1 /* 2 * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. 3 * 4 * Licensed under the OpenSSL license (the "License"). You may not use 5 * this file except in compliance with the License. You can obtain a copy 6 * in the file LICENSE in the source distribution or at 7 * https://www.openssl.org/source/license.html 8 */ 9 10 #include <stdio.h> 11 #include <stdlib.h> 12 #include <openssl/objects.h> 13 #include <openssl/evp.h> 14 #include <openssl/hmac.h> 15 #include <openssl/ocsp.h> 16 #include <openssl/conf.h> 17 #include <openssl/x509v3.h> 18 #include <openssl/dh.h> 19 #include <openssl/bn.h> 20 #include "internal/nelem.h" 21 #include "ssl_locl.h" 22 #include <openssl/ct.h> 23 24 SSL3_ENC_METHOD const TLSv1_enc_data = { 25 tls1_enc, 26 tls1_mac, 27 tls1_setup_key_block, 28 tls1_generate_master_secret, 29 tls1_change_cipher_state, 30 tls1_final_finish_mac, 31 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE, 32 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE, 33 tls1_alert_code, 34 tls1_export_keying_material, 35 0, 36 ssl3_set_handshake_header, 37 tls_close_construct_packet, 38 ssl3_handshake_write 39 }; 40 41 SSL3_ENC_METHOD const TLSv1_1_enc_data = { 42 tls1_enc, 43 tls1_mac, 44 tls1_setup_key_block, 45 tls1_generate_master_secret, 46 tls1_change_cipher_state, 47 tls1_final_finish_mac, 48 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE, 49 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE, 50 tls1_alert_code, 51 tls1_export_keying_material, 52 SSL_ENC_FLAG_EXPLICIT_IV, 53 ssl3_set_handshake_header, 54 tls_close_construct_packet, 55 ssl3_handshake_write 56 }; 57 58 SSL3_ENC_METHOD const TLSv1_2_enc_data = { 59 tls1_enc, 60 tls1_mac, 61 tls1_setup_key_block, 62 tls1_generate_master_secret, 63 tls1_change_cipher_state, 64 tls1_final_finish_mac, 65 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE, 66 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE, 67 tls1_alert_code, 68 tls1_export_keying_material, 69 SSL_ENC_FLAG_EXPLICIT_IV | SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF 70 | SSL_ENC_FLAG_TLS1_2_CIPHERS, 71 ssl3_set_handshake_header, 72 tls_close_construct_packet, 73 ssl3_handshake_write 74 }; 75 76 SSL3_ENC_METHOD const TLSv1_3_enc_data = { 77 tls13_enc, 78 tls1_mac, 79 tls13_setup_key_block, 80 tls13_generate_master_secret, 81 tls13_change_cipher_state, 82 tls13_final_finish_mac, 83 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE, 84 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE, 85 tls13_alert_code, 86 tls13_export_keying_material, 87 SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF, 88 ssl3_set_handshake_header, 89 tls_close_construct_packet, 90 ssl3_handshake_write 91 }; 92 93 long tls1_default_timeout(void) 94 { 95 /* 96 * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for 97 * http, the cache would over fill 98 */ 99 return (60 * 60 * 2); 100 } 101 102 int tls1_new(SSL *s) 103 { 104 if (!ssl3_new(s)) 105 return 0; 106 if (!s->method->ssl_clear(s)) 107 return 0; 108 109 return 1; 110 } 111 112 void tls1_free(SSL *s) 113 { 114 OPENSSL_free(s->ext.session_ticket); 115 ssl3_free(s); 116 } 117 118 int tls1_clear(SSL *s) 119 { 120 if (!ssl3_clear(s)) 121 return 0; 122 123 if (s->method->version == TLS_ANY_VERSION) 124 s->version = TLS_MAX_VERSION; 125 else 126 s->version = s->method->version; 127 128 return 1; 129 } 130 131 #ifndef OPENSSL_NO_EC 132 133 /* 134 * Table of curve information. 135 * Do not delete entries or reorder this array! It is used as a lookup 136 * table: the index of each entry is one less than the TLS curve id. 137 */ 138 static const TLS_GROUP_INFO nid_list[] = { 139 {NID_sect163k1, 80, TLS_CURVE_CHAR2}, /* sect163k1 (1) */ 140 {NID_sect163r1, 80, TLS_CURVE_CHAR2}, /* sect163r1 (2) */ 141 {NID_sect163r2, 80, TLS_CURVE_CHAR2}, /* sect163r2 (3) */ 142 {NID_sect193r1, 80, TLS_CURVE_CHAR2}, /* sect193r1 (4) */ 143 {NID_sect193r2, 80, TLS_CURVE_CHAR2}, /* sect193r2 (5) */ 144 {NID_sect233k1, 112, TLS_CURVE_CHAR2}, /* sect233k1 (6) */ 145 {NID_sect233r1, 112, TLS_CURVE_CHAR2}, /* sect233r1 (7) */ 146 {NID_sect239k1, 112, TLS_CURVE_CHAR2}, /* sect239k1 (8) */ 147 {NID_sect283k1, 128, TLS_CURVE_CHAR2}, /* sect283k1 (9) */ 148 {NID_sect283r1, 128, TLS_CURVE_CHAR2}, /* sect283r1 (10) */ 149 {NID_sect409k1, 192, TLS_CURVE_CHAR2}, /* sect409k1 (11) */ 150 {NID_sect409r1, 192, TLS_CURVE_CHAR2}, /* sect409r1 (12) */ 151 {NID_sect571k1, 256, TLS_CURVE_CHAR2}, /* sect571k1 (13) */ 152 {NID_sect571r1, 256, TLS_CURVE_CHAR2}, /* sect571r1 (14) */ 153 {NID_secp160k1, 80, TLS_CURVE_PRIME}, /* secp160k1 (15) */ 154 {NID_secp160r1, 80, TLS_CURVE_PRIME}, /* secp160r1 (16) */ 155 {NID_secp160r2, 80, TLS_CURVE_PRIME}, /* secp160r2 (17) */ 156 {NID_secp192k1, 80, TLS_CURVE_PRIME}, /* secp192k1 (18) */ 157 {NID_X9_62_prime192v1, 80, TLS_CURVE_PRIME}, /* secp192r1 (19) */ 158 {NID_secp224k1, 112, TLS_CURVE_PRIME}, /* secp224k1 (20) */ 159 {NID_secp224r1, 112, TLS_CURVE_PRIME}, /* secp224r1 (21) */ 160 {NID_secp256k1, 128, TLS_CURVE_PRIME}, /* secp256k1 (22) */ 161 {NID_X9_62_prime256v1, 128, TLS_CURVE_PRIME}, /* secp256r1 (23) */ 162 {NID_secp384r1, 192, TLS_CURVE_PRIME}, /* secp384r1 (24) */ 163 {NID_secp521r1, 256, TLS_CURVE_PRIME}, /* secp521r1 (25) */ 164 {NID_brainpoolP256r1, 128, TLS_CURVE_PRIME}, /* brainpoolP256r1 (26) */ 165 {NID_brainpoolP384r1, 192, TLS_CURVE_PRIME}, /* brainpoolP384r1 (27) */ 166 {NID_brainpoolP512r1, 256, TLS_CURVE_PRIME}, /* brainpool512r1 (28) */ 167 {EVP_PKEY_X25519, 128, TLS_CURVE_CUSTOM}, /* X25519 (29) */ 168 {EVP_PKEY_X448, 224, TLS_CURVE_CUSTOM}, /* X448 (30) */ 169 }; 170 171 static const unsigned char ecformats_default[] = { 172 TLSEXT_ECPOINTFORMAT_uncompressed, 173 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime, 174 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2 175 }; 176 177 /* The default curves */ 178 static const uint16_t eccurves_default[] = { 179 29, /* X25519 (29) */ 180 23, /* secp256r1 (23) */ 181 30, /* X448 (30) */ 182 25, /* secp521r1 (25) */ 183 24, /* secp384r1 (24) */ 184 }; 185 186 static const uint16_t suiteb_curves[] = { 187 TLSEXT_curve_P_256, 188 TLSEXT_curve_P_384 189 }; 190 191 const TLS_GROUP_INFO *tls1_group_id_lookup(uint16_t group_id) 192 { 193 /* ECC curves from RFC 4492 and RFC 7027 */ 194 if (group_id < 1 || group_id > OSSL_NELEM(nid_list)) 195 return NULL; 196 return &nid_list[group_id - 1]; 197 } 198 199 static uint16_t tls1_nid2group_id(int nid) 200 { 201 size_t i; 202 for (i = 0; i < OSSL_NELEM(nid_list); i++) { 203 if (nid_list[i].nid == nid) 204 return (uint16_t)(i + 1); 205 } 206 return 0; 207 } 208 209 /* 210 * Set *pgroups to the supported groups list and *pgroupslen to 211 * the number of groups supported. 212 */ 213 void tls1_get_supported_groups(SSL *s, const uint16_t **pgroups, 214 size_t *pgroupslen) 215 { 216 217 /* For Suite B mode only include P-256, P-384 */ 218 switch (tls1_suiteb(s)) { 219 case SSL_CERT_FLAG_SUITEB_128_LOS: 220 *pgroups = suiteb_curves; 221 *pgroupslen = OSSL_NELEM(suiteb_curves); 222 break; 223 224 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY: 225 *pgroups = suiteb_curves; 226 *pgroupslen = 1; 227 break; 228 229 case SSL_CERT_FLAG_SUITEB_192_LOS: 230 *pgroups = suiteb_curves + 1; 231 *pgroupslen = 1; 232 break; 233 234 default: 235 if (s->ext.supportedgroups == NULL) { 236 *pgroups = eccurves_default; 237 *pgroupslen = OSSL_NELEM(eccurves_default); 238 } else { 239 *pgroups = s->ext.supportedgroups; 240 *pgroupslen = s->ext.supportedgroups_len; 241 } 242 break; 243 } 244 } 245 246 /* See if curve is allowed by security callback */ 247 int tls_curve_allowed(SSL *s, uint16_t curve, int op) 248 { 249 const TLS_GROUP_INFO *cinfo = tls1_group_id_lookup(curve); 250 unsigned char ctmp[2]; 251 252 if (cinfo == NULL) 253 return 0; 254 # ifdef OPENSSL_NO_EC2M 255 if (cinfo->flags & TLS_CURVE_CHAR2) 256 return 0; 257 # endif 258 ctmp[0] = curve >> 8; 259 ctmp[1] = curve & 0xff; 260 return ssl_security(s, op, cinfo->secbits, cinfo->nid, (void *)ctmp); 261 } 262 263 /* Return 1 if "id" is in "list" */ 264 static int tls1_in_list(uint16_t id, const uint16_t *list, size_t listlen) 265 { 266 size_t i; 267 for (i = 0; i < listlen; i++) 268 if (list[i] == id) 269 return 1; 270 return 0; 271 } 272 273 /*- 274 * For nmatch >= 0, return the id of the |nmatch|th shared group or 0 275 * if there is no match. 276 * For nmatch == -1, return number of matches 277 * For nmatch == -2, return the id of the group to use for 278 * a tmp key, or 0 if there is no match. 279 */ 280 uint16_t tls1_shared_group(SSL *s, int nmatch) 281 { 282 const uint16_t *pref, *supp; 283 size_t num_pref, num_supp, i; 284 int k; 285 286 /* Can't do anything on client side */ 287 if (s->server == 0) 288 return 0; 289 if (nmatch == -2) { 290 if (tls1_suiteb(s)) { 291 /* 292 * For Suite B ciphersuite determines curve: we already know 293 * these are acceptable due to previous checks. 294 */ 295 unsigned long cid = s->s3->tmp.new_cipher->id; 296 297 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) 298 return TLSEXT_curve_P_256; 299 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) 300 return TLSEXT_curve_P_384; 301 /* Should never happen */ 302 return 0; 303 } 304 /* If not Suite B just return first preference shared curve */ 305 nmatch = 0; 306 } 307 /* 308 * If server preference set, our groups are the preference order 309 * otherwise peer decides. 