); 3021 s->cert->shared_sigalgs = NULL; 3022 s->cert->shared_sigalgslen = 0; 3023 } 3024 /* Clear certificate digests and validity flags */ 3025 for (i = 0; i < SSL_PKEY_NUM; i++) { 3026 s->cert->pkeys[i].digest = NULL; 3027 s->cert->pkeys[i].valid_flags = 0; 3028 } 3029 3030 /* If sigalgs received process it. */ 3031 if (s->cert->peer_sigalgs) { 3032 if (!tls1_process_sigalgs(s)) { 3033 SSLerr(SSL_F_TLS1_SET_SERVER_SIGALGS, ERR_R_MALLOC_FAILURE); 3034 al = SSL_AD_INTERNAL_ERROR; 3035 goto err; 3036 } 3037 /* Fatal error is no shared signature algorithms */ 3038 if (!s->cert->shared_sigalgs) { 3039 SSLerr(SSL_F_TLS1_SET_SERVER_SIGALGS, 3040 SSL_R_NO_SHARED_SIGATURE_ALGORITHMS); 3041 al = SSL_AD_ILLEGAL_PARAMETER; 3042 goto err; 3043 } 3044 } else 3045 ssl_cert_set_default_md(s->cert); 3046 return 1; 3047 err: 3048 ssl3_send_alert(s, SSL3_AL_FATAL, al); 3049 return 0; 3050 } 3051 3052 int ssl_check_clienthello_tlsext_late(SSL *s) 3053 { 3054 int ret = SSL_TLSEXT_ERR_OK; 3055 int al; 3056 3057 /* 3058 * If status request then ask callback what to do. Note: this must be 3059 * called after servername callbacks in case the certificate has changed, 3060 * and must be called after the cipher has been chosen because this may 3061 * influence which certificate is sent 3062 */ 3063 if ((s->tlsext_status_type != -1) && s->ctx && s->ctx->tlsext_status_cb) { 3064 int r; 3065 CERT_PKEY *certpkey; 3066 certpkey = ssl_get_server_send_pkey(s); 3067 /* If no certificate can't return certificate status */ 3068 if (certpkey == NULL) { 3069 s->tlsext_status_expected = 0; 3070 return 1; 3071 } 3072 /* 3073 * Set current certificate to one we will use so SSL_get_certificate 3074 * et al can pick it up. 3075 */ 3076 s->cert->key = certpkey; 3077 r = s->ctx->tlsext_status_cb(s, s->ctx->tlsext_status_arg); 3078 switch (r) { 3079 /* We don't want to send a status request response */ 3080 case SSL_TLSEXT_ERR_NOACK: 3081 s->tlsext_status_expected = 0; 3082 break; 3083 /* status request response should be sent */ 3084 case SSL_TLSEXT_ERR_OK: 3085 if (s->tlsext_ocsp_resp) 3086 s->tlsext_status_expected = 1; 3087 else 3088 s->tlsext_status_expected = 0; 3089 break; 3090 /* something bad happened */ 3091 case SSL_TLSEXT_ERR_ALERT_FATAL: 3092 ret = SSL_TLSEXT_ERR_ALERT_FATAL; 3093 al = SSL_AD_INTERNAL_ERROR; 3094 goto err; 3095 } 3096 } else 3097 s->tlsext_status_expected = 0; 3098 3099 if (!tls1_alpn_handle_client_hello_late(s, &ret, &al)) { 3100 goto err; 3101 } 3102 3103 err: 3104 switch (ret) { 3105 case SSL_TLSEXT_ERR_ALERT_FATAL: 3106 ssl3_send_alert(s, SSL3_AL_FATAL, al); 3107 return -1; 3108 3109 case SSL_TLSEXT_ERR_ALERT_WARNING: 3110 ssl3_send_alert(s, SSL3_AL_WARNING, al); 3111 return 1; 3112 3113 default: 3114 return 1; 3115 } 3116 } 3117 3118 int ssl_check_serverhello_tlsext(SSL *s) 3119 { 3120 int ret = SSL_TLSEXT_ERR_NOACK; 3121 int al = SSL_AD_UNRECOGNIZED_NAME; 3122 3123 # ifndef OPENSSL_NO_EC 3124 /* 3125 * If we are client and using an elliptic curve cryptography cipher 3126 * suite, then if server returns an EC point formats lists extension it 3127 * must contain uncompressed. 3128 */ 3129 unsigned long alg_k = s->s3->tmp.new_cipher->algorithm_mkey; 3130 unsigned long alg_a = s->s3->tmp.new_cipher->algorithm_auth; 3131 if ((s->tlsext_ecpointformatlist != NULL) 3132 && (s->tlsext_ecpointformatlist_length > 0) 3133 && (s->session->tlsext_ecpointformatlist != NULL) 3134 && (s->session->tlsext_ecpointformatlist_length > 0) 3135 && ((alg_k & (SSL_kEECDH | SSL_kECDHr | SSL_kECDHe)) 3136 || (alg_a & SSL_aECDSA))) { 3137 /* we are using an ECC cipher */ 3138 size_t i; 3139 unsigned char *list; 3140 int found_uncompressed = 0; 3141 list = s->session->tlsext_ecpointformatlist; 3142 for (i = 0; i < s->session->tlsext_ecpointformatlist_length; i++) { 3143 if (*(list++) == TLSEXT_ECPOINTFORMAT_uncompressed) { 3144 found_uncompressed = 1; 3145 break; 3146 } 3147 } 3148 if (!found_uncompressed) { 3149 SSLerr(SSL_F_SSL_CHECK_SERVERHELLO_TLSEXT, 3150 SSL_R_TLS_INVALID_ECPOINTFORMAT_LIST); 3151 return -1; 3152 } 3153 } 3154 ret = SSL_TLSEXT_ERR_OK; 3155 # endif /* OPENSSL_NO_EC */ 3156 3157 if (s->ctx != NULL && s->ctx->tlsext_servername_callback != 0) 3158 ret = 3159 s->ctx->tlsext_servername_callback(s, &al, 3160 s->ctx->tlsext_servername_arg); 3161 else if (s->initial_ctx != NULL 3162 && s->initial_ctx->tlsext_servername_callback != 0) 3163 ret = 3164 s->initial_ctx->tlsext_servername_callback(s, &al, 3165 s-> 3166 initial_ctx->tlsext_servername_arg); 3167 3168 # ifdef TLSEXT_TYPE_opaque_prf_input 3169 if (s->s3->server_opaque_prf_input_len > 0) { 3170 /* 3171 * This case may indicate that we, as a client, want to insist on 3172 * using opaque PRF inputs. So first verify that we really have a 3173 * value from the server too. 3174 */ 3175 3176 if (s->s3->server_opaque_prf_input == NULL) { 3177 ret = SSL_TLSEXT_ERR_ALERT_FATAL; 3178 al = SSL_AD_HANDSHAKE_FAILURE; 3179 } 3180 3181 /* 3182 * Anytime the server *has* sent an opaque PRF input, we need to 3183 * check that we have a client opaque PRF input of the same size. 3184 */ 3185 if (s->s3->client_opaque_prf_input == NULL || 3186 s->s3->client_opaque_prf_input_len != 3187 s->s3->server_opaque_prf_input_len) { 3188 ret = SSL_TLSEXT_ERR_ALERT_FATAL; 3189 al = SSL_AD_ILLEGAL_PARAMETER; 3190 } 3191 } 3192 # endif 3193 3194 OPENSSL_free(s->tlsext_ocsp_resp); 3195 s->tlsext_ocsp_resp = NULL; 3196 s->tlsext_ocsp_resplen = -1; 3197 /* 3198 * If we've requested certificate status and we wont get one tell the 3199 * callback 3200 */ 3201 if ((s->tlsext_status_type != -1) && !