1 /* 2 * Copyright 1995-2024 The OpenSSL Project Authors. All Rights Reserved. 3 * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved 4 * Copyright 2005 Nokia. All rights reserved. 5 * 6 * Licensed under the Apache License 2.0 (the "License"). You may not use 7 * this file except in compliance with the License. You can obtain a copy 8 * in the file LICENSE in the source distribution or at 9 * https://www.openssl.org/source/license.html 10 */ 11 12 #include <stdio.h> 13 #include "ssl_local.h" 14 #include "e_os.h" 15 #include <openssl/objects.h> 16 #include <openssl/x509v3.h> 17 #include <openssl/rand.h> 18 #include <openssl/ocsp.h> 19 #include <openssl/dh.h> 20 #include <openssl/engine.h> 21 #include <openssl/async.h> 22 #include <openssl/ct.h> 23 #include <openssl/trace.h> 24 #include "internal/cryptlib.h" 25 #include "internal/refcount.h" 26 #include "internal/ktls.h" 27 28 static int ssl_undefined_function_1(SSL *ssl, SSL3_RECORD *r, size_t s, int t, 29 SSL_MAC_BUF *mac, size_t macsize) 30 { 31 return ssl_undefined_function(ssl); 32 } 33 34 static int ssl_undefined_function_2(SSL *ssl, SSL3_RECORD *r, unsigned char *s, 35 int t) 36 { 37 return ssl_undefined_function(ssl); 38 } 39 40 static int ssl_undefined_function_3(SSL *ssl, unsigned char *r, 41 unsigned char *s, size_t t, size_t *u) 42 { 43 return ssl_undefined_function(ssl); 44 } 45 46 static int ssl_undefined_function_4(SSL *ssl, int r) 47 { 48 return ssl_undefined_function(ssl); 49 } 50 51 static size_t ssl_undefined_function_5(SSL *ssl, const char *r, size_t s, 52 unsigned char *t) 53 { 54 return ssl_undefined_function(ssl); 55 } 56 57 static int ssl_undefined_function_6(int r) 58 { 59 return ssl_undefined_function(NULL); 60 } 61 62 static int ssl_undefined_function_7(SSL *ssl, unsigned char *r, size_t s, 63 const char *t, size_t u, 64 const unsigned char *v, size_t w, int x) 65 { 66 return ssl_undefined_function(ssl); 67 } 68 69 SSL3_ENC_METHOD ssl3_undef_enc_method = { 70 ssl_undefined_function_1, 71 ssl_undefined_function_2, 72 ssl_undefined_function, 73 ssl_undefined_function_3, 74 ssl_undefined_function_4, 75 ssl_undefined_function_5, 76 NULL, /* client_finished_label */ 77 0, /* client_finished_label_len */ 78 NULL, /* server_finished_label */ 79 0, /* server_finished_label_len */ 80 ssl_undefined_function_6, 81 ssl_undefined_function_7, 82 }; 83 84 struct ssl_async_args { 85 SSL *s; 86 void *buf; 87 size_t num; 88 enum { READFUNC, WRITEFUNC, OTHERFUNC } type; 89 union { 90 int (*func_read) (SSL *, void *, size_t, size_t *); 91 int (*func_write) (SSL *, const void *, size_t, size_t *); 92 int (*func_other) (SSL *); 93 } f; 94 }; 95 96 static const struct { 97 uint8_t mtype; 98 uint8_t ord; 99 int nid; 100 } dane_mds[] = { 101 { 102 DANETLS_MATCHING_FULL, 0, NID_undef 103 }, 104 { 105 DANETLS_MATCHING_2256, 1, NID_sha256 106 }, 107 { 108 DANETLS_MATCHING_2512, 2, NID_sha512 109 }, 110 }; 111 112 static int dane_ctx_enable(struct dane_ctx_st *dctx) 113 { 114 const EVP_MD **mdevp; 115 uint8_t *mdord; 116 uint8_t mdmax = DANETLS_MATCHING_LAST; 117 int n = ((int)mdmax) + 1; /* int to handle PrivMatch(255) */ 118 size_t i; 119 120 if (dctx->mdevp != NULL) 121 return 1; 122 123 mdevp = OPENSSL_zalloc(n * sizeof(*mdevp)); 124 mdord = OPENSSL_zalloc(n * sizeof(*mdord)); 125 126 if (mdord == NULL || mdevp == NULL) { 127 OPENSSL_free(mdord); 128 OPENSSL_free(mdevp); 129 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); 130 return 0; 131 } 132 133 /* Install default entries */ 134 for (i = 0; i < OSSL_NELEM(dane_mds); ++i) { 135 const EVP_MD *md; 136 137 if (dane_mds[i].nid == NID_undef || 138 (md = EVP_get_digestbynid(dane_mds[i].nid)) == NULL) 139 continue; 140 mdevp[dane_mds[i].mtype] = md; 141 mdord[dane_mds[i].mtype] = dane_mds[i].ord; 142 } 143 144 dctx->mdevp = mdevp; 145 dctx->mdord = mdord; 146 dctx->mdmax = mdmax; 147 148 return 1; 149 } 150 151 static void dane_ctx_final(struct dane_ctx_st *dctx) 152 { 153 OPENSSL_free(dctx->mdevp); 154 dctx->mdevp = NULL; 155 156 OPENSSL_free(dctx->mdord); 157 dctx->mdord = NULL; 158 dctx->mdmax = 0; 159 } 160 161 static void tlsa_free(danetls_record *t) 162 { 163 if (t == NULL) 164 return; 165 OPENSSL_free(t->data); 166 EVP_PKEY_free(t->spki); 167 OPENSSL_free(t); 168 } 169 170 static void dane_final(SSL_DANE *dane) 171 { 172 sk_danetls_record_pop_free(dane->trecs, tlsa_free); 173 dane->trecs = NULL; 174 175 sk_X509_pop_free(dane->certs, X509_free); 176 dane->certs = NULL; 177 178 X509_free(dane->mcert); 179 dane->mcert = NULL; 180 dane->mtlsa = NULL; 181 dane->mdpth = -1; 182 dane->pdpth = -1; 183 } 184 185 /* 186 * dane_copy - Copy dane configuration, sans verification state. 187 */ 188 static int ssl_dane_dup(SSL *to, SSL *from) 189 { 190 int num; 191 int i; 192 193 if (!DANETLS_ENABLED(&from->dane)) 194 return 1; 195 196 num = sk_danetls_record_num(from->dane.trecs); 197 dane_final(&to->dane); 198 to->dane.flags = from->dane.flags; 199 to->dane.dctx = &to->ctx->dane; 200 to->dane.trecs = sk_danetls_record_new_reserve(NULL, num); 201 202 if (to->dane.trecs == NULL) { 203 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); 204 return 0; 205 } 206 207 for (i = 0; i < num; ++i) { 208 danetls_record *t = sk_danetls_record_value(from->dane.trecs, i); 209 210 if (SSL_dane_tlsa_add(to, t->usage, t->selector, t->mtype, 211 t->data, t->dlen) <= 0) 212 return 0; 213 } 214 return 1; 215 } 216 217 static int dane_mtype_set(struct dane_ctx_st *dctx, 218 const EVP_MD *md, uint8_t mtype, uint8_t ord) 219 { 220 int i; 221 222 if (mtype == DANETLS_MATCHING_FULL && md != NULL) { 223 ERR_raise(ERR_LIB_SSL, SSL_R_DANE_CANNOT_OVERRIDE_MTYPE_FULL); 224 return 0; 225 } 226 227 if (mtype > dctx->mdmax) { 228 const EVP_MD **mdevp; 229 uint8_t *mdord; 230 int n = ((int)mtype) + 1; 231 232 mdevp = OPENSSL_realloc(dctx->mdevp, n * sizeof(*mdevp)); 233 if (mdevp == NULL) { 234 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); 235 return -1; 236 } 237 dctx->mdevp = mdevp; 238 239 mdord = OPENSSL_realloc(dctx->mdord, n * sizeof(*mdord)); 240 if (mdord == NULL) { 241 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); 242 return -1; 243 } 244 dctx->mdord = mdord; 245 246 /* Zero-fill any gaps */ 247 for (i = dctx->mdmax + 1; i < mtype; ++i) { 248 mdevp[i] = NULL; 249 mdord[i] = 0; 250 } 251 252 dctx->mdmax = mtype; 253 } 254 255 dctx->mdevp[mtype] = md; 256 /* Coerce ordinal of disabled matching types to 0 */ 257 dctx->mdord[mtype] = (md == NULL) ? 0 : ord; 258 259 return 1; 260 } 261 262 static const EVP_MD *tlsa_md_get(SSL_DANE *dane, uint8_t mtype) 263 { 264 if (mtype > dane->dctx->mdmax) 265 return NULL; 266 return dane->dctx->mdevp[mtype]; 267 } 268 269 static int dane_tlsa_add(SSL_DANE *dane, 270 uint8_t usage, 271 uint8_t selector, 272 uint8_t mtype, const unsigned char *data, size_t dlen) 273 { 274 danetls_record *t; 275 const EVP_MD *md = NULL; 276 int ilen = (int)dlen; 277 int i; 278 int num; 279 280 if (dane->trecs == NULL) { 281 ERR_raise(ERR_LIB_SSL, SSL_R_DANE_NOT_ENABLED); 282 return -1; 283 } 284 285 if (ilen < 0 || dlen != (size_t)ilen) { 286 ERR_raise(ERR_LIB_SSL, SSL_R_DANE_TLSA_BAD_DATA_LENGTH); 287 return 0; 288 } 289 290 if (usage > DANETLS_USAGE_LAST) { 291 ERR_raise(ERR_LIB_SSL, SSL_R_DANE_TLSA_BAD_CERTIFICATE_USAGE); 292 return 0; 293 } 294 295 if (selector > DANETLS_SELECTOR_LAST) { 296 ERR_raise(ERR_LIB_SSL, SSL_R_DANE_TLSA_BAD_SELECTOR); 297 return 0; 298 } 299 300 if (mtype != DANETLS_MATCHING_FULL) { 301 md = tlsa_md_get(dane, mtype); 302 if (md == NULL) { 303 ERR_raise(ERR_LIB_SSL, SSL_R_DANE_TLSA_BAD_MATCHING_TYPE); 304 return 0; 305 } 306 } 307 308 if (md != NULL && dlen != (size_t)EVP_MD_get_size(md)) { 309 ERR_raise(ERR_LIB_SSL, SSL_R_DANE_TLSA_BAD_DIGEST_LENGTH); 310 return 0; 311 } 312 if (!data) { 313 ERR_raise(ERR_LIB_SSL, SSL_R_DANE_TLSA_NULL_DATA); 314 return 0; 315 } 316 317 if ((t = OPENSSL_zalloc(sizeof(*t))) == NULL) { 318 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); 319 return -1; 320 } 321 322 t->usage = usage; 323 t->selector = selector; 324 t->mtype = mtype; 325 t->data = OPENSSL_malloc(dlen); 326 if (t->data == NULL) { 327 tlsa_free(t); 328 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); 329 return -1; 330 } 331 memcpy(t->data, data, dlen); 332 t->dlen = dlen; 333 334 /* Validate and cache full certificate or public key */ 335 if (mtype == DANETLS_MATCHING_FULL) { 336 const unsigned char *p = data; 337 X509 *cert = NULL; 338 EVP_PKEY *pkey = NULL; 339 340 switch (selector) { 341 case DANETLS_SELECTOR_CERT: 342 if (!d2i_X509(&cert, &p, ilen) || p < data || 343 dlen != (size_t)(p - data)) { 344 X509_free(cert); 345 tlsa_free(t); 346 ERR_raise(ERR_LIB_SSL, SSL_R_DANE_TLSA_BAD_CERTIFICATE); 347 return 0; 348 } 349 if (X509_get0_pubkey(cert) == NULL) { 350 X509_free(cert); 351 tlsa_free(t); 352 ERR_raise(ERR_LIB_SSL, SSL_R_DANE_TLSA_BAD_CERTIFICATE); 353 return 0; 354 } 355 356 if ((DANETLS_USAGE_BIT(usage) & DANETLS_TA_MASK) == 0) { 357 /* 358 * The Full(0) certificate decodes to a seemingly valid X.509 359 * object with a plausible key, so the TLSA record is well 360 * formed. However, we don't actually need the certifiate for 361 * usages PKIX-EE(1) or DANE-EE(3), because at least the EE 362 * certificate is always presented by the peer. We discard the 363 * certificate, and just use the TLSA data as an opaque blob 364 * for matching the raw presented DER octets. 365 * 366 * DO NOT FREE `t` here, it will be added to the TLSA record 367 * list below! 368 */ 369 X509_free(cert); 370 break; 371 } 372 373 /* 374 * For usage DANE-TA(2), we support authentication via "2 0 0" TLSA 375 * records that contain full certificates of trust-anchors that are 376 * not present in the wire chain. For usage PKIX-TA(0), we augment 377 * the chain with untrusted Full(0) certificates from DNS, in case 378 * they are missing from the chain. 379 */ 380 if ((dane->certs == NULL && 381 (dane->certs = sk_X509_new_null()) == NULL) || 382 !sk_X509_push(dane->certs, cert)) { 383 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); 384 X509_free(cert); 385 tlsa_free(t); 386 return -1; 387 } 388 break; 389 390 case DANETLS_SELECTOR_SPKI: 391 if (!d2i_PUBKEY(&pkey, &p, ilen) || p < data || 392 dlen != (size_t)(p - data)) { 393 EVP_PKEY_free(pkey); 394 tlsa_free(t); 395 ERR_raise(ERR_LIB_SSL, SSL_R_DANE_TLSA_BAD_PUBLIC_KEY); 396 return 0; 397 } 398 399 /* 400 * For usage DANE-TA(2), we support authentication via "2 1 0" TLSA 401 * records that contain full bare keys of trust-anchors that are 402 * not present in the wire chain. 403 */ 404 if (usage == DANETLS_USAGE_DANE_TA) 405 t->spki = pkey; 406 else 407 EVP_PKEY_free(pkey); 408 break; 409 } 410 } 411 412 /*- 413 * Find the right insertion point for the new record. 414 * 415 * See crypto/x509/x509_vfy.c. We sort DANE-EE(3) records first, so that 416 * they can be processed first, as they require no chain building, and no 417 * expiration or hostname checks. Because DANE-EE(3) is numerically 418 * largest, this is accomplished via descending sort by "usage". 419 * 420 * We also sort in descending order by matching ordinal to simplify 421 * the implementation of digest agility in the verification code. 422 * 423 * The choice of order for the selector is not significant, so we 424 * use the same descending order for consistency. 425 */ 426 num = sk_danetls_record_num(dane->trecs); 427 for (i = 0; i < num; ++i) { 428 danetls_record *rec = sk_danetls_record_value(dane->trecs, i); 429 430 if (rec->usage > usage) 431 continue; 432 if (rec->usage < usage) 433 break; 434 if (rec->selector > selector) 435 continue; 436 if (rec->selector < selector) 437 break; 438 if (dane->dctx->mdord[rec->mtype] > dane->dctx->mdord[mtype]) 439 continue; 440 break; 441 } 442 443 if (!sk_danetls_record_insert(dane->trecs, t, i)) { 444 tlsa_free(t); 445 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); 446 return -1; 447 } 448 dane->umask |= DANETLS_USAGE_BIT(usage); 449 450 return 1; 451 } 452 453 /* 454 * Return 0 if there is only one version configured and it was disabled 455 * at configure time. Return 1 otherwise. 456 */ 457 static int ssl_check_allowed_versions(int min_version, int max_version) 458 { 459 int minisdtls = 0, maxisdtls = 0; 460 461 /* Figure out if we're doing DTLS versions or TLS versions */ 462 if (min_version == DTLS1_BAD_VER 463 || min_version >> 8 == DTLS1_VERSION_MAJOR) 464 minisdtls = 1; 465 if (max_version == DTLS1_BAD_VER 466 || max_version >> 8 == DTLS1_VERSION_MAJOR) 467 maxisdtls = 1; 468 /* A wildcard version of 0 could be DTLS or TLS. */ 469 if ((minisdtls && !maxisdtls && max_version != 0) 470 || (maxisdtls && !minisdtls && min_version != 0)) { 471 /* Mixing DTLS and TLS versions will lead to sadness; deny it. */ 472 return 0; 473 } 474 475 if (minisdtls || maxisdtls) { 476 /* Do DTLS version checks. */ 477 if (min_version == 0) 478 /* Ignore DTLS1_BAD_VER */ 479 min_version = DTLS1_VERSION; 480 if (max_version == 0) 481 max_version = DTLS1_2_VERSION; 482 #ifdef OPENSSL_NO_DTLS1_2 483 if (max_version == DTLS1_2_VERSION) 484 max_version = DTLS1_VERSION; 485 #endif 486 #ifdef OPENSSL_NO_DTLS1 487 if (min_version == DTLS1_VERSION) 488 min_version = DTLS1_2_VERSION; 489 #endif 490 /* Done massaging versions; do the check. */ 491 if (0 492 #ifdef OPENSSL_NO_DTLS1 493 || (DTLS_VERSION_GE(min_version, DTLS1_VERSION) 494 && DTLS_VERSION_GE(DTLS1_VERSION, max_version)) 495 #endif 496 #ifdef OPENSSL_NO_DTLS1_2 497 || (DTLS_VERSION_GE(min_version, DTLS1_2_VERSION) 498 && DTLS_VERSION_GE(DTLS1_2_VERSION, max_version)) 499 #endif 500 ) 501 return 0; 502 } else { 503 /* Regular TLS version checks. */ 504 if (min_version == 0) 505 min_version = SSL3_VERSION; 506 if (max_version == 0) 507 max_version = TLS1_3_VERSION; 508 #ifdef OPENSSL_NO_TLS1_3 509 if (max_version == TLS1_3_VERSION) 510 max_version = TLS1_2_VERSION; 511 #endif 512 #ifdef OPENSSL_NO_TLS1_2 513 if (max_version == TLS1_2_VERSION) 514 max_version = TLS1_1_VERSION; 515 #endif 516 #ifdef OPENSSL_NO_TLS1_1 517 if (max_version == TLS1_1_VERSION) 518 max_version = TLS1_VERSION; 519 #endif 520 #ifdef OPENSSL_NO_TLS1 521 if (max_version == TLS1_VERSION) 522 max_version = SSL3_VERSION; 523 #endif 524 #ifdef OPENSSL_NO_SSL3 525 if (min_version == SSL3_VERSION) 526 min_version = TLS1_VERSION; 527 #endif 528 #ifdef OPENSSL_NO_TLS1 529 if (min_version == TLS1_VERSION) 530 min_version = TLS1_1_VERSION; 531 #endif 532 #ifdef OPENSSL_NO_TLS1_1 533 if (min_version == TLS1_1_VERSION) 534 min_version = TLS1_2_VERSION; 535 #endif 536 #ifdef OPENSSL_NO_TLS1_2 537 if (min_version == TLS1_2_VERSION) 538 min_version = TLS1_3_VERSION; 539 #endif 540 /* Done massaging versions; do the check. */ 541 if (0 542 #ifdef OPENSSL_NO_SSL3 543 || (min_version <= SSL3_VERSION && SSL3_VERSION <= max_version) 544 #endif 545 #ifdef OPENSSL_NO_TLS1 546 || (min_version <= TLS1_VERSION && TLS1_VERSION <= max_version) 547 #endif 548 #ifdef OPENSSL_NO_TLS1_1 549 || (min_version <= TLS1_1_VERSION && TLS1_1_VERSION <= max_version) 550 #endif 551 #ifdef OPENSSL_NO_TLS1_2 552 || (min_version <= TLS1_2_VERSION && TLS1_2_VERSION <= max_version) 553 #endif 554 #ifdef OPENSSL_NO_TLS1_3 555 || (min_version <= TLS1_3_VERSION && TLS1_3_VERSION <= max_version) 556 #endif 557 ) 558 return 0; 559 } 560 return 1; 561 } 562 563 #if defined(__TANDEM) && defined(OPENSSL_VPROC) 564 /* 565 * Define a VPROC function for HP NonStop build ssl library. 566 * This is used by platform version identification tools. 567 * Do not inline this procedure or make it static. 