1 /* ssl/t1_enc.c */ 2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) 3 * All rights reserved. 4 * 5 * This package is an SSL implementation written 6 * by Eric Young (eay@cryptsoft.com). 7 * The implementation was written so as to conform with Netscapes SSL. 8 * 9 * This library is free for commercial and non-commercial use as long as 10 * the following conditions are aheared to. The following conditions 11 * apply to all code found in this distribution, be it the RC4, RSA, 12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation 13 * included with this distribution is covered by the same copyright terms 14 * except that the holder is Tim Hudson (tjh@cryptsoft.com). 15 * 16 * Copyright remains Eric Young's, and as such any Copyright notices in 17 * the code are not to be removed. 18 * If this package is used in a product, Eric Young should be given attribution 19 * as the author of the parts of the library used. 20 * This can be in the form of a textual message at program startup or 21 * in documentation (online or textual) provided with the package. 22 * 23 * Redistribution and use in source and binary forms, with or without 24 * modification, are permitted provided that the following conditions 25 * are met: 26 * 1. Redistributions of source code must retain the copyright 27 * notice, this list of conditions and the following disclaimer. 28 * 2. Redistributions in binary form must reproduce the above copyright 29 * notice, this list of conditions and the following disclaimer in the 30 * documentation and/or other materials provided with the distribution. 31 * 3. All advertising materials mentioning features or use of this software 32 * must display the following acknowledgement: 33 * "This product includes cryptographic software written by 34 * Eric Young (eay@cryptsoft.com)" 35 * The word 'cryptographic' can be left out if the rouines from the library 36 * being used are not cryptographic related :-). 37 * 4. If you include any Windows specific code (or a derivative thereof) from 38 * the apps directory (application code) you must include an acknowledgement: 39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" 40 * 41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND 42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 51 * SUCH DAMAGE. 52 * 53 * The licence and distribution terms for any publically available version or 54 * derivative of this code cannot be changed. i.e. this code cannot simply be 55 * copied and put under another distribution licence 56 * [including the GNU Public Licence.] 57 */ 58 /* ==================================================================== 59 * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved. 60 * 61 * Redistribution and use in source and binary forms, with or without 62 * modification, are permitted provided that the following conditions 63 * are met: 64 * 65 * 1. Redistributions of source code must retain the above copyright 66 * notice, this list of conditions and the following disclaimer. 67 * 68 * 2. Redistributions in binary form must reproduce the above copyright 69 * notice, this list of conditions and the following disclaimer in 70 * the documentation and/or other materials provided with the 71 * distribution. 72 * 73 * 3. All advertising materials mentioning features or use of this 74 * software must display the following acknowledgment: 75 * "This product includes software developed by the OpenSSL Project 76 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" 77 * 78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to 79 * endorse or promote products derived from this software without 80 * prior written permission. For written permission, please contact 81 * openssl-core@openssl.org. 82 * 83 * 5. Products derived from this software may not be called "OpenSSL" 84 * nor may "OpenSSL" appear in their names without prior written 85 * permission of the OpenSSL Project. 86 * 87 * 6. Redistributions of any form whatsoever must retain the following 88 * acknowledgment: 89 * "This product includes software developed by the OpenSSL Project 90 * for use in the OpenSSL Toolkit (http://www.openssl.org/)" 91 * 92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY 93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 95 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR 96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED 103 * OF THE POSSIBILITY OF SUCH DAMAGE. 104 * ==================================================================== 105 * 106 * This product includes cryptographic software written by Eric Young 107 * (eay@cryptsoft.com). This product includes software written by Tim 108 * Hudson (tjh@cryptsoft.com). 109 * 110 */ 111 /* ==================================================================== 112 * Copyright 2005 Nokia. All rights reserved. 113 * 114 * The portions of the attached software ("Contribution") is developed by 115 * Nokia Corporation and is licensed pursuant to the OpenSSL open source 116 * license. 117 * 118 * The Contribution, originally written by Mika Kousa and Pasi Eronen of 119 * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites 120 * support (see RFC 4279) to OpenSSL. 