(s->tlsext_status_expected) 3202 && !(s->hit) && s->ctx && s->ctx->tlsext_status_cb) { 3203 int r; 3204 /* 3205 * Call callback with resp == NULL and resplen == -1 so callback 3206 * knows there is no response 3207 */ 3208 r = s->ctx->tlsext_status_cb(s, s->ctx->tlsext_status_arg); 3209 if (r == 0) { 3210 al = SSL_AD_BAD_CERTIFICATE_STATUS_RESPONSE; 3211 ret = SSL_TLSEXT_ERR_ALERT_FATAL; 3212 } 3213 if (r < 0) { 3214 al = SSL_AD_INTERNAL_ERROR; 3215 ret = SSL_TLSEXT_ERR_ALERT_FATAL; 3216 } 3217 } 3218 3219 switch (ret) { 3220 case SSL_TLSEXT_ERR_ALERT_FATAL: 3221 ssl3_send_alert(s, SSL3_AL_FATAL, al); 3222 return -1; 3223 3224 case SSL_TLSEXT_ERR_ALERT_WARNING: 3225 ssl3_send_alert(s, SSL3_AL_WARNING, al); 3226 return 1; 3227 3228 case SSL_TLSEXT_ERR_NOACK: 3229 s->servername_done = 0; 3230 default: 3231 return 1; 3232 } 3233 } 3234 3235 int ssl_parse_serverhello_tlsext(SSL *s, unsigned char **p, unsigned char *d, 3236 int n) 3237 { 3238 int al = -1; 3239 if (s->version < SSL3_VERSION) 3240 return 1; 3241 if (ssl_scan_serverhello_tlsext(s, p, d, n, &al) <= 0) { 3242 ssl3_send_alert(s, SSL3_AL_FATAL, al); 3243 return 0; 3244 } 3245 3246 if (ssl_check_serverhello_tlsext(s) <= 0) { 3247 SSLerr(SSL_F_SSL_PARSE_SERVERHELLO_TLSEXT, SSL_R_SERVERHELLO_TLSEXT); 3248 return 0; 3249 } 3250 return 1; 3251 } 3252 3253 /*- 3254 * Since the server cache lookup is done early on in the processing of the 3255 * ClientHello, and other operations depend on the result, we need to handle 3256 * any TLS session ticket extension at the same time. 3257 * 3258 * session_id: points at the session ID in the ClientHello. This code will 3259 * read past the end of this in order to parse out the session ticket 3260 * extension, if any. 3261 * len: the length of the session ID. 3262 * limit: a pointer to the first byte after the ClientHello. 3263 * ret: (output) on return, if a ticket was decrypted, then this is set to 3264 * point to the resulting session. 3265 * 3266 * If s->tls_session_secret_cb is set then we are expecting a pre-shared key 3267 * ciphersuite, in which case we have no use for session tickets and one will 3268 * never be decrypted, nor will s->tlsext_ticket_expected be set to 1. 3269 * 3270 * Returns: 3271 * -1: fatal error, either from parsing or decrypting the ticket. 3272 * 0: no ticket was found (or was ignored, based on settings). 3273 * 1: a zero length extension was found, indicating that the client supports 3274 * session tickets but doesn't currently have one to offer. 3275 * 2: either s->tls_session_secret_cb was set, or a ticket was offered but 3276 * couldn't be decrypted because of a non-fatal error. 3277 * 3: a ticket was successfully decrypted and *ret was set. 3278 * 3279 * Side effects: 3280 * Sets s->tlsext_ticket_expected to 1 if the server will have to issue 3281 * a new session ticket to the client because the client indicated support 3282 * (and s->tls_session_secret_cb is NULL) but the client either doesn't have 3283 * a session ticket or we couldn't use the one it gave us, or if 3284 * s->ctx->tlsext_ticket_key_cb asked to renew the client's ticket. 3285 * Otherwise, s->tlsext_ticket_expected is set to 0. 3286 */ 3287 int tls1_process_ticket(SSL *s, unsigned char *session_id, int len, 3288 const unsigned char *limit, SSL_SESSION **ret) 3289 { 3290 /* Point after session ID in client hello */ 3291 const unsigned char *p = session_id + len; 3292 unsigned short i; 3293 3294 *ret = NULL; 3295 s->tlsext_ticket_expected = 0; 3296 3297 /* 3298 * If tickets disabled behave as if no ticket present to permit stateful 3299 * resumption. 3300 */ 3301 if (SSL_get_options(s) & SSL_OP_NO_TICKET) 3302 return 0; 3303 if ((s->version <= SSL3_VERSION) || !limit) 3304 return 0; 3305 if (p >= limit) 3306 return -1; 3307 /* Skip past DTLS cookie */ 3308 if (SSL_IS_DTLS(s)) { 3309 i = *(p++); 3310 p += i; 3311 if (p >= limit) 3312 return -1; 3313 } 3314 /* Skip past cipher list */ 3315 n2s(p, i); 3316 p += i; 3317 if (p >= limit) 3318 return -1; 3319 /* Skip past compression algorithm list */ 3320 i = *(p++); 3321 p += i; 3322 if (p > limit) 3323 return -1; 3324 /* Now at start of extensions */ 3325 if ((p + 2) >= limit) 3326 return 0; 3327 n2s(p, i); 3328 while ((p + 4) <= limit) { 3329 unsigned short type, size; 3330 n2s(p, type); 3331 n2s(p, size); 3332 if (p + size > limit) 3333 return 0; 3334 if (type == TLSEXT_TYPE_session_ticket) { 3335 int r; 3336 if (size == 0) { 3337 /* 3338 * The client will accept a ticket but doesn't currently have 3339 * one. 3340 */ 3341 s->tlsext_ticket_expected = 1; 3342 return 1; 3343 } 3344 if (s->tls_session_secret_cb) { 3345 /* 3346 * Indicate that the ticket couldn't be decrypted rather than 3347 * generating the session from ticket now, trigger 3348 * abbreviated handshake based on external mechanism to 3349 * calculate the master secret later. 