568 */ 569 # define OPENSSL_VPROC_STRING_(x) x##_SSL 570 # define OPENSSL_VPROC_STRING(x) OPENSSL_VPROC_STRING_(x) 571 # define OPENSSL_VPROC_FUNC OPENSSL_VPROC_STRING(OPENSSL_VPROC) 572 void OPENSSL_VPROC_FUNC(void) {} 573 #endif 574 575 576 static void clear_ciphers(SSL *s) 577 { 578 /* clear the current cipher */ 579 ssl_clear_cipher_ctx(s); 580 ssl_clear_hash_ctx(&s->read_hash); 581 ssl_clear_hash_ctx(&s->write_hash); 582 } 583 584 int SSL_clear(SSL *s) 585 { 586 if (s->method == NULL) { 587 ERR_raise(ERR_LIB_SSL, SSL_R_NO_METHOD_SPECIFIED); 588 return 0; 589 } 590 591 if (ssl_clear_bad_session(s)) { 592 SSL_SESSION_free(s->session); 593 s->session = NULL; 594 } 595 SSL_SESSION_free(s->psksession); 596 s->psksession = NULL; 597 OPENSSL_free(s->psksession_id); 598 s->psksession_id = NULL; 599 s->psksession_id_len = 0; 600 s->hello_retry_request = SSL_HRR_NONE; 601 s->sent_tickets = 0; 602 603 s->error = 0; 604 s->hit = 0; 605 s->shutdown = 0; 606 607 if (s->renegotiate) { 608 ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR); 609 return 0; 610 } 611 612 ossl_statem_clear(s); 613 614 s->version = s->method->version; 615 s->client_version = s->version; 616 s->rwstate = SSL_NOTHING; 617 618 BUF_MEM_free(s->init_buf); 619 s->init_buf = NULL; 620 clear_ciphers(s); 621 s->first_packet = 0; 622 623 s->key_update = SSL_KEY_UPDATE_NONE; 624 625 EVP_MD_CTX_free(s->pha_dgst); 626 s->pha_dgst = NULL; 627 628 /* Reset DANE verification result state */ 629 s->dane.mdpth = -1; 630 s->dane.pdpth = -1; 631 X509_free(s->dane.mcert); 632 s->dane.mcert = NULL; 633 s->dane.mtlsa = NULL; 634 635 /* Clear the verification result peername */ 636 X509_VERIFY_PARAM_move_peername(s->param, NULL); 637 638 /* Clear any shared connection state */ 639 OPENSSL_free(s->shared_sigalgs); 640 s->shared_sigalgs = NULL; 641 s->shared_sigalgslen = 0; 642 643 /* 644 * Check to see if we were changed into a different method, if so, revert 645 * back. 646 */ 647 if (s->method != s->ctx->method) { 648 s->method->ssl_free(s); 649 s->method = s->ctx->method; 650 if (!s->method->ssl_new(s)) 651 return 0; 652 } else { 653 if (!s->method->ssl_clear(s)) 654 return 0; 655 } 656 657 RECORD_LAYER_clear(&s->rlayer); 658 659 return 1; 660 } 661 662 #ifndef OPENSSL_NO_DEPRECATED_3_0 663 /** Used to change an SSL_CTXs default SSL method type */ 664 int SSL_CTX_set_ssl_version(SSL_CTX *ctx, const SSL_METHOD *meth) 665 { 666 STACK_OF(SSL_CIPHER) *sk; 667 668 ctx->method = meth; 669 670 if (!SSL_CTX_set_ciphersuites(ctx, OSSL_default_ciphersuites())) { 671 ERR_raise(ERR_LIB_SSL, SSL_R_SSL_LIBRARY_HAS_NO_CIPHERS); 672 return 0; 673 } 674 sk = ssl_create_cipher_list(ctx, 675 ctx->tls13_ciphersuites, 676 &(ctx->cipher_list), 677 &(ctx->cipher_list_by_id), 678 OSSL_default_cipher_list(), ctx->cert); 679 if ((sk == NULL) || (sk_SSL_CIPHER_num(sk) <= 0)) { 680 ERR_raise(ERR_LIB_SSL, SSL_R_SSL_LIBRARY_HAS_NO_CIPHERS); 681 return 0; 682 } 683 return 1; 684 } 685 #endif 686 687 SSL *SSL_new(SSL_CTX *ctx) 688 { 689 SSL *s; 690 691 if (ctx == NULL) { 692 ERR_raise(ERR_LIB_SSL, SSL_R_NULL_SSL_CTX); 693 return NULL; 694 } 695 if (ctx->method == NULL) { 696 ERR_raise(ERR_LIB_SSL, SSL_R_SSL_CTX_HAS_NO_DEFAULT_SSL_VERSION); 697 return NULL; 698 } 699 700 s = OPENSSL_zalloc(sizeof(*s)); 701 if (s == NULL) 702 goto err; 703 704 s->references = 1; 705 s->lock = CRYPTO_THREAD_lock_new(); 706 if (s->lock == NULL) { 707 OPENSSL_free(s); 708 s = NULL; 709 goto err; 710 } 711 712 RECORD_LAYER_init(&s->rlayer, s); 713 714 s->options = ctx->options; 715 s->dane.flags = ctx->dane.flags; 716 s->min_proto_version = ctx->min_proto_version; 717 s->max_proto_version = ctx->max_proto_version; 718 s->mode = ctx->mode; 719 s->max_cert_list = ctx->max_cert_list; 720 s->max_early_data = ctx->max_early_data; 721 s->recv_max_early_data = ctx->recv_max_early_data; 722 s->num_tickets = ctx->num_tickets; 723 s->pha_enabled = ctx->pha_enabled; 724 725 /* Shallow copy of the ciphersuites stack */ 726 s->tls13_ciphersuites = sk_SSL_CIPHER_dup(ctx->tls13_ciphersuites); 727 if (s->tls13_ciphersuites == NULL) 728 goto err; 729 730 /* 731 * Earlier library versions used to copy the pointer to the CERT, not 732 * its contents; only when setting new parameters for the per-SSL 733 * copy, ssl_cert_new would be called (and the direct reference to 734 * the per-SSL_CTX settings would be lost, but those still were 735 * indirectly accessed for various purposes, and for that reason they 736 * used to be known as s->ctx->default_cert). Now we don't look at the 737 * SSL_CTX's CERT after having duplicated it once. 738 */ 739 s->cert = ssl_cert_dup(ctx->cert); 740 if (s->cert == NULL) 741 goto err; 742 743 RECORD_LAYER_set_read_ahead(&s->rlayer, ctx->read_ahead); 744 s->msg_callback = ctx->msg_callback; 745 s->msg_callback_arg = ctx->msg_callback_arg; 746 s->verify_mode = ctx->verify_mode; 747 s->not_resumable_session_cb = ctx->not_resumable_session_cb; 748 s->record_padding_cb = ctx->record_padding_cb; 749 s->record_padding_arg = ctx->record_padding_arg; 750 s->block_padding = ctx->block_padding; 751 s->sid_ctx_length = ctx->sid_ctx_length; 752 if (!ossl_assert(s->sid_ctx_length <= sizeof(s->sid_ctx))) 753 goto err; 754 memcpy(&s->sid_ctx, &ctx->sid_ctx, sizeof(s->sid_ctx)); 755 s->verify_callback = ctx->default_verify_callback; 756 s->generate_session_id = ctx->generate_session_id; 757 758 s->param = X509_VERIFY_PARAM_new(); 759 if (s->param == NULL) 760 goto err; 761 X509_VERIFY_PARAM_inherit(s->param, ctx->param); 762 s->quiet_shutdown = ctx->quiet_shutdown; 763 764 s->ext.max_fragment_len_mode = ctx->ext.max_fragment_len_mode; 765 s->max_send_fragment = ctx->max_send_fragment; 766 s->split_send_fragment = ctx->split_send_fragment; 767 s->max_pipelines = ctx->max_pipelines; 768 if (s->max_pipelines > 1) 769 RECORD_LAYER_set_read_ahead(&s->rlayer, 1); 770 if (ctx->default_read_buf_len > 0) 771 SSL_set_default_read_buffer_len(s, ctx->default_read_buf_len); 772 773 SSL_CTX_up_ref(ctx); 774 s->ctx = ctx; 775 s->ext.debug_cb = 0; 776 s->ext.debug_arg = NULL; 777 s->ext.ticket_expected = 0; 778 s->ext.status_type = ctx->ext.status_type; 779 s->ext.status_expected = 0; 780 s->ext.ocsp.ids = NULL; 781 s->ext.ocsp.exts = NULL; 782 s->ext.ocsp.resp = NULL; 783 s->ext.ocsp.resp_len = 0; 784 SSL_CTX_up_ref(ctx); 785 s->session_ctx = ctx; 786 if (ctx->ext.ecpointformats) { 787 s->ext.ecpointformats = 788 OPENSSL_memdup(ctx->ext.ecpointformats, 789 ctx->ext.ecpointformats_len); 790 if (!s->ext.ecpointformats) { 791 s->ext.ecpointformats_len = 0; 792 goto err; 793 } 794 s->ext.ecpointformats_len = 795 ctx->ext.ecpointformats_len; 796 } 797 if (ctx->ext.supportedgroups) { 798 s->ext.supportedgroups = 799 OPENSSL_memdup(ctx->ext.supportedgroups, 800 ctx->ext.supportedgroups_len 801 * sizeof(*ctx->ext.supportedgroups)); 802 if (!s->ext.supportedgroups) { 803 s->ext.supportedgroups_len = 0; 804 goto err; 805 } 806 s->ext.supportedgroups_len = ctx->ext.supportedgroups_len; 807 } 808 809 #ifndef OPENSSL_NO_NEXTPROTONEG 810 s->ext.npn = NULL; 811 #endif 812 813 if (s->ctx->ext.alpn) { 814 s->ext.alpn = OPENSSL_malloc(s->ctx->ext.alpn_len); 815 if (s->ext.alpn == NULL) { 816 s->ext.alpn_len = 0; 817 goto err; 818 } 819 memcpy(s->ext.alpn, s->ctx->ext.alpn, s->ctx->ext.alpn_len); 820 s->ext.alpn_len = s->ctx->ext.alpn_len; 821 } 822 823 s->verified_chain = NULL; 824 s->verify_result = X509_V_OK; 825 826 s->default_passwd_callback = ctx->default_passwd_callback; 827 s->default_passwd_callback_userdata = ctx->default_passwd_callback_userdata; 828 829 s->method = ctx->method; 830 831 s->key_update = SSL_KEY_UPDATE_NONE; 832 833 s->allow_early_data_cb = ctx->allow_early_data_cb; 834 s->allow_early_data_cb_data = ctx->allow_early_data_cb_data; 835 836 if (!s->method->ssl_new(s)) 837 goto err; 838 839 s->server = (ctx->method->ssl_accept == ssl_undefined_function) ? 0 : 1; 840 841 if (!SSL_clear(s)) 842 goto err; 843 844 if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL, s, &s->ex_data)) 845 goto err; 846 847 #ifndef OPENSSL_NO_PSK 848 s->psk_client_callback = ctx->psk_client_callback; 849 s->psk_server_callback = ctx->psk_server_callback; 850 #endif 851 s->psk_find_session_cb = ctx->psk_find_session_cb; 852 s->psk_use_session_cb = ctx->psk_use_session_cb; 853 854 s->async_cb = ctx->async_cb; 855 s->async_cb_arg = ctx->async_cb_arg; 856 857 s->job = NULL; 858 859 #ifndef OPENSSL_NO_CT 860 if (!SSL_set_ct_validation_callback(s, ctx->ct_validation_callback, 861 ctx->ct_validation_callback_arg)) 862 goto err; 863 #endif 864 865 return s; 866 err: 867 SSL_free(s); 868 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); 869 return NULL; 870 } 871 872 int SSL_is_dtls(const SSL *s) 873 { 874 return SSL_IS_DTLS(s) ? 1 : 0; 875 } 876 877 int SSL_up_ref(SSL *s) 878 { 879 int i; 880 881 if (CRYPTO_UP_REF(&s->references, &i, s->lock) <= 0) 882 return 0; 883 884 REF_PRINT_COUNT("SSL", s); 885 REF_ASSERT_ISNT(i < 2); 886 return ((i > 1) ? 1 : 0); 887 } 888 889 int SSL_CTX_set_session_id_context(SSL_CTX *ctx, const unsigned char *sid_ctx, 890 unsigned int sid_ctx_len) 891 { 892 if (sid_ctx_len > SSL_MAX_SID_CTX_LENGTH) { 893 ERR_raise(ERR_LIB_SSL, SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG); 894 return 0; 895 } 896 ctx->sid_ctx_length = sid_ctx_len; 897 memcpy(ctx->sid_ctx, sid_ctx, sid_ctx_len); 898 899 return 1; 900 } 901 902 int SSL_set_session_id_context(SSL *ssl, const unsigned char *sid_ctx, 903 unsigned int sid_ctx_len) 904 { 905 if (sid_ctx_len > SSL_MAX_SID_CTX_LENGTH) { 906 ERR_raise(ERR_LIB_SSL, SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG); 907 return 0; 908 } 909 ssl->sid_ctx_length = sid_ctx_len; 910 memcpy(ssl->sid_ctx, sid_ctx, sid_ctx_len); 911 912 return 1; 913 } 914 915 int SSL_CTX_set_generate_session_id(SSL_CTX *ctx, GEN_SESSION_CB cb) 916 { 917 if (!CRYPTO_THREAD_write_lock(ctx->lock)) 918 return 0; 919 ctx->generate_session_id = cb; 920 CRYPTO_THREAD_unlock(ctx->lock); 921 return 1; 922 } 923 924 int SSL_set_generate_session_id(SSL *ssl, GEN_SESSION_CB cb) 925 { 926 if (!CRYPTO_THREAD_write_lock(ssl->lock)) 927 return 0; 928 ssl->generate_session_id = cb; 929 CRYPTO_THREAD_unlock(ssl->lock); 930 return 1; 931 } 932 933 int SSL_has_matching_session_id(const SSL *ssl, const unsigned char *id, 934 unsigned int id_len) 935 { 936 /* 937 * A quick examination of SSL_SESSION_hash and SSL_SESSION_cmp shows how 938 * we can "construct" a session to give us the desired check - i.e. to 939 * find if there's a session in the hash table that would conflict with 940 * any new session built out of this id/id_len and the ssl_version in use 941 * by this SSL. 942 */ 943 SSL_SESSION r, *p; 944 945 if (id_len > sizeof(r.session_id)) 946 return 0; 947 948 r.ssl_version = ssl->version; 949 r.session_id_length = id_len; 950 memcpy(r.session_id, id, id_len); 951 952 if (!CRYPTO_THREAD_read_lock(ssl->session_ctx->lock)) 953 return 0; 954 p = lh_SSL_SESSION_retrieve(ssl->session_ctx->sessions, &r); 955 CRYPTO_THREAD_unlock(ssl->session_ctx->lock); 956 return (p != NULL); 957 } 958 959 int SSL_CTX_set_purpose(SSL_CTX *s, int purpose) 960 { 961 return X509_VERIFY_PARAM_set_purpose(s->param, purpose); 962 } 963 964 int SSL_set_purpose(SSL *s, int purpose) 965 { 966 return X509_VERIFY_PARAM_set_purpose(s->param, purpose); 967 } 968 969 int SSL_CTX_set_trust(SSL_CTX *s, int trust) 970 { 971 return X509_VERIFY_PARAM_set_trust(s->param, trust); 972 } 973 974 int SSL_set_trust(SSL *s, int trust) 975 { 976 return X509_VERIFY_PARAM_set_trust(s->param, trust); 977 } 978 979 int SSL_set1_host(SSL *s, const char *hostname) 980 { 981 /* If a hostname is provided and parses as an IP address, 982 * treat it as such. */ 983 if (hostname && X509_VERIFY_PARAM_set1_ip_asc(s->param, hostname) == 1) 984 return 1; 985 986 return X509_VERIFY_PARAM_set1_host(s->param, hostname, 0); 987 } 988 989 int SSL_add1_host(SSL *s, const char *hostname) 990 { 991 /* If a hostname is provided and parses as an IP address, 992 * treat it as such. */ 993 if (hostname) 994 { 995 ASN1_OCTET_STRING *ip; 996 char *old_ip; 997 998 ip = a2i_IPADDRESS(hostname); 999 if (ip) { 1000 /* We didn't want it; only to check if it *is* an IP address */ 1001 ASN1_OCTET_STRING_free(ip); 1002 1003 old_ip = X509_VERIFY_PARAM_get1_ip_asc(s->param); 1004 if (old_ip) 1005 { 1006 OPENSSL_free(old_ip); 1007 /* There can be only one IP address */ 1008 return 0; 1009 } 1010 1011 return X509_VERIFY_PARAM_set1_ip_asc(s->param, hostname); 1012 } 1013 } 1014 1015 return X509_VERIFY_PARAM_add1_host(s->param, hostname, 0); 1016 } 1017 1018 void SSL_set_hostflags(SSL *s, unsigned int flags) 1019 { 1020 X509_VERIFY_PARAM_set_hostflags(s->param, flags); 1021 } 1022 1023 const char *SSL_get0_peername(SSL *s) 1024 { 1025 return X509_VERIFY_PARAM_get0_peername(s->param); 1026 } 1027 1028 int SSL_CTX_dane_enable(SSL_CTX *ctx) 1029 { 1030 return dane_ctx_enable(&ctx->dane); 1031 } 1032 1033 unsigned long SSL_CTX_dane_set_flags(SSL_CTX *ctx, unsigned long flags) 1034 { 1035 unsigned long orig = ctx->dane.flags; 1036 1037 ctx->dane.flags |= flags; 1038 return orig; 1039 } 1040 1041 unsigned long SSL_CTX_dane_clear_flags(SSL_CTX *ctx, unsigned long flags) 1042 { 1043 unsigned long orig = ctx->dane.flags; 1044 1045 ctx->dane.flags &= ~flags; 1046 return orig; 1047 } 1048 1049 int SSL_dane_enable(SSL *s, const char *basedomain) 1050 { 1051 SSL_DANE *dane = &s->dane; 1052 1053 if (s->ctx->dane.mdmax == 0) { 1054 ERR_raise(ERR_LIB_SSL, SSL_R_CONTEXT_NOT_DANE_ENABLED); 1055 return 0; 1056 } 1057 if (dane->trecs != NULL) { 1058 ERR_raise(ERR_LIB_SSL, SSL_R_DANE_ALREADY_ENABLED); 1059 return 0; 1060 } 1061 1062 /* 1063 * Default SNI name. This rejects empty names, while set1_host below 1064 * accepts them and disables host name checks. To avoid side-effects with 1065 * invalid input, set the SNI name first. 1066 */ 1067 if (s->ext.hostname == NULL) { 1068 if (!SSL_set_tlsext_host_name(s, basedomain)) { 1069 ERR_raise(ERR_LIB_SSL, SSL_R_ERROR_SETTING_TLSA_BASE_DOMAIN); 1070 return -1; 1071 } 1072 } 1073 1074 /* Primary RFC6125 reference identifier */ 1075 if (!X509_VERIFY_PARAM_set1_host(s->param, basedomain, 0)) { 1076 ERR_raise(ERR_LIB_SSL, SSL_R_ERROR_SETTING_TLSA_BASE_DOMAIN); 1077 return -1; 1078 } 1079 1080 dane->mdpth = -1; 1081 dane->pdpth = -1; 1082 dane->dctx = &s->ctx->dane; 1083 dane->trecs = sk_danetls_record_new_null(); 1084 1085 if (dane->trecs == NULL) { 1086 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); 1087 return -1; 1088 } 1089 return 1; 1090 } 1091 1092 unsigned long SSL_dane_set_flags(SSL *ssl, unsigned long flags) 1093 { 1094 unsigned long orig = ssl->dane.flags; 1095 1096 ssl->dane.flags |= flags; 1097 return orig; 1098 } 1099 1100 unsigned long SSL_dane_clear_flags(SSL *ssl, unsigned long flags) 1101 { 1102 unsigned long orig = ssl->dane.flags; 1103 1104 ssl->dane.flags &= ~flags; 1105 return orig; 1106 } 1107 1108 int SSL_get0_dane_authority(SSL *s, X509 **mcert, EVP_PKEY **mspki) 1109 { 1110 SSL_DANE *dane = &s->dane; 1111 1112 if (!DANETLS_ENABLED(dane) || s->verify_result != X509_V_OK) 1113 return -1; 1114 if (dane->mtlsa) { 1115 if (mcert) 1116 *mcert = dane->mcert; 1117 if (mspki) 1118 *mspki = (dane->mcert == NULL) ? dane->mtlsa->spki : NULL; 1119 } 1120 return dane->mdpth; 1121 } 1122 1123 int SSL_get0_dane_tlsa(SSL *s, uint8_t *usage, uint8_t *selector, 1124 uint8_t *mtype, const unsigned char **data, size_t *dlen) 1125 { 1126 SSL_DANE *dane = &s->dane; 1127 1128 if (!DANETLS_ENABLED(dane) || s->verify_result != X509_V_OK) 1129 return -1; 1130 if (dane->mtlsa) { 1131 if (usage) 1132 *usage = dane->mtlsa->usage; 1133 if (selector) 1134 *selector = dane->mtlsa->selector; 1135 if (mtype) 1136 *mtype = dane->mtlsa->mtype; 1137 if (data) 1138 *data = dane->mtlsa->data; 1139 if (dlen) 1140 *dlen = dane->mtlsa->dlen; 1141 } 1142 return dane->mdpth; 1143 } 1144 1145 SSL_DANE *SSL_get0_dane(SSL *s) 1146 { 1147 return &s->dane; 1148 } 1149 1150 int SSL_dane_tlsa_add(SSL *s, uint8_t usage, uint8_t selector, 1151 uint8_t mtype, const unsigned char *data, size_t dlen) 1152 { 1153 return dane_tlsa_add(&s->dane, usage, selector, mtype, data, dlen); 1154 } 1155 1156 int SSL_CTX_dane_mtype_set(SSL_CTX *ctx, const EVP_MD *md, uint8_t mtype, 1157 uint8_t ord) 1158 { 1159 return dane_mtype_set(&ctx->dane, md, mtype, ord); 1160 } 1161 1162 int SSL_CTX_set1_param(SSL_CTX *ctx, X509_VERIFY_PARAM *vpm) 1163 { 1164 return X509_VERIFY_PARAM_set1(ctx->param, vpm); 1165 } 1166 1167 int SSL_set1_param(SSL *ssl, X509_VERIFY_PARAM *vpm) 1168 { 1169 return X509_VERIFY_PARAM_set1(ssl->param, vpm); 1170 } 1171 1172 X509_VERIFY_PARAM *SSL_CTX_get0_param(SSL_CTX *ctx) 1173 { 1174 return ctx->param; 1175 } 1176 1177 X509_VERIFY_PARAM *SSL_get0_param(SSL *ssl) 1178 { 1179 return ssl->param; 1180 } 1181 1182 void SSL_certs_clear(SSL *s) 1183 { 1184 ssl_cert_clear_certs(s->cert); 1185 } 1186 1187 void SSL_free(SSL *s) 1188 { 1189 int i; 1190 1191 if (s == NULL) 1192 return; 1193 CRYPTO_DOWN_REF(&s->references, &i, s->lock); 1194 REF_PRINT_COUNT("SSL", s); 1195 if (i > 0) 1196 return; 1197 REF_ASSERT_ISNT(i < 0); 1198 1199 X509_VERIFY_PARAM_free(s->param); 1200 dane_final(&s->dane); 1201 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL, s, &s->ex_data); 1202 1203 RECORD_LAYER_release(&s->rlayer); 1204 1205 /* Ignore return value */ 1206 ssl_free_wbio_buffer(s); 1207 1208 BIO_free_all(s->wbio); 1209 s->wbio = NULL; 1210 BIO_free_all(s->rbio); 1211 s->rbio = NULL; 1212 1213 BUF_MEM_free(s->init_buf); 1214 1215 /* add extra stuff */ 1216 sk_SSL_CIPHER_free(s->cipher_list); 1217 sk_SSL_CIPHER_free(s->cipher_list_by_id); 1218 sk_SSL_CIPHER_free(s->tls13_ciphersuites); 1219 sk_SSL_CIPHER_free(s->peer_ciphers); 1220 1221 /* Make the next call work :-) */ 1222 if (s->session != NULL) { 1223 ssl_clear_bad_session(s); 1224 SSL_SESSION_free(s->session); 1225 } 1226 SSL_SESSION_free(s->psksession); 1227 OPENSSL_free(s->psksession_id); 1228 1229 ssl_cert_free(s->cert); 1230 OPENSSL_free(s->shared_sigalgs); 1231 /* Free up if allocated */ 1232 1233 OPENSSL_free(s->ext.hostname); 1234 SSL_CTX_free(s->session_ctx); 1235 OPENSSL_free(s->ext.ecpointformats); 1236 OPENSSL_free(s->ext.peer_ecpointformats); 1237 OPENSSL_free(s->ext.supportedgroups); 1238 OPENSSL_free(s->ext.peer_supportedgroups); 1239 sk_X509_EXTENSION_pop_free(s->ext.ocsp.exts, X509_EXTENSION_free); 1240 #ifndef OPENSSL_NO_OCSP 1241 sk_OCSP_RESPID_pop_free(s->ext.ocsp.ids, OCSP_RESPID_free); 1242 #endif 1243 #ifndef OPENSSL_NO_CT 1244 SCT_LIST_free(s->scts); 1245 OPENSSL_free(s->ext.scts); 1246 #endif 1247 OPENSSL_free(s->ext.ocsp.resp); 1248 OPENSSL_free(s->ext.alpn); 1249 OPENSSL_free(s->ext.tls13_cookie); 1250 if (s->clienthello != NULL) 1251 OPENSSL_free(s->clienthello->pre_proc_exts); 1252 OPENSSL_free(s->clienthello); 1253 OPENSSL_free(s->pha_context); 1254 EVP_MD_CTX_free(s->pha_dgst); 1255 1256 sk_X509_NAME_pop_free(s->ca_names, X509_NAME_free); 1257 sk_X509_NAME_pop_free(s->client_ca_names, X509_NAME_free); 1258 1259 sk_X509_pop_free(s->verified_chain, X509_free); 1260 1261 if (s->method != NULL) 1262 s->method->ssl_free(s); 1263 1264 /* 1265 * Must occur after s->method->ssl_free(). The DTLS sent_messages queue 1266 * may reference the EVP_CIPHER_CTX/EVP_MD_CTX that are freed here. 1267 */ 1268 clear_ciphers(s); 1269 1270 SSL_CTX_free(s->ctx); 1271 1272 ASYNC_WAIT_CTX_free(s->waitctx); 1273 1274 #if !defined(OPENSSL_NO_NEXTPROTONEG) 1275 OPENSSL_free(s->ext.npn); 1276 #endif 1277 1278 #ifndef OPENSSL_NO_SRTP 1279 sk_SRTP_PROTECTION_PROFILE_free(s->srtp_profiles); 1280 #endif 1281 1282 CRYPTO_THREAD_lock_free(s->lock); 1283 1284 OPENSSL_free(s); 1285 } 1286 1287 void SSL_set0_rbio(SSL *s, BIO *rbio) 1288 { 1289 BIO_free_all(s->rbio); 1290 s->rbio = rbio; 1291 } 1292 1293 void SSL_set0_wbio(SSL *s, BIO *wbio) 1294 { 1295 /* 1296 * If the output buffering BIO is still in place, remove it 1297 */ 1298 if (s->bbio != NULL) 1299 s->wbio = BIO_pop(s->wbio); 1300 1301 BIO_free_all(s->wbio); 1302 s->wbio = wbio; 1303 1304 /* Re-attach |bbio| to the new |wbio|. */ 1305 if (s->bbio != NULL) 1306 s->wbio = BIO_push(s->bbio, s->wbio); 1307 } 1308 1309 void SSL_set_bio(SSL *s, BIO *rbio, BIO *wbio) 1310 { 1311 /* 1312 * For historical reasons, this function has many different cases in 1313 * ownership handling. 1314 */ 1315 1316 /* If nothing has changed, do nothing */ 1317 if (rbio == SSL_get_rbio(s) && wbio == SSL_get_wbio(s)) 1318 return; 1319 1320 /* 1321 * If the two arguments are equal then one fewer reference is granted by the 1322 * caller than we want to take 1323 */ 1324 if (rbio != NULL && rbio == wbio) 1325 BIO_up_ref(rbio); 1326 1327 /* 1328 * If only the wbio is changed only adopt one reference. 