121 * 122 * No patent licenses or other rights except those expressly stated in 123 * the OpenSSL open source license shall be deemed granted or received 124 * expressly, by implication, estoppel, or otherwise. 125 * 126 * No assurances are provided by Nokia that the Contribution does not 127 * infringe the patent or other intellectual property rights of any third 128 * party or that the license provides you with all the necessary rights 129 * to make use of the Contribution. 130 * 131 * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN 132 * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA 133 * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY 134 * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR 135 * OTHERWISE. 136 */ 137 138 #include <stdio.h> 139 #include "ssl_locl.h" 140 #ifndef OPENSSL_NO_COMP 141 # include <openssl/comp.h> 142 #endif 143 #include <openssl/evp.h> 144 #include <openssl/hmac.h> 145 #include <openssl/md5.h> 146 #include <openssl/rand.h> 147 #ifdef KSSL_DEBUG 148 # include <openssl/des.h> 149 #endif 150 151 /* seed1 through seed5 are virtually concatenated */ 152 static int tls1_P_hash(const EVP_MD *md, const unsigned char *sec, 153 int sec_len, 154 const void *seed1, int seed1_len, 155 const void *seed2, int seed2_len, 156 const void *seed3, int seed3_len, 157 const void *seed4, int seed4_len, 158 const void *seed5, int seed5_len, 159 unsigned char *out, int olen) 160 { 161 int chunk; 162 size_t j; 163 EVP_MD_CTX ctx, ctx_tmp, ctx_init; 164 EVP_PKEY *mac_key; 165 unsigned char A1[EVP_MAX_MD_SIZE]; 166 size_t A1_len; 167 int ret = 0; 168 169 chunk = EVP_MD_size(md); 170 OPENSSL_assert(chunk >= 0); 171 172 EVP_MD_CTX_init(&ctx); 173 EVP_MD_CTX_init(&ctx_tmp); 174 EVP_MD_CTX_init(&ctx_init); 175 EVP_MD_CTX_set_flags(&ctx_init, EVP_MD_CTX_FLAG_NON_FIPS_ALLOW); 176 mac_key = EVP_PKEY_new_mac_key(EVP_PKEY_HMAC, NULL, sec, sec_len); 177 if (!mac_key) 178 goto err; 179 if (!EVP_DigestSignInit(&ctx_init, NULL, md, NULL, mac_key)) 180 goto err; 181 if (!EVP_MD_CTX_copy_ex(&ctx, &ctx_init)) 182 goto err; 183 if (seed1 && !EVP_DigestSignUpdate(&ctx, seed1, seed1_len)) 184 goto err; 185 if (seed2 && !EVP_DigestSignUpdate(&ctx, seed2, seed2_len)) 186 goto err; 187 if (seed3 && !EVP_DigestSignUpdate(&ctx, seed3, seed3_len)) 188 goto err; 189 if (seed4 && !EVP_DigestSignUpdate(&ctx, seed4, seed4_len)) 190 goto err; 191 if (seed5 && !EVP_DigestSignUpdate(&ctx, seed5, seed5_len)) 192 goto err; 193 if (!EVP_DigestSignFinal(&ctx, A1, &A1_len)) 194 goto err; 195 196 for (;;) { 197 /* Reinit mac contexts */ 198 if (!EVP_MD_CTX_copy_ex(&ctx, &ctx_init)) 199 goto err; 200 if (!EVP_DigestSignUpdate(&ctx, A1, A1_len)) 201 goto err; 202 if (olen > chunk && !EVP_MD_CTX_copy_ex(&ctx_tmp, &ctx)) 203 goto err; 204 if (seed1 && !EVP_DigestSignUpdate(&ctx, seed1, seed1_len)) 205 goto err; 206 if (seed2 && !EVP_DigestSignUpdate(&ctx, seed2, seed2_len)) 207 goto err; 208 if (seed3 && !EVP_DigestSignUpdate(&ctx, seed3, seed3_len)) 209 goto err; 210 if (seed4 && !EVP_DigestSignUpdate(&ctx, seed4, seed4_len)) 211 goto err; 212 if (seed5 && !EVP_DigestSignUpdate(&ctx, seed5, seed5_len)) 213 goto err; 214 215 if (olen > chunk) { 216 if (!EVP_DigestSignFinal(&ctx, out, &j)) 217 goto err; 218 out += j; 219 olen -= j; 220 /* calc the next A1 value */ 221 if (!EVP_DigestSignFinal(&ctx_tmp, A1, &A1_len)) 222 goto err; 223 } else { /* last one */ 224 225 if (!EVP_DigestSignFinal(&ctx, A1, &A1_len)) 226 goto err; 227 memcpy(out, A1, olen); 228 break; 229 } 230 } 231 ret = 1; 232 err: 233 EVP_PKEY_free(mac_key); 234 EVP_MD_CTX_cleanup(&ctx); 235 EVP_MD_CTX_cleanup(&ctx_tmp); 236 EVP_MD_CTX_cleanup(&ctx_init); 237 OPENSSL_cleanse(A1, sizeof(A1)); 238 return ret; 239 } 240 241 /* seed1 through seed5 are virtually concatenated */ 242 static int tls1_PRF(long digest_mask, 243 const void *seed1, int seed1_len, 244 const void *seed2, int seed2_len, 245 const void *seed3, int seed3_len, 246 const void *seed4, int seed4_len, 247 const void *seed5, int seed5_len, 248 const unsigned char *sec, int slen, 249 unsigned char *out1, unsigned char *out2, int olen) 250 { 251 int len, i, idx, count; 252 const unsigned char *S1; 253 long m; 254 const EVP_MD *md; 255 int ret = 0; 256 257 /* Count number of digests and partition sec evenly */ 258 count = 0; 259 for (idx = 0; ssl_get_handshake_digest(idx, &m, &md); idx++) { 260 if ((m << TLS1_PRF_DGST_SHIFT) & digest_mask) 261 count++; 262 } 263 if (!count) { 264 /* Should never happen */ 265 SSLerr(SSL_F_TLS1_PRF, ERR_R_INTERNAL_ERROR); 266 goto err; 267 } 268 len = slen / count; 269 if (count == 1) 270 slen = 0; 271 S1 = sec; 272 memset(out1, 0, olen); 273 for (idx = 0; ssl_get_handshake_digest(idx, &m, &md); idx++) { 274 if ((m << TLS1_PRF_DGST_SHIFT) & digest_mask) { 275 if (!md) { 276 SSLerr(SSL_F_TLS1_PRF, SSL_R_UNSUPPORTED_DIGEST_TYPE); 277 goto err; 278 } 279 if (!tls1_P_hash(md, S1, len + (slen & 1), 280 seed1, seed1_len, seed2, seed2_len, seed3, 281 seed3_len, seed4, seed4_len, seed5, seed5_len, 282 out2, olen)) 283 goto err; 284 S1 += len; 285 for (i = 0; i < olen; i++) { 286 out1[i] ^= out2[i]; 287 } 288 } 289 } 290 ret = 1; 291 err: 292 return ret; 293 } 294 295 static int tls1_generate_key_block(SSL *s, unsigned char *km, 296 unsigned char *tmp, int num) 297 { 298 int ret; 299 ret = tls1_PRF(ssl_get_algorithm2(s), 300 TLS_MD_KEY_EXPANSION_CONST, 301 