310 */ 311 if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) { 312 tls1_get_supported_groups(s, &pref, &num_pref); 313 tls1_get_peer_groups(s, &supp, &num_supp); 314 } else { 315 tls1_get_peer_groups(s, &pref, &num_pref); 316 tls1_get_supported_groups(s, &supp, &num_supp); 317 } 318 319 for (k = 0, i = 0; i < num_pref; i++) { 320 uint16_t id = pref[i]; 321 322 if (!tls1_in_list(id, supp, num_supp) 323 || !tls_curve_allowed(s, id, SSL_SECOP_CURVE_SHARED)) 324 continue; 325 if (nmatch == k) 326 return id; 327 k++; 328 } 329 if (nmatch == -1) 330 return k; 331 /* Out of range (nmatch > k). */ 332 return 0; 333 } 334 335 int tls1_set_groups(uint16_t **pext, size_t *pextlen, 336 int *groups, size_t ngroups) 337 { 338 uint16_t *glist; 339 size_t i; 340 /* 341 * Bitmap of groups included to detect duplicates: only works while group 342 * ids < 32 343 */ 344 unsigned long dup_list = 0; 345 346 if (ngroups == 0) { 347 SSLerr(SSL_F_TLS1_SET_GROUPS, SSL_R_BAD_LENGTH); 348 return 0; 349 } 350 if ((glist = OPENSSL_malloc(ngroups * sizeof(*glist))) == NULL) { 351 SSLerr(SSL_F_TLS1_SET_GROUPS, ERR_R_MALLOC_FAILURE); 352 return 0; 353 } 354 for (i = 0; i < ngroups; i++) { 355 unsigned long idmask; 356 uint16_t id; 357 /* TODO(TLS1.3): Convert for DH groups */ 358 id = tls1_nid2group_id(groups[i]); 359 idmask = 1L << id; 360 if (!id || (dup_list & idmask)) { 361 OPENSSL_free(glist); 362 return 0; 363 } 364 dup_list |= idmask; 365 glist[i] = id; 366 } 367 OPENSSL_free(*pext); 368 *pext = glist; 369 *pextlen = ngroups; 370 return 1; 371 } 372 373 # define MAX_CURVELIST OSSL_NELEM(nid_list) 374 375 typedef struct { 376 size_t nidcnt; 377 int nid_arr[MAX_CURVELIST]; 378 } nid_cb_st; 379 380 static int nid_cb(const char *elem, int len, void *arg) 381 { 382 nid_cb_st *narg = arg; 383 size_t i; 384 int nid; 385 char etmp[20]; 386 if (elem == NULL) 387 return 0; 388 if (narg->nidcnt == MAX_CURVELIST) 389 return 0; 390 if (len > (int)(sizeof(etmp) - 1)) 391 return 0; 392 memcpy(etmp, elem, len); 393 etmp[len] = 0; 394 nid = EC_curve_nist2nid(etmp); 395 if (nid == NID_undef) 396 nid = OBJ_sn2nid(etmp); 397 if (nid == NID_undef) 398 nid = OBJ_ln2nid(etmp); 399 if (nid == NID_undef) 400 return 0; 401 for (i = 0; i < narg->nidcnt; i++) 402 if (narg->nid_arr[i] == nid) 403 return 0; 404 narg->nid_arr[narg->nidcnt++] = nid; 405 return 1; 406 } 407 408 /* Set groups based on a colon separate list */ 409 int tls1_set_groups_list(uint16_t **pext, size_t *pextlen, const char *str) 410 { 411 nid_cb_st ncb; 412 ncb.nidcnt = 0; 413 if (!CONF_parse_list(str, ':', 1, nid_cb, &ncb)) 414 return 0; 415 if (pext == NULL) 416 return 1; 417 return tls1_set_groups(pext, pextlen, ncb.nid_arr, ncb.nidcnt); 418 } 419 /* Return group id of a key */ 420 static uint16_t tls1_get_group_id(EVP_PKEY *pkey) 421 { 422 EC_KEY *ec = EVP_PKEY_get0_EC_KEY(pkey); 423 const EC_GROUP *grp; 424 425 if (ec == NULL) 426 return 0; 427 grp = EC_KEY_get0_group(ec); 428 return tls1_nid2group_id(EC_GROUP_get_curve_name(grp)); 429 } 430 431 /* Check a key is compatible with compression extension */ 432 static int tls1_check_pkey_comp(SSL *s, EVP_PKEY *pkey) 433 { 434 const EC_KEY *ec; 435 const EC_GROUP *grp; 436 unsigned char comp_id; 437 size_t i; 438 439 /* If not an EC key nothing to check */ 440 if (EVP_PKEY_id(pkey) != EVP_PKEY_EC) 441 return 1; 442 ec = EVP_PKEY_get0_EC_KEY(pkey); 443 grp = EC_KEY_get0_group(ec); 444 445 /* Get required compression id */ 446 if (EC_KEY_get_conv_form(ec) == POINT_CONVERSION_UNCOMPRESSED) { 447 comp_id = TLSEXT_ECPOINTFORMAT_uncompressed; 448 } else if (SSL_IS_TLS13(s)) { 449 /* 450 * ec_point_formats extension is not used in TLSv1.3 so we ignore 451 * this check. 452 */ 453 return 1; 454 } else { 455 int field_type = EC_METHOD_get_field_type(EC_GROUP_method_of(grp)); 456 457 if (field_type == NID_X9_62_prime_field) 458 comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime; 459 else if (field_type == NID_X9_62_characteristic_two_field) 460 comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2; 461 else 462 return 0; 463 } 464 /* 465 * If point formats extension present check it, otherwise everything is 466 * supported (see RFC4492). 467 */ 468 if (s->session->ext.ecpointformats == NULL) 469 return 1; 470 471 for (i = 0; i < s->session->ext.ecpointformats_len; i++) { 472 if (s->session->ext.ecpointformats[i] == comp_id) 473 return 1; 474 } 475 return 0; 476 } 477 478 /* Check a group id matches preferences */ 479 int tls1_check_group_id(SSL *s, uint16_t group_id, int check_own_groups) 480 { 481 const uint16_t *groups; 482 size_t groups_len; 483 484 if (group_id == 0) 485 return 0; 486 487 /* Check for Suite B compliance */ 488 if (tls1_suiteb(s) && s->s3->tmp.new_cipher != NULL) { 489 unsigned long cid = s->s3->tmp.new_cipher->id; 490 491 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) { 492 if (group_id != TLSEXT_curve_P_256) 493 return 0; 494 } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) { 495 if (group_id != TLSEXT_curve_P_384) 496 return 0; 497 } else { 498 /* Should never happen */ 499 return 0; 500 } 501 } 502 503 if (check_own_groups) { 504 /* Check group is one of our preferences */ 505 tls1_get_supported_groups(s, &groups, &groups_len); 506 if (!tls1_in_list(group_id, groups, groups_len)) 507 return 0; 508 } 509 510 if (!tls_curve_allowed(s, group_id, SSL_SECOP_CURVE_CHECK)) 511 return 0; 512 513 /* For clients, nothing more to check */ 514 if (!s->server) 515 return 1; 516 517 /* Check group is one of peers preferences */ 518 tls1_get_peer_groups(s, &groups, &groups_len); 519 520 /* 521 * RFC 4492 does not require the supported elliptic curves extension 522 * so if it is not sent we can just choose any curve. 523 * It is invalid to send an empty list in the supported groups 524 * extension, so groups_len == 0 always means no extension. 525 */ 526 if (groups_len == 0) 527 return 1; 528 return tls1_in_list(group_id, groups, groups_len); 529 } 530 531 void tls1_get_formatlist(SSL *s, const unsigned char **pformats, 532 size_t *num_formats) 533 { 534 /* 535 * If we have a custom point format list use it otherwise use default 536 */ 537 if (s->ext.ecpointformats) { 538 *pformats = s->ext.ecpointformats; 539 *num_formats = s->ext.ecpointformats_len; 540 } else { 541 *pformats = ecformats_default; 542 /* For Suite B we don't support char2 fields */ 543 if (tls1_suiteb(s)) 544 *num_formats = sizeof(ecformats_default) - 1; 545 else 546 *num_formats = sizeof(ecformats_default); 547 } 548 } 549 550 /* 551 * Check cert parameters compatible with extensions: currently just checks EC 552 * certificates have compatible curves and compression. 553 */ 554 static int tls1_check_cert_param(SSL *s, X509 *x, int check_ee_md) 555 { 556 uint16_t group_id; 557 EVP_PKEY *pkey; 558 pkey = X509_get0_pubkey(x); 559 if (pkey == NULL) 560 return 0; 561 /* If not EC nothing to do */ 562 if (EVP_PKEY_id(pkey) != EVP_PKEY_EC) 563 return 1; 564 /* Check compression */ 565 if (!tls1_check_pkey_comp(s, pkey)) 566 return 0; 567 group_id = tls1_get_group_id(pkey); 568 /* 569 * For a server we allow the certificate to not be in our list of supported 570 * groups. 571 */ 572 if (!tls1_check_group_id(s, group_id, !s->server)) 573 return 0; 574 /* 575 * Special case for suite B. We *MUST* sign using SHA256+P-256 or 576 * SHA384+P-384. 577 */ 578 if (check_ee_md && tls1_suiteb(s)) { 579 int check_md; 580 size_t i; 581 CERT *c = s->cert; 582 583 /* Check to see we have necessary signing algorithm */ 584 if (group_id == TLSEXT_curve_P_256) 585 check_md = NID_ecdsa_with_SHA256; 586 else if (group_id == TLSEXT_curve_P_384) 587 check_md = NID_ecdsa_with_SHA384; 588 else 589 return 0; /* Should never happen */ 590 for (i = 0; i < c->shared_sigalgslen; i++) { 591 if (check_md == c->shared_sigalgs[i]->sigandhash) 592 return 1;; 593 } 594 return 0; 595 } 596 return 1; 597 } 598 599 /* 600 * tls1_check_ec_tmp_key - Check EC temporary key compatibility 601 * @s: SSL connection 602 * @cid: Cipher ID we're considering using 603 * 604 * Checks that the kECDHE cipher suite we're considering using 605 * is compatible with the client extensions. 606 * 607 * Returns 0 when the cipher can't be used or 1 when it can. 608 */ 609 int tls1_check_ec_tmp_key(SSL *s, unsigned long cid) 610 { 611 /* If not Suite B just need a shared group */ 612 if (!tls1_suiteb(s)) 613 return tls1_shared_group(s, 0) != 0; 614 /* 615 * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other 616 * curves permitted. 617 */ 618 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) 619 return tls1_check_group_id(s, TLSEXT_curve_P_256, 1); 620 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) 621 return tls1_check_group_id(s, TLSEXT_curve_P_384, 1); 622 623 return 0; 624 } 625 626 #else 627 628 static int tls1_check_cert_param(SSL *s, X509 *x, int set_ee_md) 629 { 630 return 1; 631 } 632 633 #endif /* OPENSSL_NO_EC */ 634 635 /* Default sigalg schemes */ 636 static const uint16_t tls12_sigalgs[] = { 637 #ifndef OPENSSL_NO_EC 638 TLSEXT_SIGALG_ecdsa_secp256r1_sha256, 639 TLSEXT_SIGALG_ecdsa_secp384r1_sha384, 640 TLSEXT_SIGALG_ecdsa_secp521r1_sha512, 641 TLSEXT_SIGALG_ed25519, 642 TLSEXT_SIGALG_ed448, 643 #endif 644 645 TLSEXT_SIGALG_rsa_pss_pss_sha256, 646 TLSEXT_SIGALG_rsa_pss_pss_sha384, 647 TLSEXT_SIGALG_rsa_pss_pss_sha512, 648 TLSEXT_SIGALG_rsa_pss_rsae_sha256, 649 TLSEXT_SIGALG_rsa_pss_rsae_sha384, 650 TLSEXT_SIGALG_rsa_pss_rsae_sha512, 651 652 TLSEXT_SIGALG_rsa_pkcs1_sha256, 653 TLSEXT_SIGALG_rsa_pkcs1_sha384, 654 TLSEXT_SIGALG_rsa_pkcs1_sha512, 655 656 #ifndef OPENSSL_NO_EC 657 TLSEXT_SIGALG_ecdsa_sha224, 658 TLSEXT_SIGALG_ecdsa_sha1, 659 #endif 660 TLSEXT_SIGALG_rsa_pkcs1_sha224, 661 TLSEXT_SIGALG_rsa_pkcs1_sha1, 662 #ifndef OPENSSL_NO_DSA 663 TLSEXT_SIGALG_dsa_sha224, 664 TLSEXT_SIGALG_dsa_sha1, 665 666 TLSEXT_SIGALG_dsa_sha256, 667 TLSEXT_SIGALG_dsa_sha384, 668 TLSEXT_SIGALG_dsa_sha512, 669 #endif 670 #ifndef OPENSSL_NO_GOST 671 TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256, 672 TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512, 673 TLSEXT_SIGALG_gostr34102001_gostr3411, 674 #endif 675 }; 676 677 #ifndef OPENSSL_NO_EC 678 static const uint16_t suiteb_sigalgs[] = { 679 TLSEXT_SIGALG_ecdsa_secp256r1_sha256, 680 TLSEXT_SIGALG_ecdsa_secp384r1_sha384 681 }; 682 #endif 683 684 static const SIGALG_LOOKUP sigalg_lookup_tbl[] = { 685 #ifndef OPENSSL_NO_EC 686 {"ecdsa_secp256r1_sha256", TLSEXT_SIGALG_ecdsa_secp256r1_sha256, 687 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC, 688 NID_ecdsa_with_SHA256, NID_X9_62_prime256v1}, 689 {"ecdsa_secp384r1_sha384", TLSEXT_SIGALG_ecdsa_secp384r1_sha384, 690 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC, 691 NID_ecdsa_with_SHA384, NID_secp384r1}, 692 {"ecdsa_secp521r1_sha512", TLSEXT_SIGALG_ecdsa_secp521r1_sha512, 693 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC, 694 NID_ecdsa_with_SHA512, NID_secp521r1}, 695 {"ed25519", TLSEXT_SIGALG_ed25519, 696 NID_undef, -1, EVP_PKEY_ED25519, SSL_PKEY_ED25519, 697 NID_undef, NID_undef}, 698 {"ed448", TLSEXT_SIGALG_ed448, 699 NID_undef, -1, EVP_PKEY_ED448, SSL_PKEY_ED448, 700 NID_undef, NID_undef}, 701 {NULL, TLSEXT_SIGALG_ecdsa_sha224, 702 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_EC, SSL_PKEY_ECC, 703 NID_ecdsa_with_SHA224, NID_undef}, 704 {NULL, TLSEXT_SIGALG_ecdsa_sha1, 705 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC, 706 NID_ecdsa_with_SHA1, NID_undef}, 707 #endif 708 {"rsa_pss_rsae_sha256", TLSEXT_SIGALG_rsa_pss_rsae_sha256, 709 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA, 710 NID_undef, NID_undef}, 711 {"rsa_pss_rsae_sha384", TLSEXT_SIGALG_rsa_pss_rsae_sha384, 712 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA, 