3350 */ 3351 return 2; 3352 } 3353 r = tls_decrypt_ticket(s, p, size, session_id, len, ret); 3354 switch (r) { 3355 case 2: /* ticket couldn't be decrypted */ 3356 s->tlsext_ticket_expected = 1; 3357 return 2; 3358 case 3: /* ticket was decrypted */ 3359 return r; 3360 case 4: /* ticket decrypted but need to renew */ 3361 s->tlsext_ticket_expected = 1; 3362 return 3; 3363 default: /* fatal error */ 3364 return -1; 3365 } 3366 } 3367 p += size; 3368 } 3369 return 0; 3370 } 3371 3372 /*- 3373 * tls_decrypt_ticket attempts to decrypt a session ticket. 3374 * 3375 * etick: points to the body of the session ticket extension. 3376 * eticklen: the length of the session tickets extenion. 3377 * sess_id: points at the session ID. 3378 * sesslen: the length of the session ID. 3379 * psess: (output) on return, if a ticket was decrypted, then this is set to 3380 * point to the resulting session. 3381 * 3382 * Returns: 3383 * -1: fatal error, either from parsing or decrypting the ticket. 3384 * 2: the ticket couldn't be decrypted. 3385 * 3: a ticket was successfully decrypted and *psess was set. 3386 * 4: same as 3, but the ticket needs to be renewed. 3387 */ 3388 static int tls_decrypt_ticket(SSL *s, const unsigned char *etick, 3389 int eticklen, const unsigned char *sess_id, 3390 int sesslen, SSL_SESSION **psess) 3391 { 3392 SSL_SESSION *sess; 3393 unsigned char *sdec; 3394 const unsigned char *p; 3395 int slen, mlen, renew_ticket = 0; 3396 unsigned char tick_hmac[EVP_MAX_MD_SIZE]; 3397 HMAC_CTX hctx; 3398 EVP_CIPHER_CTX ctx; 3399 SSL_CTX *tctx = s->initial_ctx; 3400 /* Need at least keyname + iv + some encrypted data */ 3401 if (eticklen < 48) 3402 return 2; 3403 /* Initialize session ticket encryption and HMAC contexts */ 3404 HMAC_CTX_init(&hctx); 3405 EVP_CIPHER_CTX_init(&ctx); 3406 if (tctx->tlsext_ticket_key_cb) { 3407 unsigned char *nctick = (unsigned char *)etick; 3408 int rv = tctx->tlsext_ticket_key_cb(s, nctick, nctick + 16, 3409 &ctx, &hctx, 0); 3410 if (rv < 0) 3411 return -1; 3412 if (rv == 0) 3413 return 2; 3414 if (rv == 2) 3415 renew_ticket = 1; 3416 } else { 3417 /* Check key name matches */ 3418 if (memcmp(etick, tctx->tlsext_tick_key_name, 16)) 3419 return 2; 3420 if (HMAC_Init_ex(&hctx, tctx->tlsext_tick_hmac_key, 16, 3421 tlsext_tick_md(), NULL) <= 0 3422 || EVP_DecryptInit_ex(&ctx, EVP_aes_128_cbc(), NULL, 3423 tctx->tlsext_tick_aes_key, 3424 etick + 16) <= 0) { 3425 goto err; 3426 } 3427 } 3428 /* 3429 * Attempt to process session ticket, first conduct sanity and integrity 3430 * checks on ticket. 3431 */ 3432 mlen = HMAC_size(&hctx); 3433 if (mlen < 0) { 3434 goto err; 3435 } 3436 eticklen -= mlen; 3437 /* Check HMAC of encrypted ticket */ 3438 if (HMAC_Update(&hctx, etick, eticklen) <= 0 3439 || HMAC_Final(&hctx, tick_hmac, NULL) <= 0) { 3440 goto err; 3441 } 3442 HMAC_CTX_cleanup(&hctx); 3443 if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) { 3444 EVP_CIPHER_CTX_cleanup(&ctx); 3445 return 2; 3446 } 3447 /* Attempt to decrypt session data */ 3448 /* Move p after IV to start of encrypted ticket, update length */ 3449 p = etick + 16 + EVP_CIPHER_CTX_iv_length(&ctx); 3450 eticklen -= 16 + EVP_CIPHER_CTX_iv_length(&ctx); 3451 sdec = OPENSSL_malloc(eticklen); 3452 if (sdec == NULL 3453 || EVP_DecryptUpdate(&ctx, sdec, &slen, p, eticklen) <= 0) { 3454 EVP_CIPHER_CTX_cleanup(&ctx); 3455 OPENSSL_free(sdec); 3456 return -1; 3457 } 3458 if (EVP_DecryptFinal(&ctx, sdec + slen, &mlen) <= 0) { 3459 EVP_CIPHER_CTX_cleanup(&ctx); 3460 OPENSSL_free(sdec); 3461 return 2; 3462 } 3463 slen += mlen; 3464 EVP_CIPHER_CTX_cleanup(&ctx); 3465 p = sdec; 3466 3467 sess = d2i_SSL_SESSION(NULL, &p, slen); 3468 OPENSSL_free(sdec); 3469 if (sess) { 3470 /* 3471 * The session ID, if non-empty, is used by some clients to detect 3472 * that the ticket has been accepted. So we copy it to the session 3473 * structure. If it is empty set length to zero as required by 3474 * standard. 3475 */ 3476 if (sesslen) 3477 memcpy(sess->session_id, sess_id, sesslen); 3478 sess->session_id_length = sesslen; 3479 *psess = sess; 3480 if (renew_ticket) 3481 return 4; 3482 else 3483 return 3; 3484 } 3485 ERR_clear_error(); 3486 /* 3487 * For session parse failure, indicate that we need to send a new ticket. 3488 */ 3489 return 2; 3490 err: 3491 EVP_CIPHER_CTX_cleanup(&ctx); 3492 HMAC_CTX_cleanup(&hctx); 3493 return -1; 3494 } 3495 3496 /* Tables to translate from NIDs to TLS v1.2 ids */ 3497 3498 typedef struct { 3499 int nid; 3500 int id; 3501 } tls12_lookup; 3502 3503 static tls12_lookup tls12_md[] = { 3504 {NID_md5, TLSEXT_hash_md5}, 3505 {NID_sha1, TLSEXT_hash_sha1}, 3506 {NID_sha224, TLSEXT_hash_sha224}, 3507 {NID_sha256, TLSEXT_hash_sha256}, 3508 {NID_sha384, TLSEXT_hash_sha384}, 3509 {NID_sha512, TLSEXT_hash_sha512} 3510 }; 3511 3512 static tls12_lookup tls12_sig[] = { 3513 {EVP_PKEY_RSA, TLSEXT_signature_rsa}, 3514 {EVP_PKEY_DSA, TLSEXT_signature_dsa}, 3515 {EVP_PKEY_EC, TLSEXT_signature_ecdsa} 3516 }; 3517 3518 static int tls12_find_id(int nid, tls12_lookup *table, size_t