TLS_MD_KEY_EXPANSION_CONST_SIZE, s->s3->server_random, 302 SSL3_RANDOM_SIZE, s->s3->client_random, SSL3_RANDOM_SIZE, 303 NULL, 0, NULL, 0, s->session->master_key, 304 s->session->master_key_length, km, tmp, num); 305 #ifdef KSSL_DEBUG 306 fprintf(stderr, "tls1_generate_key_block() ==> %d byte master_key =\n\t", 307 s->session->master_key_length); 308 { 309 int i; 310 for (i = 0; i < s->session->master_key_length; i++) { 311 fprintf(stderr, "%02X", s->session->master_key[i]); 312 } 313 fprintf(stderr, "\n"); 314 } 315 #endif /* KSSL_DEBUG */ 316 return ret; 317 } 318 319 int tls1_change_cipher_state(SSL *s, int which) 320 { 321 static const unsigned char empty[] = ""; 322 unsigned char *p, *mac_secret; 323 unsigned char *exp_label; 324 unsigned char tmp1[EVP_MAX_KEY_LENGTH]; 325 unsigned char tmp2[EVP_MAX_KEY_LENGTH]; 326 unsigned char iv1[EVP_MAX_IV_LENGTH * 2]; 327 unsigned char iv2[EVP_MAX_IV_LENGTH * 2]; 328 unsigned char *ms, *key, *iv; 329 int client_write; 330 EVP_CIPHER_CTX *dd; 331 const EVP_CIPHER *c; 332 #ifndef OPENSSL_NO_COMP 333 const SSL_COMP *comp; 334 #endif 335 const EVP_MD *m; 336 int mac_type; 337 int *mac_secret_size; 338 EVP_MD_CTX *mac_ctx; 339 EVP_PKEY *mac_key; 340 int is_export, n, i, j, k, exp_label_len, cl; 341 int reuse_dd = 0; 342 343 is_export = SSL_C_IS_EXPORT(s->s3->tmp.new_cipher); 344 c = s->s3->tmp.new_sym_enc; 345 m = s->s3->tmp.new_hash; 346 mac_type = s->s3->tmp.new_mac_pkey_type; 347 #ifndef OPENSSL_NO_COMP 348 comp = s->s3->tmp.new_compression; 349 #endif 350 351 #ifdef KSSL_DEBUG 352 fprintf(stderr, "tls1_change_cipher_state(which= %d) w/\n", which); 353 fprintf(stderr, "\talg= %ld/%ld, comp= %p\n", 354 s->s3->tmp.new_cipher->algorithm_mkey, 355 s->s3->tmp.new_cipher->algorithm_auth, comp); 356 fprintf(stderr, "\tevp_cipher == %p ==? &d_cbc_ede_cipher3\n", c); 357 fprintf(stderr, "\tevp_cipher: nid, blksz= %d, %d, keylen=%d, ivlen=%d\n", 358 c->nid, c->block_size, c->key_len, c->iv_len); 359 fprintf(stderr, "\tkey_block: len= %d, data= ", 360 s->s3->tmp.key_block_length); 361 { 362 int i; 363 for (i = 0; i < s->s3->tmp.key_block_length; i++) 364 fprintf(stderr, "%02x", s->s3->tmp.key_block[i]); 365 fprintf(stderr, "\n"); 366 } 367 #endif /* KSSL_DEBUG */ 368 369 if (which & SSL3_CC_READ) { 370 if (s->s3->tmp.new_cipher->algorithm2 & TLS1_STREAM_MAC) 371 s->mac_flags |= SSL_MAC_FLAG_READ_MAC_STREAM; 372 else 373 s->mac_flags &= ~SSL_MAC_FLAG_READ_MAC_STREAM; 374 375 if (s->enc_read_ctx != NULL) 376 reuse_dd = 1; 377 else if ((s->enc_read_ctx = 378 OPENSSL_malloc(sizeof(EVP_CIPHER_CTX))) == NULL) 379 goto err; 380 else 381 /* 382 * make sure it's intialized in case we exit later with an error 383 */ 384 EVP_CIPHER_CTX_init(s->enc_read_ctx); 385 dd = s->enc_read_ctx; 386 mac_ctx = ssl_replace_hash(&s->read_hash, NULL); 387 if (mac_ctx == NULL) 388 goto err; 389 #ifndef OPENSSL_NO_COMP 390 if (s->expand != NULL) { 391 COMP_CTX_free(s->expand); 392 s->expand = NULL; 393 } 394 if (comp != NULL) { 395 s->expand = COMP_CTX_new(comp->method); 396 if (s->expand == NULL) { 397 SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE, 398 SSL_R_COMPRESSION_LIBRARY_ERROR); 399 goto err2; 400 } 401 if (s->s3->rrec.comp == NULL) 402 s->s3->rrec.comp = (unsigned char *) 403 OPENSSL_malloc(SSL3_RT_MAX_ENCRYPTED_LENGTH); 404 if (s->s3->rrec.comp == NULL) 405 goto err; 406 } 407 #endif 408 /* 409 * this is done by dtls1_reset_seq_numbers for DTLS 410 */ 411 if (!SSL_IS_DTLS(s)) 412 memset(&(s->s3->read_sequence[0]), 0, 8); 413 mac_secret = &(s->s3->read_mac_secret[0]); 414 mac_secret_size = &(s->s3->read_mac_secret_size); 415 } else { 416 if (s->s3->tmp.new_cipher->algorithm2 & TLS1_STREAM_MAC) 417 s->mac_flags |= SSL_MAC_FLAG_WRITE_MAC_STREAM; 418 else 419 s->mac_flags &= ~SSL_MAC_FLAG_WRITE_MAC_STREAM; 420 if (s->enc_write_ctx != NULL && !SSL_IS_DTLS(s)) 421 reuse_dd = 1; 422 else if ((s->enc_write_ctx = EVP_CIPHER_CTX_new()) == NULL) 423 goto err; 424 dd = s->enc_write_ctx; 425 if (SSL_IS_DTLS(s)) { 426 mac_ctx = EVP_MD_CTX_create(); 427 if (mac_ctx == NULL) 428 goto err; 429 s->write_hash = mac_ctx; 430 } else { 431 mac_ctx = ssl_replace_hash(&s->write_hash, NULL); 432 if (mac_ctx == NULL) 433 goto err; 434 } 435 #ifndef OPENSSL_NO_COMP 436 if (s->compress != NULL) { 437 COMP_CTX_free(s->compress); 438 s->compress = NULL; 439 } 440 if (comp != NULL) { 441 s->compress = COMP_CTX_new(comp->method); 442 if (s->compress == NULL) { 443 SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE, 444 SSL_R_COMPRESSION_LIBRARY_ERROR); 445 goto err2; 446 } 447 } 448 #endif 449 /* 450 * this is done by dtls1_reset_seq_numbers for DTLS 451 */ 452 if (!SSL_IS_DTLS(s)) 453 memset(&(s->s3->write_sequence[0]), 0, 8); 454 mac_secret = &(s->s3->write_mac_secret[0]); 455 mac_secret_size = &(s->s3->write_mac_secret_size); 456 } 457 458 if (reuse_dd) 459 EVP_CIPHER_CTX_cleanup(dd); 460 461 p = s->s3->tmp.key_block; 462 i = *mac_secret_size = s->s3->tmp.new_mac_secret_size; 463 464 cl = EVP_CIPHER_key_length(c); 465 j = is_export ? (cl < SSL_C_EXPORT_KEYLENGTH(s->s3->tmp.new_cipher) ? 