713 NID_undef, NID_undef}, 714 {"rsa_pss_rsae_sha512", TLSEXT_SIGALG_rsa_pss_rsae_sha512, 715 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA, 716 NID_undef, NID_undef}, 717 {"rsa_pss_pss_sha256", TLSEXT_SIGALG_rsa_pss_pss_sha256, 718 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN, 719 NID_undef, NID_undef}, 720 {"rsa_pss_pss_sha384", TLSEXT_SIGALG_rsa_pss_pss_sha384, 721 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN, 722 NID_undef, NID_undef}, 723 {"rsa_pss_pss_sha512", TLSEXT_SIGALG_rsa_pss_pss_sha512, 724 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN, 725 NID_undef, NID_undef}, 726 {"rsa_pkcs1_sha256", TLSEXT_SIGALG_rsa_pkcs1_sha256, 727 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA, 728 NID_sha256WithRSAEncryption, NID_undef}, 729 {"rsa_pkcs1_sha384", TLSEXT_SIGALG_rsa_pkcs1_sha384, 730 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA, 731 NID_sha384WithRSAEncryption, NID_undef}, 732 {"rsa_pkcs1_sha512", TLSEXT_SIGALG_rsa_pkcs1_sha512, 733 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA, 734 NID_sha512WithRSAEncryption, NID_undef}, 735 {"rsa_pkcs1_sha224", TLSEXT_SIGALG_rsa_pkcs1_sha224, 736 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA, 737 NID_sha224WithRSAEncryption, NID_undef}, 738 {"rsa_pkcs1_sha1", TLSEXT_SIGALG_rsa_pkcs1_sha1, 739 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA, 740 NID_sha1WithRSAEncryption, NID_undef}, 741 #ifndef OPENSSL_NO_DSA 742 {NULL, TLSEXT_SIGALG_dsa_sha256, 743 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN, 744 NID_dsa_with_SHA256, NID_undef}, 745 {NULL, TLSEXT_SIGALG_dsa_sha384, 746 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN, 747 NID_undef, NID_undef}, 748 {NULL, TLSEXT_SIGALG_dsa_sha512, 749 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN, 750 NID_undef, NID_undef}, 751 {NULL, TLSEXT_SIGALG_dsa_sha224, 752 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN, 753 NID_undef, NID_undef}, 754 {NULL, TLSEXT_SIGALG_dsa_sha1, 755 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN, 756 NID_dsaWithSHA1, NID_undef}, 757 #endif 758 #ifndef OPENSSL_NO_GOST 759 {NULL, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256, 760 NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX, 761 NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256, 762 NID_undef, NID_undef}, 763 {NULL, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512, 764 NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX, 765 NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512, 766 NID_undef, NID_undef}, 767 {NULL, TLSEXT_SIGALG_gostr34102001_gostr3411, 768 NID_id_GostR3411_94, SSL_MD_GOST94_IDX, 769 NID_id_GostR3410_2001, SSL_PKEY_GOST01, 770 NID_undef, NID_undef} 771 #endif 772 }; 773 /* Legacy sigalgs for TLS < 1.2 RSA TLS signatures */ 774 static const SIGALG_LOOKUP legacy_rsa_sigalg = { 775 "rsa_pkcs1_md5_sha1", 0, 776 NID_md5_sha1, SSL_MD_MD5_SHA1_IDX, 777 EVP_PKEY_RSA, SSL_PKEY_RSA, 778 NID_undef, NID_undef 779 }; 780 781 /* 782 * Default signature algorithm values used if signature algorithms not present. 783 * From RFC5246. Note: order must match certificate index order. 784 */ 785 static const uint16_t tls_default_sigalg[] = { 786 TLSEXT_SIGALG_rsa_pkcs1_sha1, /* SSL_PKEY_RSA */ 787 0, /* SSL_PKEY_RSA_PSS_SIGN */ 788 TLSEXT_SIGALG_dsa_sha1, /* SSL_PKEY_DSA_SIGN */ 789 TLSEXT_SIGALG_ecdsa_sha1, /* SSL_PKEY_ECC */ 790 TLSEXT_SIGALG_gostr34102001_gostr3411, /* SSL_PKEY_GOST01 */ 791 TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256, /* SSL_PKEY_GOST12_256 */ 792 TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512, /* SSL_PKEY_GOST12_512 */ 793 0, /* SSL_PKEY_ED25519 */ 794 0, /* SSL_PKEY_ED448 */ 795 }; 796 797 /* Lookup TLS signature algorithm */ 798 static const SIGALG_LOOKUP *tls1_lookup_sigalg(uint16_t sigalg) 799 { 800 size_t i; 801 const SIGALG_LOOKUP *s; 802 803 for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl); 804 i++, s++) { 805 if (s->sigalg == sigalg) 806 return s; 807 } 808 return NULL; 809 } 810 /* Lookup hash: return 0 if invalid or not enabled */ 811 int tls1_lookup_md(const SIGALG_LOOKUP *lu, const EVP_MD **pmd) 812 { 813 const EVP_MD *md; 814 if (lu == NULL) 815 return 0; 816 /* lu->hash == NID_undef means no associated digest */ 817 if (lu->hash == NID_undef) { 818 md = NULL; 819 } else { 820 md = ssl_md(lu->hash_idx); 821 if (md == NULL) 822 return 0; 823 } 824 if (pmd) 825 *pmd = md; 826 return 1; 827 } 828 829 /* 830 * Check if key is large enough to generate RSA-PSS signature. 831 * 832 * The key must greater than or equal to 2 * hash length + 2. 833 * SHA512 has a hash length of 64 bytes, which is incompatible 834 * with a 128 byte (1024 bit) key. 835 */ 836 #define RSA_PSS_MINIMUM_KEY_SIZE(md) (2 * EVP_MD_size(md) + 2) 837 static int rsa_pss_check_min_key_size(const RSA *rsa, const SIGALG_LOOKUP *lu) 838 { 839 const EVP_MD *md; 840 841 if (rsa == NULL) 842 return 0; 843 if (!tls1_lookup_md(lu, &md) || md == NULL) 844 return 0; 845 if (RSA_size(rsa) < RSA_PSS_MINIMUM_KEY_SIZE(md)) 846 return 0; 847 return 1; 848 } 849 850 /* 851 * Return a signature algorithm for TLS < 1.2 where the signature type 852 * is fixed by the certificate type. 853 */ 854 static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL *s, int idx) 855 { 856 if (idx == -1) { 857 if (s->server) { 858 size_t i; 859 860 /* Work out index corresponding to ciphersuite */ 861 for (i = 0; i < SSL_PKEY_NUM; i++) { 862 const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(i); 863 864 if (clu->amask & s->s3->tmp.new_cipher->algorithm_auth) { 865 idx = i; 866 break; 867 } 868 } 869 870 /* 871 * Some GOST ciphersuites allow more than one signature algorithms 872 * */ 873 if (idx == SSL_PKEY_GOST01 && s->s3->tmp.new_cipher->algorithm_auth != SSL_aGOST01) { 874 int real_idx; 875 876 for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST01; 877 real_idx--) { 878 if (s->cert->pkeys[real_idx].privatekey != NULL) { 879 idx = real_idx; 880 break; 881 } 882 } 883 } 884 } else { 885 idx = s->cert->key - s->cert->pkeys; 886 } 887 } 888 if (idx < 0 || idx >= (int)OSSL_NELEM(tls_default_sigalg)) 889 return NULL; 890 if (SSL_USE_SIGALGS(s) || idx != SSL_PKEY_RSA) { 891 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(tls_default_sigalg[idx]); 892 893 if (!tls1_lookup_md(lu, NULL)) 894 return NULL; 895 return lu; 896 } 897 return &legacy_rsa_sigalg; 898 } 899 /* Set peer sigalg based key type */ 900 int tls1_set_peer_legacy_sigalg(SSL *s, const EVP_PKEY *pkey) 901 { 902 size_t idx; 903 const SIGALG_LOOKUP *lu; 904 905 if (ssl_cert_lookup_by_pkey(pkey, &idx) == NULL) 906 return 0; 907 lu = tls1_get_legacy_sigalg(s, idx); 908 if (lu == NULL) 909 return 0; 910 s->s3->tmp.peer_sigalg = lu; 911 return 1; 912 } 913 914 size_t tls12_get_psigalgs(SSL *s, int sent, const uint16_t **psigs) 915 { 916 /* 917 * If Suite B mode use Suite B sigalgs only, ignore any other 918 * preferences. 919 */ 920 #ifndef OPENSSL_NO_EC 921 switch (tls1_suiteb(s)) { 922 case SSL_CERT_FLAG_SUITEB_128_LOS: 923 *psigs = suiteb_sigalgs; 924 return OSSL_NELEM(suiteb_sigalgs); 925 926 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY: 927 *psigs = suiteb_sigalgs; 928 return 1; 929 930 case SSL_CERT_FLAG_SUITEB_192_LOS: 931 *psigs = suiteb_sigalgs + 1; 932 return 1; 933 } 934 #endif 935 /* 936 * We use client_sigalgs (if not NULL) if we're a server 937 * and sending a certificate request or if we're a client and 938 * determining which shared algorithm to use. 939 */ 940 if ((s->server == sent) && s->cert->client_sigalgs != NULL) { 941 *psigs = s->cert->client_sigalgs; 942 return s->cert->client_sigalgslen; 943 } else if (s->cert->conf_sigalgs) { 944 *psigs = s->cert->conf_sigalgs; 945 return s->cert->conf_sigalgslen; 946 } else { 947 *psigs = tls12_sigalgs; 948 return OSSL_NELEM(tls12_sigalgs); 949 } 950 } 951 952 #ifndef OPENSSL_NO_EC 953 /* 954 * Called by servers only. Checks that we have a sig alg that supports the 955 * specified EC curve. 956 */ 957 int tls_check_sigalg_curve(const SSL *s, int curve) 958 { 959 const uint16_t *sigs; 960 size_t siglen, i; 961 962 if (s->cert->conf_sigalgs) { 963 sigs = s->cert->conf_sigalgs; 964 siglen = s->cert->conf_sigalgslen; 965 } else { 966 sigs = tls12_sigalgs; 967 siglen = OSSL_NELEM(tls12_sigalgs); 968 } 969 970 for (i = 0; i < siglen; i++) { 971 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(sigs[i]); 972 973 if (lu == NULL) 974 continue; 975 if (lu->sig == EVP_PKEY_EC 976 && lu->curve != NID_undef 977 && curve == lu->curve) 978 return 1; 979 } 980 981 return 0; 982 } 983 #endif 984 985 /* 986 * Check signature algorithm is consistent with sent supported signature 987 * algorithms and if so set relevant digest and signature scheme in 988 * s. 989 */ 990 int tls12_check_peer_sigalg(SSL *s, uint16_t sig, EVP_PKEY *pkey) 991 { 992 const uint16_t *sent_sigs; 993 const EVP_MD *md = NULL; 994 char sigalgstr[2]; 995 size_t sent_sigslen, i, cidx; 996 int pkeyid = EVP_PKEY_id(pkey); 997 const SIGALG_LOOKUP *lu; 998 999 /* Should never happen */ 1000 if (pkeyid == -1) 1001 return -1; 1002 if (SSL_IS_TLS13(s)) { 1003 /* Disallow DSA for TLS 1.3 */ 1004 if (pkeyid == EVP_PKEY_DSA) { 1005 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_TLS12_CHECK_PEER_SIGALG, 1006 SSL_R_WRONG_SIGNATURE_TYPE); 1007 return 0; 1008 } 1009 /* Only allow PSS for TLS 1.3 */ 1010 if (pkeyid == EVP_PKEY_RSA) 1011 pkeyid = EVP_PKEY_RSA_PSS; 1012 } 1013 lu = tls1_lookup_sigalg(sig); 1014 /* 1015 * Check sigalgs is known. Disallow SHA1/SHA224 with TLS 1.3. Check key type 1016 * is consistent with signature: RSA keys can be used for RSA-PSS 1017 */ 1018 if (lu == NULL 1019 || (SSL_IS_TLS13(s) && (lu->hash == NID_sha1 || lu->hash == NID_sha224)) 1020 || (pkeyid != lu->sig 1021 && (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) { 1022 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_TLS12_CHECK_PEER_SIGALG, 1023 SSL_R_WRONG_SIGNATURE_TYPE); 1024 return 0; 1025 } 1026 /* Check the sigalg is consistent with the key OID */ 1027 if (!ssl_cert_lookup_by_nid(EVP_PKEY_id(pkey), &cidx) 1028 || lu->sig_idx != (int)cidx) { 1029 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_TLS12_CHECK_PEER_SIGALG, 1030 SSL_R_WRONG_SIGNATURE_TYPE); 1031 return 0; 1032 } 1033 1034 #ifndef OPENSSL_NO_EC 1035 if (pkeyid == EVP_PKEY_EC) { 1036 1037 /* Check point compression is permitted */ 1038 if (!tls1_check_pkey_comp(s, pkey)) { 1039 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, 1040 SSL_F_TLS12_CHECK_PEER_SIGALG, 1041 