tlen) 3519 { 3520 size_t i; 3521 for (i = 0; i < tlen; i++) { 3522 if (table[i].nid == nid) 3523 return table[i].id; 3524 } 3525 return -1; 3526 } 3527 3528 static int tls12_find_nid(int id, tls12_lookup *table, size_t tlen) 3529 { 3530 size_t i; 3531 for (i = 0; i < tlen; i++) { 3532 if ((table[i].id) == id) 3533 return table[i].nid; 3534 } 3535 return NID_undef; 3536 } 3537 3538 int tls12_get_sigandhash(unsigned char *p, const EVP_PKEY *pk, 3539 const EVP_MD *md) 3540 { 3541 int sig_id, md_id; 3542 if (!md) 3543 return 0; 3544 md_id = tls12_find_id(EVP_MD_type(md), tls12_md, 3545 sizeof(tls12_md) / sizeof(tls12_lookup)); 3546 if (md_id == -1) 3547 return 0; 3548 sig_id = tls12_get_sigid(pk); 3549 if (sig_id == -1) 3550 return 0; 3551 p[0] = (unsigned char)md_id; 3552 p[1] = (unsigned char)sig_id; 3553 return 1; 3554 } 3555 3556 int tls12_get_sigid(const EVP_PKEY *pk) 3557 { 3558 return tls12_find_id(pk->type, tls12_sig, 3559 sizeof(tls12_sig) / sizeof(tls12_lookup)); 3560 } 3561 3562 const EVP_MD *tls12_get_hash(unsigned char hash_alg) 3563 { 3564 switch (hash_alg) { 3565 # ifndef OPENSSL_NO_MD5 3566 case TLSEXT_hash_md5: 3567 # ifdef OPENSSL_FIPS 3568 if (FIPS_mode()) 3569 return NULL; 3570 # endif 3571 return EVP_md5(); 3572 # endif 3573 # ifndef OPENSSL_NO_SHA 3574 case TLSEXT_hash_sha1: 3575 return EVP_sha1(); 3576 # endif 3577 # ifndef OPENSSL_NO_SHA256 3578 case TLSEXT_hash_sha224: 3579 return EVP_sha224(); 3580 3581 case TLSEXT_hash_sha256: 3582 return EVP_sha256(); 3583 # endif 3584 # ifndef OPENSSL_NO_SHA512 3585 case TLSEXT_hash_sha384: 3586 return EVP_sha384(); 3587 3588 case TLSEXT_hash_sha512: 3589 return EVP_sha512(); 3590 # endif 3591 default: 3592 return NULL; 3593 3594 } 3595 } 3596 3597 static int tls12_get_pkey_idx(unsigned char sig_alg) 3598 { 3599 switch (sig_alg) { 3600 # ifndef OPENSSL_NO_RSA 3601 case TLSEXT_signature_rsa: 3602 return SSL_PKEY_RSA_SIGN; 3603 # endif 3604 # ifndef OPENSSL_NO_DSA 3605 case TLSEXT_signature_dsa: 3606 return SSL_PKEY_DSA_SIGN; 3607 # endif 3608 # ifndef OPENSSL_NO_ECDSA 3609 case TLSEXT_signature_ecdsa: 3610 return SSL_PKEY_ECC; 3611 # endif 3612 } 3613 return -1; 3614 } 3615 3616 /* Convert TLS 1.2 signature algorithm extension values into NIDs */ 3617 static void tls1_lookup_sigalg(int *phash_nid, int *psign_nid, 3618 int *psignhash_nid, const unsigned char *data) 3619 { 3620 int sign_nid = NID_undef, hash_nid = NID_undef; 3621 if (!phash_nid && !psign_nid && !psignhash_nid) 3622 return; 3623 if (phash_nid || psignhash_nid) { 3624 hash_nid = tls12_find_nid(data[0], tls12_md, 3625 sizeof(tls12_md) / sizeof(tls12_lookup)); 3626 if (phash_nid) 3627 *phash_nid = hash_nid; 3628 } 3629 if (psign_nid || psignhash_nid) { 3630 sign_nid = tls12_find_nid(data[1], tls12_sig, 3631 sizeof(tls12_sig) / sizeof(tls12_lookup)); 3632 if (psign_nid) 3633 *psign_nid = sign_nid; 3634 } 3635 if (psignhash_nid) { 3636 if (sign_nid == NID_undef || hash_nid == NID_undef 3637 || OBJ_find_sigid_by_algs(psignhash_nid, hash_nid, 3638 sign_nid) <= 0) 3639 *psignhash_nid = NID_undef; 3640 } 3641 } 3642 3643 /* Given preference and allowed sigalgs set shared sigalgs */ 3644 static int tls12_do_shared_sigalgs(TLS_SIGALGS *shsig, 3645 const unsigned char *pref, size_t preflen, 3646 const unsigned char *allow, 3647 size_t allowlen) 3648 { 3649 const unsigned char *ptmp, *atmp; 3650 size_t i, j, nmatch = 0; 3651 for (i = 0, ptmp = pref; i < preflen; i += 2, ptmp += 2) { 3652 /* Skip disabled hashes or signature algorithms */ 3653 if (tls12_get_hash(ptmp[0]) == NULL) 3654 continue; 3655 if (tls12_get_pkey_idx(ptmp[1]) == -1) 3656 continue; 3657 for (j = 0, atmp = allow; j < allowlen; j += 2, atmp += 2) { 3658 if (ptmp[0] == atmp[0] && ptmp[1] == atmp[1]) { 3659 nmatch++; 3660 if (shsig) { 3661 shsig->rhash = ptmp[0]; 3662 shsig->rsign = ptmp[1]; 3663 tls1_lookup_sigalg(&shsig->hash_nid, 3664 &shsig->sign_nid, 3665 &shsig->signandhash_nid, ptmp); 3666 shsig++; 3667 } 3668 break; 3669 } 3670 } 3671 } 3672 return nmatch; 3673 } 3674 3675 /* Set shared signature algorithms for SSL structures */ 3676 static int tls1_set_shared_sigalgs(SSL *s) 3677 { 3678 const unsigned char *pref, *allow, *conf; 3679 size_t preflen, allowlen, conflen; 3680 size_t nmatch; 3681 TLS_SIGALGS *salgs = NULL; 3682 CERT *c = s->cert; 3683 unsigned int is_suiteb = tls1_suiteb(s); 3684 if (c->shared_sigalgs) { 3685 OPENSSL_free(c->shared_sigalgs); 3686 c->shared_sigalgs = NULL; 3687 c->shared_sigalgslen = 0; 3688 } 3689 /* If client use client signature algorithms if not NULL */ 3690 if (!s->server && c->client_sigalgs && !is_suiteb) { 3691 conf = c->client_sigalgs; 3692 conflen = c->client_sigalgslen; 3693 } else if (c->conf_sigalgs && !is_suiteb) { 3694 conf = c->conf_sigalgs; 3695 conflen = c->conf_sigalgslen; 3696 } else 3697 conflen = tls12_get_psigalgs(s, &conf); 3698 if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) { 3699 pref = conf; 3700 preflen = conflen; 3701 allow = c->peer_sigalgs; 3702 allowlen = c->peer_sigalgslen; 3703 } else { 3704 allow = conf; 3705 allowlen = conflen; 3706 pref = c->peer_sigalgs; 3707 preflen = c->peer_sigalgslen; 3708 } 3709 nmatch = tls12_do_shared_sigalgs(NULL, pref, preflen, allow, allowlen); 3710 if (nmatch) { 3711 salgs = OPENSSL_malloc(nmatch * sizeof(TLS_SIGALGS)); 3712 if (!salgs) 3713 return 0; 3714 nmatch = tls12_do_shared_sigalgs(salgs, pref, preflen, allow, allowlen); 3715 } else { 3716 salgs = NULL; 3717 } 3718 c->shared_sigalgs = salgs; 3719 c->shared_sigalgslen = nmatch; 3720 return 1; 3721 } 3722 3723 /* Set preferred digest for each key type */ 3724 3725 int tls1_save_sigalgs(SSL *s, const unsigned char *data, int dsize) 3726 { 3727 CERT *c = s->cert; 3728 /* Extension ignored for inappropriate versions */ 3729 if (!SSL_USE_SIGALGS(s)) 3730 return 1; 3731 /* Should never happen */ 3732 if (!c) 3733 return 0; 3734 3735 if (c->peer_sigalgs) 3736 OPENSSL_free(c->peer_sigalgs); 3737 c->peer_sigalgs = OPENSSL_malloc(dsize); 3738 if (!c->peer_sigalgs) 3739 return 0; 3740 c->peer_sigalgslen = dsize; 3741 memcpy(c->peer_sigalgs, data, dsize); 3742 return 1; 3743 } 3744 3745 int tls1_process_sigalgs(SSL *s) 3746 { 3747 int idx; 3748 size_t i; 3749 const EVP_MD *md; 3750 CERT *c = s->cert; 3751 TLS_SIGALGS *sigptr; 3752 if (!tls1_set_shared_sigalgs(s)) 3753 return 0; 3754 3755 # ifdef OPENSSL_SSL_DEBUG_BROKEN_PROTOCOL 3756 if (s->cert->cert_flags & SSL_CERT_FLAG_BROKEN_PROTOCOL) { 3757 /* 3758 * Use first set signature preference to force message digest, 3759 * ignoring any peer preferences. 3760 */ 3761 const unsigned char *sigs = NULL; 3762 if (s->server) 3763 sigs = c->conf_sigalgs; 3764 else 3765 sigs = c->client_sigalgs; 3766 if (sigs) { 3767 idx = tls12_get_pkey_idx(sigs[1]); 3768 md = tls12_get_hash(sigs[0]); 3769 c->pkeys[idx].digest = md; 3770 c->pkeys[idx].valid_flags = CERT_PKEY_EXPLICIT_SIGN; 3771 if (idx == SSL_PKEY_RSA_SIGN) { 3772 c->pkeys[SSL_PKEY_RSA_ENC].valid_flags = 3773 CERT_PKEY_EXPLICIT_SIGN; 3774 c->pkeys[SSL_PKEY_RSA_ENC].digest = md; 3775 } 3776 } 3777 } 3778 # endif 3779 3780 for (i = 0, sigptr = c->shared_sigalgs; 3781 i < c->shared_sigalgslen; i++, sigptr++) { 3782 idx = tls12_get_pkey_idx(sigptr->rsign); 3783 if (idx > 0 && c->pkeys[idx].digest == NULL) { 3784 md = tls12_get_hash(sigptr->rhash); 3785 c->pkeys[idx].digest = md; 3786 c->pkeys[idx].valid_flags = CERT_PKEY_EXPLICIT_SIGN; 3787 if (idx == SSL_PKEY_RSA_SIGN) { 3788 c->pkeys[SSL_PKEY_RSA_ENC].valid_flags = 3789 CERT_PKEY_EXPLICIT_SIGN; 3790 c->pkeys[SSL_PKEY_RSA_ENC].digest = md; 3791 } 3792 } 3793 3794 } 3795 /* 3796 * In strict mode leave unset digests as NULL to indicate we can't use 3797 * the certificate for signing. 3798 */ 3799 if (!(s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) { 3800 /* 3801 * Set any remaining keys to default values. NOTE: if alg is not 3802 * supported it stays as NULL. 3803 */ 3804 # ifndef OPENSSL_NO_DSA 3805 if (!c->pkeys[SSL_PKEY_DSA_SIGN].digest) 3806 c->pkeys[SSL_PKEY_DSA_SIGN].digest = EVP_sha1(); 3807 # endif 3808 # ifndef OPENSSL_NO_RSA 3809 if (!c->pkeys[SSL_PKEY_RSA_SIGN].digest) { 3810 c->pkeys[SSL_PKEY_RSA_SIGN].digest = EVP_sha1(); 3811 c->pkeys[SSL_PKEY_RSA_ENC].digest = EVP_sha1(); 3812 } 3813 # endif 3814 # ifndef OPENSSL_NO_ECDSA 3815 if (!c->pkeys[SSL_PKEY_ECC].digest) 3816 c->pkeys[SSL_PKEY_ECC].digest = EVP_sha1(); 3817 # endif 3818 } 3819 return 1; 3820 } 3821 3822 int SSL_get_sigalgs(SSL *s, int idx, 3823 int *psign, int *phash, int *psignhash, 3824 unsigned char *rsig, unsigned char *rhash) 3825 { 3826 const unsigned char *psig = s->cert->peer_sigalgs; 3827 if (psig == NULL) 3828 return 0; 3829 if (idx >= 0) { 3830 idx <<= 1; 3831 if (idx >= (int)s->cert->peer_sigalgslen) 3832 return 0; 3833 psig += idx; 3834 if (rhash) 3835 *rhash = psig[0]; 3836 if (rsig) 3837 *rsig = psig[1]; 3838 tls1_lookup_sigalg(phash, psign, psignhash, psig); 3839 } 3840 return s->cert->peer_sigalgslen / 2; 3841 } 3842 3843 int SSL_get_shared_sigalgs(SSL *s, int idx, 3844 int *psign, int *phash, int *psignhash, 3845 unsigned char *rsig, unsigned char *rhash) 3846 { 3847 TLS_SIGALGS *shsigalgs = s->cert->shared_sigalgs; 3848 if (!shsigalgs || idx >= (int)s->cert->shared_sigalgslen) 3849 return 0; 3850 shsigalgs += idx; 3851 if (phash) 3852 *phash = shsigalgs->hash_nid; 3853 if (psign) 3854 *psign = shsigalgs->sign_nid; 3855 if (psignhash) 3856 *psignhash = shsigalgs->signandhash_nid; 3857 if (rsig) 3858 *rsig = shsigalgs->rsign; 3859 if (rhash) 3860 *rhash = shsigalgs->rhash; 3861 return s->cert->shared_sigalgslen; 3862 } 3863 3864 # ifndef OPENSSL_NO_HEARTBEATS 3865 int tls1_process_heartbeat(SSL *s) 3866 { 3867 unsigned char *p = &s->s3->rrec.data[0], *pl; 3868 unsigned short hbtype; 3869 unsigned int payload; 3870 unsigned int padding = 16; /* Use minimum padding */ 3871 3872 if (s->msg_callback) 3873 s->msg_callback(0, s->version, TLS1_RT_HEARTBEAT, 3874 &s->s3->rrec.data[0], s->s3->rrec.length, 3875 s, s->msg_callback_arg); 3876 3877 /* Read type and payload length first */ 3878 if (1 + 2 + 16 > s->s3->rrec.length) 3879 return 0; /* silently discard */ 3880 hbtype = *p++; 3881 n2s(p, payload); 3882 if (1 + 2 + payload + 16 > s->s3->rrec.length) 3883 return 0; /* silently discard per RFC 6520 sec. 4 */ 3884 pl = p; 3885 3886 if (hbtype == TLS1_HB_REQUEST) { 3887 