466 cl : SSL_C_EXPORT_KEYLENGTH(s->s3->tmp.new_cipher)) : cl; 467 /* Was j=(exp)?5:EVP_CIPHER_key_length(c); */ 468 /* If GCM mode only part of IV comes from PRF */ 469 if (EVP_CIPHER_mode(c) == EVP_CIPH_GCM_MODE) 470 k = EVP_GCM_TLS_FIXED_IV_LEN; 471 else 472 k = EVP_CIPHER_iv_length(c); 473 if ((which == SSL3_CHANGE_CIPHER_CLIENT_WRITE) || 474 (which == SSL3_CHANGE_CIPHER_SERVER_READ)) { 475 ms = &(p[0]); 476 n = i + i; 477 key = &(p[n]); 478 n += j + j; 479 iv = &(p[n]); 480 n += k + k; 481 exp_label = (unsigned char *)TLS_MD_CLIENT_WRITE_KEY_CONST; 482 exp_label_len = TLS_MD_CLIENT_WRITE_KEY_CONST_SIZE; 483 client_write = 1; 484 } else { 485 n = i; 486 ms = &(p[n]); 487 n += i + j; 488 key = &(p[n]); 489 n += j + k; 490 iv = &(p[n]); 491 n += k; 492 exp_label = (unsigned char *)TLS_MD_SERVER_WRITE_KEY_CONST; 493 exp_label_len = TLS_MD_SERVER_WRITE_KEY_CONST_SIZE; 494 client_write = 0; 495 } 496 497 if (n > s->s3->tmp.key_block_length) { 498 SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE, ERR_R_INTERNAL_ERROR); 499 goto err2; 500 } 501 502 memcpy(mac_secret, ms, i); 503 504 if (!(EVP_CIPHER_flags(c) & EVP_CIPH_FLAG_AEAD_CIPHER)) { 505 mac_key = EVP_PKEY_new_mac_key(mac_type, NULL, 506 mac_secret, *mac_secret_size); 507 if (mac_key == NULL 508 || EVP_DigestSignInit(mac_ctx, NULL, m, NULL, mac_key) <= 0) { 509 EVP_PKEY_free(mac_key); 510 SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE, ERR_R_INTERNAL_ERROR); 511 goto err2; 512 } 513 EVP_PKEY_free(mac_key); 514 } 515 #ifdef TLS_DEBUG 516 printf("which = %04X\nmac key=", which); 517 { 518 int z; 519 for (z = 0; z < i; z++) 520 printf("%02X%c", ms[z], ((z + 1) % 16) ? ' ' : '\n'); 521 } 522 #endif 523 if (is_export) { 524 /* 525 * In here I set both the read and write key/iv to the same value 526 * since only the correct one will be used :-). 527 */ 528 if (!tls1_PRF(ssl_get_algorithm2(s), 529 exp_label, exp_label_len, 530 s->s3->client_random, SSL3_RANDOM_SIZE, 531 s->s3->server_random, SSL3_RANDOM_SIZE, 532 NULL, 0, NULL, 0, 533 key, j, tmp1, tmp2, EVP_CIPHER_key_length(c))) 534 goto err2; 535 key = tmp1; 536 537 if (k > 0) { 538 if (!tls1_PRF(ssl_get_algorithm2(s), 539 TLS_MD_IV_BLOCK_CONST, TLS_MD_IV_BLOCK_CONST_SIZE, 540 s->s3->client_random, SSL3_RANDOM_SIZE, 541 s->s3->server_random, SSL3_RANDOM_SIZE, 542 NULL, 0, NULL, 0, empty, 0, iv1, iv2, k * 2)) 543 goto err2; 544 if (client_write) 545 iv = iv1; 546 else 547 iv = &(iv1[k]); 548 } 549 } 550 551 s->session->key_arg_length = 0; 552 #ifdef KSSL_DEBUG 553 { 554 int i; 555 fprintf(stderr, "EVP_CipherInit_ex(dd,c,key=,iv=,which)\n"); 556 fprintf(stderr, "\tkey= "); 557 for (i = 0; i < c->key_len; i++) 558 fprintf(stderr, "%02x", key[i]); 559 fprintf(stderr, "\n"); 560 fprintf(stderr, "\t iv= "); 561 for (i = 0; i < c->iv_len; i++) 562 fprintf(stderr, "%02x", iv[i]); 563 fprintf(stderr, "\n"); 564 } 565 #endif /* KSSL_DEBUG */ 566 567 if (EVP_CIPHER_mode(c) == EVP_CIPH_GCM_MODE) { 568 if (!EVP_CipherInit_ex(dd, c, NULL, key, NULL, (which & SSL3_CC_WRITE)) 569 || !EVP_CIPHER_CTX_ctrl(dd, EVP_CTRL_GCM_SET_IV_FIXED, k, iv)) { 570 SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE, ERR_R_INTERNAL_ERROR); 571 goto err2; 572 } 573 } else { 574 if (!EVP_CipherInit_ex(dd, c, NULL, key, iv, (which & SSL3_CC_WRITE))) { 575 SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE, ERR_R_INTERNAL_ERROR); 576 goto err2; 577 } 578 } 579 /* Needed for "composite" AEADs, such as RC4-HMAC-MD5 */ 580 if ((EVP_CIPHER_flags(c) & EVP_CIPH_FLAG_AEAD_CIPHER) && *mac_secret_size 581 && !EVP_CIPHER_CTX_ctrl(dd, EVP_CTRL_AEAD_SET_MAC_KEY, 582 *mac_secret_size, mac_secret)) { 583 SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE, ERR_R_INTERNAL_ERROR); 584 goto err2; 585 } 586 #ifdef OPENSSL_SSL_TRACE_CRYPTO 587 if (s->msg_callback) { 588 int wh = which & SSL3_CC_WRITE ? TLS1_RT_CRYPTO_WRITE : 0; 589 if (*mac_secret_size) 590 s->msg_callback(2, s->version, wh | TLS1_RT_CRYPTO_MAC, 591 mac_secret, *mac_secret_size, 592 s, s->msg_callback_arg); 593 if (c->key_len) 594 s->msg_callback(2, s->version, wh | TLS1_RT_CRYPTO_KEY, 595 key, c->key_len, s, s->msg_callback_arg); 596 if (k) { 597 if (EVP_CIPHER_mode(c) == EVP_CIPH_GCM_MODE) 598 wh |= TLS1_RT_CRYPTO_FIXED_IV; 599 else 600 wh |= TLS1_RT_CRYPTO_IV; 601 s->msg_callback(2, s->version, wh, iv, k, s, s->msg_callback_arg); 602 } 603 } 604 #endif 605 606 #ifdef TLS_DEBUG 607 printf("which = %04X\nkey=", which); 608 { 609 int z; 610 for (z = 0; z < EVP_CIPHER_key_length(c); z++) 611 printf("%02X%c", key[z], ((z + 1) % 16) ? ' ' : '\n'); 612 } 613 printf("\niv="); 614 { 615 int z; 616 for (z = 0; z < k; z++) 617 printf("%02X%c", iv[z], ((z + 1) % 16) ? ' ' : '\n'); 618 } 619 printf("\n"); 620 #endif 621 622 OPENSSL_cleanse(tmp1, sizeof(tmp1)); 623 OPENSSL_cleanse(tmp2, sizeof(tmp1)); 624 OPENSSL_cleanse(iv1, sizeof(iv1)); 625 OPENSSL_cleanse(iv2, sizeof(iv2)); 626 return (1); 627 err: 628 SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE, ERR_R_MALLOC_FAILURE); 629 err2: 630 return (0); 631 } 632 633 int tls1_setup_key_block(SSL *s) 634 { 635 unsigned char *p1, *p2 = NULL; 636 const EVP_CIPHER *c; 637 const EVP_MD *hash; 638 int num; 639 SSL_COMP *comp; 640 int mac_type = NID_undef, mac_secret_size = 0; 641 int ret = 0; 642 643 #ifdef KSSL_DEBUG 644 fprintf(stderr, "tls1_setup_key_block()\n"); 645 #endif /* KSSL_DEBUG */ 646 647 if (s->s3->tmp.key_block_length != 0) 648 return (1); 649 650 if (!ssl_cipher_get_evp 651 (s->session, &c, &hash, &mac_type, &mac_secret_size, &comp)) { 