SSL_R_ILLEGAL_POINT_COMPRESSION); 1042 return 0; 1043 } 1044 1045 /* For TLS 1.3 or Suite B check curve matches signature algorithm */ 1046 if (SSL_IS_TLS13(s) || tls1_suiteb(s)) { 1047 EC_KEY *ec = EVP_PKEY_get0_EC_KEY(pkey); 1048 int curve = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec)); 1049 1050 if (lu->curve != NID_undef && curve != lu->curve) { 1051 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, 1052 SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_CURVE); 1053 return 0; 1054 } 1055 } 1056 if (!SSL_IS_TLS13(s)) { 1057 /* Check curve matches extensions */ 1058 if (!tls1_check_group_id(s, tls1_get_group_id(pkey), 1)) { 1059 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, 1060 SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_CURVE); 1061 return 0; 1062 } 1063 if (tls1_suiteb(s)) { 1064 /* Check sigalg matches a permissible Suite B value */ 1065 if (sig != TLSEXT_SIGALG_ecdsa_secp256r1_sha256 1066 && sig != TLSEXT_SIGALG_ecdsa_secp384r1_sha384) { 1067 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, 1068 SSL_F_TLS12_CHECK_PEER_SIGALG, 1069 SSL_R_WRONG_SIGNATURE_TYPE); 1070 return 0; 1071 } 1072 } 1073 } 1074 } else if (tls1_suiteb(s)) { 1075 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS12_CHECK_PEER_SIGALG, 1076 SSL_R_WRONG_SIGNATURE_TYPE); 1077 return 0; 1078 } 1079 #endif 1080 1081 /* Check signature matches a type we sent */ 1082 sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs); 1083 for (i = 0; i < sent_sigslen; i++, sent_sigs++) { 1084 if (sig == *sent_sigs) 1085 break; 1086 } 1087 /* Allow fallback to SHA1 if not strict mode */ 1088 if (i == sent_sigslen && (lu->hash != NID_sha1 1089 || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) { 1090 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS12_CHECK_PEER_SIGALG, 1091 SSL_R_WRONG_SIGNATURE_TYPE); 1092 return 0; 1093 } 1094 if (!tls1_lookup_md(lu, &md)) { 1095 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS12_CHECK_PEER_SIGALG, 1096 SSL_R_UNKNOWN_DIGEST); 1097 return 0; 1098 } 1099 if (md != NULL) { 1100 /* 1101 * Make sure security callback allows algorithm. For historical 1102 * reasons we have to pass the sigalg as a two byte char array. 1103 */ 1104 sigalgstr[0] = (sig >> 8) & 0xff; 1105 sigalgstr[1] = sig & 0xff; 1106 if (!ssl_security(s, SSL_SECOP_SIGALG_CHECK, 1107 EVP_MD_size(md) * 4, EVP_MD_type(md), 1108 (void *)sigalgstr)) { 1109 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS12_CHECK_PEER_SIGALG, 1110 SSL_R_WRONG_SIGNATURE_TYPE); 1111 return 0; 1112 } 1113 } 1114 /* Store the sigalg the peer uses */ 1115 s->s3->tmp.peer_sigalg = lu; 1116 return 1; 1117 } 1118 1119 int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid) 1120 { 1121 if (s->s3->tmp.peer_sigalg == NULL) 1122 return 0; 1123 *pnid = s->s3->tmp.peer_sigalg->sig; 1124 return 1; 1125 } 1126 1127 int SSL_get_signature_type_nid(const SSL *s, int *pnid) 1128 { 1129 if (s->s3->tmp.sigalg == NULL) 1130 return 0; 1131 *pnid = s->s3->tmp.sigalg->sig; 1132 return 1; 1133 } 1134 1135 /* 1136 * Set a mask of disabled algorithms: an algorithm is disabled if it isn't 1137 * supported, doesn't appear in supported signature algorithms, isn't supported 1138 * by the enabled protocol versions or by the security level. 1139 * 1140 * This function should only be used for checking which ciphers are supported 1141 * by the client. 1142 * 1143 * Call ssl_cipher_disabled() to check that it's enabled or not. 1144 */ 1145 int ssl_set_client_disabled(SSL *s) 1146 { 1147 s->s3->tmp.mask_a = 0; 1148 s->s3->tmp.mask_k = 0; 1149 ssl_set_sig_mask(&s->s3->tmp.mask_a, s, SSL_SECOP_SIGALG_MASK); 1150 if (ssl_get_min_max_version(s, &s->s3->tmp.min_ver, 1151 &s->s3->tmp.max_ver, NULL) != 0) 1152 return 0; 1153 #ifndef OPENSSL_NO_PSK 1154 /* with PSK there must be client callback set */ 1155 if (!s->psk_client_callback) { 1156 s->s3->tmp.mask_a |= SSL_aPSK; 1157 s->s3->tmp.mask_k |= SSL_PSK; 1158 } 1159 #endif /* OPENSSL_NO_PSK */ 1160 #ifndef OPENSSL_NO_SRP 1161 if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) { 1162 s->s3->tmp.mask_a |= SSL_aSRP; 1163 s->s3->tmp.mask_k |= SSL_kSRP; 1164 } 1165 #endif 1166 return 1; 1167 } 1168 1169 /* 1170 * ssl_cipher_disabled - check that a cipher is disabled or not 1171 * @s: SSL connection that you want to use the cipher on 1172 * @c: cipher to check 1173 * @op: Security check that you want to do 1174 * @ecdhe: If set to 1 then TLSv1 ECDHE ciphers are also allowed in SSLv3 1175 * 1176 * Returns 1 when it's disabled, 0 when enabled. 1177 */ 1178 int ssl_cipher_disabled(SSL *s, const SSL_CIPHER *c, int op, int ecdhe) 1179 { 1180 if (c->algorithm_mkey & s->s3->tmp.mask_k 1181 || c->algorithm_auth & s->s3->tmp.mask_a) 1182 return 1; 1183 if (s->s3->tmp.max_ver == 0) 1184 return 1; 1185 if (!SSL_IS_DTLS(s)) { 1186 int min_tls = c->min_tls; 1187 1188 /* 1189 * For historical reasons we will allow ECHDE to be selected by a server 1190 * in SSLv3 if we are a client 1191 */ 1192 if (min_tls == TLS1_VERSION && ecdhe 1193 && (c->algorithm_mkey & (SSL_kECDHE | SSL_kECDHEPSK)) != 0) 1194 min_tls = SSL3_VERSION; 1195 1196 if ((min_tls > s->s3->tmp.max_ver) || (c->max_tls < s->s3->tmp.min_ver)) 1197 return 1; 1198 } 1199 if (SSL_IS_DTLS(s) && (DTLS_VERSION_GT(c->min_dtls, s->s3->tmp.max_ver) 1200 || DTLS_VERSION_LT(c->max_dtls, s->s3->tmp.min_ver))) 1201 return 1; 1202 1203 return !ssl_security(s, op, c->strength_bits, 0, (void *)c); 1204 } 1205 1206 int tls_use_ticket(SSL *s) 1207 { 1208 if ((s->options & SSL_OP_NO_TICKET)) 1209 return 0; 1210 return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL); 1211 } 1212 1213 int tls1_set_server_sigalgs(SSL *s) 1214 { 1215 size_t i; 1216 1217 /* Clear any shared signature algorithms */ 1218 OPENSSL_free(s->cert->shared_sigalgs); 1219 s->cert->shared_sigalgs = NULL; 1220 s->cert->shared_sigalgslen = 0; 1221 /* Clear certificate validity flags */ 1222 for (i = 0; i < SSL_PKEY_NUM; i++) 1223 s->s3->tmp.valid_flags[i] = 0; 1224 /* 1225 * If peer sent no signature algorithms check to see if we support 1226 * the default algorithm for each certificate type 1227 */ 1228 if (s->s3->tmp.peer_cert_sigalgs == NULL 1229 && s->s3->tmp.peer_sigalgs == NULL) { 1230 const uint16_t *sent_sigs; 1231 size_t sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs); 1232 1233 for (i = 0; i < SSL_PKEY_NUM; i++) { 1234 const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, i); 1235 size_t j; 1236 1237 if (lu == NULL) 1238 continue; 1239 /* Check default matches a type we sent */ 1240 for (j = 0; j < sent_sigslen; j++) { 1241 if (lu->sigalg == sent_sigs[j]) { 1242 s->s3->tmp.valid_flags[i] = CERT_PKEY_SIGN; 1243 break; 1244 } 1245 } 1246 } 1247 return 1; 1248 } 1249 1250 if (!tls1_process_sigalgs(s)) { 1251 SSLfatal(s, SSL_AD_INTERNAL_ERROR, 1252 SSL_F_TLS1_SET_SERVER_SIGALGS, ERR_R_INTERNAL_ERROR); 1253 return 0; 1254 } 1255 if (s->cert->shared_sigalgs != NULL) 1256 return 1; 1257 1258 /* Fatal error if no shared signature algorithms */ 1259 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS1_SET_SERVER_SIGALGS, 1260 SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS); 1261 return 0; 1262 } 1263 1264 /*- 1265 * Gets the ticket information supplied by the client if any. 1266 * 1267 * hello: The parsed ClientHello data 1268 * ret: (output) on return, if a ticket was decrypted, then this is set to 1269 * point to the resulting session. 1270 */ 1271 SSL_TICKET_STATUS tls_get_ticket_from_client(SSL *s, CLIENTHELLO_MSG *hello, 1272 SSL_SESSION **ret) 1273 { 1274 size_t size; 1275 RAW_EXTENSION *ticketext; 1276 1277 *ret = NULL; 1278 s->ext.ticket_expected = 0; 1279 1280 /* 1281 * If tickets disabled or not supported by the protocol version 1282 * (e.g. TLSv1.3) behave as if no ticket present to permit stateful 1283 * resumption. 1284 */ 1285 if (s->version <= SSL3_VERSION || !tls_use_ticket(s)) 1286 return SSL_TICKET_NONE; 1287 1288 ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket]; 1289 if (!ticketext->present) 1290 return SSL_TICKET_NONE; 1291 1292 size = PACKET_remaining(&ticketext->data); 1293 1294 return tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size, 1295 hello->session_id, hello->session_id_len, ret); 1296 } 1297 1298 /*- 1299 * tls_decrypt_ticket attempts to decrypt a session ticket. 1300 * 1301 * If s->tls_session_secret_cb is set and we're not doing TLSv1.3 then we are 1302 * expecting a pre-shared key ciphersuite, in which case we have no use for 1303 * session tickets and one will never be decrypted, nor will 1304 * s->ext.ticket_expected be set to 1. 1305 * 1306 * Side effects: 1307 * Sets s->ext.ticket_expected to 1 if the server will have to issue 1308 * a new session ticket to the client because the client indicated support 1309 * (and s->tls_session_secret_cb is NULL) but the client either doesn't have 1310 * a session ticket or we couldn't use the one it gave us, or if 1311 * s->ctx->ext.ticket_key_cb asked to renew the client's ticket. 1312 * Otherwise, s->ext.ticket_expected is set to 0. 1313 * 1314 * etick: points to the body of the session ticket extension. 1315 * eticklen: the length of the session tickets extension. 1316 * sess_id: points at the session ID. 1317 * sesslen: the length of the session ID. 1318 * psess: (output) on return, if a ticket was decrypted, then this is set to 1319 * point to the resulting session. 1320 */ 1321 SSL_TICKET_STATUS tls_decrypt_ticket(SSL *s, const unsigned char *etick, 1322 size_t eticklen, const unsigned char *sess_id, 1323 size_t sesslen, SSL_SESSION **psess) 1324 { 1325 SSL_SESSION *sess = NULL; 1326 unsigned char *sdec; 1327 const unsigned char *p; 1328 int slen, renew_ticket = 0, declen; 1329 SSL_TICKET_STATUS ret = SSL_TICKET_FATAL_ERR_OTHER; 1330 size_t mlen; 1331 unsigned char tick_hmac[EVP_MAX_MD_SIZE]; 1332 HMAC_CTX *hctx = NULL; 1333 EVP_CIPHER_CTX *ctx = NULL; 1334 SSL_CTX *tctx = s->session_ctx; 1335 1336 if (eticklen == 0) { 1337 /* 1338 * The client will accept a ticket but doesn't currently have 1339 * one (TLSv1.2 and below), or treated as a fatal error in TLSv1.3 1340 */ 1341 ret = SSL_TICKET_EMPTY; 1342 goto end; 1343 } 1344 if (!SSL_IS_TLS13(s) && s->ext.session_secret_cb) { 1345 /* 1346 * Indicate that the ticket couldn't be decrypted rather than 1347 * generating the session from ticket now, trigger 1348 * abbreviated handshake based on external mechanism to 1349 * calculate the master secret later. 