unsigned char *buffer, *bp; 3888 int r; 3889 3890 /* 3891 * Allocate memory for the response, size is 1 bytes message type, 3892 * plus 2 bytes payload length, plus payload, plus padding 3893 */ 3894 buffer = OPENSSL_malloc(1 + 2 + payload + padding); 3895 if (buffer == NULL) 3896 return -1; 3897 bp = buffer; 3898 3899 /* Enter response type, length and copy payload */ 3900 *bp++ = TLS1_HB_RESPONSE; 3901 s2n(payload, bp); 3902 memcpy(bp, pl, payload); 3903 bp += payload; 3904 /* Random padding */ 3905 if (RAND_pseudo_bytes(bp, padding) < 0) { 3906 OPENSSL_free(buffer); 3907 return -1; 3908 } 3909 3910 r = ssl3_write_bytes(s, TLS1_RT_HEARTBEAT, buffer, 3911 3 + payload + padding); 3912 3913 if (r >= 0 && s->msg_callback) 3914 s->msg_callback(1, s->version, TLS1_RT_HEARTBEAT, 3915 buffer, 3 + payload + padding, 3916 s, s->msg_callback_arg); 3917 3918 OPENSSL_free(buffer); 3919 3920 if (r < 0) 3921 return r; 3922 } else if (hbtype == TLS1_HB_RESPONSE) { 3923 unsigned int seq; 3924 3925 /* 3926 * We only send sequence numbers (2 bytes unsigned int), and 16 3927 * random bytes, so we just try to read the sequence number 3928 */ 3929 n2s(pl, seq); 3930 3931 if (payload == 18 && seq == s->tlsext_hb_seq) { 3932 s->tlsext_hb_seq++; 3933 s->tlsext_hb_pending = 0; 3934 } 3935 } 3936 3937 return 0; 3938 } 3939 3940 int tls1_heartbeat(SSL *s) 3941 { 3942 unsigned char *buf, *p; 3943 int ret = -1; 3944 unsigned int payload = 18; /* Sequence number + random bytes */ 3945 unsigned int padding = 16; /* Use minimum padding */ 3946 3947 /* Only send if peer supports and accepts HB requests... */ 3948 if (!(s->tlsext_heartbeat & SSL_TLSEXT_HB_ENABLED) || 3949 s->tlsext_heartbeat & SSL_TLSEXT_HB_DONT_SEND_REQUESTS) { 3950 SSLerr(SSL_F_TLS1_HEARTBEAT, SSL_R_TLS_HEARTBEAT_PEER_DOESNT_ACCEPT); 3951 return -1; 3952 } 3953 3954 /* ...and there is none in flight yet... */ 3955 if (s->tlsext_hb_pending) { 3956 SSLerr(SSL_F_TLS1_HEARTBEAT, SSL_R_TLS_HEARTBEAT_PENDING); 3957 return -1; 3958 } 3959 3960 /* ...and no handshake in progress. */ 3961 if (SSL_in_init(s) || s->in_handshake) { 3962 SSLerr(SSL_F_TLS1_HEARTBEAT, SSL_R_UNEXPECTED_MESSAGE); 3963 return -1; 3964 } 3965 3966 /* 3967 * Check if padding is too long, payload and padding must not exceed 2^14 3968 * - 3 = 16381 bytes in total. 3969 */ 3970 OPENSSL_assert(payload + padding <= 16381); 3971 3972 /*- 3973 * Create HeartBeat message, we just use a sequence number 3974 * as payload to distuingish different messages and add 3975 * some random stuff. 3976 * - Message Type, 1 byte 3977 * - Payload Length, 2 bytes (unsigned int) 3978 * - Payload, the sequence number (2 bytes uint) 3979 * - Payload, random bytes (16 bytes uint) 3980 * - Padding 3981 */ 3982 buf = OPENSSL_malloc(1 + 2 + payload + padding); 3983 p = buf; 3984 /* Message Type */ 3985 *p++ = TLS1_HB_REQUEST; 3986 /* Payload length (18 bytes here) */ 3987 s2n(payload, p); 3988 /* Sequence number */ 3989 s2n(s->tlsext_hb_seq, p); 3990 /* 16 random bytes */ 3991 if (RAND_pseudo_bytes(p, 16) < 0) { 3992 SSLerr(SSL_F_TLS1_HEARTBEAT, ERR_R_INTERNAL_ERROR); 3993 goto err; 3994 } 3995 p += 16; 3996 /* Random padding */ 3997 if (RAND_pseudo_bytes(p, padding) < 0) { 3998 SSLerr(SSL_F_TLS1_HEARTBEAT, ERR_R_INTERNAL_ERROR); 3999 goto err; 4000 } 4001 4002 ret = ssl3_write_bytes(s, TLS1_RT_HEARTBEAT, buf, 3 + payload + padding); 4003 if (ret >= 0) { 4004 if (s->msg_callback) 4005 s->msg_callback(1, s->version, TLS1_RT_HEARTBEAT, 4006 buf, 3 + payload + padding, 4007 s, s->msg_callback_arg); 4008 4009 s->tlsext_hb_pending = 1; 4010 } 4011 4012 err: 4013 OPENSSL_free(buf); 4014 4015 return ret; 4016 } 4017 # endif 4018 4019 # define MAX_SIGALGLEN (TLSEXT_hash_num * TLSEXT_signature_num * 2) 4020 4021 typedef struct { 4022 size_t sigalgcnt; 4023 int sigalgs[MAX_SIGALGLEN]; 4024 } sig_cb_st; 4025 4026 static int sig_cb(const char *elem, int len, void *arg) 4027 { 4028 sig_cb_st *sarg = arg; 4029 size_t i; 4030 char etmp[20], *p; 4031 int sig_alg, hash_alg; 4032 if (elem == NULL) 4033 return 0; 4034 if (sarg->sigalgcnt == MAX_SIGALGLEN) 4035 return 0; 4036 if (len > (int)(sizeof(etmp) - 1)) 4037 return 0; 4038 memcpy(etmp, elem, len); 4039 etmp[len] = 0; 4040 p = strchr(etmp, '+'); 4041 if (!p) 4042 return 0; 4043 *p = 0; 4044 p++; 4045 if (!*p) 4046 return 0; 4047 4048 if (!strcmp(etmp, "RSA")) 4049 sig_alg = EVP_PKEY_RSA; 4050 else if (!strcmp(etmp, "DSA")) 4051 sig_alg = EVP_PKEY_DSA; 4052 else if (!strcmp(etmp, "ECDSA")) 4053 sig_alg = EVP_PKEY_EC; 4054 else 4055 return 0; 4056 4057 hash_alg = OBJ_sn2nid(p); 4058 if (hash_alg == NID_undef) 4059 hash_alg = OBJ_ln2nid(p); 4060 if (hash_alg == NID_undef) 4061 return 0; 4062 4063 for (i = 0; i < sarg->sigalgcnt; i += 2) { 4064 if (sarg->sigalgs[i] == sig_alg && sarg->sigalgs[i + 1] == hash_alg) 4065 return 0; 4066 } 4067 sarg->sigalgs[sarg->sigalgcnt++] = hash_alg; 4068 sarg->sigalgs[sarg->sigalgcnt++] = sig_alg; 4069 return 1; 4070 } 4071 4072 /* 4073 * Set suppored signature algorithms based on a colon separated list of the 4074 * form sig+hash e.g. RSA+SHA512:DSA+SHA512 4075 */ 4076 int tls1_set_sigalgs_list(CERT *c, const char *str, int client) 