652 SSLerr(SSL_F_TLS1_SETUP_KEY_BLOCK, SSL_R_CIPHER_OR_HASH_UNAVAILABLE); 653 return (0); 654 } 655 656 s->s3->tmp.new_sym_enc = c; 657 s->s3->tmp.new_hash = hash; 658 s->s3->tmp.new_mac_pkey_type = mac_type; 659 s->s3->tmp.new_mac_secret_size = mac_secret_size; 660 num = 661 EVP_CIPHER_key_length(c) + mac_secret_size + EVP_CIPHER_iv_length(c); 662 num *= 2; 663 664 ssl3_cleanup_key_block(s); 665 666 if ((p1 = (unsigned char *)OPENSSL_malloc(num)) == NULL) { 667 SSLerr(SSL_F_TLS1_SETUP_KEY_BLOCK, ERR_R_MALLOC_FAILURE); 668 goto err; 669 } 670 671 s->s3->tmp.key_block_length = num; 672 s->s3->tmp.key_block = p1; 673 674 if ((p2 = (unsigned char *)OPENSSL_malloc(num)) == NULL) { 675 SSLerr(SSL_F_TLS1_SETUP_KEY_BLOCK, ERR_R_MALLOC_FAILURE); 676 goto err; 677 } 678 #ifdef TLS_DEBUG 679 printf("client random\n"); 680 { 681 int z; 682 for (z = 0; z < SSL3_RANDOM_SIZE; z++) 683 printf("%02X%c", s->s3->client_random[z], 684 ((z + 1) % 16) ? ' ' : '\n'); 685 } 686 printf("server random\n"); 687 { 688 int z; 689 for (z = 0; z < SSL3_RANDOM_SIZE; z++) 690 printf("%02X%c", s->s3->server_random[z], 691 ((z + 1) % 16) ? ' ' : '\n'); 692 } 693 printf("pre-master\n"); 694 { 695 int z; 696 for (z = 0; z < s->session->master_key_length; z++) 697 printf("%02X%c", s->session->master_key[z], 698 ((z + 1) % 16) ? ' ' : '\n'); 699 } 700 #endif 701 if (!tls1_generate_key_block(s, p1, p2, num)) 702 goto err; 703 #ifdef TLS_DEBUG 704 printf("\nkey block\n"); 705 { 706 int z; 707 for (z = 0; z < num; z++) 708 printf("%02X%c", p1[z], ((z + 1) % 16) ? ' ' : '\n'); 709 } 710 #endif 711 712 if (!(s->options & SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS) 713 && s->method->version <= TLS1_VERSION) { 714 /* 715 * enable vulnerability countermeasure for CBC ciphers with known-IV 716 * problem (http://www.openssl.org/~bodo/tls-cbc.txt) 717 */ 718 s->s3->need_empty_fragments = 1; 719 720 if (s->session->cipher != NULL) { 721 if (s->session->cipher->algorithm_enc == SSL_eNULL) 722 s->s3->need_empty_fragments = 0; 723 724 #ifndef OPENSSL_NO_RC4 725 if (s->session->cipher->algorithm_enc == SSL_RC4) 726 s->s3->need_empty_fragments = 0; 727 #endif 728 } 729 } 730 731 ret = 1; 732 err: 733 if (p2) { 734 OPENSSL_cleanse(p2, num); 735 OPENSSL_free(p2); 736 } 737 return (ret); 738 } 739 740 /*- 741 * tls1_enc encrypts/decrypts the record in |s->wrec| / |s->rrec|, respectively. 742 * 743 * Returns: 744 * 0: (in non-constant time) if the record is publically invalid (i.e. too 745 * short etc). 746 * 1: if the record's padding is valid / the encryption was successful. 747 * -1: if the record's padding/AEAD-authenticator is invalid or, if sending, 748 * an internal error occured. 749 */ 750 int tls1_enc(SSL *s, int send) 751 { 752 SSL3_RECORD *rec; 753 EVP_CIPHER_CTX *ds; 754 unsigned long l; 755 int bs, i, j, k, pad = 0, ret, mac_size = 0; 756 const EVP_CIPHER *enc; 757 758 if (send) { 759 if (EVP_MD_CTX_md(s->write_hash)) { 760 int n = EVP_MD_CTX_size(s->write_hash); 761 OPENSSL_assert(n >= 0); 762 } 763 ds = s->enc_write_ctx; 764 rec = &(s->s3->wrec); 765 if (s->enc_write_ctx == NULL) 766 enc = NULL; 767 else { 768 int ivlen; 769 enc = EVP_CIPHER_CTX_cipher(s->enc_write_ctx); 770 /* For TLSv1.1 and later explicit IV */ 771 if (SSL_USE_EXPLICIT_IV(s) 772 && EVP_CIPHER_mode(enc) == EVP_CIPH_CBC_MODE) 773 ivlen = EVP_CIPHER_iv_length(enc); 774 else 775 ivlen = 0; 776 if (ivlen > 1) { 777 if (rec->data != rec->input) 778 /* 779 * we can't write into the input stream: Can this ever 780 * happen?? (steve) 781 */ 782 fprintf(stderr, 783 "%s:%d: rec->data != rec->input\n", 784 __FILE__, __LINE__); 785 else if (RAND_bytes(rec->input, ivlen) <= 0) 786 return -1; 787 } 788 } 789 } else { 790 if (EVP_MD_CTX_md(s->read_hash)) { 791 int n = EVP_MD_CTX_size(s->read_hash); 792 OPENSSL_assert(n >= 0); 793 } 794 ds = s->enc_read_ctx; 795 rec = &(s->s3->rrec); 796 if (s->enc_read_ctx == NULL) 797 enc = NULL; 798 else 799 enc = EVP_CIPHER_CTX_cipher(s->enc_read_ctx); 800 } 801 802 #ifdef KSSL_DEBUG 803 fprintf(stderr, "tls1_enc(%d)\n", send); 804 #endif /* KSSL_DEBUG */ 805 806 if ((s->session == NULL) || (ds == NULL) || (enc == NULL)) { 807 memmove(rec->data, rec->input, rec->length); 808 rec->input = rec->data; 809 ret = 1; 810 } else { 811 l = rec->length; 812 bs = EVP_CIPHER_block_size(ds->cipher); 813 814 if (EVP_CIPHER_flags(ds->cipher) & EVP_CIPH_FLAG_AEAD_CIPHER) { 815 unsigned char buf[EVP_AEAD_TLS1_AAD_LEN], *seq; 816 817 seq = send ? s->s3->write_sequence : s->s3->read_sequence; 818 819 if (SSL_IS_DTLS(s)) { 820 unsigned char dtlsseq[9], *p = dtlsseq; 821 822 s2n(send ? s->d1->w_epoch : s->d1->r_epoch, p); 823 memcpy(p, &seq[2], 6); 824 memcpy(buf, dtlsseq, 8); 825 } else { 826 memcpy(buf, seq, 8); 827 for (i = 7; i >= 0; i--) { /* increment */ 828 ++seq[i]; 829 if (seq[i] != 0) 830 break; 831 } 832 } 833 834 buf[8] = rec->type; 835 buf[9] = (unsigned char)(s->version >> 8); 836 buf[10] = (unsigned char)(s->version); 837 buf[11] = rec->length >> 8; 838 buf[12] = rec->length & 0xff; 839 pad = EVP_CIPHER_CTX_ctrl(ds, EVP_CTRL_AEAD_TLS1_AAD, 840 EVP_AEAD_TLS1_AAD_LEN, buf); 841 if (pad <= 0) 842 return -1; 843 if (send) { 844 l += pad; 845 rec->length += pad; 846 } 847 } else if ((bs != 1) && send) { 848 i = bs - ((int)l % bs); 849 850 /* Add weird padding of upto 256 bytes */ 851 852 /* we need to add 'i' padding bytes of value j */ 853 j = i - 1; 854 if (s->options & SSL_OP_TLS_BLOCK_PADDING_BUG) { 855 if (s->s3->flags & TLS1_FLAGS_TLS_PADDING_BUG) 856 j++; 857 } 858 for (k = (int)l; k < (int)(l + i); k++) 859 rec->input[k] = j; 860 l += i; 861 rec->length += i; 862 } 863 #ifdef KSSL_DEBUG 864 { 865 unsigned long ui; 866 fprintf(stderr, 867 "EVP_Cipher(ds=%p,rec->data=%p,rec->input=%p,l=%ld) ==>\n", 868 ds, rec->data, rec->input, l); 869 fprintf(stderr, 870 "\tEVP_CIPHER_CTX: %d buf_len, %d key_len [%lu %lu], %d iv_len\n", 871 ds->buf_len, ds->cipher->key_len, DES_KEY_SZ, 872 DES_SCHEDULE_SZ, ds->cipher->iv_len); 873 fprintf(stderr, "\t\tIV: "); 874 for (i = 0; i < ds->cipher->iv_len; i++) 875 fprintf(stderr, "%02X", ds->iv[i]); 876 fprintf(stderr, "\n"); 877 fprintf(stderr, "\trec->input="); 878 for (ui = 0; ui < l; ui++) 879 fprintf(stderr, " %02x", rec->input[ui]); 880 fprintf(stderr, "\n"); 881 } 882 #endif /* KSSL_DEBUG */ 883 884 if (!send) { 885 if (l == 0 || l % bs != 0) 886 return 0; 887 } 888 889 i = EVP_Cipher(ds, rec->data, rec->input, l); 890 if ((EVP_CIPHER_flags(ds->cipher) & EVP_CIPH_FLAG_CUSTOM_CIPHER) 891 ? (i < 0) 892 : (i == 0)) 893 return -1; /* AEAD can fail to verify MAC */ 894 if (EVP_CIPHER_mode(enc) == EVP_CIPH_GCM_MODE && !send) { 895 rec->data += EVP_GCM_TLS_EXPLICIT_IV_LEN; 896 rec->input += EVP_GCM_TLS_EXPLICIT_IV_LEN; 897 rec->length -= EVP_GCM_TLS_EXPLICIT_IV_LEN; 898 } 899 #ifdef KSSL_DEBUG 900 { 901 unsigned long i; 902 fprintf(stderr, "\trec->data="); 903 for (i = 0; i < l; i++) 904 fprintf(stderr, " %02x", rec->data[i]); 905 fprintf(stderr, "\n"); 906 } 907 #endif /* KSSL_DEBUG */ 908 909 ret = 1; 910 if (EVP_MD_CTX_md(s->read_hash) != NULL) 911 mac_size = EVP_MD_CTX_size(s->read_hash); 912 if ((bs != 1) && !send) 913 ret = tls1_cbc_remove_padding(s, rec, bs, mac_size); 914 if (pad && !send) 915 rec->length -= pad; 916 } 917 return ret; 918 } 919 920 int tls1_cert_verify_mac(SSL *s, int md_nid, unsigned char *out) 921 { 922 unsigned int ret; 923 EVP_MD_CTX ctx, *d = NULL; 924 int i; 925 926 if (s->s3->handshake_buffer) 927 if (!ssl3_digest_cached_records(s)) 928 return 0; 929 930 for (i = 0; i < SSL_MAX_DIGEST; i++) { 931 if (s->s3->handshake_dgst[i] 932 && EVP_MD_CTX_type(s->s3->handshake_dgst[i]) == md_nid) { 933 d = s->s3->handshake_dgst[i]; 934 break; 935 } 936 } 937 if (!d) { 938 SSLerr(SSL_F_TLS1_CERT_VERIFY_MAC, SSL_R_NO_REQUIRED_DIGEST); 939 return 0; 940 } 941 942 EVP_MD_CTX_init(&ctx); 943 if (EVP_MD_CTX_copy_ex(&ctx, d) <=0 944 || EVP_DigestFinal_ex(&ctx, out, &ret) <= 0) 945 ret = 0; 946 EVP_MD_CTX_cleanup(&ctx); 947 return ((int)ret); 948 } 949 950 int tls1_final_finish_mac(SSL *s, 951 const char *str, int slen, unsigned char *out) 952 { 953 unsigned int i; 954 EVP_MD_CTX ctx; 955 unsigned char buf[2 * EVP_MAX_MD_SIZE]; 956 unsigned char *q, buf2[12]; 957 int idx; 958 long mask; 959 int err = 0; 960 const EVP_MD *md; 961 962 q = buf; 963 964 if (s->s3->handshake_buffer) 965 if (!ssl3_digest_cached_records(s)) 966 return 0; 967 968 EVP_MD_CTX_init(&ctx); 969 970 for (idx = 0; ssl_get_handshake_digest(idx, &mask, &md); idx++) { 971 if (mask & ssl_get_algorithm2(s)) { 972 int hashsize = EVP_MD_size(md); 973 EVP_MD_CTX *hdgst = s->s3->handshake_dgst[idx]; 974 if (!hdgst || hashsize < 0 975 || hashsize > (int)(sizeof(buf) - (size_t)(q - buf))) { 976 /* 977 * internal error: 'buf' is too small for this cipersuite! 978 */ 979 err = 1; 980 } else { 981 if (!EVP_MD_CTX_copy_ex(&ctx, hdgst) || 982 !EVP_DigestFinal_ex(&ctx, q, &i) || 983 (i != (unsigned int)hashsize)) 984 err = 1; 985 q += hashsize; 986 } 987 } 988 } 989 990 if (!tls1_PRF(ssl_get_algorithm2(s), 991 str, slen, buf, (int)(q - buf), NULL, 0, NULL, 0, NULL, 0, 992 s->session->master_key, s->session->master_key_length, 993 out, buf2, sizeof(buf2))) 994 err = 1; 995 EVP_MD_CTX_cleanup(&ctx); 996 997 OPENSSL_cleanse(buf, (int)(q - buf)); 998 OPENSSL_cleanse(buf2, sizeof(buf2)); 999 if (err) 1000 return 0; 1001 else 1002 return sizeof(buf2); 1003 } 1004 1005 int tls1_mac(SSL *ssl, unsigned char *md, int send) 1006 { 1007 SSL3_RECORD *rec; 1008 unsigned char *seq; 1009 EVP_MD_CTX *hash; 1010 size_t md_size, orig_len; 1011 int i; 1012 EVP_MD_CTX hmac, *mac_ctx; 1013 unsigned char header[13]; 1014 int stream_mac = (send ? (ssl->mac_flags & SSL_MAC_FLAG_WRITE_MAC_STREAM) 1015 : (ssl->mac_flags & SSL_MAC_FLAG_READ_MAC_STREAM)); 1016 int t; 1017 1018 if (send) { 1019 rec = &(ssl->s3->wrec); 1020 seq = &(ssl->s3->write_sequence[0]); 1021 hash = ssl->write_hash; 1022 } else { 1023 rec = &(ssl->s3->rrec); 1024 seq = &(ssl->s3->read_sequence[0]); 1025 hash = ssl->read_hash; 1026 } 1027 1028 t = EVP_MD_CTX_size(hash); 1029 OPENSSL_assert(t >= 0); 1030 md_size = t; 1031 1032 /* I should fix this up TLS TLS TLS TLS TLS XXXXXXXX */ 1033 if (stream_mac) { 1034 mac_ctx = hash; 1035 } else { 1036 if (!EVP_MD_CTX_copy(&hmac, hash)) 1037 return -1; 1038 mac_ctx = &hmac; 1039 } 1040 1041 if (SSL_IS_DTLS(ssl)) { 1042 unsigned char dtlsseq[8], *p = dtlsseq; 1043 1044 s2n(send ? ssl->d1->w_epoch : ssl->d1->r_epoch, p); 1045 memcpy(p, &seq[2], 6); 1046 1047 memcpy(header, dtlsseq, 8); 1048 } else 1049 memcpy(header, seq, 8); 1050 1051 /* 1052 * kludge: tls1_cbc_remove_padding passes padding length in rec->type 1053 */ 1054 orig_len = rec->length + md_size + ((unsigned int)rec->type >> 8); 1055 rec->type &= 0xff; 1056 1057 header[8] = rec->type; 1058 header[9] = (unsigned char)(ssl->version >> 8); 1059 header[10] = (unsigned char)(ssl->version); 1060 header[11] = (rec->length) >> 8; 1061 header[12] = (rec->length) & 0xff; 1062 1063 if (!send && 1064 EVP_CIPHER_CTX_mode(ssl->enc_read_ctx) == EVP_CIPH_CBC_MODE && 1065 ssl3_cbc_record_digest_supported(mac_ctx)) { 1066 /* 1067 * This is a CBC-encrypted record. We must avoid leaking any 1068 * timing-side channel information about how many blocks of data we 1069 * are hashing because that gives an attacker a timing-oracle. 