1329 */ 1330 if (rbio == SSL_get_rbio(s)) { 1331 SSL_set0_wbio(s, wbio); 1332 return; 1333 } 1334 /* 1335 * There is an asymmetry here for historical reasons. If only the rbio is 1336 * changed AND the rbio and wbio were originally different, then we only 1337 * adopt one reference. 1338 */ 1339 if (wbio == SSL_get_wbio(s) && SSL_get_rbio(s) != SSL_get_wbio(s)) { 1340 SSL_set0_rbio(s, rbio); 1341 return; 1342 } 1343 1344 /* Otherwise, adopt both references. */ 1345 SSL_set0_rbio(s, rbio); 1346 SSL_set0_wbio(s, wbio); 1347 } 1348 1349 BIO *SSL_get_rbio(const SSL *s) 1350 { 1351 return s->rbio; 1352 } 1353 1354 BIO *SSL_get_wbio(const SSL *s) 1355 { 1356 if (s->bbio != NULL) { 1357 /* 1358 * If |bbio| is active, the true caller-configured BIO is its 1359 * |next_bio|. 1360 */ 1361 return BIO_next(s->bbio); 1362 } 1363 return s->wbio; 1364 } 1365 1366 int SSL_get_fd(const SSL *s) 1367 { 1368 return SSL_get_rfd(s); 1369 } 1370 1371 int SSL_get_rfd(const SSL *s) 1372 { 1373 int ret = -1; 1374 BIO *b, *r; 1375 1376 b = SSL_get_rbio(s); 1377 r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR); 1378 if (r != NULL) 1379 BIO_get_fd(r, &ret); 1380 return ret; 1381 } 1382 1383 int SSL_get_wfd(const SSL *s) 1384 { 1385 int ret = -1; 1386 BIO *b, *r; 1387 1388 b = SSL_get_wbio(s); 1389 r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR); 1390 if (r != NULL) 1391 BIO_get_fd(r, &ret); 1392 return ret; 1393 } 1394 1395 #ifndef OPENSSL_NO_SOCK 1396 int SSL_set_fd(SSL *s, int fd) 1397 { 1398 int ret = 0; 1399 BIO *bio = NULL; 1400 1401 bio = BIO_new(BIO_s_socket()); 1402 1403 if (bio == NULL) { 1404 ERR_raise(ERR_LIB_SSL, ERR_R_BUF_LIB); 1405 goto err; 1406 } 1407 BIO_set_fd(bio, fd, BIO_NOCLOSE); 1408 SSL_set_bio(s, bio, bio); 1409 #ifndef OPENSSL_NO_KTLS 1410 /* 1411 * The new socket is created successfully regardless of ktls_enable. 1412 * ktls_enable doesn't change any functionality of the socket, except 1413 * changing the setsockopt to enable the processing of ktls_start. 1414 * Thus, it is not a problem to call it for non-TLS sockets. 1415 */ 1416 ktls_enable(fd); 1417 #endif /* OPENSSL_NO_KTLS */ 1418 ret = 1; 1419 err: 1420 return ret; 1421 } 1422 1423 int SSL_set_wfd(SSL *s, int fd) 1424 { 1425 BIO *rbio = SSL_get_rbio(s); 1426 1427 if (rbio == NULL || BIO_method_type(rbio) != BIO_TYPE_SOCKET 1428 || (int)BIO_get_fd(rbio, NULL) != fd) { 1429 BIO *bio = BIO_new(BIO_s_socket()); 1430 1431 if (bio == NULL) { 1432 ERR_raise(ERR_LIB_SSL, ERR_R_BUF_LIB); 1433 return 0; 1434 } 1435 BIO_set_fd(bio, fd, BIO_NOCLOSE); 1436 SSL_set0_wbio(s, bio); 1437 #ifndef OPENSSL_NO_KTLS 1438 /* 1439 * The new socket is created successfully regardless of ktls_enable. 1440 * ktls_enable doesn't change any functionality of the socket, except 1441 * changing the setsockopt to enable the processing of ktls_start. 1442 * Thus, it is not a problem to call it for non-TLS sockets. 1443 */ 1444 ktls_enable(fd); 1445 #endif /* OPENSSL_NO_KTLS */ 1446 } else { 1447 BIO_up_ref(rbio); 1448 SSL_set0_wbio(s, rbio); 1449 } 1450 return 1; 1451 } 1452 1453 int SSL_set_rfd(SSL *s, int fd) 1454 { 1455 BIO *wbio = SSL_get_wbio(s); 1456 1457 if (wbio == NULL || BIO_method_type(wbio) != BIO_TYPE_SOCKET 1458 || ((int)BIO_get_fd(wbio, NULL) != fd)) { 1459 BIO *bio = BIO_new(BIO_s_socket()); 1460 1461 if (bio == NULL) { 1462 ERR_raise(ERR_LIB_SSL, ERR_R_BUF_LIB); 1463 return 0; 1464 } 1465 BIO_set_fd(bio, fd, BIO_NOCLOSE); 1466 SSL_set0_rbio(s, bio); 1467 } else { 1468 BIO_up_ref(wbio); 1469 SSL_set0_rbio(s, wbio); 1470 } 1471 1472 return 1; 1473 } 1474 #endif 1475 1476 /* return length of latest Finished message we sent, copy to 'buf' */ 1477 size_t SSL_get_finished(const SSL *s, void *buf, size_t count) 1478 { 1479 size_t ret = 0; 1480 1481 ret = s->s3.tmp.finish_md_len; 1482 if (count > ret) 1483 count = ret; 1484 memcpy(buf, s->s3.tmp.finish_md, count); 1485 return ret; 1486 } 1487 1488 /* return length of latest Finished message we expected, copy to 'buf' */ 1489 size_t SSL_get_peer_finished(const SSL *s, void *buf, size_t count) 1490 { 1491 size_t ret = 0; 1492 1493 ret = s->s3.tmp.peer_finish_md_len; 1494 if (count > ret) 1495 count = ret; 1496 memcpy(buf, s->s3.tmp.peer_finish_md, count); 1497 return ret; 1498 } 1499 1500 int SSL_get_verify_mode(const SSL *s) 1501 { 1502 return s->verify_mode; 1503 } 1504 1505 int SSL_get_verify_depth(const SSL *s) 1506 { 1507 return X509_VERIFY_PARAM_get_depth(s->param); 1508 } 1509 1510 int (*SSL_get_verify_callback(const SSL *s)) (int, X509_STORE_CTX *) { 1511 return s->verify_callback; 1512 } 1513 1514 int SSL_CTX_get_verify_mode(const SSL_CTX *ctx) 1515 { 1516 return ctx->verify_mode; 1517 } 1518 1519 int SSL_CTX_get_verify_depth(const SSL_CTX *ctx) 1520 { 1521 return X509_VERIFY_PARAM_get_depth(ctx->param); 1522 } 1523 1524 int (*SSL_CTX_get_verify_callback(const SSL_CTX *ctx)) (int, X509_STORE_CTX *) { 1525 return ctx->default_verify_callback; 1526 } 1527 1528 void SSL_set_verify(SSL *s, int mode, 1529 int (*callback) (int ok, X509_STORE_CTX *ctx)) 1530 { 1531 s->verify_mode = mode; 1532 if (callback != NULL) 1533 s->verify_callback = callback; 1534 } 1535 1536 void SSL_set_verify_depth(SSL *s, int depth) 1537 { 1538 X509_VERIFY_PARAM_set_depth(s->param, depth); 1539 } 1540 1541 void SSL_set_read_ahead(SSL *s, int yes) 1542 { 1543 RECORD_LAYER_set_read_ahead(&s->rlayer, yes); 1544 } 1545 1546 int SSL_get_read_ahead(const SSL *s) 1547 { 1548 return RECORD_LAYER_get_read_ahead(&s->rlayer); 1549 } 1550 1551 int SSL_pending(const SSL *s) 1552 { 1553 size_t pending = s->method->ssl_pending(s); 1554 1555 /* 1556 * SSL_pending cannot work properly if read-ahead is enabled 1557 * (SSL_[CTX_]ctrl(..., SSL_CTRL_SET_READ_AHEAD, 1, NULL)), and it is 1558 * impossible to fix since SSL_pending cannot report errors that may be 1559 * observed while scanning the new data. (Note that SSL_pending() is 1560 * often used as a boolean value, so we'd better not return -1.) 1561 * 1562 * SSL_pending also cannot work properly if the value >INT_MAX. In that case 1563 * we just return INT_MAX. 1564 */ 1565 return pending < INT_MAX ? (int)pending : INT_MAX; 1566 } 1567 1568 int SSL_has_pending(const SSL *s) 1569 { 1570 /* 1571 * Similar to SSL_pending() but returns a 1 to indicate that we have 1572 * processed or unprocessed data available or 0 otherwise (as opposed to the 1573 * number of bytes available). Unlike SSL_pending() this will take into 1574 * account read_ahead data. A 1 return simply indicates that we have data. 1575 * That data may not result in any application data, or we may fail to parse 1576 * the records for some reason. 1577 */ 1578 1579 /* Check buffered app data if any first */ 1580 if (SSL_IS_DTLS(s)) { 1581 DTLS1_RECORD_DATA *rdata; 1582 pitem *item, *iter; 1583 1584 iter = pqueue_iterator(s->rlayer.d->buffered_app_data.q); 1585 while ((item = pqueue_next(&iter)) != NULL) { 1586 rdata = item->data; 1587 if (rdata->rrec.length > 0) 1588 return 1; 1589 } 1590 } 1591 1592 if (RECORD_LAYER_processed_read_pending(&s->rlayer)) 1593 return 1; 1594 1595 return RECORD_LAYER_read_pending(&s->rlayer); 1596 } 1597 1598 X509 *SSL_get1_peer_certificate(const SSL *s) 1599 { 1600 X509 *r = SSL_get0_peer_certificate(s); 1601 1602 if (r != NULL) 1603 X509_up_ref(r); 1604 1605 return r; 1606 } 1607 1608 X509 *SSL_get0_peer_certificate(const SSL *s) 1609 { 1610 if ((s == NULL) || (s->session == NULL)) 1611 return NULL; 1612 else 1613 return s->session->peer; 1614 } 1615 1616 STACK_OF(X509) *SSL_get_peer_cert_chain(const SSL *s) 1617 { 1618 STACK_OF(X509) *r; 1619 1620 if ((s == NULL) || (s->session == NULL)) 1621 r = NULL; 1622 else 1623 r = s->session->peer_chain; 1624 1625 /* 1626 * If we are a client, cert_chain includes the peer's own certificate; if 1627 * we are a server, it does not. 1628 */ 1629 1630 return r; 1631 } 1632 1633 /* 1634 * Now in theory, since the calling process own 't' it should be safe to 1635 * modify. We need to be able to read f without being hassled 1636 */ 1637 int SSL_copy_session_id(SSL *t, const SSL *f) 1638 { 1639 int i; 1640 /* Do we need to do SSL locking? */ 1641 if (!SSL_set_session(t, SSL_get_session(f))) { 1642 return 0; 1643 } 1644 1645 /* 1646 * what if we are setup for one protocol version but want to talk another 1647 */ 1648 if (t->method != f->method) { 1649 t->method->ssl_free(t); 1650 t->method = f->method; 1651 if (t->method->ssl_new(t) == 0) 1652 return 0; 1653 } 1654 1655 CRYPTO_UP_REF(&f->cert->references, &i, f->cert->lock); 1656 ssl_cert_free(t->cert); 1657 t->cert = f->cert; 1658 if (!SSL_set_session_id_context(t, f->sid_ctx, (int)f->sid_ctx_length)) { 1659 return 0; 1660 } 1661 1662 return 1; 1663 } 1664 1665 /* Fix this so it checks all the valid key/cert options */ 1666 int SSL_CTX_check_private_key(const SSL_CTX *ctx) 1667 { 1668 if ((ctx == NULL) || (ctx->cert->key->x509 == NULL)) { 1669 ERR_raise(ERR_LIB_SSL, SSL_R_NO_CERTIFICATE_ASSIGNED); 1670 return 0; 1671 } 1672 if (ctx->cert->key->privatekey == NULL) { 1673 ERR_raise(ERR_LIB_SSL, SSL_R_NO_PRIVATE_KEY_ASSIGNED); 1674 return 0; 1675 } 1676 return X509_check_private_key 1677 (ctx->cert->key->x509, ctx->cert->key->privatekey); 1678 } 1679 1680 /* Fix this function so that it takes an optional type parameter */ 1681 int SSL_check_private_key(const SSL *ssl) 1682 { 1683 if (ssl == NULL) { 1684 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_NULL_PARAMETER); 1685 return 0; 1686 } 1687 if (ssl->cert->key->x509 == NULL) { 1688 ERR_raise(ERR_LIB_SSL, SSL_R_NO_CERTIFICATE_ASSIGNED); 1689 return 0; 1690 } 1691 if (ssl->cert->key->privatekey == NULL) { 1692 ERR_raise(ERR_LIB_SSL, SSL_R_NO_PRIVATE_KEY_ASSIGNED); 1693 return 0; 1694 } 1695 return X509_check_private_key(ssl->cert->key->x509, 1696 ssl->cert->key->privatekey); 1697 } 1698 1699 int SSL_waiting_for_async(SSL *s) 1700 { 1701 if (s->job) 1702 return 1; 1703 1704 return 0; 1705 } 1706 1707 int SSL_get_all_async_fds(SSL *s, OSSL_ASYNC_FD *fds, size_t *numfds) 1708 { 1709 ASYNC_WAIT_CTX *ctx = s->waitctx; 1710 1711 if (ctx == NULL) 1712 return 0; 1713 return ASYNC_WAIT_CTX_get_all_fds(ctx, fds, numfds); 1714 } 1715 1716 int SSL_get_changed_async_fds(SSL *s, OSSL_ASYNC_FD *addfd, size_t *numaddfds, 1717 OSSL_ASYNC_FD *delfd, size_t *numdelfds) 1718 { 1719 ASYNC_WAIT_CTX *ctx = s->waitctx; 1720 1721 if (ctx == NULL) 1722 return 0; 1723 return ASYNC_WAIT_CTX_get_changed_fds(ctx, addfd, numaddfds, delfd, 1724 numdelfds); 1725 } 1726 1727 int SSL_CTX_set_async_callback(SSL_CTX *ctx, SSL_async_callback_fn callback) 1728 { 1729 ctx->async_cb = callback; 1730 return 1; 1731 } 1732 1733 int SSL_CTX_set_async_callback_arg(SSL_CTX *ctx, void *arg) 1734 { 1735 ctx->async_cb_arg = arg; 1736 return 1; 1737 } 1738 1739 int SSL_set_async_callback(SSL *s, SSL_async_callback_fn callback) 1740 { 1741 s->async_cb = callback; 1742 return 1; 1743 } 1744 1745 int SSL_set_async_callback_arg(SSL *s, void *arg) 1746 { 1747 s->async_cb_arg = arg; 1748 return 1; 1749 } 1750 1751 int SSL_get_async_status(SSL *s, int *status) 1752 { 1753 ASYNC_WAIT_CTX *ctx = s->waitctx; 1754 1755 if (ctx == NULL) 1756 return 0; 1757 *status = ASYNC_WAIT_CTX_get_status(ctx); 1758 return 1; 1759 } 1760 1761 int SSL_accept(SSL *s) 1762 { 1763 if (s->handshake_func == NULL) { 1764 /* Not properly initialized yet */ 1765 SSL_set_accept_state(s); 1766 } 1767 1768 return SSL_do_handshake(s); 1769 } 1770 1771 int SSL_connect(SSL *s) 1772 { 1773 if (s->handshake_func == NULL) { 1774 /* Not properly initialized yet */ 1775 SSL_set_connect_state(s); 1776 } 1777 1778 return SSL_do_handshake(s); 1779 } 1780 1781 long SSL_get_default_timeout(const SSL *s) 1782 { 1783 return s->method->get_timeout(); 1784 } 1785 1786 static int ssl_async_wait_ctx_cb(void *arg) 1787 { 1788 SSL *s = (SSL *)arg; 1789 1790 return s->async_cb(s, s->async_cb_arg); 1791 } 1792 1793 static int ssl_start_async_job(SSL *s, struct ssl_async_args *args, 1794 int (*func) (void *)) 1795 { 1796 int ret; 1797 if (s->waitctx == NULL) { 1798 s->waitctx = ASYNC_WAIT_CTX_new(); 1799 if (s->waitctx == NULL) 1800 return -1; 1801 if (s->async_cb != NULL 1802 && !ASYNC_WAIT_CTX_set_callback 1803 (s->waitctx, ssl_async_wait_ctx_cb, s)) 1804 return -1; 1805 } 1806 1807 s->rwstate = SSL_NOTHING; 1808 switch (ASYNC_start_job(&s->job, s->waitctx, &ret, func, args, 1809 sizeof(struct ssl_async_args))) { 1810 case ASYNC_ERR: 1811 s->rwstate = SSL_NOTHING; 1812 ERR_raise(ERR_LIB_SSL, SSL_R_FAILED_TO_INIT_ASYNC); 1813 return -1; 1814 case ASYNC_PAUSE: 1815 s->rwstate = SSL_ASYNC_PAUSED; 1816 return -1; 1817 case ASYNC_NO_JOBS: 1818 s->rwstate = SSL_ASYNC_NO_JOBS; 1819 return -1; 1820 case ASYNC_FINISH: 1821 s->job = NULL; 1822 return ret; 1823 default: 1824 s->rwstate = SSL_NOTHING; 1825 ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR); 1826 /* Shouldn't happen */ 1827 return -1; 1828 } 1829 } 1830 1831 static int ssl_io_intern(void *vargs) 1832 { 1833 struct ssl_async_args *args; 1834 SSL *s; 1835 void *buf; 1836 size_t num; 1837 1838 args = (struct ssl_async_args *)vargs; 1839 s = args->s; 1840 buf = args->buf; 1841 num = args->num; 1842 switch (args->type) { 1843 case READFUNC: 1844 return args->f.func_read(s, buf, num, &s->asyncrw); 1845 case WRITEFUNC: 1846 return args->f.func_write(s, buf, num, &s->asyncrw); 1847 case OTHERFUNC: 1848 return args->f.func_other(s); 1849 } 1850 return -1; 1851 } 1852 1853 int ssl_read_internal(SSL *s, void *buf, size_t num, size_t *readbytes) 1854 { 1855 if (s->handshake_func == NULL) { 1856 ERR_raise(ERR_LIB_SSL, SSL_R_UNINITIALIZED); 1857 return -1; 1858 } 1859 1860 if (s->shutdown & SSL_RECEIVED_SHUTDOWN) { 1861 s->rwstate = SSL_NOTHING; 1862 return 0; 1863 } 1864 1865 if (s->early_data_state == SSL_EARLY_DATA_CONNECT_RETRY 1866 || s->early_data_state == SSL_EARLY_DATA_ACCEPT_RETRY) { 1867 ERR_raise(ERR_LIB_SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 1868 return 0; 1869 } 1870 /* 1871 * If we are a client and haven't received the ServerHello etc then we 1872 * better do that 1873 */ 1874 ossl_statem_check_finish_init(s, 0); 1875 1876 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) { 1877 struct ssl_async_args args; 1878 int ret; 1879 1880 args.s = s; 1881 args.buf = buf; 1882 args.num = num; 1883 args.type = READFUNC; 1884 args.f.func_read = s->method->ssl_read; 1885 1886 ret = ssl_start_async_job(s, &args, ssl_io_intern); 1887 *readbytes = s->asyncrw; 1888 return ret; 1889 } else { 1890 return s->method->ssl_read(s, buf, num, readbytes); 1891 } 1892 } 1893 1894 int SSL_read(SSL *s, void *buf, int num) 1895 { 1896 int ret; 1897 size_t readbytes; 1898 1899 if (num < 0) { 1900 ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH); 1901 return -1; 1902 } 1903 1904 ret = ssl_read_internal(s, buf, (size_t)num, &readbytes); 1905 1906 /* 1907 * The cast is safe here because ret should be <= INT_MAX because num is 1908 * <= INT_MAX 1909 */ 1910 if (ret > 0) 1911 ret = (int)readbytes; 1912 1913 return ret; 1914 } 1915 1916 int SSL_read_ex(SSL *s, void *buf, size_t num, size_t *readbytes) 1917 { 1918 int ret = ssl_read_internal(s, buf, num, readbytes); 1919 1920 if (ret < 0) 1921 ret = 0; 1922 return ret; 1923 } 1924 1925 int SSL_read_early_data(SSL *s, void *buf, size_t num, size_t *readbytes) 1926 { 1927 int ret; 1928 1929 if (!s->server) { 1930 ERR_raise(ERR_LIB_SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 1931 return SSL_READ_EARLY_DATA_ERROR; 1932 } 1933 1934 switch (s->early_data_state) { 1935 case SSL_EARLY_DATA_NONE: 1936 if (!SSL_in_before(s)) { 1937 ERR_raise(ERR_LIB_SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 1938 return SSL_READ_EARLY_DATA_ERROR; 1939 } 1940 /* fall through */ 1941 1942 case SSL_EARLY_DATA_ACCEPT_RETRY: 1943 s->early_data_state = SSL_EARLY_DATA_ACCEPTING; 1944 ret = SSL_accept(s); 1945 if (ret <= 0) { 1946 /* NBIO or error */ 1947 s->early_data_state = SSL_EARLY_DATA_ACCEPT_RETRY; 1948 return SSL_READ_EARLY_DATA_ERROR; 1949 } 1950 /* fall through */ 1951 1952 case SSL_EARLY_DATA_READ_RETRY: 1953 if (s->ext.early_data == SSL_EARLY_DATA_ACCEPTED) { 1954 s->early_data_state = SSL_EARLY_DATA_READING; 1955 ret = SSL_read_ex(s, buf, num, readbytes); 1956 /* 1957 * State machine will update early_data_state to 1958 * SSL_EARLY_DATA_FINISHED_READING if we get an EndOfEarlyData 1959 * message 1960 */ 1961 if (ret > 0 || (ret <= 0 && s->early_data_state 1962 != SSL_EARLY_DATA_FINISHED_READING)) { 1963 s->early_data_state = SSL_EARLY_DATA_READ_RETRY; 1964 return ret > 0 ? SSL_READ_EARLY_DATA_SUCCESS 1965 : SSL_READ_EARLY_DATA_ERROR; 1966 } 1967 } else { 1968 s->early_data_state = SSL_EARLY_DATA_FINISHED_READING; 1969 } 1970 *readbytes = 0; 1971 return SSL_READ_EARLY_DATA_FINISH; 1972 1973 default: 1974 ERR_raise(ERR_LIB_SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 1975 return SSL_READ_EARLY_DATA_ERROR; 1976 } 1977 } 1978 1979 int SSL_get_early_data_status(const SSL *s) 1980 { 1981 return s->ext.early_data; 1982 } 1983 1984 static int ssl_peek_internal(SSL *s, void *buf, size_t num, size_t *readbytes) 1985 { 1986 if (s->handshake_func == NULL) { 1987 ERR_raise(ERR_LIB_SSL, SSL_R_UNINITIALIZED); 1988 return -1; 1989 } 1990 1991 if (s->shutdown & SSL_RECEIVED_SHUTDOWN) { 1992 return 0; 1993 } 1994 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) { 1995 struct ssl_async_args args; 1996 int ret; 1997 1998 args.s = s; 1999 args.buf = buf; 2000 args.num = num; 2001 args.type = READFUNC; 2002 args.f.func_read = s->method->ssl_peek; 2003 2004 ret = ssl_start_async_job(s, &args, ssl_io_intern); 2005 *readbytes = s->asyncrw; 2006 return ret; 2007 } else { 2008 return s->method->ssl_peek(s, buf, num, readbytes); 2009 } 2010 } 2011 2012 int SSL_peek(SSL *s, void *buf, int num) 2013 { 2014 int ret; 2015 size_t readbytes; 2016 2017 if (num < 0) { 2018 ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH); 2019 return -1; 2020 } 2021 2022 ret = ssl_peek_internal(s, buf, (size_t)num, &readbytes); 2023 2024 /* 2025 * The cast is safe here because ret should be <= INT_MAX because num is 2026 * <= INT_MAX 2027 */ 2028 if (ret > 0) 2029 ret = (int)readbytes; 2030 2031 return ret; 2032 } 2033 2034 2035 int SSL_peek_ex(SSL *s, void *buf, size_t num, size_t *readbytes) 2036 { 2037 int ret = ssl_peek_internal(s, buf, num, readbytes); 2038 2039 if (ret < 0) 2040 ret = 0; 2041 return ret; 2042 } 2043 2044 int ssl_write_internal(SSL *s, const void *buf, size_t num, size_t *written) 2045 { 2046 if (s->handshake_func == NULL) { 2047 ERR_raise(ERR_LIB_SSL, SSL_R_UNINITIALIZED); 2048 return -1; 2049 } 2050 2051 if (s->shutdown & SSL_SENT_SHUTDOWN) { 2052 s->rwstate = SSL_NOTHING; 2053 ERR_raise(ERR_LIB_SSL, SSL_R_PROTOCOL_IS_SHUTDOWN); 2054 return -1; 2055 } 2056 2057 if (s->early_data_state == SSL_EARLY_DATA_CONNECT_RETRY 2058 || s->early_data_state == SSL_EARLY_DATA_ACCEPT_RETRY 2059 || s->early_data_state == SSL_EARLY_DATA_READ_RETRY) { 2060 ERR_raise(ERR_LIB_SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 2061 return 0; 2062 } 2063 /* If we are a client and haven't sent the Finished we better do that */ 2064 ossl_statem_check_finish_init(s, 1); 2065 2066 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) { 2067 int ret; 2068 struct ssl_async_args args; 2069 2070 args.s = s; 2071 args.buf = (void *)buf; 2072 args.num = num; 2073 args.type = WRITEFUNC; 2074 args.f.func_write = s->method->ssl_write; 2075 2076 ret = ssl_start_async_job(s, &args, ssl_io_intern); 2077 *written = s->asyncrw; 2078 return ret; 2079 } else { 2080 return s->method->ssl_write(s, buf, num, written); 2081 } 2082 } 2083 2084 ossl_ssize_t SSL_sendfile(SSL *s, int fd, off_t offset, size_t size, int flags) 2085 { 2086 ossl_ssize_t ret; 2087 2088 if (s->handshake_func == NULL) { 2089 ERR_raise(ERR_LIB_SSL, SSL_R_UNINITIALIZED); 2090 return -1; 2091 } 2092 2093 if (s->shutdown & SSL_SENT_SHUTDOWN) { 2094 s->rwstate = SSL_NOTHING; 2095 ERR_raise(ERR_LIB_SSL, SSL_R_PROTOCOL_IS_SHUTDOWN); 2096 return -1; 2097 } 2098 2099 if (!BIO_get_ktls_send(s->wbio)) { 2100 ERR_raise(ERR_LIB_SSL, SSL_R_UNINITIALIZED); 2101 return -1; 2102 } 2103 2104 /* If we have an alert to send, lets send it */ 2105 if (s->s3.alert_dispatch) { 2106 ret = (ossl_ssize_t)s->method->ssl_dispatch_alert(s); 2107 if (ret <= 0) { 2108 /* SSLfatal() already called if appropriate */ 2109 return ret; 2110 } 2111 /* if it went, fall through and send more stuff */ 2112 } 2113 2114 s->rwstate = SSL_WRITING; 2115 if (BIO_flush(s->wbio) <= 0) { 2116 if (!BIO_should_retry(s->wbio)) { 2117 s->rwstate = SSL_NOTHING; 2118 } else { 2119 #ifdef EAGAIN 2120 set_sys_error(EAGAIN); 2121 #endif 2122 } 2123 return -1; 2124 } 2125 2126 #ifdef OPENSSL_NO_KTLS 2127 ERR_raise_data(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR, 2128 "can't call ktls_sendfile(), ktls disabled"); 2129 return -1; 2130 #else 2131 ret = ktls_sendfile(SSL_get_wfd(s), fd, offset, size, flags); 2132 if (ret < 0) { 2133 #if defined(EAGAIN) && defined(EINTR) && defined(EBUSY) 2134 if ((get_last_sys_error() == EAGAIN) || 2135 (get_last_sys_error() == EINTR) || 2136 (get_last_sys_error() == EBUSY)) 2137 BIO_set_retry_write(s->wbio); 2138 else 2139 #endif 2140 ERR_raise(ERR_LIB_SSL, SSL_R_UNINITIALIZED); 2141 return ret; 2142 } 2143 s->rwstate = SSL_NOTHING; 2144 return ret; 2145 #endif 2146 } 2147 2148 int SSL_write(SSL *s, const void *buf, int num) 2149 { 2150 int ret; 2151 size_t written; 2152 2153 if (num < 0) { 2154 ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH); 2155 return -1; 2156 } 2157 2158 ret = ssl_write_internal(s, buf, (size_t)num, &written); 2159 2160 /* 2161 * The cast is safe here because ret should be <= INT_MAX because num is 2162 * <= INT_MAX 2163 */ 2164 if (ret > 0) 2165 ret = (int)written; 2166 2167 return ret; 2168 } 2169 2170 int SSL_write_ex(SSL *s, const void *buf, size_t num, size_t *written) 2171 { 2172 int ret = ssl_write_internal(s, buf, num, written); 2173 2174 if (ret < 0) 2175 ret = 0; 2176 return ret; 2177 } 2178 2179 int SSL_write_early_data(SSL *s, const void *buf, size_t num, size_t *written) 2180 { 2181 int ret, early_data_state; 2182 size_t writtmp; 2183 uint32_t partialwrite; 2184 2185 switch (s->early_data_state) { 2186 case SSL_EARLY_DATA_NONE: 2187 if (s->server 2188 || !SSL_in_before(s) 2189 || ((s->session == NULL || s->session->ext.max_early_data == 0) 2190 && (s->psk_use_session_cb == NULL))) { 2191 ERR_raise(ERR_LIB_SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 2192 return 0; 2193 } 2194 /* fall through */ 2195 2196 case SSL_EARLY_DATA_CONNECT_RETRY: 2197 s->early_data_state = SSL_EARLY_DATA_CONNECTING; 2198 ret = SSL_connect(s); 2199 if (ret <= 0) { 2200 /* NBIO or error */ 2201 s->early_data_state = SSL_EARLY_DATA_CONNECT_RETRY; 2202 return 0; 2203 } 2204 /* fall through */ 2205 2206 case SSL_EARLY_DATA_WRITE_RETRY: 2207 s->early_data_state = SSL_EARLY_DATA_WRITING; 2208 /* 2209 * We disable partial write for early data because we don't keep track 2210 * of how many bytes we've written between the SSL_write_ex() call and 2211 * the flush if the flush needs to be retried) 2212 */ 2213 partialwrite = s->mode & SSL_MODE_ENABLE_PARTIAL_WRITE; 2214 s->mode &= ~SSL_MODE_ENABLE_PARTIAL_WRITE; 2215 ret = SSL_write_ex(s, buf, num, &writtmp); 2216 s->mode |= partialwrite; 2217 if (!ret) { 2218 s->early_data_state = SSL_EARLY_DATA_WRITE_RETRY; 2219 return ret; 2220 } 2221 s->early_data_state = SSL_EARLY_DATA_WRITE_FLUSH; 2222 /* fall through */ 2223 2224 case SSL_EARLY_DATA_WRITE_FLUSH: 2225 /* The buffering BIO is still in place so we need to flush it */ 2226 if (statem_flush(s) != 1) 2227 return 0; 2228 *written = num; 2229 s->early_data_state = SSL_EARLY_DATA_WRITE_RETRY; 2230 return 1; 2231 2232 case SSL_EARLY_DATA_FINISHED_READING: 2233 case SSL_EARLY_DATA_READ_RETRY: 2234 early_data_state = s->early_data_state; 2235 /* We are a server writing to an unauthenticated client */ 2236 s->early_data_state = SSL_EARLY_DATA_UNAUTH_WRITING; 2237 ret = SSL_write_ex(s, buf, num, written); 2238 /* The buffering BIO is still in place */ 2239 if (ret) 2240 (void)BIO_flush(s->wbio); 2241 s->early_data_state = early_data_state; 2242 return ret; 2243 2244 default: 2245 ERR_raise(ERR_LIB_SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 2246 return 0; 2247 } 2248 } 2249 2250 int SSL_shutdown(SSL *s) 2251 { 2252 /* 2253 * Note that this function behaves differently from what one might 2254 * expect. Return values are 0 for no success (yet), 1 for success; but 2255 * calling it once is usually not enough, even if blocking I/O is used 2256 * (see ssl3_shutdown). 2257 */ 2258 2259 if (s->handshake_func == NULL) { 2260 ERR_raise(ERR_LIB_SSL, SSL_R_UNINITIALIZED); 2261 return -1; 2262 } 2263 2264 if (!SSL_in_init(s)) { 2265 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) { 2266 struct ssl_async_args args; 2267 2268 memset(&args, 0, sizeof(args)); 2269 args.s = s; 2270 args.type = OTHERFUNC; 2271 args.f.func_other = s->method->ssl_shutdown; 2272 2273 return ssl_start_async_job(s, &args, ssl_io_intern); 2274 } else { 2275 return s->method->ssl_shutdown(s); 2276 } 2277 } else { 2278 ERR_raise(ERR_LIB_SSL, SSL_R_SHUTDOWN_WHILE_IN_INIT); 2279 return -1; 2280 } 2281 } 2282 2283 int SSL_key_update(SSL *s, int updatetype) 2284 { 2285 if (!SSL_IS_TLS13(s)) { 2286 ERR_raise(ERR_LIB_SSL, SSL_R_WRONG_SSL_VERSION); 2287 return 0; 2288 } 2289 2290 if (updatetype != SSL_KEY_UPDATE_NOT_REQUESTED 2291 && updatetype != SSL_KEY_UPDATE_REQUESTED) { 2292 ERR_raise(ERR_LIB_SSL, SSL_R_INVALID_KEY_UPDATE_TYPE); 2293 return 0; 2294 } 2295 2296 if (!SSL_is_init_finished(s)) { 2297 ERR_raise(ERR_LIB_SSL, SSL_R_STILL_IN_INIT); 2298 return 0; 2299 } 2300 2301 if (RECORD_LAYER_write_pending(&s->rlayer)) { 2302 ERR_raise(ERR_LIB_SSL, SSL_R_BAD_WRITE_RETRY); 2303 return 0; 2304 } 2305 2306 ossl_statem_set_in_init(s, 1); 2307 s->key_update = updatetype; 2308 return 1; 2309 } 2310 2311 int SSL_get_key_update_type(const SSL *s) 2312 { 2313 return s->key_update; 2314 } 2315 2316 /* 2317 * Can we accept a renegotiation request? If yes, set the flag and 2318 * return 1 if yes. If not, raise error and return 0. 2319 */ 2320 static int can_renegotiate(const SSL *s) 2321 { 2322 if (SSL_IS_TLS13(s)) { 2323 ERR_raise(ERR_LIB_SSL, SSL_R_WRONG_SSL_VERSION); 2324 return 0; 2325 } 2326 2327 if ((s->options & SSL_OP_NO_RENEGOTIATION) != 0) { 2328 ERR_raise(ERR_LIB_SSL, SSL_R_NO_RENEGOTIATION); 2329 return 0; 2330 } 2331 2332 return 1; 2333 } 2334 2335 int SSL_renegotiate(SSL *s) 2336 { 2337 if (!can_renegotiate(s)) 2338 return 0; 2339 2340 s->renegotiate = 1; 2341 s->new_session = 1; 2342 return s->method->ssl_renegotiate(s); 2343 } 2344 2345 int SSL_renegotiate_abbreviated(SSL *s) 2346 { 2347 if (!can_renegotiate(s)) 2348 return 0; 2349 2350 s->renegotiate = 1; 2351 s->new_session = 0; 2352 return s->method->ssl_renegotiate(s); 2353 } 2354 2355 int SSL_renegotiate_pending(const SSL *s) 2356 { 2357 /* 2358 * becomes true when negotiation is requested; false again once a 2359 * handshake has finished 2360 */ 2361 return (s->renegotiate != 0); 2362 } 2363 2364 int SSL_new_session_ticket(SSL *s) 2365 { 2366 /* If we are in init because we're sending tickets, okay to send more. */ 2367 if ((SSL_in_init(s) && s->ext.extra_tickets_expected == 0) 2368 || SSL_IS_FIRST_HANDSHAKE(s) || !s->server 2369 || !SSL_IS_TLS13(s)) 2370 return 0; 2371 s->ext.extra_tickets_expected++; 2372 if (!RECORD_LAYER_write_pending(&s->rlayer) && !SSL_in_init(s)) 2373 ossl_statem_set_in_init(s, 1); 2374 return 1; 2375 } 2376 2377 long SSL_ctrl(SSL *s, int cmd, long larg, void *parg) 2378 { 2379 long l; 2380 2381 switch (cmd) { 2382 case SSL_CTRL_GET_READ_AHEAD: 2383 return RECORD_LAYER_get_read_ahead(&s->rlayer); 2384 case SSL_CTRL_SET_READ_AHEAD: 2385 l = RECORD_LAYER_get_read_ahead(&s->rlayer); 2386 RECORD_LAYER_set_read_ahead(&s->rlayer, larg); 2387 return l; 2388 2389 case SSL_CTRL_SET_MSG_CALLBACK_ARG: 2390 s->msg_callback_arg = parg; 2391 return 1; 2392 2393 case SSL_CTRL_MODE: 2394 return (s->mode |= larg); 2395 case SSL_CTRL_CLEAR_MODE: 2396 return (s->mode &= ~larg); 2397 case SSL_CTRL_GET_MAX_CERT_LIST: 2398 return (long)s->max_cert_list; 2399 case SSL_CTRL_SET_MAX_CERT_LIST: 2400 if (larg < 0) 2401 return 0; 2402 l = (long)s->max_cert_list; 2403 s->max_cert_list = (size_t)larg; 2404 return l; 2405 case SSL_CTRL_SET_MAX_SEND_FRAGMENT: 2406 if (larg < 512 || larg > SSL3_RT_MAX_PLAIN_LENGTH) 2407 return 0; 2408 #ifndef OPENSSL_NO_KTLS 2409 if (s->wbio != NULL && BIO_get_ktls_send(s->wbio)) 2410 return 0; 2411 #endif /* OPENSSL_NO_KTLS */ 2412 s->max_send_fragment = larg; 2413 if (s->max_send_fragment < s->split_send_fragment) 2414 s->split_send_fragment = s->max_send_fragment; 2415 return 1; 2416 case SSL_CTRL_SET_SPLIT_SEND_FRAGMENT: 2417 if ((size_t)larg > s->max_send_fragment || larg == 0) 2418 return 0; 2419 s->split_send_fragment = larg; 2420 return 1; 2421 case SSL_CTRL_SET_MAX_PIPELINES: 2422 if (larg < 1 || larg > SSL_MAX_PIPELINES) 2423 return 0; 2424 s->max_pipelines = larg; 2425 if (larg > 1) 2426 RECORD_LAYER_set_read_ahead(&s->rlayer, 1); 2427 return 1; 2428 case SSL_CTRL_GET_RI_SUPPORT: 2429 return s->s3.send_connection_binding; 2430 case SSL_CTRL_SET_RETRY_VERIFY: 2431 s->rwstate = SSL_RETRY_VERIFY; 2432 return 1; 2433 case SSL_CTRL_CERT_FLAGS: 2434 return (s->cert->cert_flags |= larg); 2435 case SSL_CTRL_CLEAR_CERT_FLAGS: 2436 return (s->cert->cert_flags &= ~larg); 2437 2438 case SSL_CTRL_GET_RAW_CIPHERLIST: 2439 if (parg) { 2440 if (s->s3.tmp.ciphers_raw == NULL) 2441 return 0; 2442 *(unsigned char **)parg = s->s3.tmp.ciphers_raw; 2443 return (int)s->s3.tmp.ciphers_rawlen; 2444 } else { 2445 return TLS_CIPHER_LEN; 2446 } 2447 case SSL_CTRL_GET_EXTMS_SUPPORT: 2448 if (!s->session || SSL_in_init(s) || ossl_statem_get_in_handshake(s)) 2449 return -1; 2450 if (s->session->flags & SSL_SESS_FLAG_EXTMS) 2451 return 1; 2452 else 2453 return 0; 2454 case SSL_CTRL_SET_MIN_PROTO_VERSION: 2455 return ssl_check_allowed_versions(larg, s->max_proto_version) 2456 && ssl_set_version_bound(s->ctx->method->version, (int)larg, 2457 &s->min_proto_version); 2458 case SSL_CTRL_GET_MIN_PROTO_VERSION: 2459 return s->min_proto_version; 2460 case SSL_CTRL_SET_MAX_PROTO_VERSION: 2461 return ssl_check_allowed_versions(s->min_proto_version, larg) 2462 && ssl_set_version_bound(s->ctx->method->version, (int)larg, 2463 &s->max_proto_version); 2464 case SSL_CTRL_GET_MAX_PROTO_VERSION: 2465 return s->max_proto_version; 2466 default: 2467 return s->method->ssl_ctrl(s, cmd, larg, parg); 2468 } 2469 } 2470 2471 long SSL_callback_ctrl(SSL *s, int cmd, void (*fp) (void)) 2472 { 2473 switch (cmd) { 2474 case SSL_CTRL_SET_MSG_CALLBACK: 2475 s->msg_callback = (void (*) 2476 (int write_p, int version, int content_type, 2477 const void *buf, size_t len, SSL *ssl, 2478 void *arg))(fp); 2479 return 1; 2480 2481 default: 2482 return s->method->ssl_callback_ctrl(s, cmd, fp); 2483 } 2484 } 2485 2486 LHASH_OF(SSL_SESSION) *SSL_CTX_sessions(SSL_CTX *ctx) 2487 { 2488 return ctx->sessions; 2489 } 2490 2491 static int ssl_tsan_load(SSL_CTX *ctx, TSAN_QUALIFIER int *stat) 2492 { 2493 int res = 0; 2494 2495 if (ssl_tsan_lock(ctx)) { 2496 res = tsan_load(stat); 2497 ssl_tsan_unlock(ctx); 2498 } 2499 return res; 2500 } 2501 2502 long SSL_CTX_ctrl(SSL_CTX *ctx, int cmd, long larg, void *parg) 2503 { 2504 long l; 2505 /* For some cases with ctx == NULL perform syntax checks */ 2506 if (ctx == NULL) { 2507 switch (cmd) { 2508 case SSL_CTRL_SET_GROUPS_LIST: 2509 return tls1_set_groups_list(ctx, NULL, NULL, parg); 2510 case SSL_CTRL_SET_SIGALGS_LIST: 2511 case SSL_CTRL_SET_CLIENT_SIGALGS_LIST: 2512 return tls1_set_sigalgs_list(NULL, parg, 0); 2513 default: 2514 return 0; 2515 } 2516 } 2517 2518 switch (cmd) { 2519 case SSL_CTRL_GET_READ_AHEAD: 2520 return ctx->read_ahead; 2521 case SSL_CTRL_SET_READ_AHEAD: 2522 l = ctx->read_ahead; 2523 ctx->read_ahead = larg; 2524 return l; 2525 2526 case SSL_CTRL_SET_MSG_CALLBACK_ARG: 2527 ctx->msg_callback_arg = parg; 2528 return 1; 2529 2530 case SSL_CTRL_GET_MAX_CERT_LIST: 2531 return (long)ctx->max_cert_list; 2532 case SSL_CTRL_SET_MAX_CERT_LIST: 2533 if (larg < 0) 2534 return 0; 2535 l = (long)ctx->max_cert_list; 2536 ctx->max_cert_list = (size_t)larg; 2537 return l; 2538 2539 case SSL_CTRL_SET_SESS_CACHE_SIZE: 2540 if (larg < 0) 2541 return 0; 2542 l = (long)ctx->session_cache_size; 2543 ctx->session_cache_size = (size_t)larg; 2544 return l; 2545 case SSL_CTRL_GET_SESS_CACHE_SIZE: 2546 return (long)ctx->session_cache_size; 2547 case SSL_CTRL_SET_SESS_CACHE_MODE: 2548 l = ctx->session_cache_mode; 2549 ctx->session_cache_mode = larg; 2550 return l; 2551 case SSL_CTRL_GET_SESS_CACHE_MODE: 2552 return ctx->session_cache_mode; 2553 2554 case SSL_CTRL_SESS_NUMBER: 2555 return lh_SSL_SESSION_num_items(ctx->sessions); 2556 case SSL_CTRL_SESS_CONNECT: 2557 return ssl_tsan_load(ctx, &ctx->stats.sess_connect); 2558 case SSL_CTRL_SESS_CONNECT_GOOD: 2559 return ssl_tsan_load(ctx, &ctx->stats.sess_connect_good); 2560 case SSL_CTRL_SESS_CONNECT_RENEGOTIATE: 2561 return ssl_tsan_load(ctx, &ctx->stats.sess_connect_renegotiate); 2562 case SSL_CTRL_SESS_ACCEPT: 2563 return ssl_tsan_load(ctx, &ctx->stats.sess_accept); 2564 case SSL_CTRL_SESS_ACCEPT_GOOD: 2565 return ssl_tsan_load(ctx, &ctx->stats.sess_accept_good); 2566 case SSL_CTRL_SESS_ACCEPT_RENEGOTIATE: 2567 return ssl_tsan_load(ctx, &ctx->stats.sess_accept_renegotiate); 2568 case SSL_CTRL_SESS_HIT: 2569 return ssl_tsan_load(ctx, &ctx->stats.sess_hit); 2570 case SSL_CTRL_SESS_CB_HIT: 2571 return ssl_tsan_load(ctx, &ctx->stats.sess_cb_hit); 2572 case SSL_CTRL_SESS_MISSES: 2573 return ssl_tsan_load(ctx, &ctx->stats.sess_miss); 2574 case SSL_CTRL_SESS_TIMEOUTS: 2575 return ssl_tsan_load(ctx, &ctx->stats.sess_timeout); 2576 case SSL_CTRL_SESS_CACHE_FULL: 2577 return ssl_tsan_load(ctx, &ctx->stats.sess_cache_full); 2578 case SSL_CTRL_MODE: 2579 return (ctx->mode |= larg); 2580 case SSL_CTRL_CLEAR_MODE: 2581 return (ctx->mode &= ~larg); 2582 case SSL_CTRL_SET_MAX_SEND_FRAGMENT: 2583 if (larg < 512 || larg > SSL3_RT_MAX_PLAIN_LENGTH) 2584 return 0; 2585 ctx->max_send_fragment = larg; 2586 if (ctx->max_send_fragment < ctx->split_send_fragment) 2587 ctx->split_send_fragment = ctx->max_send_fragment; 2588 return 1; 2589 case SSL_CTRL_SET_SPLIT_SEND_FRAGMENT: 2590 if ((size_t)larg > ctx->max_send_fragment || larg == 0) 2591 return 0; 2592 ctx->split_send_fragment = larg; 2593 return 1; 2594 case SSL_CTRL_SET_MAX_PIPELINES: 2595 if (larg < 1 || larg > SSL_MAX_PIPELINES) 2596 return 0; 2597 ctx->max_pipelines = larg; 2598 return 1; 2599 case SSL_CTRL_CERT_FLAGS: 2600 return (ctx->cert->cert_flags |= larg); 2601 case SSL_CTRL_CLEAR_CERT_FLAGS: 2602 return (ctx->cert->cert_flags &= ~larg); 2603 case SSL_CTRL_SET_MIN_PROTO_VERSION: 2604 return ssl_check_allowed_versions(larg, ctx->max_proto_version) 2605 && ssl_set_version_bound(ctx->method->version, (int)larg, 2606 &ctx->min_proto_version); 2607 case SSL_CTRL_GET_MIN_PROTO_VERSION: 2608 return ctx->min_proto_version; 2609 case SSL_CTRL_SET_MAX_PROTO_VERSION: 2610 return ssl_check_allowed_versions(ctx->min_proto_version, larg) 2611 && ssl_set_version_bound(ctx->method->version, (int)larg, 2612 &ctx->max_proto_version); 2613 case SSL_CTRL_GET_MAX_PROTO_VERSION: 2614 return ctx->max_proto_version; 2615 default: 2616 return ctx->method->ssl_ctx_ctrl(ctx, cmd, larg, parg); 2617 } 2618 } 2619 2620 long SSL_CTX_callback_ctrl(SSL_CTX *ctx, int cmd, void (*fp) (void)) 2621 { 2622 switch (cmd) { 2623 case SSL_CTRL_SET_MSG_CALLBACK: 2624 ctx->msg_callback = (void (*) 2625 (int write_p, int version, int content_type, 2626 const void *buf, size_t len, SSL *ssl, 2627 void *arg))(fp); 2628 return 1; 2629 2630 default: 2631 return ctx->method->ssl_ctx_callback_ctrl(ctx, cmd, fp); 2632 } 2633 } 2634 2635 int ssl_cipher_id_cmp(const SSL_CIPHER *a, const SSL_CIPHER *b) 2636 { 2637 if (a->id > b->id) 2638 return 1; 2639 if (a->id < b->id) 2640 return -1; 2641 return 0; 2642 } 2643 2644 int ssl_cipher_ptr_id_cmp(const SSL_CIPHER *const *ap, 2645 const SSL_CIPHER *const *bp) 2646 { 2647 if ((*ap)->id > (*bp)->id) 2648 return 1; 2649 if ((*ap)->id < (*bp)->id) 2650 return -1; 2651 return 0; 2652 } 2653 2654 /** return a STACK of the ciphers available for the SSL and in order of 2655 * preference */ 2656 STACK_OF(SSL_CIPHER) *SSL_get_ciphers(const SSL *s) 2657 { 2658 if (s != NULL) { 2659 if (s->cipher_list != NULL) { 2660 return s->cipher_list; 2661 } else if ((s->ctx != NULL) && (s->ctx->cipher_list != NULL)) { 2662 return s->ctx->cipher_list; 2663 } 2664 } 2665 return NULL; 2666 } 2667 2668 STACK_OF(SSL_CIPHER) *SSL_get_client_ciphers(const SSL *s) 2669 { 2670 if ((s == NULL) || !s->server) 2671 return NULL; 2672 return s->peer_ciphers; 2673 } 2674 2675 STACK_OF(SSL_CIPHER) *SSL_get1_supported_ciphers(SSL *s) 2676 { 2677 STACK_OF(SSL_CIPHER) *sk = NULL, *ciphers; 2678 int i; 2679 2680 ciphers = SSL_get_ciphers(s); 2681 if (!ciphers) 2682 return NULL; 2683 if (!ssl_set_client_disabled(s)) 2684 return NULL; 2685 for (i = 0; i < sk_SSL_CIPHER_num(ciphers); i++) { 2686 const SSL_CIPHER *c = sk_SSL_CIPHER_value(ciphers, i); 2687 if (!ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0)) { 2688 if (!sk) 2689 sk = sk_SSL_CIPHER_new_null(); 2690 if (!sk) 2691 return NULL; 2692 if (!sk_SSL_CIPHER_push(sk, c)) { 2693 sk_SSL_CIPHER_free(sk); 2694 return NULL; 2695 } 2696 } 2697 } 2698 return sk; 2699 } 2700 2701 /** return a STACK of the ciphers available for the SSL and in order of 2702 * algorithm id */ 2703 STACK_OF(SSL_CIPHER) *ssl_get_ciphers_by_id(SSL *s) 2704 { 2705 if (s != NULL) { 2706 if (s->cipher_list_by_id != NULL) { 2707 return s->cipher_list_by_id; 2708 } else if ((s->ctx != NULL) && (s->ctx->cipher_list_by_id != NULL)) { 2709 return s->ctx->cipher_list_by_id; 2710 } 2711 } 2712 return NULL; 2713 } 2714 2715 /** The old interface to get the same thing as SSL_get_ciphers() */ 2716 const char *SSL_get_cipher_list(const SSL *s, int n) 2717 { 2718 const SSL_CIPHER *c; 2719 STACK_OF(SSL_CIPHER) *sk; 2720 2721 if (s == NULL) 2722 return NULL; 2723 sk = SSL_get_ciphers(s); 2724 if ((sk == NULL) || (sk_SSL_CIPHER_num(sk) <= n)) 2725 return NULL; 2726 c = sk_SSL_CIPHER_value(sk, n); 2727 if (c == NULL) 2728 return NULL; 2729 return c->name; 2730 } 2731 2732 /** return a STACK of the ciphers available for the SSL_CTX and in order of 2733 * preference */ 2734 STACK_OF(SSL_CIPHER) *SSL_CTX_get_ciphers(const SSL_CTX *ctx) 2735 { 2736 if (ctx != NULL) 2737 return ctx->cipher_list; 2738 return NULL; 2739 } 2740 2741 /* 2742 * Distinguish between ciphers controlled by set_ciphersuite() and 2743 * set_cipher_list() when counting. 2744 */ 2745 static int cipher_list_tls12_num(STACK_OF(SSL_CIPHER) *sk) 2746 { 2747 int i, num = 0; 2748 const SSL_CIPHER *c; 2749 2750 if (sk == NULL) 2751 return 0; 2752 for (i = 0; i < sk_SSL_CIPHER_num(sk); ++i) { 2753 c = sk_SSL_CIPHER_value(sk, i); 2754 if (c->min_tls >= TLS1_3_VERSION) 2755 continue; 2756 num++; 2757 } 2758 return num; 2759 } 2760 2761 /** specify the ciphers to be used by default by the SSL_CTX */ 2762 int SSL_CTX_set_cipher_list(SSL_CTX *ctx, const char *str) 2763 { 2764 STACK_OF(SSL_CIPHER) *sk; 2765 2766 sk = ssl_create_cipher_list(ctx, ctx->tls13_ciphersuites, 2767 &ctx->cipher_list, &ctx->cipher_list_by_id, str, 2768 ctx->cert); 2769 /* 2770 * ssl_create_cipher_list may return an empty stack if it was unable to 2771 * find a cipher matching the given rule string (for example if the rule 2772 * string specifies a cipher which has been disabled). This is not an 2773 * error as far as ssl_create_cipher_list is concerned, and hence 2774 * ctx->cipher_list and ctx->cipher_list_by_id has been updated. 2775 */ 2776 if (sk == NULL) 2777 return 0; 2778 else if (cipher_list_tls12_num(sk) == 0) { 2779 ERR_raise(ERR_LIB_SSL, SSL_R_NO_CIPHER_MATCH); 2780 return 0; 2781 } 2782 return 1; 2783 } 2784 2785 /** specify the ciphers to be used by the SSL */ 2786 int SSL_set_cipher_list(SSL *s, const char *str) 2787 { 2788 STACK_OF(SSL_CIPHER) *sk; 2789 2790 sk = ssl_create_cipher_list(s->ctx, s->tls13_ciphersuites, 2791 &s->cipher_list, &s->cipher_list_by_id, str, 2792 s->cert); 2793 /* see comment in SSL_CTX_set_cipher_list */ 2794 if (sk == NULL) 2795 return 0; 2796 else if (cipher_list_tls12_num(sk) == 0) { 2797 ERR_raise(ERR_LIB_SSL, SSL_R_NO_CIPHER_MATCH); 2798 return 0; 2799 } 2800 return 1; 2801 } 2802 2803 char *SSL_get_shared_ciphers(const SSL *s, char *buf, int size) 2804 { 2805 char *p; 2806 STACK_OF(SSL_CIPHER) *clntsk, *srvrsk; 2807 const SSL_CIPHER *c; 2808 int i; 2809 2810 if (!s->server 2811 || s->peer_ciphers == NULL 2812 || size < 2) 2813 return NULL; 2814 2815 p = buf; 2816 clntsk = s->peer_ciphers; 2817 srvrsk = SSL_get_ciphers(s); 2818 if (clntsk == NULL || srvrsk == NULL) 2819 return NULL; 2820 2821 if (sk_SSL_CIPHER_num(clntsk) == 0 || sk_SSL_CIPHER_num(srvrsk) == 0) 2822 return NULL; 2823 2824 for (i = 0; i < sk_SSL_CIPHER_num(clntsk); i++) { 2825 int n; 2826 2827 c = sk_SSL_CIPHER_value(clntsk, i); 2828 if (sk_SSL_CIPHER_find(srvrsk, c) < 0) 2829 continue; 2830 2831 n = OPENSSL_strnlen(c->name, size); 2832 if (n >= size) { 2833 if (p != buf) 2834 --p; 2835 *p = '\0'; 2836 return buf; 2837 } 2838 memcpy(p, c->name, n); 2839 p += n; 2840 *(p++) = ':'; 2841 size -= n + 1; 2842 } 2843 p[-1] = '\0'; 2844 return buf; 2845 } 2846 2847 /** 2848 * Return the requested servername (SNI) value. Note that the behaviour varies 2849 * depending on: 2850 * - whether this is called by the client or the server, 2851 * - if we are before or during/after the handshake, 2852 * - if a resumption or normal handshake is being attempted/has occurred 2853 * - whether we have negotiated TLSv1.2 (or below) or TLSv1.3 2854 * 2855 * Note that only the host_name type is defined (RFC 3546). 2856 */ 2857 const char *SSL_get_servername(const SSL *s, const int type) 2858 { 2859 /* 2860 * If we don't know if we are the client or the server yet then we assume 2861 * client. 2862 */ 2863 int server = s->handshake_func == NULL ? 0 : s->server; 2864 if (type != TLSEXT_NAMETYPE_host_name) 2865 return NULL; 2866 2867 if (server) { 2868 /** 2869 * Server side 2870 * In TLSv1.3 on the server SNI is not associated with the session 2871 * but in TLSv1.2 or below it is. 2872 * 2873 * Before the handshake: 2874 * - return NULL 2875 * 2876 * During/after the handshake (TLSv1.2 or below resumption occurred): 2877 * - If a servername was accepted by the server in the original 2878 * handshake then it will return that servername, or NULL otherwise. 2879 * 2880 * During/after the handshake (TLSv1.2 or below resumption did not occur): 2881 * - The function will return the servername requested by the client in 2882 * this handshake or NULL if none was requested. 2883 */ 2884 if (s->hit && !SSL_IS_TLS13(s)) 2885 return s->session->ext.hostname; 2886 } else { 2887 /** 2888 * Client side 2889 * 2890 * Before the handshake: 2891 * - If a servername has been set via a call to 2892 * SSL_set_tlsext_host_name() then it will return that servername 2893 * - If one has not been set, but a TLSv1.2 resumption is being 2894 * attempted and the session from the original handshake had a 2895 * servername accepted by the server then it will return that 2896 * servername 2897 * - Otherwise it returns NULL 2898 * 2899 * During/after the handshake (TLSv1.2 or below resumption occurred): 2900 * - If the session from the original handshake had a servername accepted 2901 * by the server then it will return that servername. 2902 * - Otherwise it returns the servername set via 2903 * SSL_set_tlsext_host_name() (or NULL if it was not called). 2904 * 2905 * During/after the handshake (TLSv1.2 or below resumption did not occur): 2906 * - It will return the servername set via SSL_set_tlsext_host_name() 2907 * (or NULL if it was not called). 2908 */ 2909 if (SSL_in_before(s)) { 2910 if (s->ext.hostname == NULL 2911 && s->session != NULL 2912 && s->session->ssl_version != TLS1_3_VERSION) 2913 return s->session->ext.hostname; 2914 } else { 2915 if (!SSL_IS_TLS13(s) && s->hit && s->session->ext.hostname != NULL) 2916 return s->session->ext.hostname; 2917 } 2918 } 2919 2920 return s->ext.hostname; 2921 } 2922 2923 int SSL_get_servername_type(const SSL *s) 2924 { 2925 if (SSL_get_servername(s, TLSEXT_NAMETYPE_host_name) != NULL) 2926 return TLSEXT_NAMETYPE_host_name; 2927 return -1; 2928 } 2929 2930 /* 2931 * SSL_select_next_proto implements the standard protocol selection. It is 2932 * expected that this function is called from the callback set by 2933 * SSL_CTX_set_next_proto_select_cb. The protocol data is assumed to be a 2934 * vector of 8-bit, length prefixed byte strings. The length byte itself is 2935 * not included in the length. A byte string of length 0 is invalid. No byte 2936 * string may be truncated. The current, but experimental algorithm for 2937 * selecting the protocol is: 1) If the server doesn't support NPN then this 2938 * is indicated to the callback. In this case, the client application has to 2939 * abort the connection or have a default application level protocol. 2) If 2940 * the server supports NPN, but advertises an empty list then the client 2941 * selects the first protocol in its list, but indicates via the API that this 2942 * fallback case was enacted. 3) Otherwise, the client finds the first 2943 * protocol in the server's list that it supports and selects this protocol. 2944 * This is because it's assumed that the server has better information about 2945 * which protocol a client should use. 4) If the client doesn't support any 2946 * of the server's advertised protocols, then this is treated the same as 2947 * case 2. It returns either OPENSSL_NPN_NEGOTIATED if a common protocol was 2948 * found, or OPENSSL_NPN_NO_OVERLAP if the fallback case was reached. 2949 */ 2950 int SSL_select_next_proto(unsigned char **out, unsigned char *outlen, 2951 const unsigned char *server, 2952 unsigned int server_len, 2953 const unsigned char *client, unsigned int client_len) 2954 { 2955 PACKET cpkt, csubpkt, spkt, ssubpkt; 2956 2957 if (!PACKET_buf_init(&cpkt, client, client_len) 2958 || !PACKET_get_length_prefixed_1(&cpkt, &csubpkt) 2959 || PACKET_remaining(&csubpkt) == 0) { 2960 *out = NULL; 2961 *outlen = 0; 2962 return OPENSSL_NPN_NO_OVERLAP; 2963 } 2964 2965 /* 2966 * Set the default opportunistic protocol. Will be overwritten if we find 2967 * a match. 2968 */ 2969 *out = (unsigned char *)PACKET_data(&csubpkt); 2970 *outlen = (unsigned char)PACKET_remaining(&csubpkt); 2971 2972 /* 2973 * For each protocol in server preference order, see if we support it. 2974 */ 2975 if (PACKET_buf_init(&spkt, server, server_len)) { 2976 while (PACKET_get_length_prefixed_1(&spkt, &ssubpkt)) { 2977 if (PACKET_remaining(&ssubpkt) == 0) 2978 continue; /* Invalid - ignore it */ 2979 if (PACKET_buf_init(&cpkt, client, client_len)) { 2980 while (PACKET_get_length_prefixed_1(&cpkt, &csubpkt)) { 2981 if (PACKET_equal(&csubpkt, PACKET_data(&ssubpkt), 2982 PACKET_remaining(&ssubpkt))) { 2983 /* We found a match */ 2984 *out = (unsigned char *)PACKET_data(&ssubpkt); 2985 *outlen = (unsigned char)PACKET_remaining(&ssubpkt); 2986 return OPENSSL_NPN_NEGOTIATED; 2987 } 2988 } 2989 /* Ignore spurious trailing bytes in the client list */ 2990 } else { 2991 /* This should never happen */ 2992 return OPENSSL_NPN_NO_OVERLAP; 2993 } 2994 } 2995 /* Ignore spurious trailing bytes in the server list */ 2996 } 2997 2998 /* 2999 * There's no overlap between our protocols and the server's list. We use 3000 * the default opportunistic protocol selected earlier 3001 */ 3002 return OPENSSL_NPN_NO_OVERLAP; 3003 } 3004 3005 #ifndef OPENSSL_NO_NEXTPROTONEG 3006 /* 3007 * SSL_get0_next_proto_negotiated sets *data and *len to point to the 3008 * client's requested protocol for this connection and returns 0. If the 3009 * client didn't request any protocol, then *data is set to NULL. Note that 3010 * the client can request any protocol it chooses. The value returned from 3011 * this function need not be a member of the list of supported protocols 3012 * provided by the callback. 3013 */ 3014 void SSL_get0_next_proto_negotiated(const SSL *s, const unsigned char **data, 3015 unsigned *len) 3016 { 3017 *data = s->ext.npn; 3018 if (*data == NULL) { 3019 *len = 0; 3020 } else { 3021 *len = (unsigned int)s->ext.npn_len; 3022 } 3023 } 3024 3025 /* 3026 * SSL_CTX_set_npn_advertised_cb sets a callback that is called when 3027 * a TLS server needs a list of supported protocols for Next Protocol 3028 * Negotiation. The returned list must be in wire format. The list is 3029 * returned by setting |out| to point to it and |outlen| to its length. This 3030 * memory will not be modified, but one should assume that the SSL* keeps a 3031 * reference to it. The callback should return SSL_TLSEXT_ERR_OK if it 3032 * wishes to advertise. Otherwise, no such extension will be included in the 3033 * ServerHello. 3034 */ 3035 void SSL_CTX_set_npn_advertised_cb(SSL_CTX *ctx, 3036 SSL_CTX_npn_advertised_cb_func cb, 3037 void *arg) 3038 { 3039 ctx->ext.npn_advertised_cb = cb; 3040 ctx->ext.npn_advertised_cb_arg = arg; 3041 } 3042 3043 /* 3044 * SSL_CTX_set_next_proto_select_cb sets a callback that is called when a 3045 * client needs to select a protocol from the server's provided list. |out| 3046 * must be set to point to the selected protocol (which may be within |in|). 3047 * The length of the protocol name must be written into |outlen|. The 3048 * server's advertised protocols are provided in |in| and |inlen|. The 3049 * callback can assume that |in| is syntactically valid. The client must 3050 * select a protocol. It is fatal to the connection if this callback returns 3051 * a value other than SSL_TLSEXT_ERR_OK. 3052 */ 3053 void SSL_CTX_set_npn_select_cb(SSL_CTX *ctx, 3054 SSL_CTX_npn_select_cb_func cb, 3055 void *arg) 3056 { 3057 ctx->ext.npn_select_cb = cb; 3058 ctx->ext.npn_select_cb_arg = arg; 3059 } 3060 #endif 3061 3062 static int alpn_value_ok(const unsigned char *protos, unsigned int protos_len) 3063 { 3064 unsigned int idx; 3065 3066 if (protos_len < 2 || protos == NULL) 3067 return 0; 3068 3069 for (idx = 0; idx < protos_len; idx += protos[idx] + 1) { 3070 if (protos[idx] == 0) 3071 return 0; 3072 } 3073 return idx == protos_len; 3074 } 3075 /* 3076 * SSL_CTX_set_alpn_protos sets the ALPN protocol list on |ctx| to |protos|. 3077 * |protos| must be in wire-format (i.e. a series of non-empty, 8-bit 3078 * length-prefixed strings). Returns 0 on success. 3079 */ 3080 int SSL_CTX_set_alpn_protos(SSL_CTX *ctx, const unsigned char *protos, 3081 unsigned int protos_len) 3082 { 3083 unsigned char *alpn; 3084 3085 if (protos_len == 0 || protos == NULL) { 3086 OPENSSL_free(ctx->ext.alpn); 3087 ctx->ext.alpn = NULL; 3088 ctx->ext.alpn_len = 0; 3089 return 0; 3090 } 3091 /* Not valid per RFC */ 3092 if (!alpn_value_ok(protos, protos_len)) 3093 return 1; 3094 3095 alpn = OPENSSL_memdup(protos, protos_len); 3096 if (alpn == NULL) { 3097 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); 3098 return 1; 3099 } 3100 OPENSSL_free(ctx->ext.alpn); 3101 ctx->ext.alpn = alpn; 3102 ctx->ext.alpn_len = protos_len; 3103 3104 return 0; 3105 } 3106 3107 /* 3108 * SSL_set_alpn_protos sets the ALPN protocol list on |ssl| to |protos|. 3109 * |protos| must be in wire-format (i.e. a series of non-empty, 8-bit 3110 * length-prefixed strings). Returns 0 on success. 3111 */ 3112 int SSL_set_alpn_protos(SSL *ssl, const unsigned char *protos, 3113 unsigned int protos_len) 3114 { 3115 unsigned char *alpn; 3116 3117 if (protos_len == 0 || protos == NULL) { 3118 OPENSSL_free(ssl->ext.alpn); 3119 ssl->ext.alpn = NULL; 3120 ssl->ext.alpn_len = 0; 3121 return 0; 3122 } 3123 /* Not valid per RFC */ 3124 if (!alpn_value_ok(protos, protos_len)) 3125 return 1; 3126 3127 alpn = OPENSSL_memdup(protos, protos_len); 3128 if (alpn == NULL) { 3129 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); 3130 return 1; 3131 } 3132 OPENSSL_free(ssl->ext.alpn); 3133 ssl->ext.alpn = alpn; 3134 ssl->ext.alpn_len = protos_len; 3135 3136 return 0; 3137 } 3138 3139 /* 3140 * SSL_CTX_set_alpn_select_cb sets a callback function on |ctx| that is 3141 * called during ClientHello processing in order to select an ALPN protocol 3142 * from the client's list of offered protocols. 3143 */ 3144 void SSL_CTX_set_alpn_select_cb(SSL_CTX *ctx, 3145 SSL_CTX_alpn_select_cb_func cb, 3146 void *arg) 3147 { 3148 ctx->ext.alpn_select_cb = cb; 3149 ctx->ext.alpn_select_cb_arg = arg; 3150 } 3151 3152 /* 3153 * SSL_get0_alpn_selected gets the selected ALPN protocol (if any) from |ssl|. 