1350 */ 1351 ret = SSL_TICKET_NO_DECRYPT; 1352 goto end; 1353 } 1354 1355 /* Need at least keyname + iv */ 1356 if (eticklen < TLSEXT_KEYNAME_LENGTH + EVP_MAX_IV_LENGTH) { 1357 ret = SSL_TICKET_NO_DECRYPT; 1358 goto end; 1359 } 1360 1361 /* Initialize session ticket encryption and HMAC contexts */ 1362 hctx = HMAC_CTX_new(); 1363 if (hctx == NULL) { 1364 ret = SSL_TICKET_FATAL_ERR_MALLOC; 1365 goto end; 1366 } 1367 ctx = EVP_CIPHER_CTX_new(); 1368 if (ctx == NULL) { 1369 ret = SSL_TICKET_FATAL_ERR_MALLOC; 1370 goto end; 1371 } 1372 if (tctx->ext.ticket_key_cb) { 1373 unsigned char *nctick = (unsigned char *)etick; 1374 int rv = tctx->ext.ticket_key_cb(s, nctick, 1375 nctick + TLSEXT_KEYNAME_LENGTH, 1376 ctx, hctx, 0); 1377 if (rv < 0) { 1378 ret = SSL_TICKET_FATAL_ERR_OTHER; 1379 goto end; 1380 } 1381 if (rv == 0) { 1382 ret = SSL_TICKET_NO_DECRYPT; 1383 goto end; 1384 } 1385 if (rv == 2) 1386 renew_ticket = 1; 1387 } else { 1388 /* Check key name matches */ 1389 if (memcmp(etick, tctx->ext.tick_key_name, 1390 TLSEXT_KEYNAME_LENGTH) != 0) { 1391 ret = SSL_TICKET_NO_DECRYPT; 1392 goto end; 1393 } 1394 if (HMAC_Init_ex(hctx, tctx->ext.secure->tick_hmac_key, 1395 sizeof(tctx->ext.secure->tick_hmac_key), 1396 EVP_sha256(), NULL) <= 0 1397 || EVP_DecryptInit_ex(ctx, EVP_aes_256_cbc(), NULL, 1398 tctx->ext.secure->tick_aes_key, 1399 etick + TLSEXT_KEYNAME_LENGTH) <= 0) { 1400 ret = SSL_TICKET_FATAL_ERR_OTHER; 1401 goto end; 1402 } 1403 if (SSL_IS_TLS13(s)) 1404 renew_ticket = 1; 1405 } 1406 /* 1407 * Attempt to process session ticket, first conduct sanity and integrity 1408 * checks on ticket. 1409 */ 1410 mlen = HMAC_size(hctx); 1411 if (mlen == 0) { 1412 ret = SSL_TICKET_FATAL_ERR_OTHER; 1413 goto end; 1414 } 1415 1416 /* Sanity check ticket length: must exceed keyname + IV + HMAC */ 1417 if (eticklen <= 1418 TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_iv_length(ctx) + mlen) { 1419 ret = SSL_TICKET_NO_DECRYPT; 1420 goto end; 1421 } 1422 eticklen -= mlen; 1423 /* Check HMAC of encrypted ticket */ 1424 if (HMAC_Update(hctx, etick, eticklen) <= 0 1425 || HMAC_Final(hctx, tick_hmac, NULL) <= 0) { 1426 ret = SSL_TICKET_FATAL_ERR_OTHER; 1427 goto end; 1428 } 1429 1430 if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) { 1431 ret = SSL_TICKET_NO_DECRYPT; 1432 goto end; 1433 } 1434 /* Attempt to decrypt session data */ 1435 /* Move p after IV to start of encrypted ticket, update length */ 1436 p = etick + TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_iv_length(ctx); 1437 eticklen -= TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_iv_length(ctx); 1438 sdec = OPENSSL_malloc(eticklen); 1439 if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p, 1440 (int)eticklen) <= 0) { 1441 OPENSSL_free(sdec); 1442 ret = SSL_TICKET_FATAL_ERR_OTHER; 1443 goto end; 1444 } 1445 if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) { 1446 OPENSSL_free(sdec); 1447 ret = SSL_TICKET_NO_DECRYPT; 1448 goto end; 1449 } 1450 slen += declen; 1451 p = sdec; 1452 1453 sess = d2i_SSL_SESSION(NULL, &p, slen); 1454 slen -= p - sdec; 1455 OPENSSL_free(sdec); 1456 if (sess) { 1457 /* Some additional consistency checks */ 1458 if (slen != 0) { 1459 SSL_SESSION_free(sess); 1460 sess = NULL; 1461 ret = SSL_TICKET_NO_DECRYPT; 1462 goto end; 1463 } 1464 /* 1465 * The session ID, if non-empty, is used by some clients to detect 1466 * that the ticket has been accepted. So we copy it to the session 1467 * structure. If it is empty set length to zero as required by 1468 * standard. 1469 */ 1470 if (sesslen) { 1471 memcpy(sess->session_id, sess_id, sesslen); 1472 sess->session_id_length = sesslen; 1473 } 1474 if (renew_ticket) 1475 ret = SSL_TICKET_SUCCESS_RENEW; 1476 else 1477 ret = SSL_TICKET_SUCCESS; 1478 goto end; 1479 } 1480 ERR_clear_error(); 1481 /* 1482 * For session parse failure, indicate that we need to send a new ticket. 1483 */ 1484 ret = SSL_TICKET_NO_DECRYPT; 1485 1486 end: 1487 EVP_CIPHER_CTX_free(ctx); 1488 HMAC_CTX_free(hctx); 1489 1490 /* 1491 * If set, the decrypt_ticket_cb() is called unless a fatal error was 1492 * detected above. The callback is responsible for checking |ret| before it 1493 * performs any action 1494 */ 1495 if (s->session_ctx->decrypt_ticket_cb != NULL 1496 && (ret == SSL_TICKET_EMPTY 1497 || ret == SSL_TICKET_NO_DECRYPT 1498 || ret == SSL_TICKET_SUCCESS 1499 || ret == SSL_TICKET_SUCCESS_RENEW)) { 1500 size_t keyname_len = eticklen; 1501 int retcb; 1502 1503 if (keyname_len > TLSEXT_KEYNAME_LENGTH) 1504 keyname_len = TLSEXT_KEYNAME_LENGTH; 1505 retcb = s->session_ctx->decrypt_ticket_cb(s, sess, etick, keyname_len, 1506 ret, 1507 s->session_ctx->ticket_cb_data); 1508 switch (retcb) { 1509 case SSL_TICKET_RETURN_ABORT: 1510 ret = SSL_TICKET_FATAL_ERR_OTHER; 1511 break; 1512 1513 case SSL_TICKET_RETURN_IGNORE: 1514 ret = SSL_TICKET_NONE; 1515 SSL_SESSION_free(sess); 1516 sess = NULL; 1517 break; 1518 1519 case SSL_TICKET_RETURN_IGNORE_RENEW: 1520 if (ret != SSL_TICKET_EMPTY && ret != SSL_TICKET_NO_DECRYPT) 1521 ret = SSL_TICKET_NO_DECRYPT; 1522 /* else the value of |ret| will already do the right thing */ 1523 SSL_SESSION_free(sess); 1524 sess = NULL; 1525 break; 1526 1527 case SSL_TICKET_RETURN_USE: 1528 case SSL_TICKET_RETURN_USE_RENEW: 1529 if (ret != SSL_TICKET_SUCCESS 1530 && ret != SSL_TICKET_SUCCESS_RENEW) 1531 ret = SSL_TICKET_FATAL_ERR_OTHER; 1532 else if (retcb == SSL_TICKET_RETURN_USE) 1533 ret = SSL_TICKET_SUCCESS; 1534 else 1535 ret = SSL_TICKET_SUCCESS_RENEW; 1536 break; 1537 1538 default: 1539 ret = SSL_TICKET_FATAL_ERR_OTHER; 1540 } 1541 } 1542 1543 if (s->ext.session_secret_cb == NULL || SSL_IS_TLS13(s)) { 1544 switch (ret) { 1545 case SSL_TICKET_NO_DECRYPT: 1546 case SSL_TICKET_SUCCESS_RENEW: 1547 case SSL_TICKET_EMPTY: 1548 s->ext.ticket_expected = 1; 1549 } 1550 } 1551 1552 *psess = sess; 1553 1554 return ret; 1555 } 1556 1557 /* Check to see if a signature algorithm is allowed */ 1558 static int tls12_sigalg_allowed(SSL *s, int op, const SIGALG_LOOKUP *lu) 1559 { 1560 unsigned char sigalgstr[2]; 1561 int secbits; 1562 1563 /* See if sigalgs is recognised and if hash is enabled */ 1564 if (!tls1_lookup_md(lu, NULL)) 1565 return 0; 1566 /* DSA is not allowed in TLS 1.3 */ 1567 if (SSL_IS_TLS13(s) && lu->sig == EVP_PKEY_DSA) 1568 return 0; 1569 /* TODO(OpenSSL1.2) fully axe DSA/etc. in ClientHello per TLS 1.3 spec */ 1570 if (!s->server && !SSL_IS_DTLS(s) && s->s3->tmp.min_ver >= TLS1_3_VERSION 1571 && (lu->sig == EVP_PKEY_DSA || lu->hash_idx == SSL_MD_SHA1_IDX 1572 || lu->hash_idx == SSL_MD_MD5_IDX 1573 || lu->hash_idx == SSL_MD_SHA224_IDX)) 1574 return 0; 1575 1576 /* See if public key algorithm allowed */ 1577 if (ssl_cert_is_disabled(lu->sig_idx)) 1578 return 0; 1579 1580 if (lu->sig == NID_id_GostR3410_2012_256 1581 || lu->sig == NID_id_GostR3410_2012_512 1582 || lu->sig == NID_id_GostR3410_2001) { 1583 /* We never allow GOST sig algs on the server with TLSv1.3 */ 1584 if (s->server && SSL_IS_TLS13(s)) 1585 return 0; 1586 if (!s->server 1587 && s->method->version == TLS_ANY_VERSION 1588 && s->s3->tmp.max_ver >= TLS1_3_VERSION) { 1589 int i, num; 1590 STACK_OF(SSL_CIPHER) *sk; 1591 1592 /* 1593 * We're a client that could negotiate TLSv1.3. We only allow GOST 1594 * sig algs if we could negotiate TLSv1.2 or below and we have GOST 1595 * ciphersuites enabled. 1596 */ 1597 1598 if (s->s3->tmp.min_ver >= TLS1_3_VERSION) 1599 return 0; 1600 1601 sk = SSL_get_ciphers(s); 1602 num = sk != NULL ? sk_SSL_CIPHER_num(sk) : 0; 1603 for (i = 0; i < num; i++) { 1604 const SSL_CIPHER *c; 1605 1606 c = sk_SSL_CIPHER_value(sk, i); 1607 /* Skip disabled ciphers */ 1608 if (ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0)) 1609 continue; 1610 1611 if ((c->algorithm_mkey & SSL_kGOST) != 0) 1612 break; 1613 } 1614 if (i == num) 1615 return 0; 1616 } 1617 } 1618 1619 if (lu->hash == NID_undef) 1620 return 1; 1621 /* Security bits: half digest bits */ 1622 secbits = EVP_MD_size(ssl_md(lu->hash_idx)) * 4; 1623 /* Finally see if security callback allows it */ 1624 sigalgstr[0] = (lu->sigalg >> 8) & 0xff; 1625 sigalgstr[1] = lu->sigalg & 0xff; 1626 return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr); 1627 } 1628 1629 /* 1630 * Get a mask of disabled public key algorithms based on supported signature 1631 * algorithms. For example if no signature algorithm supports RSA then RSA is 1632 * disabled. 1633 */ 1634 1635 void ssl_set_sig_mask(uint32_t *pmask_a, SSL *s, int op) 1636 { 1637 const uint16_t *sigalgs; 1638 size_t i, sigalgslen; 1639 uint32_t disabled_mask = SSL_aRSA | SSL_aDSS | SSL_aECDSA; 1640 /* 1641 * Go through all signature algorithms seeing if we support any 1642 * in disabled_mask. 1643 */ 1644 sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs); 1645 for (i = 0; i < sigalgslen; i++, sigalgs++) { 1646 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(*sigalgs); 1647 const SSL_CERT_LOOKUP *clu; 1648 1649 if (lu == NULL) 1650 continue; 1651 1652 clu = ssl_cert_lookup_by_idx(lu->sig_idx); 1653 if (clu == NULL) 1654 continue; 1655 1656 /* If algorithm is disabled see if we can enable it */ 1657 if ((clu->amask & disabled_mask) != 0 1658 && tls12_sigalg_allowed(s, op, lu)) 1659 disabled_mask &= ~clu->amask; 1660 } 1661 *pmask_a |= disabled_mask; 1662 } 1663 1664 int tls12_copy_sigalgs(SSL *s, WPACKET *pkt, 1665 const uint16_t *psig, size_t psiglen) 1666 { 1667 size_t i; 1668 int rv = 0; 1669 1670 for (i = 0; i < psiglen; i++, psig++) { 1671 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(*psig); 1672 1673 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu)) 1674 continue; 1675 if (!WPACKET_put_bytes_u16(pkt, *psig)) 1676 return 0; 1677 /* 1678 * If TLS 1.3 must have at least one valid TLS 1.3 message 1679 * signing algorithm: i.e. neither RSA nor SHA1/SHA224 1680 */ 1681 if (rv == 0 && (!SSL_IS_TLS13(s) 1682 || (lu->sig != EVP_PKEY_RSA 1683 && lu->hash != NID_sha1 1684 && lu->hash != NID_sha224))) 1685 rv = 1; 1686 } 1687 if (rv == 0) 1688 SSLerr(SSL_F_TLS12_COPY_SIGALGS, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM); 1689 return rv; 1690 } 1691 1692 /* Given preference and allowed sigalgs set shared sigalgs */ 1693 static size_t tls12_shared_sigalgs(SSL *s, const SIGALG_LOOKUP **shsig, 1694 const uint16_t *pref, size_t preflen, 1695 const uint16_t *allow, size_t allowlen) 1696 { 1697 const uint16_t *ptmp, *atmp; 1698 size_t i, j, nmatch = 0; 1699 for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) { 1700 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(*ptmp); 1701 1702 /* Skip disabled hashes or signature algorithms */ 1703 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, lu)) 1704 continue; 