4077 { 4078 sig_cb_st sig; 4079 sig.sigalgcnt = 0; 4080 if (!CONF_parse_list(str, ':', 1, sig_cb, &sig)) 4081 return 0; 4082 if (c == NULL) 4083 return 1; 4084 return tls1_set_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client); 4085 } 4086 4087 int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, 4088 int client) 4089 { 4090 unsigned char *sigalgs, *sptr; 4091 int rhash, rsign; 4092 size_t i; 4093 if (salglen & 1) 4094 return 0; 4095 sigalgs = OPENSSL_malloc(salglen); 4096 if (sigalgs == NULL) 4097 return 0; 4098 for (i = 0, sptr = sigalgs; i < salglen; i += 2) { 4099 rhash = tls12_find_id(*psig_nids++, tls12_md, 4100 sizeof(tls12_md) / sizeof(tls12_lookup)); 4101 rsign = tls12_find_id(*psig_nids++, tls12_sig, 4102 sizeof(tls12_sig) / sizeof(tls12_lookup)); 4103 4104 if (rhash == -1 || rsign == -1) 4105 goto err; 4106 *sptr++ = rhash; 4107 *sptr++ = rsign; 4108 } 4109 4110 if (client) { 4111 if (c->client_sigalgs) 4112 OPENSSL_free(c->client_sigalgs); 4113 c->client_sigalgs = sigalgs; 4114 c->client_sigalgslen = salglen; 4115 } else { 4116 if (c->conf_sigalgs) 4117 OPENSSL_free(c->conf_sigalgs); 4118 c->conf_sigalgs = sigalgs; 4119 c->conf_sigalgslen = salglen; 4120 } 4121 4122 return 1; 4123 4124 err: 4125 OPENSSL_free(sigalgs); 4126 return 0; 4127 } 4128 4129 static int tls1_check_sig_alg(CERT *c, X509 *x, int default_nid) 4130 { 4131 int sig_nid; 4132 size_t i; 4133 if (default_nid == -1) 4134 return 1; 4135 sig_nid = X509_get_signature_nid(x); 4136 if (default_nid) 4137 return sig_nid == default_nid ? 1 : 0; 4138 for (i = 0; i < c->shared_sigalgslen; i++) 4139 if (sig_nid == c->shared_sigalgs[i].signandhash_nid) 4140 return 1; 4141 return 0; 4142 } 4143 4144 /* Check to see if a certificate issuer name matches list of CA names */ 4145 static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x) 4146 { 4147 X509_NAME *nm; 4148 int i; 4149 nm = X509_get_issuer_name(x); 4150 for (i = 0; i < sk_X509_NAME_num(names); i++) { 4151 if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i))) 4152 return 1; 4153 } 4154 return 0; 4155 } 4156 4157 /* 4158 * Check certificate chain is consistent with TLS extensions and is usable by 4159 * server. This servers two purposes: it allows users to check chains before 4160 * passing them to the server and it allows the server to check chains before 4161 * attempting to use them. 4162 */ 4163 4164 /* Flags which need to be set for a certificate when stict mode not set */ 4165 4166 # define CERT_PKEY_VALID_FLAGS \ 4167 (CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM) 4168 /* Strict mode flags */ 4169 # define CERT_PKEY_STRICT_FLAGS \ 4170 (CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \ 4171 | CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE) 4172 4173 int tls1_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain, 4174 int idx) 4175 { 4176 int i; 4177 int rv = 0; 4178 int check_flags = 0, strict_mode; 4179 CERT_PKEY *cpk = NULL; 4180 CERT *c = s->cert; 4181 unsigned int suiteb_flags = tls1_suiteb(s); 4182 /* idx == -1 means checking server chains */ 4183 if (idx != -1) { 4184 /* idx == -2 means checking client certificate chains */ 4185 if (idx == -2) { 4186 cpk = c->key; 4187 idx = cpk - c->pkeys; 4188 } else 4189 cpk = c->pkeys + idx; 4190 x = cpk->x509; 4191 pk = cpk->privatekey; 4192 chain = cpk->chain; 4193 strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT; 4194 /* If no cert or key, forget it */ 4195 if (!x || !pk) 4196 goto end; 4197 # ifdef OPENSSL_SSL_DEBUG_BROKEN_PROTOCOL 4198 /* Allow any certificate to pass test */ 4199 if (s->cert->cert_flags & SSL_CERT_FLAG_BROKEN_PROTOCOL) { 4200 rv = CERT_PKEY_STRICT_FLAGS | CERT_PKEY_EXPLICIT_SIGN | 4201 CERT_PKEY_VALID | CERT_PKEY_SIGN; 4202 cpk->valid_flags = rv; 4203 return rv; 4204 } 4205 # endif 4206 } else { 4207 if (!x || !pk) 4208 return 0; 4209 idx = ssl_cert_type(x, pk); 4210 if (idx == -1) 4211 return 0; 4212 cpk = c->pkeys + idx; 4213 if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT) 4214 check_flags = CERT_PKEY_STRICT_FLAGS; 4215 else 4216 check_flags = CERT_PKEY_VALID_FLAGS; 4217 strict_mode = 1; 4218 } 4219 4220 if (suiteb_flags) { 4221 int ok; 4222 if (check_flags) 4223 check_flags |= CERT_PKEY_SUITEB; 4224 ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags); 4225 if (ok == X509_V_OK) 4226 rv |= CERT_PKEY_SUITEB; 4227 else if (!check_flags) 4228 goto end; 4229 } 4230 4231 /* 4232 * Check all signature algorithms are consistent with signature 4233 * algorithms extension if TLS 1.2 or later and strict mode. 4234 */ 4235 if (TLS1_get_version(s) >= TLS1_2_VERSION && strict_mode) { 4236 int default_nid; 4237 unsigned char rsign = 0; 4238 if (c->peer_sigalgs) 4239 default_nid = 0; 4240 /* If no sigalgs extension use defaults from RFC5246 */ 4241 else { 4242 switch (idx) { 4243 case SSL_PKEY_RSA_ENC: 4244 case SSL_PKEY_RSA_SIGN: 4245 case SSL_PKEY_DH_RSA: 4246 rsign = TLSEXT_signature_rsa; 4247 default_nid = NID_sha1WithRSAEncryption; 4248 break; 4249 4250 case SSL_PKEY_DSA_SIGN: 4251 case SSL_PKEY_DH_DSA: 4252 rsign = TLSEXT_signature_dsa; 4253 default_nid = NID_dsaWithSHA1; 4254 break; 4255 4256 case SSL_PKEY_ECC: 4257 rsign = TLSEXT_signature_ecdsa; 4258 default_nid = NID_ecdsa_with_SHA1; 4259 break; 4260 4261 default: 4262 default_nid = -1; 4263 break; 4264 } 4265 } 4266 /* 4267 * If peer sent no signature algorithms extension and we have set 4268 * preferred signature algorithms check we support sha1. 