3154 * On return it sets |*data| to point to |*len| bytes of protocol name 3155 * (not including the leading length-prefix byte). If the server didn't 3156 * respond with a negotiated protocol then |*len| will be zero. 3157 */ 3158 void SSL_get0_alpn_selected(const SSL *ssl, const unsigned char **data, 3159 unsigned int *len) 3160 { 3161 *data = ssl->s3.alpn_selected; 3162 if (*data == NULL) 3163 *len = 0; 3164 else 3165 *len = (unsigned int)ssl->s3.alpn_selected_len; 3166 } 3167 3168 int SSL_export_keying_material(SSL *s, unsigned char *out, size_t olen, 3169 const char *label, size_t llen, 3170 const unsigned char *context, size_t contextlen, 3171 int use_context) 3172 { 3173 if (s->session == NULL 3174 || (s->version < TLS1_VERSION && s->version != DTLS1_BAD_VER)) 3175 return -1; 3176 3177 return s->method->ssl3_enc->export_keying_material(s, out, olen, label, 3178 llen, context, 3179 contextlen, use_context); 3180 } 3181 3182 int SSL_export_keying_material_early(SSL *s, unsigned char *out, size_t olen, 3183 const char *label, size_t llen, 3184 const unsigned char *context, 3185 size_t contextlen) 3186 { 3187 if (s->version != TLS1_3_VERSION) 3188 return 0; 3189 3190 return tls13_export_keying_material_early(s, out, olen, label, llen, 3191 context, contextlen); 3192 } 3193 3194 static unsigned long ssl_session_hash(const SSL_SESSION *a) 3195 { 3196 const unsigned char *session_id = a->session_id; 3197 unsigned long l; 3198 unsigned char tmp_storage[4]; 3199 3200 if (a->session_id_length < sizeof(tmp_storage)) { 3201 memset(tmp_storage, 0, sizeof(tmp_storage)); 3202 memcpy(tmp_storage, a->session_id, a->session_id_length); 3203 session_id = tmp_storage; 3204 } 3205 3206 l = (unsigned long) 3207 ((unsigned long)session_id[0]) | 3208 ((unsigned long)session_id[1] << 8L) | 3209 ((unsigned long)session_id[2] << 16L) | 3210 ((unsigned long)session_id[3] << 24L); 3211 return l; 3212 } 3213 3214 /* 3215 * NB: If this function (or indeed the hash function which uses a sort of 3216 * coarser function than this one) is changed, ensure 3217 * SSL_CTX_has_matching_session_id() is checked accordingly. It relies on 3218 * being able to construct an SSL_SESSION that will collide with any existing 3219 * session with a matching session ID. 3220 */ 3221 static int ssl_session_cmp(const SSL_SESSION *a, const SSL_SESSION *b) 3222 { 3223 if (a->ssl_version != b->ssl_version) 3224 return 1; 3225 if (a->session_id_length != b->session_id_length) 3226 return 1; 3227 return memcmp(a->session_id, b->session_id, a->session_id_length); 3228 } 3229 3230 /* 3231 * These wrapper functions should remain rather than redeclaring 3232 * SSL_SESSION_hash and SSL_SESSION_cmp for void* types and casting each 3233 * variable. The reason is that the functions aren't static, they're exposed 3234 * via ssl.h. 3235 */ 3236 3237 SSL_CTX *SSL_CTX_new_ex(OSSL_LIB_CTX *libctx, const char *propq, 3238 const SSL_METHOD *meth) 3239 { 3240 SSL_CTX *ret = NULL; 3241 3242 if (meth == NULL) { 3243 ERR_raise(ERR_LIB_SSL, SSL_R_NULL_SSL_METHOD_PASSED); 3244 return NULL; 3245 } 3246 3247 if (!OPENSSL_init_ssl(OPENSSL_INIT_LOAD_SSL_STRINGS, NULL)) 3248 return NULL; 3249 3250 if (SSL_get_ex_data_X509_STORE_CTX_idx() < 0) { 3251 ERR_raise(ERR_LIB_SSL, SSL_R_X509_VERIFICATION_SETUP_PROBLEMS); 3252 goto err; 3253 } 3254 ret = OPENSSL_zalloc(sizeof(*ret)); 3255 if (ret == NULL) 3256 goto err; 3257 3258 /* Init the reference counting before any call to SSL_CTX_free */ 3259 ret->references = 1; 3260 ret->lock = CRYPTO_THREAD_lock_new(); 3261 if (ret->lock == NULL) { 3262 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); 3263 OPENSSL_free(ret); 3264 return NULL; 3265 } 3266 3267 #ifdef TSAN_REQUIRES_LOCKING 3268 ret->tsan_lock = CRYPTO_THREAD_lock_new(); 3269 if (ret->tsan_lock == NULL) { 3270 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); 3271 goto err; 3272 } 3273 #endif 3274 3275 ret->libctx = libctx; 3276 if (propq != NULL) { 3277 ret->propq = OPENSSL_strdup(propq); 3278 if (ret->propq == NULL) 3279 goto err; 3280 } 3281 3282 ret->method = meth; 3283 ret->min_proto_version = 0; 3284 ret->max_proto_version = 0; 3285 ret->mode = SSL_MODE_AUTO_RETRY; 3286 ret->session_cache_mode = SSL_SESS_CACHE_SERVER; 3287 ret->session_cache_size = SSL_SESSION_CACHE_MAX_SIZE_DEFAULT; 3288 /* We take the system default. */ 3289 ret->session_timeout = meth->get_timeout(); 3290 ret->max_cert_list = SSL_MAX_CERT_LIST_DEFAULT; 3291 ret->verify_mode = SSL_VERIFY_NONE; 3292 if ((ret->cert = ssl_cert_new()) == NULL) 3293 goto err; 3294 3295 ret->sessions = lh_SSL_SESSION_new(ssl_session_hash, ssl_session_cmp); 3296 if (ret->sessions == NULL) 3297 goto err; 3298 ret->cert_store = X509_STORE_new(); 3299 if (ret->cert_store == NULL) 3300 goto err; 3301 #ifndef OPENSSL_NO_CT 3302 ret->ctlog_store = CTLOG_STORE_new_ex(libctx, propq); 3303 if (ret->ctlog_store == NULL) 3304 goto err; 3305 #endif 3306 3307 /* initialize cipher/digest methods table */ 3308 if (!ssl_load_ciphers(ret)) 3309 goto err2; 3310 /* initialise sig algs */ 3311 if (!ssl_setup_sig_algs(ret)) 3312 goto err2; 3313 3314 3315 if (!ssl_load_groups(ret)) 3316 goto err2; 3317 3318 if (!SSL_CTX_set_ciphersuites(ret, OSSL_default_ciphersuites())) 3319 goto err; 3320 3321 if (!ssl_create_cipher_list(ret, 3322 ret->tls13_ciphersuites, 3323 &ret->cipher_list, &ret->cipher_list_by_id, 3324 OSSL_default_cipher_list(), ret->cert) 3325 || sk_SSL_CIPHER_num(ret->cipher_list) <= 0) { 3326 ERR_raise(ERR_LIB_SSL, SSL_R_LIBRARY_HAS_NO_CIPHERS); 3327 goto err2; 3328 } 3329 3330 ret->param = X509_VERIFY_PARAM_new(); 3331 if (ret->param == NULL) 3332 goto err; 3333 3334 /* 3335 * If these aren't available from the provider we'll get NULL returns. 3336 * That's fine but will cause errors later if SSLv3 is negotiated 3337 */ 3338 ret->md5 = ssl_evp_md_fetch(libctx, NID_md5, propq); 3339 ret->sha1 = ssl_evp_md_fetch(libctx, NID_sha1, propq); 3340 3341 if ((ret->ca_names = sk_X509_NAME_new_null()) == NULL) 3342 goto err; 3343 3344 if ((ret->client_ca_names = sk_X509_NAME_new_null()) == NULL) 3345 goto err; 3346 3347 if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL_CTX, ret, &ret->ex_data)) 3348 goto err; 3349 3350 if ((ret->ext.secure = OPENSSL_secure_zalloc(sizeof(*ret->ext.secure))) == NULL) 3351 goto err; 3352 3353 /* No compression for DTLS */ 3354 if (!(meth->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS)) 3355 ret->comp_methods = SSL_COMP_get_compression_methods(); 3356 3357 ret->max_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH; 3358 ret->split_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH; 3359 3360 /* Setup RFC5077 ticket keys */ 3361 if ((RAND_bytes_ex(libctx, ret->ext.tick_key_name, 3362 sizeof(ret->ext.tick_key_name), 0) <= 0) 3363 || (RAND_priv_bytes_ex(libctx, ret->ext.secure->tick_hmac_key, 3364 sizeof(ret->ext.secure->tick_hmac_key), 0) <= 0) 3365 || (RAND_priv_bytes_ex(libctx, ret->ext.secure->tick_aes_key, 3366 sizeof(ret->ext.secure->tick_aes_key), 0) <= 0)) 3367 ret->options |= SSL_OP_NO_TICKET; 3368 3369 if (RAND_priv_bytes_ex(libctx, ret->ext.cookie_hmac_key, 3370 sizeof(ret->ext.cookie_hmac_key), 0) <= 0) 3371 goto err; 3372 3373 #ifndef OPENSSL_NO_SRP 3374 if (!ssl_ctx_srp_ctx_init_intern(ret)) 3375 goto err; 3376 #endif 3377 #ifndef OPENSSL_NO_ENGINE 3378 # ifdef OPENSSL_SSL_CLIENT_ENGINE_AUTO 3379 # define eng_strx(x) #x 3380 # define eng_str(x) eng_strx(x) 3381 /* Use specific client engine automatically... ignore errors */ 3382 { 3383 ENGINE *eng; 3384 eng = ENGINE_by_id(eng_str(OPENSSL_SSL_CLIENT_ENGINE_AUTO)); 3385 if (!eng) { 3386 ERR_clear_error(); 3387 ENGINE_load_builtin_engines(); 3388 eng = ENGINE_by_id(eng_str(OPENSSL_SSL_CLIENT_ENGINE_AUTO)); 3389 } 3390 if (!eng || !SSL_CTX_set_client_cert_engine(ret, eng)) 3391 ERR_clear_error(); 3392 } 3393 # endif 3394 #endif 3395 /* 3396 * Disable compression by default to prevent CRIME. Applications can 3397 * re-enable compression by configuring 3398 * SSL_CTX_clear_options(ctx, SSL_OP_NO_COMPRESSION); 3399 * or by using the SSL_CONF library. Similarly we also enable TLSv1.3 3400 * middlebox compatibility by default. This may be disabled by default in 3401 * a later OpenSSL version. 3402 */ 3403 ret->options |= SSL_OP_NO_COMPRESSION | SSL_OP_ENABLE_MIDDLEBOX_COMPAT; 3404 3405 ret->ext.status_type = TLSEXT_STATUSTYPE_nothing; 3406 3407 /* 3408 * We cannot usefully set a default max_early_data here (which gets 3409 * propagated in SSL_new(), for the following reason: setting the 3410 * SSL field causes tls_construct_stoc_early_data() to tell the 3411 * client that early data will be accepted when constructing a TLS 1.3 3412 * session ticket, and the client will accordingly send us early data 3413 * when using that ticket (if the client has early data to send). 3414 * However, in order for the early data to actually be consumed by 3415 * the application, the application must also have calls to 3416 * SSL_read_early_data(); otherwise we'll just skip past the early data 3417 * and ignore it. So, since the application must add calls to 3418 * SSL_read_early_data(), we also require them to add 3419 * calls to SSL_CTX_set_max_early_data() in order to use early data, 3420 * eliminating the bandwidth-wasting early data in the case described 3421 * above. 3422 */ 3423 ret->max_early_data = 0; 3424 3425 /* 3426 * Default recv_max_early_data is a fully loaded single record. Could be 3427 * split across multiple records in practice. We set this differently to 3428 * max_early_data so that, in the default case, we do not advertise any 3429 * support for early_data, but if a client were to send us some (e.g. 3430 * because of an old, stale ticket) then we will tolerate it and skip over 3431 * it. 3432 */ 3433 ret->recv_max_early_data = SSL3_RT_MAX_PLAIN_LENGTH; 3434 3435 /* By default we send two session tickets automatically in TLSv1.3 */ 3436 ret->num_tickets = 2; 3437 3438 ssl_ctx_system_config(ret); 3439 3440 return ret; 3441 err: 3442 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); 3443 err2: 3444 SSL_CTX_free(ret); 3445 return NULL; 3446 } 3447 3448 SSL_CTX *SSL_CTX_new(const SSL_METHOD *meth) 3449 { 3450 return SSL_CTX_new_ex(NULL, NULL, meth); 3451 } 3452 3453 int SSL_CTX_up_ref(SSL_CTX *ctx) 3454 { 3455 int i; 3456 3457 if (CRYPTO_UP_REF(&ctx->references, &i, ctx->lock) <= 0) 3458 return 0; 3459 3460 REF_PRINT_COUNT("SSL_CTX", ctx); 3461 REF_ASSERT_ISNT(i < 2); 3462 return ((i > 1) ? 1 : 0); 3463 } 3464 3465 void SSL_CTX_free(SSL_CTX *a) 3466 { 3467 int i; 3468 size_t j; 3469 3470 if (a == NULL) 3471 return; 3472 3473 CRYPTO_DOWN_REF(&a->references, &i, a->lock); 3474 REF_PRINT_COUNT("SSL_CTX", a); 3475 if (i > 0) 3476 return; 3477 REF_ASSERT_ISNT(i < 0); 3478 3479 X509_VERIFY_PARAM_free(a->param); 3480 dane_ctx_final(&a->dane); 3481 3482 /* 3483 * Free internal session cache. However: the remove_cb() may reference 3484 * the ex_data of SSL_CTX, thus the ex_data store can only be removed 3485 * after the sessions were flushed. 3486 * As the ex_data handling routines might also touch the session cache, 3487 * the most secure solution seems to be: empty (flush) the cache, then 3488 * free ex_data, then finally free the cache. 3489 * (See ticket [openssl.org #212].) 3490 */ 3491 if (a->sessions != NULL) 3492 SSL_CTX_flush_sessions(a, 0); 3493 3494 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL_CTX, a, &a->ex_data); 3495 lh_SSL_SESSION_free(a->sessions); 3496 X509_STORE_free(a->cert_store); 3497 #ifndef OPENSSL_NO_CT 3498 CTLOG_STORE_free(a->ctlog_store); 3499 #endif 3500 sk_SSL_CIPHER_free(a->cipher_list); 3501 sk_SSL_CIPHER_free(a->cipher_list_by_id); 3502 sk_SSL_CIPHER_free(a->tls13_ciphersuites); 3503 ssl_cert_free(a->cert); 3504 sk_X509_NAME_pop_free(a->ca_names, X509_NAME_free); 3505 sk_X509_NAME_pop_free(a->client_ca_names, X509_NAME_free); 3506 sk_X509_pop_free(a->extra_certs, X509_free); 3507 a->comp_methods = NULL; 3508 #ifndef OPENSSL_NO_SRTP 3509 sk_SRTP_PROTECTION_PROFILE_free(a->srtp_profiles); 3510 #endif 3511 #ifndef OPENSSL_NO_SRP 3512 ssl_ctx_srp_ctx_free_intern(a); 3513 #endif 3514 #ifndef OPENSSL_NO_ENGINE 3515 tls_engine_finish(a->client_cert_engine); 3516 #endif 3517 3518 OPENSSL_free(a->ext.ecpointformats); 3519 OPENSSL_free(a->ext.supportedgroups); 3520 OPENSSL_free(a->ext.supported_groups_default); 3521 OPENSSL_free(a->ext.alpn); 3522 OPENSSL_secure_free(a->ext.secure); 3523 3524 ssl_evp_md_free(a->md5); 3525 ssl_evp_md_free(a->sha1); 3526 3527 for (j = 0; j < SSL_ENC_NUM_IDX; j++) 3528 ssl_evp_cipher_free(a->ssl_cipher_methods[j]); 3529 for (j = 0; j < SSL_MD_NUM_IDX; j++) 3530 ssl_evp_md_free(a->ssl_digest_methods[j]); 3531 for (j = 0; j < a->group_list_len; j++) { 3532 OPENSSL_free(a->group_list[j].tlsname); 3533 OPENSSL_free(a->group_list[j].realname); 3534 OPENSSL_free(a->group_list[j].algorithm); 3535 } 3536 OPENSSL_free(a->group_list); 3537 3538 OPENSSL_free(a->sigalg_lookup_cache); 3539 3540 CRYPTO_THREAD_lock_free(a->lock); 3541 #ifdef TSAN_REQUIRES_LOCKING 3542 CRYPTO_THREAD_lock_free(a->tsan_lock); 3543 #endif 3544 3545 OPENSSL_free(a->propq); 3546 3547 OPENSSL_free(a); 3548 } 3549 3550 void SSL_CTX_set_default_passwd_cb(SSL_CTX *ctx, pem_password_cb *cb) 3551 { 3552 ctx->default_passwd_callback = cb; 3553 } 3554 3555 void SSL_CTX_set_default_passwd_cb_userdata(SSL_CTX *ctx, void *u) 3556 { 3557 ctx->default_passwd_callback_userdata = u; 3558 } 3559 3560 pem_password_cb *SSL_CTX_get_default_passwd_cb(SSL_CTX *ctx) 3561 { 3562 return ctx->default_passwd_callback; 3563 } 3564 3565 void *SSL_CTX_get_default_passwd_cb_userdata(SSL_CTX *ctx) 3566 { 3567 return ctx->default_passwd_callback_userdata; 3568 } 3569 3570 void SSL_set_default_passwd_cb(SSL *s, pem_password_cb *cb) 3571 { 3572 s->default_passwd_callback = cb; 3573 } 3574 3575 void SSL_set_default_passwd_cb_userdata(SSL *s, void *u) 3576 { 3577 s->default_passwd_callback_userdata = u; 3578 } 3579 3580 pem_password_cb *SSL_get_default_passwd_cb(SSL *s) 3581 { 3582 return s->default_passwd_callback; 3583 } 3584 3585 void *SSL_get_default_passwd_cb_userdata(SSL *s) 3586 { 3587 return s->default_passwd_callback_userdata; 3588 } 3589 3590 void SSL_CTX_set_cert_verify_callback(SSL_CTX *ctx, 3591 int (*cb) (X509_STORE_CTX *, void *), 3592 void *arg) 3593 { 3594 ctx->app_verify_callback = cb; 3595 ctx->app_verify_arg = arg; 3596 } 3597 3598 void SSL_CTX_set_verify(SSL_CTX *ctx, int mode, 3599 int (*cb) (int, X509_STORE_CTX *)) 3600 { 3601 ctx->verify_mode = mode; 3602 ctx->default_verify_callback = cb; 3603 } 3604 3605 void SSL_CTX_set_verify_depth(SSL_CTX *ctx, int depth) 3606 { 3607 X509_VERIFY_PARAM_set_depth(ctx->param, depth); 3608 } 3609 3610 void SSL_CTX_set_cert_cb(SSL_CTX *c, int (*cb) (SSL *ssl, void *arg), void *arg) 3611 { 3612 ssl_cert_set_cert_cb(c->cert, cb, arg); 3613 } 3614 3615 void SSL_set_cert_cb(SSL *s, int (*cb) (SSL *ssl, void *arg), void *arg) 3616 { 3617 ssl_cert_set_cert_cb(s->cert, cb, arg); 3618 } 3619 3620 void ssl_set_masks(SSL *s) 3621 { 3622 CERT *c = s->cert; 3623 uint32_t *pvalid = s->s3.tmp.valid_flags; 3624 int rsa_enc, rsa_sign, dh_tmp, dsa_sign; 3625 unsigned long mask_k, mask_a; 3626 int have_ecc_cert, ecdsa_ok; 3627 3628 if (c == NULL) 3629 return; 3630 3631 dh_tmp = (c->dh_tmp != NULL 3632 || c->dh_tmp_cb != NULL 3633 || c->dh_tmp_auto); 3634 3635 rsa_enc = pvalid[SSL_PKEY_RSA] & CERT_PKEY_VALID; 3636 rsa_sign = pvalid[SSL_PKEY_RSA] & CERT_PKEY_VALID; 3637 dsa_sign = pvalid[SSL_PKEY_DSA_SIGN] & CERT_PKEY_VALID; 3638 have_ecc_cert = pvalid[SSL_PKEY_ECC] & CERT_PKEY_VALID; 3639 mask_k = 0; 3640 mask_a = 0; 3641 3642 OSSL_TRACE4(TLS_CIPHER, "dh_tmp=%d rsa_enc=%d rsa_sign=%d dsa_sign=%d\n", 3643 dh_tmp, rsa_enc, rsa_sign, dsa_sign); 3644 3645 #ifndef OPENSSL_NO_GOST 3646 if (ssl_has_cert(s, SSL_PKEY_GOST12_512)) { 3647 mask_k |= SSL_kGOST | SSL_kGOST18; 3648 mask_a |= SSL_aGOST12; 3649 } 3650 if (ssl_has_cert(s, SSL_PKEY_GOST12_256)) { 3651 mask_k |= SSL_kGOST | SSL_kGOST18; 3652 mask_a |= SSL_aGOST12; 3653 } 3654 if (ssl_has_cert(s, SSL_PKEY_GOST01)) { 3655 mask_k |= SSL_kGOST; 3656 mask_a |= SSL_aGOST01; 3657 } 3658 #endif 3659 3660 if (rsa_enc) 3661 mask_k |= SSL_kRSA; 3662 3663 if (dh_tmp) 3664 mask_k |= SSL_kDHE; 3665 3666 /* 3667 * If we only have an RSA-PSS certificate allow RSA authentication 3668 * if TLS 1.2 and peer supports it. 3669 */ 3670 3671 if (rsa_enc || rsa_sign || (ssl_has_cert(s, SSL_PKEY_RSA_PSS_SIGN) 3672 && pvalid[SSL_PKEY_RSA_PSS_SIGN] & CERT_PKEY_EXPLICIT_SIGN 3673 && TLS1_get_version(s) == TLS1_2_VERSION)) 3674 mask_a |= SSL_aRSA; 3675 3676 if (dsa_sign) { 3677 mask_a |= SSL_aDSS; 3678 } 3679 3680 mask_a |= SSL_aNULL; 3681 3682 /* 3683 * An ECC certificate may be usable for ECDH and/or ECDSA cipher suites 3684 * depending on the key usage extension. 3685 */ 3686 if (have_ecc_cert) { 3687 uint32_t ex_kusage; 3688 ex_kusage = X509_get_key_usage(c->pkeys[SSL_PKEY_ECC].x509); 3689 ecdsa_ok = ex_kusage & X509v3_KU_DIGITAL_SIGNATURE; 3690 if (!(pvalid[SSL_PKEY_ECC] & CERT_PKEY_SIGN)) 3691 ecdsa_ok = 0; 3692 if (ecdsa_ok) 3693 mask_a |= SSL_aECDSA; 3694 } 3695 /* Allow Ed25519 for TLS 1.2 if peer supports it */ 3696 if (!(mask_a & SSL_aECDSA) && ssl_has_cert(s, SSL_PKEY_ED25519) 3697 && pvalid[SSL_PKEY_ED25519] & CERT_PKEY_EXPLICIT_SIGN 3698 && TLS1_get_version(s) == TLS1_2_VERSION) 3699 mask_a |= SSL_aECDSA; 3700 3701 /* Allow Ed448 for TLS 1.2 if peer supports it */ 3702 if (!(mask_a & SSL_aECDSA) && ssl_has_cert(s, SSL_PKEY_ED448) 3703 && pvalid[SSL_PKEY_ED448] & CERT_PKEY_EXPLICIT_SIGN 3704 && TLS1_get_version(s) == TLS1_2_VERSION) 3705 mask_a |= SSL_aECDSA; 3706 3707 mask_k |= SSL_kECDHE; 3708 3709 #ifndef OPENSSL_NO_PSK 3710 mask_k |= SSL_kPSK; 3711 mask_a |= SSL_aPSK; 3712 if (mask_k & SSL_kRSA) 3713 mask_k |= SSL_kRSAPSK; 3714 if (mask_k & SSL_kDHE) 3715 mask_k |= SSL_kDHEPSK; 3716 if (mask_k & SSL_kECDHE) 3717 mask_k |= SSL_kECDHEPSK; 3718 #endif 3719 3720 s->s3.tmp.mask_k = mask_k; 3721 s->s3.tmp.mask_a = mask_a; 3722 } 3723 3724 int ssl_check_srvr_ecc_cert_and_alg(X509 *x, SSL *s) 3725 { 3726 if (s->s3.tmp.new_cipher->algorithm_auth & SSL_aECDSA) { 3727 /* key usage, if present, must allow signing */ 3728 if (!(X509_get_key_usage(x) & X509v3_KU_DIGITAL_SIGNATURE)) { 3729 ERR_raise(ERR_LIB_SSL, SSL_R_ECC_CERT_NOT_FOR_SIGNING); 3730 return 0; 3731 } 3732 } 3733 return 1; /* all checks are ok */ 3734 } 3735 3736 int ssl_get_server_cert_serverinfo(SSL *s, const unsigned char **serverinfo, 3737 size_t *serverinfo_length) 3738 { 3739 CERT_PKEY *cpk = s->s3.tmp.cert; 3740 *serverinfo_length = 0; 3741 3742 if (cpk == NULL || cpk->serverinfo == NULL) 3743 return 0; 3744 3745 *serverinfo = cpk->serverinfo; 3746 *serverinfo_length = cpk->serverinfo_length; 3747 return 1; 3748 } 3749 3750 void ssl_update_cache(SSL *s, int mode) 3751 { 3752 int i; 3753 3754 /* 3755 * If the session_id_length is 0, we are not supposed to cache it, and it 3756 * would be rather hard to do anyway :-). Also if the session has already 3757 * been marked as not_resumable we should not cache it for later reuse. 3758 */ 3759 if (s->session->session_id_length == 0 || s->session->not_resumable) 3760 return; 3761 3762 /* 3763 * If sid_ctx_length is 0 there is no specific application context 3764 * associated with this session, so when we try to resume it and 3765 * SSL_VERIFY_PEER is requested to verify the client identity, we have no 3766 * indication that this is actually a session for the proper application 3767 * context, and the *handshake* will fail, not just the resumption attempt. 