1705 for (j = 0, atmp = allow; j < allowlen; j++, atmp++) { 1706 if (*ptmp == *atmp) { 1707 nmatch++; 1708 if (shsig) 1709 *shsig++ = lu; 1710 break; 1711 } 1712 } 1713 } 1714 return nmatch; 1715 } 1716 1717 /* Set shared signature algorithms for SSL structures */ 1718 static int tls1_set_shared_sigalgs(SSL *s) 1719 { 1720 const uint16_t *pref, *allow, *conf; 1721 size_t preflen, allowlen, conflen; 1722 size_t nmatch; 1723 const SIGALG_LOOKUP **salgs = NULL; 1724 CERT *c = s->cert; 1725 unsigned int is_suiteb = tls1_suiteb(s); 1726 1727 OPENSSL_free(c->shared_sigalgs); 1728 c->shared_sigalgs = NULL; 1729 c->shared_sigalgslen = 0; 1730 /* If client use client signature algorithms if not NULL */ 1731 if (!s->server && c->client_sigalgs && !is_suiteb) { 1732 conf = c->client_sigalgs; 1733 conflen = c->client_sigalgslen; 1734 } else if (c->conf_sigalgs && !is_suiteb) { 1735 conf = c->conf_sigalgs; 1736 conflen = c->conf_sigalgslen; 1737 } else 1738 conflen = tls12_get_psigalgs(s, 0, &conf); 1739 if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) { 1740 pref = conf; 1741 preflen = conflen; 1742 allow = s->s3->tmp.peer_sigalgs; 1743 allowlen = s->s3->tmp.peer_sigalgslen; 1744 } else { 1745 allow = conf; 1746 allowlen = conflen; 1747 pref = s->s3->tmp.peer_sigalgs; 1748 preflen = s->s3->tmp.peer_sigalgslen; 1749 } 1750 nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen); 1751 if (nmatch) { 1752 if ((salgs = OPENSSL_malloc(nmatch * sizeof(*salgs))) == NULL) { 1753 SSLerr(SSL_F_TLS1_SET_SHARED_SIGALGS, ERR_R_MALLOC_FAILURE); 1754 return 0; 1755 } 1756 nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen); 1757 } else { 1758 salgs = NULL; 1759 } 1760 c->shared_sigalgs = salgs; 1761 c->shared_sigalgslen = nmatch; 1762 return 1; 1763 } 1764 1765 int tls1_save_u16(PACKET *pkt, uint16_t **pdest, size_t *pdestlen) 1766 { 1767 unsigned int stmp; 1768 size_t size, i; 1769 uint16_t *buf; 1770 1771 size = PACKET_remaining(pkt); 1772 1773 /* Invalid data length */ 1774 if (size == 0 || (size & 1) != 0) 1775 return 0; 1776 1777 size >>= 1; 1778 1779 if ((buf = OPENSSL_malloc(size * sizeof(*buf))) == NULL) { 1780 SSLerr(SSL_F_TLS1_SAVE_U16, ERR_R_MALLOC_FAILURE); 1781 return 0; 1782 } 1783 for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++) 1784 buf[i] = stmp; 1785 1786 if (i != size) { 1787 OPENSSL_free(buf); 1788 return 0; 1789 } 1790 1791 OPENSSL_free(*pdest); 1792 *pdest = buf; 1793 *pdestlen = size; 1794 1795 return 1; 1796 } 1797 1798 int tls1_save_sigalgs(SSL *s, PACKET *pkt, int cert) 1799 { 1800 /* Extension ignored for inappropriate versions */ 1801 if (!SSL_USE_SIGALGS(s)) 1802 return 1; 1803 /* Should never happen */ 1804 if (s->cert == NULL) 1805 return 0; 1806 1807 if (cert) 1808 return tls1_save_u16(pkt, &s->s3->tmp.peer_cert_sigalgs, 1809 &s->s3->tmp.peer_cert_sigalgslen); 1810 else 1811 return tls1_save_u16(pkt, &s->s3->tmp.peer_sigalgs, 1812 &s->s3->tmp.peer_sigalgslen); 1813 1814 } 1815 1816 /* Set preferred digest for each key type */ 1817 1818 int tls1_process_sigalgs(SSL *s) 1819 { 1820 size_t i; 1821 uint32_t *pvalid = s->s3->tmp.valid_flags; 1822 CERT *c = s->cert; 1823 1824 if (!tls1_set_shared_sigalgs(s)) 1825 return 0; 1826 1827 for (i = 0; i < SSL_PKEY_NUM; i++) 1828 pvalid[i] = 0; 1829 1830 for (i = 0; i < c->shared_sigalgslen; i++) { 1831 const SIGALG_LOOKUP *sigptr = c->shared_sigalgs[i]; 1832 int idx = sigptr->sig_idx; 1833 1834 /* Ignore PKCS1 based sig algs in TLSv1.3 */ 1835 if (SSL_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA) 1836 continue; 1837 /* If not disabled indicate we can explicitly sign */ 1838 if (pvalid[idx] == 0 && !ssl_cert_is_disabled(idx)) 1839 pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN; 1840 } 1841 return 1; 1842 } 1843 1844 int SSL_get_sigalgs(SSL *s, int idx, 1845 int *psign, int *phash, int *psignhash, 1846 unsigned char *rsig, unsigned char *rhash) 1847 { 1848 uint16_t *psig = s->s3->tmp.peer_sigalgs; 1849 size_t numsigalgs = s->s3->tmp.peer_sigalgslen; 1850 if (psig == NULL || numsigalgs > INT_MAX) 1851 return 0; 1852 if (idx >= 0) { 1853 const SIGALG_LOOKUP *lu; 1854 1855 if (idx >= (int)numsigalgs) 1856 return 0; 1857 psig += idx; 1858 if (rhash != NULL) 1859 *rhash = (unsigned char)((*psig >> 8) & 0xff); 1860 if (rsig != NULL) 1861 *rsig = (unsigned char)(*psig & 0xff); 1862 lu = tls1_lookup_sigalg(*psig); 1863 if (psign != NULL) 1864 *psign = lu != NULL ? lu->sig : NID_undef; 1865 if (phash != NULL) 1866 *phash = lu != NULL ? lu->hash : NID_undef; 1867 if (psignhash != NULL) 1868 *psignhash = lu != NULL ? lu->sigandhash : NID_undef; 1869 } 1870 return (int)numsigalgs; 1871 } 1872 1873 int SSL_get_shared_sigalgs(SSL *s, int idx, 1874 int *psign, int *phash, int *psignhash, 1875 unsigned char *rsig, unsigned char *rhash) 1876 { 1877 const SIGALG_LOOKUP *shsigalgs; 1878 if (s->cert->shared_sigalgs == NULL 1879 || idx < 0 1880 || idx >= (int)s->cert->shared_sigalgslen 1881 || s->cert->shared_sigalgslen > INT_MAX) 1882 return 0; 1883 shsigalgs = s->cert->shared_sigalgs[idx]; 1884 if (phash != NULL) 1885 *phash = shsigalgs->hash; 1886 if (psign != NULL) 1887 *psign = shsigalgs->sig; 1888 if (psignhash != NULL) 1889 *psignhash = shsigalgs->sigandhash; 1890 if (rsig != NULL) 1891 *rsig = (unsigned char)(shsigalgs->sigalg & 0xff); 1892 if (rhash != NULL) 1893 *rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff); 1894 return (int)s->cert->shared_sigalgslen; 1895 } 1896 1897 /* Maximum possible number of unique entries in sigalgs array */ 1898 #define TLS_MAX_SIGALGCNT (OSSL_NELEM(sigalg_lookup_tbl) * 2) 1899 1900 typedef struct { 1901 size_t sigalgcnt; 1902 /* TLSEXT_SIGALG_XXX values */ 1903 uint16_t sigalgs[TLS_MAX_SIGALGCNT]; 1904 } sig_cb_st; 1905 1906 static void get_sigorhash(int *psig, int *phash, const char *str) 1907 { 1908 if (strcmp(str, "RSA") == 0) { 1909 *psig = EVP_PKEY_RSA; 1910 } else if (strcmp(str, "RSA-PSS") == 0 || strcmp(str, "PSS") == 0) { 1911 *psig = EVP_PKEY_RSA_PSS; 1912 } else if (strcmp(str, "DSA") == 0) { 1913 *psig = EVP_PKEY_DSA; 1914 } else if (strcmp(str, "ECDSA") == 0) { 1915 *psig = EVP_PKEY_EC; 1916 } else { 1917 *phash = OBJ_sn2nid(str); 1918 if (*phash == NID_undef) 1919 *phash = OBJ_ln2nid(str); 1920 } 1921 } 1922 /* Maximum length of a signature algorithm string component */ 1923 #define TLS_MAX_SIGSTRING_LEN 40 1924 1925 static int sig_cb(const char *elem, int len, void *arg) 1926 { 1927 sig_cb_st *sarg = arg; 1928 size_t i; 1929 const SIGALG_LOOKUP *s; 1930 char etmp[TLS_MAX_SIGSTRING_LEN], *p; 1931 int sig_alg = NID_undef, hash_alg = NID_undef; 1932 if (elem == NULL) 1933 return 0; 1934 if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT) 1935 return 0; 1936 if (len > (int)(sizeof(etmp) - 1)) 1937 return 0; 1938 memcpy(etmp, elem, len); 1939 etmp[len] = 0; 1940 p = strchr(etmp, '+'); 1941 /* 1942 * We only allow SignatureSchemes listed in the sigalg_lookup_tbl; 1943 * if there's no '+' in the provided name, look for the new-style combined 1944 * name. If not, match both sig+hash to find the needed SIGALG_LOOKUP. 1945 * Just sig+hash is not unique since TLS 1.3 adds rsa_pss_pss_* and 1946 * rsa_pss_rsae_* that differ only by public key OID; in such cases 1947 * we will pick the _rsae_ variant, by virtue of them appearing earlier 1948 * in the table. 1949 */ 1950 if (p == NULL) { 1951 for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl); 1952 i++, s++) { 1953 if (s->name != NULL && strcmp(etmp, s->name) == 0) { 1954 sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg; 1955 break; 1956 } 1957 } 1958 if (i == OSSL_NELEM(sigalg_lookup_tbl)) 1959 return 0; 1960 } else { 1961 *p = 0; 1962 p++; 1963 if (*p == 0) 1964 return 0; 1965 get_sigorhash(&sig_alg, &hash_alg, etmp); 1966 get_sigorhash(&sig_alg, &hash_alg, p); 1967 if (sig_alg == NID_undef || hash_alg == NID_undef) 1968 return 0; 1969 for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl); 1970 i++, s++) { 1971 if (s->hash == hash_alg && s->sig == sig_alg) { 1972 sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg; 1973 break; 1974 } 1975 } 1976 if (i == OSSL_NELEM(sigalg_lookup_tbl)) 1977 return 0; 1978 } 1979 1980 /* Reject duplicates */ 1981 for (i = 0; i < sarg->sigalgcnt - 1; i++) { 1982 if (sarg->sigalgs[i] == sarg->sigalgs[sarg->sigalgcnt - 1]) { 1983 sarg->sigalgcnt--; 1984 return 0; 1985 } 1986 } 1987 return 1; 1988 } 1989 1990 /* 1991 * Set supported signature algorithms based on a colon separated list of the 1992 * form sig+hash e.g. RSA+SHA512:DSA+SHA512 1993 */ 1994 int tls1_set_sigalgs_list(CERT *c, const char *str, int client) 1995 { 1996 sig_cb_st sig; 1997 sig.sigalgcnt = 0; 1998 if (!CONF_parse_list(str, ':', 1, sig_cb, &sig)) 1999 return 0; 2000 if (c == NULL) 2001 return 1; 2002 return tls1_set_raw_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client); 2003 } 2004 2005 int tls1_set_raw_sigalgs(CERT *c, const uint16_t *psigs, size_t salglen, 2006 int client) 2007 { 2008 uint16_t *sigalgs; 2009 2010 if ((sigalgs = OPENSSL_malloc(salglen * sizeof(*sigalgs))) == NULL) { 2011 SSLerr(SSL_F_TLS1_SET_RAW_SIGALGS, ERR_R_MALLOC_FAILURE); 2012 return 0; 2013 } 2014 memcpy(sigalgs, psigs, salglen * sizeof(*sigalgs)); 2015 2016 if (client) { 2017 OPENSSL_free(c->client_sigalgs); 2018 c->client_sigalgs = sigalgs; 2019 c->client_sigalgslen = salglen; 2020 } else { 2021 OPENSSL_free(c->conf_sigalgs); 2022 c->conf_sigalgs = sigalgs; 2023 c->conf_sigalgslen = salglen; 2024 } 2025 2026 return 1; 2027 } 2028 2029 int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client) 2030 { 2031 uint16_t *sigalgs, *sptr; 2032 size_t i; 2033 2034 if (salglen & 1) 2035 return 0; 2036 if ((sigalgs = OPENSSL_malloc((salglen / 2) * sizeof(*sigalgs))) == NULL) { 2037 SSLerr(SSL_F_TLS1_SET_SIGALGS, ERR_R_MALLOC_FAILURE); 2038 return 0; 2039 } 2040 for (i = 0, sptr = sigalgs; i < salglen; i += 2) { 2041 size_t j; 2042 const SIGALG_LOOKUP *curr; 2043 int md_id = *psig_nids++; 2044 int sig_id = *psig_nids++; 2045 2046 for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl); 2047 j++, curr++) { 2048 if (curr->hash == md_id && curr->sig == sig_id) { 2049 *sptr++ = curr->sigalg; 2050 break; 2051 } 2052 } 2053 2054 if (j == OSSL_NELEM(sigalg_lookup_tbl)) 2055 goto err; 2056 } 2057 2058 if (client) { 2059 OPENSSL_free(c->client_sigalgs); 2060 c->client_sigalgs = sigalgs; 2061 c->client_sigalgslen = salglen / 2; 2062 } else { 2063 OPENSSL_free(c->conf_sigalgs); 2064 c->conf_sigalgs = sigalgs; 2065 c->conf_sigalgslen = salglen / 2; 2066 } 2067 2068 return 1; 2069 2070 err: 2071 OPENSSL_free(sigalgs); 2072 return 0; 2073 } 2074 2075 static int tls1_check_sig_alg(CERT *c, X509 *x, int default_nid) 2076 { 2077 int sig_nid; 2078 size_t i; 2079 if (default_nid == -1) 2080 return 1; 2081 sig_nid = X509_get_signature_nid(x); 2082 if (default_nid) 2083 return sig_nid == default_nid ? 