4269 */ 4270 if (default_nid > 0 && c->conf_sigalgs) { 4271 size_t j; 4272 const unsigned char *p = c->conf_sigalgs; 4273 for (j = 0; j < c->conf_sigalgslen; j += 2, p += 2) { 4274 if (p[0] == TLSEXT_hash_sha1 && p[1] == rsign) 4275 break; 4276 } 4277 if (j == c->conf_sigalgslen) { 4278 if (check_flags) 4279 goto skip_sigs; 4280 else 4281 goto end; 4282 } 4283 } 4284 /* Check signature algorithm of each cert in chain */ 4285 if (!tls1_check_sig_alg(c, x, default_nid)) { 4286 if (!check_flags) 4287 goto end; 4288 } else 4289 rv |= CERT_PKEY_EE_SIGNATURE; 4290 rv |= CERT_PKEY_CA_SIGNATURE; 4291 for (i = 0; i < sk_X509_num(chain); i++) { 4292 if (!tls1_check_sig_alg(c, sk_X509_value(chain, i), default_nid)) { 4293 if (check_flags) { 4294 rv &= ~CERT_PKEY_CA_SIGNATURE; 4295 break; 4296 } else 4297 goto end; 4298 } 4299 } 4300 } 4301 /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */ 4302 else if (check_flags) 4303 rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE; 4304 skip_sigs: 4305 /* Check cert parameters are consistent */ 4306 if (tls1_check_cert_param(s, x, check_flags ? 1 : 2)) 4307 rv |= CERT_PKEY_EE_PARAM; 4308 else if (!check_flags) 4309 goto end; 4310 if (!s->server) 4311 rv |= CERT_PKEY_CA_PARAM; 4312 /* In strict mode check rest of chain too */ 4313 else if (strict_mode) { 4314 rv |= CERT_PKEY_CA_PARAM; 4315 for (i = 0; i < sk_X509_num(chain); i++) { 4316 X509 *ca = sk_X509_value(chain, i); 4317 if (!tls1_check_cert_param(s, ca, 0)) { 4318 if (check_flags) { 4319 rv &= ~CERT_PKEY_CA_PARAM; 4320 break; 4321 } else 4322 goto end; 4323 } 4324 } 4325 } 4326 if (!s->server && strict_mode) { 4327 STACK_OF(X509_NAME) *ca_dn; 4328 int check_type = 0; 4329 switch (pk->type) { 4330 case EVP_PKEY_RSA: 4331 check_type = TLS_CT_RSA_SIGN; 4332 break; 4333 case EVP_PKEY_DSA: 4334 check_type = TLS_CT_DSS_SIGN; 4335 break; 4336 case EVP_PKEY_EC: 4337 check_type = TLS_CT_ECDSA_SIGN; 4338 break; 4339 case EVP_PKEY_DH: 4340 case EVP_PKEY_DHX: 4341 { 4342 int cert_type = X509_certificate_type(x, pk); 4343 if (cert_type & EVP_PKS_RSA) 4344 check_type = TLS_CT_RSA_FIXED_DH; 4345 if (cert_type & EVP_PKS_DSA) 4346 check_type = TLS_CT_DSS_FIXED_DH; 4347 } 4348 } 4349 if (check_type) { 4350 const unsigned char *ctypes; 4351 int ctypelen; 4352 if (c->ctypes) { 4353 ctypes = c->ctypes; 4354 ctypelen = (int)c->ctype_num; 4355 } else { 4356 ctypes = (unsigned char *)s->s3->tmp.ctype; 4357 ctypelen = s->s3->tmp.ctype_num; 4358 } 4359 for (i = 0; i < ctypelen; i++) { 4360 if (ctypes[i] == check_type) { 4361 rv |= CERT_PKEY_CERT_TYPE; 4362 break; 4363 } 4364 } 4365 if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags) 4366 goto end; 4367 } else 4368 rv |= CERT_PKEY_CERT_TYPE; 4369 4370 ca_dn = s->s3->tmp.ca_names; 4371 4372 if (!sk_X509_NAME_num(ca_dn)) 4373 rv |= CERT_PKEY_ISSUER_NAME; 4374 4375 if (!(rv & CERT_PKEY_ISSUER_NAME)) { 4376 if (ssl_check_ca_name(ca_dn, x)) 4377 rv |= CERT_PKEY_ISSUER_NAME; 4378 } 4379 if (!(rv & CERT_PKEY_ISSUER_NAME)) { 4380 for (i = 0; i < sk_X509_num(chain); i++) { 4381 X509 *xtmp = sk_X509_value(chain, i); 4382 if (ssl_check_ca_name(ca_dn, xtmp)) { 4383 rv |= CERT_PKEY_ISSUER_NAME; 4384 break; 4385 } 4386 } 4387 } 4388 if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME)) 4389 goto end; 4390 } else 4391 rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE; 4392 4393 if (!check_flags || (rv & check_flags) == check_flags) 4394 rv |= CERT_PKEY_VALID; 4395 4396 end: 4397 4398 if (TLS1_get_version(s) >= TLS1_2_VERSION) { 4399 if (cpk->valid_flags & CERT_PKEY_EXPLICIT_SIGN) 4400 rv |= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN; 4401 else if (cpk->digest) 4402 rv |= CERT_PKEY_SIGN; 4403 } else 4404 rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN; 4405 4406 /* 4407 * When checking a CERT_PKEY structure all flags are irrelevant if the 4408 * chain is invalid. 4409 */ 4410 if (!check_flags) { 4411 if (rv & CERT_PKEY_VALID) 4412 cpk->valid_flags = rv; 4413 else { 4414 /* Preserve explicit sign flag, clear rest */ 4415 cpk->valid_flags &= CERT_PKEY_EXPLICIT_SIGN; 4416 return 0; 4417 } 4418 } 4419 return rv; 4420 } 4421 4422 /* Set validity of certificates in an SSL structure */ 4423 void tls1_set_cert_validity(SSL *s) 4424 { 4425 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_ENC); 4426 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_SIGN); 4427 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN); 4428 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DH_RSA); 4429 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DH_DSA); 4430 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC); 4431 } 4432 4433 /* User level utiity function to check a chain is suitable */ 4434 int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain) 4435 { 4436 return tls1_check_chain(s, x, pk, chain, -1); 4437 } 4438 4439 #endif 4440