3768 * Do not cache (on the server) these sessions that are not resumable 3769 * (clients can set SSL_VERIFY_PEER without needing a sid_ctx set). 3770 */ 3771 if (s->server && s->session->sid_ctx_length == 0 3772 && (s->verify_mode & SSL_VERIFY_PEER) != 0) 3773 return; 3774 3775 i = s->session_ctx->session_cache_mode; 3776 if ((i & mode) != 0 3777 && (!s->hit || SSL_IS_TLS13(s))) { 3778 /* 3779 * Add the session to the internal cache. In server side TLSv1.3 we 3780 * normally don't do this because by default it's a full stateless ticket 3781 * with only a dummy session id so there is no reason to cache it, 3782 * unless: 3783 * - we are doing early_data, in which case we cache so that we can 3784 * detect replays 3785 * - the application has set a remove_session_cb so needs to know about 3786 * session timeout events 3787 * - SSL_OP_NO_TICKET is set in which case it is a stateful ticket 3788 */ 3789 if ((i & SSL_SESS_CACHE_NO_INTERNAL_STORE) == 0 3790 && (!SSL_IS_TLS13(s) 3791 || !s->server 3792 || (s->max_early_data > 0 3793 && (s->options & SSL_OP_NO_ANTI_REPLAY) == 0) 3794 || s->session_ctx->remove_session_cb != NULL 3795 || (s->options & SSL_OP_NO_TICKET) != 0)) 3796 SSL_CTX_add_session(s->session_ctx, s->session); 3797 3798 /* 3799 * Add the session to the external cache. We do this even in server side 3800 * TLSv1.3 without early data because some applications just want to 3801 * know about the creation of a session and aren't doing a full cache. 3802 */ 3803 if (s->session_ctx->new_session_cb != NULL) { 3804 SSL_SESSION_up_ref(s->session); 3805 if (!s->session_ctx->new_session_cb(s, s->session)) 3806 SSL_SESSION_free(s->session); 3807 } 3808 } 3809 3810 /* auto flush every 255 connections */ 3811 if ((!(i & SSL_SESS_CACHE_NO_AUTO_CLEAR)) && ((i & mode) == mode)) { 3812 TSAN_QUALIFIER int *stat; 3813 3814 if (mode & SSL_SESS_CACHE_CLIENT) 3815 stat = &s->session_ctx->stats.sess_connect_good; 3816 else 3817 stat = &s->session_ctx->stats.sess_accept_good; 3818 if ((ssl_tsan_load(s->session_ctx, stat) & 0xff) == 0xff) 3819 SSL_CTX_flush_sessions(s->session_ctx, (unsigned long)time(NULL)); 3820 } 3821 } 3822 3823 const SSL_METHOD *SSL_CTX_get_ssl_method(const SSL_CTX *ctx) 3824 { 3825 return ctx->method; 3826 } 3827 3828 const SSL_METHOD *SSL_get_ssl_method(const SSL *s) 3829 { 3830 return s->method; 3831 } 3832 3833 int SSL_set_ssl_method(SSL *s, const SSL_METHOD *meth) 3834 { 3835 int ret = 1; 3836 3837 if (s->method != meth) { 3838 const SSL_METHOD *sm = s->method; 3839 int (*hf) (SSL *) = s->handshake_func; 3840 3841 if (sm->version == meth->version) 3842 s->method = meth; 3843 else { 3844 sm->ssl_free(s); 3845 s->method = meth; 3846 ret = s->method->ssl_new(s); 3847 } 3848 3849 if (hf == sm->ssl_connect) 3850 s->handshake_func = meth->ssl_connect; 3851 else if (hf == sm->ssl_accept) 3852 s->handshake_func = meth->ssl_accept; 3853 } 3854 return ret; 3855 } 3856 3857 int SSL_get_error(const SSL *s, int i) 3858 { 3859 int reason; 3860 unsigned long l; 3861 BIO *bio; 3862 3863 if (i > 0) 3864 return SSL_ERROR_NONE; 3865 3866 /* 3867 * Make things return SSL_ERROR_SYSCALL when doing SSL_do_handshake etc, 3868 * where we do encode the error 3869 */ 3870 if ((l = ERR_peek_error()) != 0) { 3871 if (ERR_GET_LIB(l) == ERR_LIB_SYS) 3872 return SSL_ERROR_SYSCALL; 3873 else 3874 return SSL_ERROR_SSL; 3875 } 3876 3877 if (SSL_want_read(s)) { 3878 bio = SSL_get_rbio(s); 3879 if (BIO_should_read(bio)) 3880 return SSL_ERROR_WANT_READ; 3881 else if (BIO_should_write(bio)) 3882 /* 3883 * This one doesn't make too much sense ... We never try to write 3884 * to the rbio, and an application program where rbio and wbio 3885 * are separate couldn't even know what it should wait for. 3886 * However if we ever set s->rwstate incorrectly (so that we have 3887 * SSL_want_read(s) instead of SSL_want_write(s)) and rbio and 3888 * wbio *are* the same, this test works around that bug; so it 3889 * might be safer to keep it. 3890 */ 3891 return SSL_ERROR_WANT_WRITE; 3892 else if (BIO_should_io_special(bio)) { 3893 reason = BIO_get_retry_reason(bio); 3894 if (reason == BIO_RR_CONNECT) 3895 return SSL_ERROR_WANT_CONNECT; 3896 else if (reason == BIO_RR_ACCEPT) 3897 return SSL_ERROR_WANT_ACCEPT; 3898 else 3899 return SSL_ERROR_SYSCALL; /* unknown */ 3900 } 3901 } 3902 3903 if (SSL_want_write(s)) { 3904 /* Access wbio directly - in order to use the buffered bio if present */ 3905 bio = s->wbio; 3906 if (BIO_should_write(bio)) 3907 return SSL_ERROR_WANT_WRITE; 3908 else if (BIO_should_read(bio)) 3909 /* 3910 * See above (SSL_want_read(s) with BIO_should_write(bio)) 3911 */ 3912 return SSL_ERROR_WANT_READ; 3913 else if (BIO_should_io_special(bio)) { 3914 reason = BIO_get_retry_reason(bio); 3915 if (reason == BIO_RR_CONNECT) 3916 return SSL_ERROR_WANT_CONNECT; 3917 else if (reason == BIO_RR_ACCEPT) 3918 return SSL_ERROR_WANT_ACCEPT; 3919 else 3920 return SSL_ERROR_SYSCALL; 3921 } 3922 } 3923 if (SSL_want_x509_lookup(s)) 3924 return SSL_ERROR_WANT_X509_LOOKUP; 3925 if (SSL_want_retry_verify(s)) 3926 return SSL_ERROR_WANT_RETRY_VERIFY; 3927 if (SSL_want_async(s)) 3928 return SSL_ERROR_WANT_ASYNC; 3929 if (SSL_want_async_job(s)) 3930 return SSL_ERROR_WANT_ASYNC_JOB; 3931 if (SSL_want_client_hello_cb(s)) 3932 return SSL_ERROR_WANT_CLIENT_HELLO_CB; 3933 3934 if ((s->shutdown & SSL_RECEIVED_SHUTDOWN) && 3935 (s->s3.warn_alert == SSL_AD_CLOSE_NOTIFY)) 3936 return SSL_ERROR_ZERO_RETURN; 3937 3938 return SSL_ERROR_SYSCALL; 3939 } 3940 3941 static int ssl_do_handshake_intern(void *vargs) 3942 { 3943 struct ssl_async_args *args; 3944 SSL *s; 3945 3946 args = (struct ssl_async_args *)vargs; 3947 s = args->s; 3948 3949 return s->handshake_func(s); 3950 } 3951 3952 int SSL_do_handshake(SSL *s) 3953 { 3954 int ret = 1; 3955 3956 if (s->handshake_func == NULL) { 3957 ERR_raise(ERR_LIB_SSL, SSL_R_CONNECTION_TYPE_NOT_SET); 3958 return -1; 3959 } 3960 3961 ossl_statem_check_finish_init(s, -1); 3962 3963 s->method->ssl_renegotiate_check(s, 0); 3964 3965 if (SSL_in_init(s) || SSL_in_before(s)) { 3966 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) { 3967 struct ssl_async_args args; 3968 3969 memset(&args, 0, sizeof(args)); 3970 args.s = s; 3971 3972 ret = ssl_start_async_job(s, &args, ssl_do_handshake_intern); 3973 } else { 3974 ret = s->handshake_func(s); 3975 } 3976 } 3977 return ret; 3978 } 3979 3980 void SSL_set_accept_state(SSL *s) 3981 { 3982 s->server = 1; 3983 s->shutdown = 0; 3984 ossl_statem_clear(s); 3985 s->handshake_func = s->method->ssl_accept; 3986 clear_ciphers(s); 3987 } 3988 3989 void SSL_set_connect_state(SSL *s) 3990 { 3991 s->server = 0; 3992 s->shutdown = 0; 3993 ossl_statem_clear(s); 3994 s->handshake_func = s->method->ssl_connect; 3995 clear_ciphers(s); 3996 } 3997 3998 int ssl_undefined_function(SSL *s) 3999 { 4000 ERR_raise(ERR_LIB_SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 4001 return 0; 4002 } 4003 4004 int ssl_undefined_void_function(void) 4005 { 4006 ERR_raise(ERR_LIB_SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 4007 return 0; 4008 } 4009 4010 int ssl_undefined_const_function(const SSL *s) 4011 { 4012 return 0; 4013 } 4014 4015 const SSL_METHOD *ssl_bad_method(int ver) 4016 { 4017 ERR_raise(ERR_LIB_SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 4018 return NULL; 4019 } 4020 4021 const char *ssl_protocol_to_string(int version) 4022 { 4023 switch(version) 4024 { 4025 case TLS1_3_VERSION: 4026 return "TLSv1.3"; 4027 4028 case TLS1_2_VERSION: 4029 return "TLSv1.2"; 4030 4031 case TLS1_1_VERSION: 4032 return "TLSv1.1"; 4033 4034 case TLS1_VERSION: 4035 return "TLSv1"; 4036 4037 case SSL3_VERSION: 4038 return "SSLv3"; 4039 4040 case DTLS1_BAD_VER: 4041 return "DTLSv0.9"; 4042 4043 case DTLS1_VERSION: 4044 return "DTLSv1"; 4045 4046 case DTLS1_2_VERSION: 4047 return "DTLSv1.2"; 4048 4049 default: 4050 return "unknown"; 4051 } 4052 } 4053 4054 const char *SSL_get_version(const SSL *s) 4055 { 4056 return ssl_protocol_to_string(s->version); 4057 } 4058 4059 static int dup_ca_names(STACK_OF(X509_NAME) **dst, STACK_OF(X509_NAME) *src) 4060 { 4061 STACK_OF(X509_NAME) *sk; 4062 X509_NAME *xn; 4063 int i; 4064 4065 if (src == NULL) { 4066 *dst = NULL; 4067 return 1; 4068 } 4069 4070 if ((sk = sk_X509_NAME_new_null()) == NULL) 4071 return 0; 4072 for (i = 0; i < sk_X509_NAME_num(src); i++) { 4073 xn = X509_NAME_dup(sk_X509_NAME_value(src, i)); 4074 if (xn == NULL) { 4075 sk_X509_NAME_pop_free(sk, X509_NAME_free); 4076 return 0; 4077 } 4078 if (sk_X509_NAME_insert(sk, xn, i) == 0) { 4079 X509_NAME_free(xn); 4080 sk_X509_NAME_pop_free(sk, X509_NAME_free); 4081 return 0; 4082 } 4083 } 4084 *dst = sk; 4085 4086 return 1; 4087 } 4088 4089 SSL *SSL_dup(SSL *s) 4090 { 4091 SSL *ret; 4092 int i; 4093 4094 /* If we're not quiescent, just up_ref! */ 4095 if (!SSL_in_init(s) || !SSL_in_before(s)) { 4096 CRYPTO_UP_REF(&s->references, &i, s->lock); 4097 return s; 4098 } 4099 4100 /* 4101 * Otherwise, copy configuration state, and session if set. 4102 */ 4103 if ((ret = SSL_new(SSL_get_SSL_CTX(s))) == NULL) 4104 return NULL; 4105 4106 if (s->session != NULL) { 4107 /* 4108 * Arranges to share the same session via up_ref. This "copies" 4109 * session-id, SSL_METHOD, sid_ctx, and 'cert' 4110 */ 4111 if (!SSL_copy_session_id(ret, s)) 4112 goto err; 4113 } else { 4114 /* 4115 * No session has been established yet, so we have to expect that 4116 * s->cert or ret->cert will be changed later -- they should not both 4117 * point to the same object, and thus we can't use 4118 * SSL_copy_session_id. 4119 */ 4120 if (!SSL_set_ssl_method(ret, s->method)) 4121 goto err; 4122 4123 if (s->cert != NULL) { 4124 ssl_cert_free(ret->cert); 4125 ret->cert = ssl_cert_dup(s->cert); 4126 if (ret->cert == NULL) 4127 goto err; 4128 } 4129 4130 if (!SSL_set_session_id_context(ret, s->sid_ctx, 4131 (int)s->sid_ctx_length)) 4132 goto err; 4133 } 4134 4135 if (!ssl_dane_dup(ret, s)) 4136 goto err; 4137 ret->version = s->version; 4138 ret->options = s->options; 4139 ret->min_proto_version = s->min_proto_version; 4140 ret->max_proto_version = s->max_proto_version; 4141 ret->mode = s->mode; 4142 SSL_set_max_cert_list(ret, SSL_get_max_cert_list(s)); 4143 SSL_set_read_ahead(ret, SSL_get_read_ahead(s)); 4144 ret->msg_callback = s->msg_callback; 4145 ret->msg_callback_arg = s->msg_callback_arg; 4146 SSL_set_verify(ret, SSL_get_verify_mode(s), SSL_get_verify_callback(s)); 4147 SSL_set_verify_depth(ret, SSL_get_verify_depth(s)); 4148 ret->generate_session_id = s->generate_session_id; 4149 4150 SSL_set_info_callback(ret, SSL_get_info_callback(s)); 4151 4152 /* copy app data, a little dangerous perhaps */ 4153 if (!CRYPTO_dup_ex_data(CRYPTO_EX_INDEX_SSL, &ret->ex_data, &s->ex_data)) 4154 goto err; 4155 4156 ret->server = s->server; 4157 if (s->handshake_func) { 4158 if (s->server) 4159 SSL_set_accept_state(ret); 4160 else 4161 SSL_set_connect_state(ret); 4162 } 4163 ret->shutdown = s->shutdown; 4164 ret->hit = s->hit; 4165 4166 ret->default_passwd_callback = s->default_passwd_callback; 4167 ret->default_passwd_callback_userdata = s->default_passwd_callback_userdata; 4168 4169 X509_VERIFY_PARAM_inherit(ret->param, s->param); 4170 4171 /* dup the cipher_list and cipher_list_by_id stacks */ 4172 if (s->cipher_list != NULL) { 4173 if ((ret->cipher_list = sk_SSL_CIPHER_dup(s->cipher_list)) == NULL) 4174 goto err; 4175 } 4176 if (s->cipher_list_by_id != NULL) 4177 if ((ret->cipher_list_by_id = sk_SSL_CIPHER_dup(s->cipher_list_by_id)) 4178 == NULL) 4179 goto err; 4180 4181 /* Dup the client_CA list */ 4182 if (!dup_ca_names(&ret->ca_names, s->ca_names) 4183 || !dup_ca_names(&ret->client_ca_names, s->client_ca_names)) 4184 goto err; 4185 4186 return ret; 4187 4188 err: 4189 SSL_free(ret); 4190 return NULL; 4191 } 4192 4193 void ssl_clear_cipher_ctx(SSL *s) 4194 { 4195 if (s->enc_read_ctx != NULL) { 4196 EVP_CIPHER_CTX_free(s->enc_read_ctx); 4197 s->enc_read_ctx = NULL; 4198 } 4199 if (s->enc_write_ctx != NULL) { 4200 EVP_CIPHER_CTX_free(s->enc_write_ctx); 4201 s->enc_write_ctx = NULL; 4202 } 4203 #ifndef OPENSSL_NO_COMP 4204 COMP_CTX_free(s->expand); 4205 s->expand = NULL; 4206 COMP_CTX_free(s->compress); 4207 s->compress = NULL; 4208 #endif 4209 } 4210 4211 X509 *SSL_get_certificate(const SSL *s) 4212 { 4213 if (s->cert != NULL) 4214 return s->cert->key->x509; 4215 else 4216 return NULL; 4217 } 4218 4219 EVP_PKEY *SSL_get_privatekey(const SSL *s) 4220 { 4221 if (s->cert != NULL) 4222 return s->cert->key->privatekey; 4223 else 4224 return NULL; 4225 } 4226 4227 X509 *SSL_CTX_get0_certificate(const SSL_CTX *ctx) 4228 { 4229 if (ctx->cert != NULL) 4230 return ctx->cert->key->x509; 4231 else 4232 return NULL; 4233 } 4234 4235 EVP_PKEY *SSL_CTX_get0_privatekey(const SSL_CTX *ctx) 4236 { 4237 if (ctx->cert != NULL) 4238 return ctx->cert->key->privatekey; 4239 else 4240 return NULL; 4241 } 4242 4243 const SSL_CIPHER *SSL_get_current_cipher(const SSL *s) 4244 { 4245 if ((s->session != NULL) && (s->session->cipher != NULL)) 4246 return s->session->cipher; 4247 return NULL; 4248 } 4249 4250 const SSL_CIPHER *SSL_get_pending_cipher(const SSL *s) 4251 { 4252 return s->s3.tmp.new_cipher; 4253 } 4254 4255 const COMP_METHOD *SSL_get_current_compression(const SSL *s) 4256 { 4257 #ifndef OPENSSL_NO_COMP 4258 return s->compress ? COMP_CTX_get_method(s->compress) : NULL; 4259 #else 4260 return NULL; 4261 #endif 4262 } 4263 4264 const COMP_METHOD *SSL_get_current_expansion(const SSL *s) 4265 { 4266 #ifndef OPENSSL_NO_COMP 4267 return s->expand ? COMP_CTX_get_method(s->expand) : NULL; 4268 #else 4269 return NULL; 4270 #endif 4271 } 4272 4273 int ssl_init_wbio_buffer(SSL *s) 4274 { 4275 BIO *bbio; 4276 4277 if (s->bbio != NULL) { 4278 /* Already buffered. */ 4279 return 1; 4280 } 4281 4282 bbio = BIO_new(BIO_f_buffer()); 4283 if (bbio == NULL || BIO_set_read_buffer_size(bbio, 1) <= 0) { 4284 BIO_free(bbio); 4285 ERR_raise(ERR_LIB_SSL, ERR_R_BUF_LIB); 4286 return 0; 4287 } 4288 s->bbio = bbio; 4289 s->wbio = BIO_push(bbio, s->wbio); 4290 4291 return 1; 4292 } 4293 4294 int ssl_free_wbio_buffer(SSL *s) 4295 { 4296 /* callers ensure s is never null */ 4297 if (s->bbio == NULL) 4298 return 1; 4299 4300 s->wbio = BIO_pop(s->wbio); 4301 BIO_free(s->bbio); 4302 s->bbio = NULL; 4303 4304 return 1; 4305 } 4306 4307 void SSL_CTX_set_quiet_shutdown(SSL_CTX *ctx, int mode) 4308 { 4309 ctx->quiet_shutdown = mode; 4310 } 4311 4312 int SSL_CTX_get_quiet_shutdown(const SSL_CTX *ctx) 4313 { 4314 return ctx->quiet_shutdown; 4315 } 4316 4317 void SSL_set_quiet_shutdown(SSL *s, int mode) 4318 { 4319 s->quiet_shutdown = mode; 4320 } 4321 4322 int SSL_get_quiet_shutdown(const SSL *s) 4323 { 4324 return s->quiet_shutdown; 4325 } 4326 4327 void SSL_set_shutdown(SSL *s, int mode) 4328 { 4329 s->shutdown = mode; 4330 } 4331 4332 int SSL_get_shutdown(const SSL *s) 4333 { 4334 return s->shutdown; 4335 } 4336 4337 int SSL_version(const SSL *s) 4338 { 4339 return s->version; 4340 } 4341 4342 int SSL_client_version(const SSL *s) 4343 { 4344 return s->client_version; 4345 } 4346 4347 SSL_CTX *SSL_get_SSL_CTX(const SSL *ssl) 4348 { 4349 return ssl->ctx; 4350 } 4351 4352 SSL_CTX *SSL_set_SSL_CTX(SSL *ssl, SSL_CTX *ctx) 4353 { 4354 CERT *new_cert; 4355 if (ssl->ctx == ctx) 4356 return ssl->ctx; 4357 if (ctx == NULL) 4358 ctx = ssl->session_ctx; 4359 new_cert = ssl_cert_dup(ctx->cert); 4360 if (new_cert == NULL) { 4361 return NULL; 4362 } 4363 4364 if (!custom_exts_copy_flags(&new_cert->custext, &ssl->cert->custext)) { 4365 ssl_cert_free(new_cert); 4366 return NULL; 4367 } 4368 4369 ssl_cert_free(ssl->cert); 4370 ssl->cert = new_cert; 4371 4372 /* 4373 * Program invariant: |sid_ctx| has fixed size (SSL_MAX_SID_CTX_LENGTH), 4374 * so setter APIs must prevent invalid lengths from entering the system. 4375 */ 4376 if (!ossl_assert(ssl->sid_ctx_length <= sizeof(ssl->sid_ctx))) 4377 return NULL; 4378 4379 /* 4380 * If the session ID context matches that of the parent SSL_CTX, 4381 * inherit it from the new SSL_CTX as well. If however the context does 4382 * not match (i.e., it was set per-ssl with SSL_set_session_id_context), 4383 * leave it unchanged. 4384 */ 4385 if ((ssl->ctx != NULL) && 4386 (ssl->sid_ctx_length == ssl->ctx->sid_ctx_length) && 4387 (memcmp(ssl->sid_ctx, ssl->ctx->sid_ctx, ssl->sid_ctx_length) == 0)) { 4388 ssl->sid_ctx_length = ctx->sid_ctx_length; 4389 memcpy(&ssl->sid_ctx, &ctx->sid_ctx, sizeof(ssl->sid_ctx)); 4390 } 4391 4392 SSL_CTX_up_ref(ctx); 4393 SSL_CTX_free(ssl->ctx); /* decrement reference count */ 4394 ssl->ctx = ctx; 4395 4396 return ssl->ctx; 4397 } 4398 4399 int SSL_CTX_set_default_verify_paths(SSL_CTX *ctx) 4400 { 4401 return X509_STORE_set_default_paths_ex(ctx->cert_store, ctx->libctx, 4402 ctx->propq); 4403 } 4404 4405 int SSL_CTX_set_default_verify_dir(SSL_CTX *ctx) 4406 { 4407 X509_LOOKUP *lookup; 4408 4409 lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_hash_dir()); 4410 if (lookup == NULL) 4411 return 0; 4412 4413 /* We ignore errors, in case the directory doesn't exist */ 4414 ERR_set_mark(); 4415 4416 X509_LOOKUP_add_dir(lookup, NULL, X509_FILETYPE_DEFAULT); 4417 4418 ERR_pop_to_mark(); 4419 4420 return 1; 4421 } 4422 4423 int SSL_CTX_set_default_verify_file(SSL_CTX *ctx) 4424 { 4425 X509_LOOKUP *lookup; 4426 4427 lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_file()); 4428 if (lookup == NULL) 4429 return 0; 4430 4431 /* We ignore errors, in case the file doesn't exist */ 4432 ERR_set_mark(); 4433 4434 X509_LOOKUP_load_file_ex(lookup, NULL, X509_FILETYPE_DEFAULT, ctx->libctx, 4435 ctx->propq); 4436 4437 ERR_pop_to_mark(); 4438 4439 return 1; 4440 } 4441 4442 int SSL_CTX_set_default_verify_store(SSL_CTX *ctx) 4443 { 4444 X509_LOOKUP *lookup; 4445 4446 lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_store()); 4447 if (lookup == NULL) 4448 return 0; 4449 4450 /* We ignore errors, in case the directory doesn't exist */ 4451 ERR_set_mark(); 4452 4453 X509_LOOKUP_add_store_ex(lookup, NULL, ctx->libctx, ctx->propq); 4454 4455 ERR_pop_to_mark(); 4456 4457 return 1; 4458 } 4459 4460 int SSL_CTX_load_verify_file(SSL_CTX *ctx, const char *CAfile) 4461 { 4462 return X509_STORE_load_file_ex(ctx->cert_store, CAfile, ctx->libctx, 4463 ctx->propq); 4464 } 4465 4466 int SSL_CTX_load_verify_dir(SSL_CTX *ctx, const char *CApath) 4467 { 4468 return X509_STORE_load_path(ctx->cert_store, CApath); 4469 } 4470 4471 int SSL_CTX_load_verify_store(SSL_CTX *ctx, const char *CAstore) 4472 { 4473 return X509_STORE_load_store_ex(ctx->cert_store, CAstore, ctx->libctx, 4474 ctx->propq); 4475 } 4476 4477 int SSL_CTX_load_verify_locations(SSL_CTX *ctx, const char *CAfile, 4478 const char *CApath) 4479 { 4480 if (CAfile == NULL && CApath == NULL) 4481 return 0; 4482 if (CAfile != NULL && !SSL_CTX_load_verify_file(ctx, CAfile)) 4483 return 0; 4484 if (CApath != NULL && !SSL_CTX_load_verify_dir(ctx, CApath)) 4485 return 0; 4486 return 1; 4487 } 4488 4489 void SSL_set_info_callback(SSL *ssl, 4490 void (*cb) (const SSL *ssl, int type, int val)) 4491 { 4492 ssl->info_callback = cb; 4493 } 4494 4495 /* 4496 * One compiler (Diab DCC) doesn't like argument names in returned function 4497 * pointer. 