1 : 0; 2084 for (i = 0; i < c->shared_sigalgslen; i++) 2085 if (sig_nid == c->shared_sigalgs[i]->sigandhash) 2086 return 1; 2087 return 0; 2088 } 2089 2090 /* Check to see if a certificate issuer name matches list of CA names */ 2091 static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x) 2092 { 2093 X509_NAME *nm; 2094 int i; 2095 nm = X509_get_issuer_name(x); 2096 for (i = 0; i < sk_X509_NAME_num(names); i++) { 2097 if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i))) 2098 return 1; 2099 } 2100 return 0; 2101 } 2102 2103 /* 2104 * Check certificate chain is consistent with TLS extensions and is usable by 2105 * server. This servers two purposes: it allows users to check chains before 2106 * passing them to the server and it allows the server to check chains before 2107 * attempting to use them. 2108 */ 2109 2110 /* Flags which need to be set for a certificate when strict mode not set */ 2111 2112 #define CERT_PKEY_VALID_FLAGS \ 2113 (CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM) 2114 /* Strict mode flags */ 2115 #define CERT_PKEY_STRICT_FLAGS \ 2116 (CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \ 2117 | CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE) 2118 2119 int tls1_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain, 2120 int idx) 2121 { 2122 int i; 2123 int rv = 0; 2124 int check_flags = 0, strict_mode; 2125 CERT_PKEY *cpk = NULL; 2126 CERT *c = s->cert; 2127 uint32_t *pvalid; 2128 unsigned int suiteb_flags = tls1_suiteb(s); 2129 /* idx == -1 means checking server chains */ 2130 if (idx != -1) { 2131 /* idx == -2 means checking client certificate chains */ 2132 if (idx == -2) { 2133 cpk = c->key; 2134 idx = (int)(cpk - c->pkeys); 2135 } else 2136 cpk = c->pkeys + idx; 2137 pvalid = s->s3->tmp.valid_flags + idx; 2138 x = cpk->x509; 2139 pk = cpk->privatekey; 2140 chain = cpk->chain; 2141 strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT; 2142 /* If no cert or key, forget it */ 2143 if (!x || !pk) 2144 goto end; 2145 } else { 2146 size_t certidx; 2147 2148 if (!x || !pk) 2149 return 0; 2150 2151 if (ssl_cert_lookup_by_pkey(pk, &certidx) == NULL) 2152 return 0; 2153 idx = certidx; 2154 pvalid = s->s3->tmp.valid_flags + idx; 2155 2156 if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT) 2157 check_flags = CERT_PKEY_STRICT_FLAGS; 2158 else 2159 check_flags = CERT_PKEY_VALID_FLAGS; 2160 strict_mode = 1; 2161 } 2162 2163 if (suiteb_flags) { 2164 int ok; 2165 if (check_flags) 2166 check_flags |= CERT_PKEY_SUITEB; 2167 ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags); 2168 if (ok == X509_V_OK) 2169 rv |= CERT_PKEY_SUITEB; 2170 else if (!check_flags) 2171 goto end; 2172 } 2173 2174 /* 2175 * Check all signature algorithms are consistent with signature 2176 * algorithms extension if TLS 1.2 or later and strict mode. 2177 */ 2178 if (TLS1_get_version(s) >= TLS1_2_VERSION && strict_mode) { 2179 int default_nid; 2180 int rsign = 0; 2181 if (s->s3->tmp.peer_cert_sigalgs != NULL 2182 || s->s3->tmp.peer_sigalgs != NULL) { 2183 default_nid = 0; 2184 /* If no sigalgs extension use defaults from RFC5246 */ 2185 } else { 2186 switch (idx) { 2187 case SSL_PKEY_RSA: 2188 rsign = EVP_PKEY_RSA; 2189 default_nid = NID_sha1WithRSAEncryption; 2190 break; 2191 2192 case SSL_PKEY_DSA_SIGN: 2193 rsign = EVP_PKEY_DSA; 2194 default_nid = NID_dsaWithSHA1; 2195 break; 2196 2197 case SSL_PKEY_ECC: 2198 rsign = EVP_PKEY_EC; 2199 default_nid = NID_ecdsa_with_SHA1; 2200 break; 2201 2202 case SSL_PKEY_GOST01: 2203 rsign = NID_id_GostR3410_2001; 2204 default_nid = NID_id_GostR3411_94_with_GostR3410_2001; 2205 break; 2206 2207 case SSL_PKEY_GOST12_256: 2208 rsign = NID_id_GostR3410_2012_256; 2209 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256; 2210 break; 2211 2212 case SSL_PKEY_GOST12_512: 2213 rsign = NID_id_GostR3410_2012_512; 2214 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512; 2215 break; 2216 2217 default: 2218 default_nid = -1; 2219 break; 2220 } 2221 } 2222 /* 2223 * If peer sent no signature algorithms extension and we have set 2224 * preferred signature algorithms check we support sha1. 2225 */ 2226 if (default_nid > 0 && c->conf_sigalgs) { 2227 size_t j; 2228 const uint16_t *p = c->conf_sigalgs; 2229 for (j = 0; j < c->conf_sigalgslen; j++, p++) { 2230 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(*p); 2231 2232 if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign) 2233 break; 2234 } 2235 if (j == c->conf_sigalgslen) { 2236 if (check_flags) 2237 goto skip_sigs; 2238 else 2239 goto end; 2240 } 2241 } 2242 /* Check signature algorithm of each cert in chain */ 2243 if (!tls1_check_sig_alg(c, x, default_nid)) { 2244 if (!check_flags) 2245 goto end; 2246 } else 2247 rv |= CERT_PKEY_EE_SIGNATURE; 2248 rv |= CERT_PKEY_CA_SIGNATURE; 2249 for (i = 0; i < sk_X509_num(chain); i++) { 2250 if (!tls1_check_sig_alg(c, sk_X509_value(chain, i), default_nid)) { 2251 if (check_flags) { 2252 rv &= ~CERT_PKEY_CA_SIGNATURE; 2253 break; 2254 } else 2255 goto end; 2256 } 2257 } 2258 } 2259 /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */ 2260 else if (check_flags) 2261 rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE; 2262 skip_sigs: 2263 /* Check cert parameters are consistent */ 2264 if (tls1_check_cert_param(s, x, 1)) 2265 rv |= CERT_PKEY_EE_PARAM; 2266 else if (!check_flags) 2267 goto end; 2268 if (!s->server) 2269 rv |= CERT_PKEY_CA_PARAM; 2270 /* In strict mode check rest of chain too */ 2271 else if (strict_mode) { 2272 rv |= CERT_PKEY_CA_PARAM; 2273 for (i = 0; i < sk_X509_num(chain); i++) { 2274 X509 *ca = sk_X509_value(chain, i); 2275 if (!tls1_check_cert_param(s, ca, 0)) { 2276 if (check_flags) { 2277 rv &= ~CERT_PKEY_CA_PARAM; 2278 break; 2279 } else 2280 goto end; 2281 } 2282 } 2283 } 2284 if (!s->server && strict_mode) { 2285 STACK_OF(X509_NAME) *ca_dn; 2286 int check_type = 0; 2287 switch (EVP_PKEY_id(pk)) { 2288 case EVP_PKEY_RSA: 2289 check_type = TLS_CT_RSA_SIGN; 2290 break; 2291 case EVP_PKEY_DSA: 2292 check_type = TLS_CT_DSS_SIGN; 2293 break; 2294 case EVP_PKEY_EC: 2295 check_type = TLS_CT_ECDSA_SIGN; 2296 break; 2297 } 2298 if (check_type) { 2299 const uint8_t *ctypes = s->s3->tmp.ctype; 2300 size_t j; 2301 2302 for (j = 0; j < s->s3->tmp.ctype_len; j++, ctypes++) { 2303 if (*ctypes == check_type) { 2304 rv |= CERT_PKEY_CERT_TYPE; 2305 break; 2306 } 2307 } 2308 if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags) 2309 goto end; 2310 } else { 2311 rv |= CERT_PKEY_CERT_TYPE; 2312 } 2313 2314 ca_dn = s->s3->tmp.peer_ca_names; 2315 2316 if (!sk_X509_NAME_num(ca_dn)) 2317 rv |= CERT_PKEY_ISSUER_NAME; 2318 2319 if (!(rv & CERT_PKEY_ISSUER_NAME)) { 2320 if (ssl_check_ca_name(ca_dn, x)) 2321 rv |= CERT_PKEY_ISSUER_NAME; 2322 } 2323 if (!(rv & CERT_PKEY_ISSUER_NAME)) { 2324 for (i = 0; i < sk_X509_num(chain); i++) { 2325 X509 *xtmp = sk_X509_value(chain, i); 2326 if (ssl_check_ca_name(ca_dn, xtmp)) { 2327 rv |= CERT_PKEY_ISSUER_NAME; 2328 break; 2329 } 2330 } 2331 } 2332 if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME)) 2333 goto end; 2334 } else 2335 rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE; 2336 2337 if (!check_flags || (rv & check_flags) == check_flags) 2338 rv |= CERT_PKEY_VALID; 2339 2340 end: 2341 2342 if (TLS1_get_version(s) >= TLS1_2_VERSION) 2343 rv |= *pvalid & (CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN); 2344 else 2345 rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN; 2346 2347 /* 2348 * When checking a CERT_PKEY structure all flags are irrelevant if the 2349 * chain is invalid. 2350 */ 2351 if (!check_flags) { 2352 if (rv & CERT_PKEY_VALID) { 2353 *pvalid = rv; 2354 } else { 2355 /* Preserve sign and explicit sign flag, clear rest */ 2356 *pvalid &= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN; 2357 return 0; 2358 } 2359 } 2360 return rv; 2361 } 2362 2363 /* Set validity of certificates in an SSL structure */ 2364 void tls1_set_cert_validity(SSL *s) 2365 { 2366 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA); 2367 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_PSS_SIGN); 2368 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN); 2369 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC); 2370 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01); 2371 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256); 2372 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512); 2373 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED25519); 2374 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED448); 2375 } 2376 2377 /* User level utility function to check a chain is suitable */ 2378 int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain) 2379 { 2380 return tls1_check_chain(s, x, pk, chain, -1); 2381 } 2382 2383 #ifndef OPENSSL_NO_DH 2384 DH *ssl_get_auto_dh(SSL *s) 2385 { 2386 int dh_secbits = 80; 2387 if (s->cert->dh_tmp_auto == 2) 2388 return DH_get_1024_160(); 2389 if (s->s3->tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) { 2390 if (s->s3->tmp.new_cipher->strength_bits == 256) 2391 dh_secbits = 128; 2392 else 2393 dh_secbits = 80; 2394 } else { 2395 if (s->s3->tmp.cert == NULL) 2396 return NULL; 2397 dh_secbits = EVP_PKEY_security_bits(s->s3->tmp.cert->privatekey); 2398 } 2399 2400 if (dh_secbits >= 128) { 2401 DH *dhp = DH_new(); 2402 BIGNUM *p, *g; 2403 if (dhp == NULL) 2404 return NULL; 2405 g = BN_new(); 2406 if (g == NULL || !BN_set_word(g, 2)) { 2407 DH_free(dhp); 2408 BN_free(g); 2409 return NULL; 2410 } 2411 if (dh_secbits >= 192) 2412 p = BN_get_rfc3526_prime_8192(NULL); 2413 else 2414 p = BN_get_rfc3526_prime_3072(NULL); 2415 if (p == NULL || !DH_set0_pqg(dhp, p, NULL, g)) { 2416 DH_free(dhp); 2417 BN_free(p); 2418 BN_free(g); 2419 return NULL; 2420 } 2421 return dhp; 2422 } 2423 if (dh_secbits >= 112) 2424 return DH_get_2048_224(); 2425 return DH_get_1024_160(); 2426 } 2427 #endif 2428 2429 static int ssl_security_cert_key(SSL *s, SSL_CTX *ctx, X509 *x, int op) 2430 { 2431 int secbits = -1; 2432 EVP_PKEY *pkey = X509_get0_pubkey(x); 2433 if (pkey) { 2434 /* 2435 * If no parameters this will return -1 and fail using the default 2436 * security callback for any non-zero security level. This will 2437 * reject keys which omit parameters but this only affects DSA and 2438 * omission of parameters is never (?) done in practice. 