1070 */ 1071 /* Final param == not SSLv3 */ 1072 if (ssl3_cbc_digest_record(mac_ctx, 1073 md, &md_size, 1074 header, rec->input, 1075 rec->length + md_size, orig_len, 1076 ssl->s3->read_mac_secret, 1077 ssl->s3->read_mac_secret_size, 0) <= 0) { 1078 if (!stream_mac) 1079 EVP_MD_CTX_cleanup(&hmac); 1080 return -1; 1081 } 1082 } else { 1083 if (EVP_DigestSignUpdate(mac_ctx, header, sizeof(header)) <= 0 1084 || EVP_DigestSignUpdate(mac_ctx, rec->input, rec->length) <= 0 1085 || EVP_DigestSignFinal(mac_ctx, md, &md_size) <= 0) { 1086 if (!stream_mac) 1087 EVP_MD_CTX_cleanup(&hmac); 1088 return -1; 1089 } 1090 #ifdef OPENSSL_FIPS 1091 if (!send && FIPS_mode()) 1092 tls_fips_digest_extra(ssl->enc_read_ctx, 1093 mac_ctx, rec->input, rec->length, orig_len); 1094 #endif 1095 } 1096 1097 if (!stream_mac) 1098 EVP_MD_CTX_cleanup(&hmac); 1099 #ifdef TLS_DEBUG 1100 fprintf(stderr, "seq="); 1101 { 1102 int z; 1103 for (z = 0; z < 8; z++) 1104 fprintf(stderr, "%02X ", seq[z]); 1105 fprintf(stderr, "\n"); 1106 } 1107 fprintf(stderr, "rec="); 1108 { 1109 unsigned int z; 1110 for (z = 0; z < rec->length; z++) 1111 fprintf(stderr, "%02X ", rec->data[z]); 1112 fprintf(stderr, "\n"); 1113 } 1114 #endif 1115 1116 if (!SSL_IS_DTLS(ssl)) { 1117 for (i = 7; i >= 0; i--) { 1118 ++seq[i]; 1119 if (seq[i] != 0) 1120 break; 1121 } 1122 } 1123 #ifdef TLS_DEBUG 1124 { 1125 unsigned int z; 1126 for (z = 0; z < md_size; z++) 1127 fprintf(stderr, "%02X ", md[z]); 1128 fprintf(stderr, "\n"); 1129 } 1130 #endif 1131 return (md_size); 1132 } 1133 1134 int tls1_generate_master_secret(SSL *s, unsigned char *out, unsigned char *p, 1135 int len) 1136 { 1137 unsigned char buff[SSL_MAX_MASTER_KEY_LENGTH]; 1138 const void *co = NULL, *so = NULL; 1139 int col = 0, sol = 0; 1140 1141 #ifdef KSSL_DEBUG 1142 fprintf(stderr, "tls1_generate_master_secret(%p,%p, %p, %d)\n", s, out, p, 1143 len); 1144 #endif /* KSSL_DEBUG */ 1145 1146 #ifdef TLSEXT_TYPE_opaque_prf_input 1147 if (s->s3->client_opaque_prf_input != NULL 1148 && s->s3->server_opaque_prf_input != NULL 1149 && s->s3->client_opaque_prf_input_len > 0 1150 && s->s3->client_opaque_prf_input_len == 1151 s->s3->server_opaque_prf_input_len) { 1152 co = s->s3->client_opaque_prf_input; 1153 col = s->s3->server_opaque_prf_input_len; 1154 so = s->s3->server_opaque_prf_input; 1155 /* 1156 * must be same as col (see 1157 * draft-rescorla-tls-opaque-prf-input-00.txt, section 3.1) 1158 */ 1159 sol = s->s3->client_opaque_prf_input_len; 1160 } 1161 #endif 1162 1163 tls1_PRF(ssl_get_algorithm2(s), 1164 TLS_MD_MASTER_SECRET_CONST, TLS_MD_MASTER_SECRET_CONST_SIZE, 1165 s->s3->client_random, SSL3_RANDOM_SIZE, 1166 co, col, 1167 s->s3->server_random, SSL3_RANDOM_SIZE, 1168 so, sol, p, len, s->session->master_key, buff, sizeof(buff)); 1169 OPENSSL_cleanse(buff, sizeof(buff)); 1170 #ifdef SSL_DEBUG 1171 fprintf(stderr, "Premaster Secret:\n"); 1172 BIO_dump_fp(stderr, (char *)p, len); 1173 fprintf(stderr, "Client Random:\n"); 1174 BIO_dump_fp(stderr, (char *)s->s3->client_random, SSL3_RANDOM_SIZE); 1175 fprintf(stderr, "Server Random:\n"); 1176 BIO_dump_fp(stderr, (char *)s->s3->server_random, SSL3_RANDOM_SIZE); 1177 fprintf(stderr, "Master Secret:\n"); 1178 BIO_dump_fp(stderr, (char *)s->session->master_key, 1179 SSL3_MASTER_SECRET_SIZE); 1180 #endif 1181 1182 #ifdef OPENSSL_SSL_TRACE_CRYPTO 1183 if (s->msg_callback) { 1184 s->msg_callback(2, s->version, TLS1_RT_CRYPTO_PREMASTER, 1185 p, len, s, s->msg_callback_arg); 1186 s->msg_callback(2, s->version, TLS1_RT_CRYPTO_CLIENT_RANDOM, 1187 s->s3->client_random, SSL3_RANDOM_SIZE, 1188 s, s->msg_callback_arg); 1189 s->msg_callback(2, s->version, TLS1_RT_CRYPTO_SERVER_RANDOM, 1190 s->s3->server_random, SSL3_RANDOM_SIZE, 1191 s, s->msg_callback_arg); 1192 s->msg_callback(2, s->version, TLS1_RT_CRYPTO_MASTER, 1193 s->session->master_key, 1194 SSL3_MASTER_SECRET_SIZE, s, s->msg_callback_arg); 1195 } 1196 #endif 1197 1198 #ifdef KSSL_DEBUG 1199 fprintf(stderr, "tls1_generate_master_secret() complete\n"); 1200 #endif /* KSSL_DEBUG */ 1201 return (SSL3_MASTER_SECRET_SIZE); 1202 } 1203 1204 int tls1_export_keying_material(SSL *s, unsigned char *out, size_t olen, 1205 const char *label, size_t llen, 1206 const unsigned char *context, 1207 size_t contextlen, int use_context) 1208 { 1209 unsigned char *buff; 1210 unsigned char *val = NULL; 1211 size_t vallen, currentvalpos; 1212 int rv; 1213 1214 #ifdef KSSL_DEBUG 1215 fprintf(stderr, "tls1_export_keying_material(%p,%p,%lu,%s,%lu,%p,%lu)\n", 1216 s, out, olen, label, llen, context, contextlen); 1217 #endif /* KSSL_DEBUG */ 1218 1219 buff = OPENSSL_malloc(olen); 1220 if (buff == NULL) 1221 goto err2; 1222 1223 /* 1224 * construct PRF arguments we construct the PRF argument ourself rather 1225 * than passing separate values into the TLS PRF to ensure that the 1226 * concatenation of values does not create a prohibited label. 