2439 */ 2440 secbits = EVP_PKEY_security_bits(pkey); 2441 } 2442 if (s) 2443 return ssl_security(s, op, secbits, 0, x); 2444 else 2445 return ssl_ctx_security(ctx, op, secbits, 0, x); 2446 } 2447 2448 static int ssl_security_cert_sig(SSL *s, SSL_CTX *ctx, X509 *x, int op) 2449 { 2450 /* Lookup signature algorithm digest */ 2451 int secbits, nid, pknid; 2452 /* Don't check signature if self signed */ 2453 if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0) 2454 return 1; 2455 if (!X509_get_signature_info(x, &nid, &pknid, &secbits, NULL)) 2456 secbits = -1; 2457 /* If digest NID not defined use signature NID */ 2458 if (nid == NID_undef) 2459 nid = pknid; 2460 if (s) 2461 return ssl_security(s, op, secbits, nid, x); 2462 else 2463 return ssl_ctx_security(ctx, op, secbits, nid, x); 2464 } 2465 2466 int ssl_security_cert(SSL *s, SSL_CTX *ctx, X509 *x, int vfy, int is_ee) 2467 { 2468 if (vfy) 2469 vfy = SSL_SECOP_PEER; 2470 if (is_ee) { 2471 if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy)) 2472 return SSL_R_EE_KEY_TOO_SMALL; 2473 } else { 2474 if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy)) 2475 return SSL_R_CA_KEY_TOO_SMALL; 2476 } 2477 if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy)) 2478 return SSL_R_CA_MD_TOO_WEAK; 2479 return 1; 2480 } 2481 2482 /* 2483 * Check security of a chain, if |sk| includes the end entity certificate then 2484 * |x| is NULL. If |vfy| is 1 then we are verifying a peer chain and not sending 2485 * one to the peer. Return values: 1 if ok otherwise error code to use 2486 */ 2487 2488 int ssl_security_cert_chain(SSL *s, STACK_OF(X509) *sk, X509 *x, int vfy) 2489 { 2490 int rv, start_idx, i; 2491 if (x == NULL) { 2492 x = sk_X509_value(sk, 0); 2493 start_idx = 1; 2494 } else 2495 start_idx = 0; 2496 2497 rv = ssl_security_cert(s, NULL, x, vfy, 1); 2498 if (rv != 1) 2499 return rv; 2500 2501 for (i = start_idx; i < sk_X509_num(sk); i++) { 2502 x = sk_X509_value(sk, i); 2503 rv = ssl_security_cert(s, NULL, x, vfy, 0); 2504 if (rv != 1) 2505 return rv; 2506 } 2507 return 1; 2508 } 2509 2510 /* 2511 * For TLS 1.2 servers check if we have a certificate which can be used 2512 * with the signature algorithm "lu" and return index of certificate. 2513 */ 2514 2515 static int tls12_get_cert_sigalg_idx(const SSL *s, const SIGALG_LOOKUP *lu) 2516 { 2517 int sig_idx = lu->sig_idx; 2518 const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(sig_idx); 2519 2520 /* If not recognised or not supported by cipher mask it is not suitable */ 2521 if (clu == NULL 2522 || (clu->amask & s->s3->tmp.new_cipher->algorithm_auth) == 0 2523 || (clu->nid == EVP_PKEY_RSA_PSS 2524 && (s->s3->tmp.new_cipher->algorithm_mkey & SSL_kRSA) != 0)) 2525 return -1; 2526 2527 return s->s3->tmp.valid_flags[sig_idx] & CERT_PKEY_VALID ? sig_idx : -1; 2528 } 2529 2530 /* 2531 * Returns true if |s| has a usable certificate configured for use 2532 * with signature scheme |sig|. 2533 * "Usable" includes a check for presence as well as applying 2534 * the signature_algorithm_cert restrictions sent by the peer (if any). 2535 * Returns false if no usable certificate is found. 2536 */ 2537 static int has_usable_cert(SSL *s, const SIGALG_LOOKUP *sig, int idx) 2538 { 2539 const SIGALG_LOOKUP *lu; 2540 int mdnid, pknid; 2541 size_t i; 2542 2543 /* TLS 1.2 callers can override lu->sig_idx, but not TLS 1.3 callers. */ 2544 if (idx == -1) 2545 idx = sig->sig_idx; 2546 if (!ssl_has_cert(s, idx)) 2547 return 0; 2548 if (s->s3->tmp.peer_cert_sigalgs != NULL) { 2549 for (i = 0; i < s->s3->tmp.peer_cert_sigalgslen; i++) { 2550 lu = tls1_lookup_sigalg(s->s3->tmp.peer_cert_sigalgs[i]); 2551 if (lu == NULL 2552 || !X509_get_signature_info(s->cert->pkeys[idx].x509, &mdnid, 2553 &pknid, NULL, NULL)) 2554 continue; 2555 /* 2556 * TODO this does not differentiate between the 2557 * rsa_pss_pss_* and rsa_pss_rsae_* schemes since we do not 2558 * have a chain here that lets us look at the key OID in the 2559 * signing certificate. 2560 */ 2561 if (mdnid == lu->hash && pknid == lu->sig) 2562 return 1; 2563 } 2564 return 0; 2565 } 2566 return 1; 2567 } 2568 2569 /* 2570 * Choose an appropriate signature algorithm based on available certificates 2571 * Sets chosen certificate and signature algorithm. 2572 * 2573 * For servers if we fail to find a required certificate it is a fatal error, 2574 * an appropriate error code is set and a TLS alert is sent. 2575 * 2576 * For clients fatalerrs is set to 0. If a certificate is not suitable it is not 2577 * a fatal error: we will either try another certificate or not present one 2578 * to the server. In this case no error is set. 2579 */ 2580 int tls_choose_sigalg(SSL *s, int fatalerrs) 2581 { 2582 const SIGALG_LOOKUP *lu = NULL; 2583 int sig_idx = -1; 2584 2585 s->s3->tmp.cert = NULL; 2586 s->s3->tmp.sigalg = NULL; 2587 2588 if (SSL_IS_TLS13(s)) { 2589 size_t i; 2590 #ifndef OPENSSL_NO_EC 2591 int curve = -1; 2592 #endif 2593 2594 /* Look for a certificate matching shared sigalgs */ 2595 for (i = 0; i < s->cert->shared_sigalgslen; i++) { 2596 lu = s->cert->shared_sigalgs[i]; 2597 sig_idx = -1; 2598 2599 /* Skip SHA1, SHA224, DSA and RSA if not PSS */ 2600 if (lu->hash == NID_sha1 2601 || lu->hash == NID_sha224 2602 || lu->sig == EVP_PKEY_DSA 2603 || lu->sig == EVP_PKEY_RSA) 2604 continue; 2605 /* Check that we have a cert, and signature_algorithms_cert */ 2606 if (!tls1_lookup_md(lu, NULL) || !has_usable_cert(s, lu, -1)) 2607 continue; 2608 if (lu->sig == EVP_PKEY_EC) { 2609 #ifndef OPENSSL_NO_EC 2610 if (curve == -1) { 2611 EC_KEY *ec = EVP_PKEY_get0_EC_KEY(s->cert->pkeys[SSL_PKEY_ECC].privatekey); 2612 2613 curve = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec)); 2614 } 2615 if (lu->curve != NID_undef && curve != lu->curve) 2616 continue; 2617 #else 2618 continue; 2619 #endif 2620 } else if (lu->sig == EVP_PKEY_RSA_PSS) { 2621 /* validate that key is large enough for the signature algorithm */ 2622 EVP_PKEY *pkey; 2623 2624 pkey = s->cert->pkeys[lu->sig_idx].privatekey; 2625 if (!rsa_pss_check_min_key_size(EVP_PKEY_get0(pkey), lu)) 2626 continue; 2627 } 2628 break; 2629 } 2630 if (i == s->cert->shared_sigalgslen) { 2631 if (!fatalerrs) 2632 return 1; 2633 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS_CHOOSE_SIGALG, 2634 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM); 2635 return 0; 2636 } 2637 } else { 2638 /* If ciphersuite doesn't require a cert nothing to do */ 2639 if (!(s->s3->tmp.new_cipher->algorithm_auth & SSL_aCERT)) 2640 return 1; 2641 if (!s->server && !ssl_has_cert(s, s->cert->key - s->cert->pkeys)) 2642 return 1; 2643 2644 if (SSL_USE_SIGALGS(s)) { 2645 size_t i; 2646 if (s->s3->tmp.peer_sigalgs != NULL) { 2647 #ifndef OPENSSL_NO_EC 2648 int curve; 2649 2650 /* For Suite B need to match signature algorithm to curve */ 2651 if (tls1_suiteb(s)) { 2652 EC_KEY *ec = EVP_PKEY_get0_EC_KEY(s->cert->pkeys[SSL_PKEY_ECC].privatekey); 2653 curve = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec)); 2654 } else { 2655 curve = -1; 2656 } 2657 #endif 2658 2659 /* 2660 * Find highest preference signature algorithm matching 2661 * cert type 2662 */ 2663 for (i = 0; i < s->cert->shared_sigalgslen; i++) { 2664 lu = s->cert->shared_sigalgs[i]; 2665 2666 if (s->server) { 2667 if ((sig_idx = tls12_get_cert_sigalg_idx(s, lu)) == -1) 2668 continue; 2669 } else { 2670 int cc_idx = s->cert->key - s->cert->pkeys; 2671 2672 sig_idx = lu->sig_idx; 2673 if (cc_idx != sig_idx) 2674 continue; 2675 } 2676 /* Check that we have a cert, and sig_algs_cert */ 2677 if (!has_usable_cert(s, lu, sig_idx)) 2678 continue; 2679 if (lu->sig == EVP_PKEY_RSA_PSS) { 2680 /* validate that key is large enough for the signature algorithm */ 2681 EVP_PKEY *pkey = s->cert->pkeys[sig_idx].privatekey; 2682 2683 if (!rsa_pss_check_min_key_size(EVP_PKEY_get0(pkey), lu)) 2684 continue; 2685 } 2686 #ifndef OPENSSL_NO_EC 2687 if (curve == -1 || lu->curve == curve) 2688 #endif 2689 break; 2690 } 2691 if (i == s->cert->shared_sigalgslen) { 2692 if (!fatalerrs) 2693 return 1; 2694 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, 2695 SSL_F_TLS_CHOOSE_SIGALG, 2696 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM); 2697 return 0; 2698 } 2699 } else { 2700 /* 2701 * If we have no sigalg use defaults 2702 */ 2703 const uint16_t *sent_sigs; 2704 size_t sent_sigslen; 2705 2706 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) { 2707 if (!fatalerrs) 2708 return 1; 2709 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CHOOSE_SIGALG, 2710 ERR_R_INTERNAL_ERROR); 2711 return 0; 2712 } 2713 2714 /* Check signature matches a type we sent */ 2715 sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs); 2716 for (i = 0; i < sent_sigslen; i++, sent_sigs++) { 2717 if (lu->sigalg == *sent_sigs 2718 && has_usable_cert(s, lu, lu->sig_idx)) 2719 break; 2720 } 2721 if (i == sent_sigslen) { 2722 if (!fatalerrs) 2723 return 1; 2724 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, 2725 SSL_F_TLS_CHOOSE_SIGALG, 2726 SSL_R_WRONG_SIGNATURE_TYPE); 2727 return 0; 2728 } 2729 } 2730 } else { 2731 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) { 2732 if (!fatalerrs) 2733 return 1; 2734 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CHOOSE_SIGALG, 2735 ERR_R_INTERNAL_ERROR); 2736 return 0; 2737 } 2738 } 2739 } 2740 if (sig_idx == -1) 2741 sig_idx = lu->sig_idx; 2742 s->s3->tmp.cert = &s->cert->pkeys[sig_idx]; 2743 s->cert->key = s->s3->tmp.cert; 2744 s->s3->tmp.sigalg = lu; 2745 return 1; 2746 } 2747 2748 int SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX *ctx, uint8_t mode) 2749 { 2750 if (mode != TLSEXT_max_fragment_length_DISABLED 2751 && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) { 2752 SSLerr(SSL_F_SSL_CTX_SET_TLSEXT_MAX_FRAGMENT_LENGTH, 2753 SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH); 2754 return 0; 2755 } 2756 2757 ctx->ext.max_fragment_len_mode = mode; 2758 return 1; 2759 } 2760 2761 int SSL_set_tlsext_max_fragment_length(SSL *ssl, uint8_t mode) 2762 { 2763 if (mode != TLSEXT_max_fragment_length_DISABLED 2764 && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) { 2765 SSLerr(SSL_F_SSL_SET_TLSEXT_MAX_FRAGMENT_LENGTH, 2766 SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH); 2767 return 0; 2768 } 2769 2770 ssl->ext.max_fragment_len_mode = mode; 2771 return 1; 2772 } 2773 2774 uint8_t SSL_SESSION_get_max_fragment_length(const SSL_SESSION *session) 2775 { 2776 return session->ext.max_fragment_len_mode; 2777 } 2778