1227 */ 1228 vallen = llen + SSL3_RANDOM_SIZE * 2; 1229 if (use_context) { 1230 vallen += 2 + contextlen; 1231 } 1232 1233 val = OPENSSL_malloc(vallen); 1234 if (val == NULL) 1235 goto err2; 1236 currentvalpos = 0; 1237 memcpy(val + currentvalpos, (unsigned char *)label, llen); 1238 currentvalpos += llen; 1239 memcpy(val + currentvalpos, s->s3->client_random, SSL3_RANDOM_SIZE); 1240 currentvalpos += SSL3_RANDOM_SIZE; 1241 memcpy(val + currentvalpos, s->s3->server_random, SSL3_RANDOM_SIZE); 1242 currentvalpos += SSL3_RANDOM_SIZE; 1243 1244 if (use_context) { 1245 val[currentvalpos] = (contextlen >> 8) & 0xff; 1246 currentvalpos++; 1247 val[currentvalpos] = contextlen & 0xff; 1248 currentvalpos++; 1249 if ((contextlen > 0) || (context != NULL)) { 1250 memcpy(val + currentvalpos, context, contextlen); 1251 } 1252 } 1253 1254 /* 1255 * disallow prohibited labels note that SSL3_RANDOM_SIZE > max(prohibited 1256 * label len) = 15, so size of val > max(prohibited label len) = 15 and 1257 * the comparisons won't have buffer overflow 1258 */ 1259 if (memcmp(val, TLS_MD_CLIENT_FINISH_CONST, 1260 TLS_MD_CLIENT_FINISH_CONST_SIZE) == 0) 1261 goto err1; 1262 if (memcmp(val, TLS_MD_SERVER_FINISH_CONST, 1263 TLS_MD_SERVER_FINISH_CONST_SIZE) == 0) 1264 goto err1; 1265 if (memcmp(val, TLS_MD_MASTER_SECRET_CONST, 1266 TLS_MD_MASTER_SECRET_CONST_SIZE) == 0) 1267 goto err1; 1268 if (memcmp(val, TLS_MD_KEY_EXPANSION_CONST, 1269 TLS_MD_KEY_EXPANSION_CONST_SIZE) == 0) 1270 goto err1; 1271 1272 rv = tls1_PRF(ssl_get_algorithm2(s), 1273 val, vallen, 1274 NULL, 0, 1275 NULL, 0, 1276 NULL, 0, 1277 NULL, 0, 1278 s->session->master_key, s->session->master_key_length, 1279 out, buff, olen); 1280 OPENSSL_cleanse(val, vallen); 1281 OPENSSL_cleanse(buff, olen); 1282 1283 #ifdef KSSL_DEBUG 1284 fprintf(stderr, "tls1_export_keying_material() complete\n"); 1285 #endif /* KSSL_DEBUG */ 1286 goto ret; 1287 err1: 1288 SSLerr(SSL_F_TLS1_EXPORT_KEYING_MATERIAL, 1289 SSL_R_TLS_ILLEGAL_EXPORTER_LABEL); 1290 rv = 0; 1291 goto ret; 1292 err2: 1293 SSLerr(SSL_F_TLS1_EXPORT_KEYING_MATERIAL, ERR_R_MALLOC_FAILURE); 1294 rv = 0; 1295 ret: 1296 if (buff != NULL) 1297 OPENSSL_free(buff); 1298 if (val != NULL) 1299 OPENSSL_free(val); 1300 return (rv); 1301 } 1302 1303 int tls1_alert_code(int code) 1304 { 1305 switch (code) { 1306 case SSL_AD_CLOSE_NOTIFY: 1307 return (SSL3_AD_CLOSE_NOTIFY); 1308 case SSL_AD_UNEXPECTED_MESSAGE: 1309 return (SSL3_AD_UNEXPECTED_MESSAGE); 1310 case SSL_AD_BAD_RECORD_MAC: 1311 return (SSL3_AD_BAD_RECORD_MAC); 1312 case SSL_AD_DECRYPTION_FAILED: 1313 return (TLS1_AD_DECRYPTION_FAILED); 1314 case SSL_AD_RECORD_OVERFLOW: 1315 return (TLS1_AD_RECORD_OVERFLOW); 1316 case SSL_AD_DECOMPRESSION_FAILURE: 1317 return (SSL3_AD_DECOMPRESSION_FAILURE); 1318 case SSL_AD_HANDSHAKE_FAILURE: 1319 return (SSL3_AD_HANDSHAKE_FAILURE); 1320 case SSL_AD_NO_CERTIFICATE: 1321 return (-1); 1322 case SSL_AD_BAD_CERTIFICATE: 1323 return (SSL3_AD_BAD_CERTIFICATE); 1324 case SSL_AD_UNSUPPORTED_CERTIFICATE: 1325 return (SSL3_AD_UNSUPPORTED_CERTIFICATE); 1326 case SSL_AD_CERTIFICATE_REVOKED: 1327 return (SSL3_AD_CERTIFICATE_REVOKED); 1328 case SSL_AD_CERTIFICATE_EXPIRED: 1329 return (SSL3_AD_CERTIFICATE_EXPIRED); 1330 case SSL_AD_CERTIFICATE_UNKNOWN: 1331 return (SSL3_AD_CERTIFICATE_UNKNOWN); 1332 case SSL_AD_ILLEGAL_PARAMETER: 1333 return (SSL3_AD_ILLEGAL_PARAMETER); 1334 case SSL_AD_UNKNOWN_CA: 1335 return (TLS1_AD_UNKNOWN_CA); 1336 case SSL_AD_ACCESS_DENIED: 1337 return (TLS1_AD_ACCESS_DENIED); 1338 case SSL_AD_DECODE_ERROR: 1339 return (TLS1_AD_DECODE_ERROR); 1340 case SSL_AD_DECRYPT_ERROR: 1341 return (TLS1_AD_DECRYPT_ERROR); 1342 case SSL_AD_EXPORT_RESTRICTION: 1343 return (TLS1_AD_EXPORT_RESTRICTION); 1344 case SSL_AD_PROTOCOL_VERSION: 1345 return (TLS1_AD_PROTOCOL_VERSION); 1346 case SSL_AD_INSUFFICIENT_SECURITY: 1347 return (TLS1_AD_INSUFFICIENT_SECURITY); 1348 case SSL_AD_INTERNAL_ERROR: 1349 return (TLS1_AD_INTERNAL_ERROR); 1350 case SSL_AD_USER_CANCELLED: 1351 return (TLS1_AD_USER_CANCELLED); 1352 case SSL_AD_NO_RENEGOTIATION: 1353 return (TLS1_AD_NO_RENEGOTIATION); 1354 case SSL_AD_UNSUPPORTED_EXTENSION: 1355 return (TLS1_AD_UNSUPPORTED_EXTENSION); 1356 case SSL_AD_CERTIFICATE_UNOBTAINABLE: 1357 return (TLS1_AD_CERTIFICATE_UNOBTAINABLE); 1358 case SSL_AD_UNRECOGNIZED_NAME: 1359 return (TLS1_AD_UNRECOGNIZED_NAME); 1360 case SSL_AD_BAD_CERTIFICATE_STATUS_RESPONSE: 1361 return (TLS1_AD_BAD_CERTIFICATE_STATUS_RESPONSE); 1362 case SSL_AD_BAD_CERTIFICATE_HASH_VALUE: 1363 return (TLS1_AD_BAD_CERTIFICATE_HASH_VALUE); 1364 case SSL_AD_UNKNOWN_PSK_IDENTITY: 1365 return (TLS1_AD_UNKNOWN_PSK_IDENTITY); 1366 case SSL_AD_INAPPROPRIATE_FALLBACK: 1367 return (TLS1_AD_INAPPROPRIATE_FALLBACK); 1368 #if 0 1369 /* not appropriate for TLS, not used for DTLS */ 1370 case DTLS1_AD_MISSING_HANDSHAKE_MESSAGE: 1371 return (DTLS1_AD_MISSING_HANDSHAKE_MESSAGE); 1372 #endif 1373 default: 1374 return (-1); 1375 } 1376 } 1377