4498 */ 4499 void (*SSL_get_info_callback(const SSL *ssl)) (const SSL * /* ssl */ , 4500 int /* type */ , 4501 int /* val */ ) { 4502 return ssl->info_callback; 4503 } 4504 4505 void SSL_set_verify_result(SSL *ssl, long arg) 4506 { 4507 ssl->verify_result = arg; 4508 } 4509 4510 long SSL_get_verify_result(const SSL *ssl) 4511 { 4512 return ssl->verify_result; 4513 } 4514 4515 size_t SSL_get_client_random(const SSL *ssl, unsigned char *out, size_t outlen) 4516 { 4517 if (outlen == 0) 4518 return sizeof(ssl->s3.client_random); 4519 if (outlen > sizeof(ssl->s3.client_random)) 4520 outlen = sizeof(ssl->s3.client_random); 4521 memcpy(out, ssl->s3.client_random, outlen); 4522 return outlen; 4523 } 4524 4525 size_t SSL_get_server_random(const SSL *ssl, unsigned char *out, size_t outlen) 4526 { 4527 if (outlen == 0) 4528 return sizeof(ssl->s3.server_random); 4529 if (outlen > sizeof(ssl->s3.server_random)) 4530 outlen = sizeof(ssl->s3.server_random); 4531 memcpy(out, ssl->s3.server_random, outlen); 4532 return outlen; 4533 } 4534 4535 size_t SSL_SESSION_get_master_key(const SSL_SESSION *session, 4536 unsigned char *out, size_t outlen) 4537 { 4538 if (outlen == 0) 4539 return session->master_key_length; 4540 if (outlen > session->master_key_length) 4541 outlen = session->master_key_length; 4542 memcpy(out, session->master_key, outlen); 4543 return outlen; 4544 } 4545 4546 int SSL_SESSION_set1_master_key(SSL_SESSION *sess, const unsigned char *in, 4547 size_t len) 4548 { 4549 if (len > sizeof(sess->master_key)) 4550 return 0; 4551 4552 memcpy(sess->master_key, in, len); 4553 sess->master_key_length = len; 4554 return 1; 4555 } 4556 4557 4558 int SSL_set_ex_data(SSL *s, int idx, void *arg) 4559 { 4560 return CRYPTO_set_ex_data(&s->ex_data, idx, arg); 4561 } 4562 4563 void *SSL_get_ex_data(const SSL *s, int idx) 4564 { 4565 return CRYPTO_get_ex_data(&s->ex_data, idx); 4566 } 4567 4568 int SSL_CTX_set_ex_data(SSL_CTX *s, int idx, void *arg) 4569 { 4570 return CRYPTO_set_ex_data(&s->ex_data, idx, arg); 4571 } 4572 4573 void *SSL_CTX_get_ex_data(const SSL_CTX *s, int idx) 4574 { 4575 return CRYPTO_get_ex_data(&s->ex_data, idx); 4576 } 4577 4578 X509_STORE *SSL_CTX_get_cert_store(const SSL_CTX *ctx) 4579 { 4580 return ctx->cert_store; 4581 } 4582 4583 void SSL_CTX_set_cert_store(SSL_CTX *ctx, X509_STORE *store) 4584 { 4585 X509_STORE_free(ctx->cert_store); 4586 ctx->cert_store = store; 4587 } 4588 4589 void SSL_CTX_set1_cert_store(SSL_CTX *ctx, X509_STORE *store) 4590 { 4591 if (store != NULL) 4592 X509_STORE_up_ref(store); 4593 SSL_CTX_set_cert_store(ctx, store); 4594 } 4595 4596 int SSL_want(const SSL *s) 4597 { 4598 return s->rwstate; 4599 } 4600 4601 #ifndef OPENSSL_NO_PSK 4602 int SSL_CTX_use_psk_identity_hint(SSL_CTX *ctx, const char *identity_hint) 4603 { 4604 if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) { 4605 ERR_raise(ERR_LIB_SSL, SSL_R_DATA_LENGTH_TOO_LONG); 4606 return 0; 4607 } 4608 OPENSSL_free(ctx->cert->psk_identity_hint); 4609 if (identity_hint != NULL) { 4610 ctx->cert->psk_identity_hint = OPENSSL_strdup(identity_hint); 4611 if (ctx->cert->psk_identity_hint == NULL) 4612 return 0; 4613 } else 4614 ctx->cert->psk_identity_hint = NULL; 4615 return 1; 4616 } 4617 4618 int SSL_use_psk_identity_hint(SSL *s, const char *identity_hint) 4619 { 4620 if (s == NULL) 4621 return 0; 4622 4623 if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) { 4624 ERR_raise(ERR_LIB_SSL, SSL_R_DATA_LENGTH_TOO_LONG); 4625 return 0; 4626 } 4627 OPENSSL_free(s->cert->psk_identity_hint); 4628 if (identity_hint != NULL) { 4629 s->cert->psk_identity_hint = OPENSSL_strdup(identity_hint); 4630 if (s->cert->psk_identity_hint == NULL) 4631 return 0; 4632 } else 4633 s->cert->psk_identity_hint = NULL; 4634 return 1; 4635 } 4636 4637 const char *SSL_get_psk_identity_hint(const SSL *s) 4638 { 4639 if (s == NULL || s->session == NULL) 4640 return NULL; 4641 return s->session->psk_identity_hint; 4642 } 4643 4644 const char *SSL_get_psk_identity(const SSL *s) 4645 { 4646 if (s == NULL || s->session == NULL) 4647 return NULL; 4648 return s->session->psk_identity; 4649 } 4650 4651 void SSL_set_psk_client_callback(SSL *s, SSL_psk_client_cb_func cb) 4652 { 4653 s->psk_client_callback = cb; 4654 } 4655 4656 void SSL_CTX_set_psk_client_callback(SSL_CTX *ctx, SSL_psk_client_cb_func cb) 4657 { 4658 ctx->psk_client_callback = cb; 4659 } 4660 4661 void SSL_set_psk_server_callback(SSL *s, SSL_psk_server_cb_func cb) 4662 { 4663 s->psk_server_callback = cb; 4664 } 4665 4666 void SSL_CTX_set_psk_server_callback(SSL_CTX *ctx, SSL_psk_server_cb_func cb) 4667 { 4668 ctx->psk_server_callback = cb; 4669 } 4670 #endif 4671 4672 void SSL_set_psk_find_session_callback(SSL *s, SSL_psk_find_session_cb_func cb) 4673 { 4674 s->psk_find_session_cb = cb; 4675 } 4676 4677 void SSL_CTX_set_psk_find_session_callback(SSL_CTX *ctx, 4678 SSL_psk_find_session_cb_func cb) 4679 { 4680 ctx->psk_find_session_cb = cb; 4681 } 4682 4683 void SSL_set_psk_use_session_callback(SSL *s, SSL_psk_use_session_cb_func cb) 4684 { 4685 s->psk_use_session_cb = cb; 4686 } 4687 4688 void SSL_CTX_set_psk_use_session_callback(SSL_CTX *ctx, 4689 SSL_psk_use_session_cb_func cb) 4690 { 4691 ctx->psk_use_session_cb = cb; 4692 } 4693 4694 void SSL_CTX_set_msg_callback(SSL_CTX *ctx, 4695 void (*cb) (int write_p, int version, 4696 int content_type, const void *buf, 4697 size_t len, SSL *ssl, void *arg)) 4698 { 4699 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_MSG_CALLBACK, (void (*)(void))cb); 4700 } 4701 4702 void SSL_set_msg_callback(SSL *ssl, 4703 void (*cb) (int write_p, int version, 4704 int content_type, const void *buf, 4705 size_t len, SSL *ssl, void *arg)) 4706 { 4707 SSL_callback_ctrl(ssl, SSL_CTRL_SET_MSG_CALLBACK, (void (*)(void))cb); 4708 } 4709 4710 void SSL_CTX_set_not_resumable_session_callback(SSL_CTX *ctx, 4711 int (*cb) (SSL *ssl, 4712 int 4713 is_forward_secure)) 4714 { 4715 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB, 4716 (void (*)(void))cb); 4717 } 4718 4719 void SSL_set_not_resumable_session_callback(SSL *ssl, 4720 int (*cb) (SSL *ssl, 4721 int is_forward_secure)) 4722 { 4723 SSL_callback_ctrl(ssl, SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB, 4724 (void (*)(void))cb); 4725 } 4726 4727 void SSL_CTX_set_record_padding_callback(SSL_CTX *ctx, 4728 size_t (*cb) (SSL *ssl, int type, 4729 size_t len, void *arg)) 4730 { 4731 ctx->record_padding_cb = cb; 4732 } 4733 4734 void SSL_CTX_set_record_padding_callback_arg(SSL_CTX *ctx, void *arg) 4735 { 4736 ctx->record_padding_arg = arg; 4737 } 4738 4739 void *SSL_CTX_get_record_padding_callback_arg(const SSL_CTX *ctx) 4740 { 4741 return ctx->record_padding_arg; 4742 } 4743 4744 int SSL_CTX_set_block_padding(SSL_CTX *ctx, size_t block_size) 4745 { 4746 /* block size of 0 or 1 is basically no padding */ 4747 if (block_size == 1) 4748 ctx->block_padding = 0; 4749 else if (block_size <= SSL3_RT_MAX_PLAIN_LENGTH) 4750 ctx->block_padding = block_size; 4751 else 4752 return 0; 4753 return 1; 4754 } 4755 4756 int SSL_set_record_padding_callback(SSL *ssl, 4757 size_t (*cb) (SSL *ssl, int type, 4758 size_t len, void *arg)) 4759 { 4760 BIO *b; 4761 4762 b = SSL_get_wbio(ssl); 4763 if (b == NULL || !BIO_get_ktls_send(b)) { 4764 ssl->record_padding_cb = cb; 4765 return 1; 4766 } 4767 return 0; 4768 } 4769 4770 void SSL_set_record_padding_callback_arg(SSL *ssl, void *arg) 4771 { 4772 ssl->record_padding_arg = arg; 4773 } 4774 4775 void *SSL_get_record_padding_callback_arg(const SSL *ssl) 4776 { 4777 return ssl->record_padding_arg; 4778 } 4779 4780 int SSL_set_block_padding(SSL *ssl, size_t block_size) 4781 { 4782 /* block size of 0 or 1 is basically no padding */ 4783 if (block_size == 1) 4784 ssl->block_padding = 0; 4785 else if (block_size <= SSL3_RT_MAX_PLAIN_LENGTH) 4786 ssl->block_padding = block_size; 4787 else 4788 return 0; 4789 return 1; 4790 } 4791 4792 int SSL_set_num_tickets(SSL *s, size_t num_tickets) 4793 { 4794 s->num_tickets = num_tickets; 4795 4796 return 1; 4797 } 4798 4799 size_t SSL_get_num_tickets(const SSL *s) 4800 { 4801 return s->num_tickets; 4802 } 4803 4804 int SSL_CTX_set_num_tickets(SSL_CTX *ctx, size_t num_tickets) 4805 { 4806 ctx->num_tickets = num_tickets; 4807 4808 return 1; 4809 } 4810 4811 size_t SSL_CTX_get_num_tickets(const SSL_CTX *ctx) 4812 { 4813 return ctx->num_tickets; 4814 } 4815 4816 /* 4817 * Allocates new EVP_MD_CTX and sets pointer to it into given pointer 4818 * variable, freeing EVP_MD_CTX previously stored in that variable, if any. 4819 * If EVP_MD pointer is passed, initializes ctx with this |md|. 4820 * Returns the newly allocated ctx; 4821 */ 4822 4823 EVP_MD_CTX *ssl_replace_hash(EVP_MD_CTX **hash, const EVP_MD *md) 4824 { 4825 ssl_clear_hash_ctx(hash); 4826 *hash = EVP_MD_CTX_new(); 4827 if (*hash == NULL || (md && EVP_DigestInit_ex(*hash, md, NULL) <= 0)) { 4828 EVP_MD_CTX_free(*hash); 4829 *hash = NULL; 4830 return NULL; 4831 } 4832 return *hash; 4833 } 4834 4835 void ssl_clear_hash_ctx(EVP_MD_CTX **hash) 4836 { 4837 4838 EVP_MD_CTX_free(*hash); 4839 *hash = NULL; 4840 } 4841 4842 /* Retrieve handshake hashes */ 4843 int ssl_handshake_hash(SSL *s, unsigned char *out, size_t outlen, 4844 size_t *hashlen) 4845 { 4846 EVP_MD_CTX *ctx = NULL; 4847 EVP_MD_CTX *hdgst = s->s3.handshake_dgst; 4848 int hashleni = EVP_MD_CTX_get_size(hdgst); 4849 int ret = 0; 4850 4851 if (hashleni < 0 || (size_t)hashleni > outlen) { 4852 SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); 4853 goto err; 4854 } 4855 4856 ctx = EVP_MD_CTX_new(); 4857 if (ctx == NULL) { 4858 SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); 4859 goto err; 4860 } 4861 4862 if (!EVP_MD_CTX_copy_ex(ctx, hdgst) 4863 || EVP_DigestFinal_ex(ctx, out, NULL) <= 0) { 4864 SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); 4865 goto err; 4866 } 4867 4868 *hashlen = hashleni; 4869 4870 ret = 1; 4871 err: 4872 EVP_MD_CTX_free(ctx); 4873 return ret; 4874 } 4875 4876 int SSL_session_reused(const SSL *s) 4877 { 4878 return s->hit; 4879 } 4880 4881 int SSL_is_server(const SSL *s) 4882 { 4883 return s->server; 4884 } 4885 4886 #ifndef OPENSSL_NO_DEPRECATED_1_1_0 4887 void SSL_set_debug(SSL *s, int debug) 4888 { 4889 /* Old function was do-nothing anyway... */ 4890 (void)s; 4891 (void)debug; 4892 } 4893 #endif 4894 4895 void SSL_set_security_level(SSL *s, int level) 4896 { 4897 s->cert->sec_level = level; 4898 } 4899 4900 int SSL_get_security_level(const SSL *s) 4901 { 4902 return s->cert->sec_level; 4903 } 4904 4905 void SSL_set_security_callback(SSL *s, 4906 int (*cb) (const SSL *s, const SSL_CTX *ctx, 4907 int op, int bits, int nid, 4908 void *other, void *ex)) 4909 { 4910 s->cert->sec_cb = cb; 4911 } 4912 4913 int (*SSL_get_security_callback(const SSL *s)) (const SSL *s, 4914 const SSL_CTX *ctx, int op, 4915 int bits, int nid, void *other, 4916 void *ex) { 4917 return s->cert->sec_cb; 4918 } 4919 4920 void SSL_set0_security_ex_data(SSL *s, void *ex) 4921 { 4922 s->cert->sec_ex = ex; 4923 } 4924 4925 void *SSL_get0_security_ex_data(const SSL *s) 4926 { 4927 return s->cert->sec_ex; 4928 } 4929 4930 void SSL_CTX_set_security_level(SSL_CTX *ctx, int level) 4931 { 4932 ctx->cert->sec_level = level; 4933 } 4934 4935 int SSL_CTX_get_security_level(const SSL_CTX *ctx) 4936 { 4937 return ctx->cert->sec_level; 4938 } 4939 4940 void SSL_CTX_set_security_callback(SSL_CTX *ctx, 4941 int (*cb) (const SSL *s, const SSL_CTX *ctx, 4942 int op, int bits, int nid, 4943 void *other, void *ex)) 4944 { 4945 ctx->cert->sec_cb = cb; 4946 } 4947 4948 int (*SSL_CTX_get_security_callback(const SSL_CTX *ctx)) (const SSL *s, 4949 const SSL_CTX *ctx, 4950 int op, int bits, 4951 int nid, 4952 void *other, 4953 void *ex) { 4954 return ctx->cert->sec_cb; 4955 } 4956 4957 void SSL_CTX_set0_security_ex_data(SSL_CTX *ctx, void *ex) 4958 { 4959 ctx->cert->sec_ex = ex; 4960 } 4961 4962 void *SSL_CTX_get0_security_ex_data(const SSL_CTX *ctx) 4963 { 4964 return ctx->cert->sec_ex; 4965 } 4966 4967 uint64_t SSL_CTX_get_options(const SSL_CTX *ctx) 4968 { 4969 return ctx->options; 4970 } 4971 4972 uint64_t SSL_get_options(const SSL *s) 4973 { 4974 return s->options; 4975 } 4976 4977 uint64_t SSL_CTX_set_options(SSL_CTX *ctx, uint64_t op) 4978 { 4979 return ctx->options |= op; 4980 } 4981 4982 uint64_t SSL_set_options(SSL *s, uint64_t op) 4983 { 4984 return s->options |= op; 4985 } 4986 4987 uint64_t SSL_CTX_clear_options(SSL_CTX *ctx, uint64_t op) 4988 { 4989 return ctx->options &= ~op; 4990 } 4991 4992 uint64_t SSL_clear_options(SSL *s, uint64_t op) 4993 { 4994 return s->options &= ~op; 4995 } 4996 4997 STACK_OF(X509) *SSL_get0_verified_chain(const SSL *s) 4998 { 4999 return s->verified_chain; 5000 } 5001 5002 IMPLEMENT_OBJ_BSEARCH_GLOBAL_CMP_FN(SSL_CIPHER, SSL_CIPHER, ssl_cipher_id); 5003 5004 #ifndef OPENSSL_NO_CT 5005 5006 /* 5007 * Moves SCTs from the |src| stack to the |dst| stack. 5008 * The source of each SCT will be set to |origin|. 5009 * If |dst| points to a NULL pointer, a new stack will be created and owned by 5010 * the caller. 5011 * Returns the number of SCTs moved, or a negative integer if an error occurs. 5012 * The |dst| stack is created and possibly partially populated even in case 5013 * of error, likewise the |src| stack may be left in an intermediate state. 5014 */ 5015 static int ct_move_scts(STACK_OF(SCT) **dst, STACK_OF(SCT) *src, 5016 sct_source_t origin) 5017 { 5018 int scts_moved = 0; 5019 SCT *sct = NULL; 5020 5021 if (*dst == NULL) { 5022 *dst = sk_SCT_new_null(); 5023 if (*dst == NULL) { 5024 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); 5025 goto err; 5026 } 5027 } 5028 5029 while ((sct = sk_SCT_pop(src)) != NULL) { 5030 if (SCT_set_source(sct, origin) != 1) 5031 goto err; 5032 5033 if (!sk_SCT_push(*dst, sct)) 5034 goto err; 5035 scts_moved += 1; 5036 } 5037 5038 return scts_moved; 5039 err: 5040 SCT_free(sct); 5041 return -1; 5042 } 5043 5044 /* 5045 * Look for data collected during ServerHello and parse if found. 5046 * Returns the number of SCTs extracted. 5047 */ 5048 static int ct_extract_tls_extension_scts(SSL *s) 5049 { 5050 int scts_extracted = 0; 5051 5052 if (s->ext.scts != NULL) { 5053 const unsigned char *p = s->ext.scts; 5054 STACK_OF(SCT) *scts = o2i_SCT_LIST(NULL, &p, s->ext.scts_len); 5055 5056 scts_extracted = ct_move_scts(&s->scts, scts, SCT_SOURCE_TLS_EXTENSION); 5057 5058 SCT_LIST_free(scts); 5059 } 5060 5061 return scts_extracted; 5062 } 5063 5064 /* 5065 * Checks for an OCSP response and then attempts to extract any SCTs found if it 5066 * contains an SCT X509 extension. They will be stored in |s->scts|. 5067 * Returns: 5068 * - The number of SCTs extracted, assuming an OCSP response exists. 5069 * - 0 if no OCSP response exists or it contains no SCTs. 5070 * - A negative integer if an error occurs. 5071 */ 5072 static int ct_extract_ocsp_response_scts(SSL *s) 5073 { 5074 # ifndef OPENSSL_NO_OCSP 5075 int scts_extracted = 0; 5076 const unsigned char *p; 5077 OCSP_BASICRESP *br = NULL; 5078 OCSP_RESPONSE *rsp = NULL; 5079 STACK_OF(SCT) *scts = NULL; 5080 int i; 5081 5082 if (s->ext.ocsp.resp == NULL || s->ext.ocsp.resp_len == 0) 5083 goto err; 5084 5085 p = s->ext.ocsp.resp; 5086 rsp = d2i_OCSP_RESPONSE(NULL, &p, (int)s->ext.ocsp.resp_len); 5087 if (rsp == NULL) 5088 goto err; 5089 5090 br = OCSP_response_get1_basic(rsp); 5091 if (br == NULL) 5092 goto err; 5093 5094 for (i = 0; i < OCSP_resp_count(br); ++i) { 5095 OCSP_SINGLERESP *single = OCSP_resp_get0(br, i); 5096 5097 if (single == NULL) 5098 continue; 5099 5100 scts = 5101 OCSP_SINGLERESP_get1_ext_d2i(single, NID_ct_cert_scts, NULL, NULL); 5102 scts_extracted = 5103 ct_move_scts(&s->scts, scts, SCT_SOURCE_OCSP_STAPLED_RESPONSE); 5104 if (scts_extracted < 0) 5105 goto err; 5106 } 5107 err: 5108 SCT_LIST_free(scts); 5109 OCSP_BASICRESP_free(br); 5110 OCSP_RESPONSE_free(rsp); 5111 return scts_extracted; 5112 # else 5113 /* Behave as if no OCSP response exists */ 5114 return 0; 5115 # endif 5116 } 5117 5118 /* 5119 * Attempts to extract SCTs from the peer certificate. 5120 * Return the number of SCTs extracted, or a negative integer if an error 5121 * occurs. 5122 */ 5123 static int ct_extract_x509v3_extension_scts(SSL *s) 5124 { 5125 int scts_extracted = 0; 5126 X509 *cert = s->session != NULL ? s->session->peer : NULL; 5127 5128 if (cert != NULL) { 5129 STACK_OF(SCT) *scts = 5130 X509_get_ext_d2i(cert, NID_ct_precert_scts, NULL, NULL); 5131 5132 scts_extracted = 5133 ct_move_scts(&s->scts, scts, SCT_SOURCE_X509V3_EXTENSION); 5134 5135 SCT_LIST_free(scts); 5136 } 5137 5138 return scts_extracted; 5139 } 5140 5141 /* 5142 * Attempts to find all received SCTs by checking TLS extensions, the OCSP 5143 * response (if it exists) and X509v3 extensions in the certificate. 5144 * Returns NULL if an error occurs. 5145 */ 5146 const STACK_OF(SCT) *SSL_get0_peer_scts(SSL *s) 5147 { 5148 if (!s->scts_parsed) { 5149 if (ct_extract_tls_extension_scts(s) < 0 || 5150 ct_extract_ocsp_response_scts(s) < 0 || 5151 ct_extract_x509v3_extension_scts(s) < 0) 5152 goto err; 5153 5154 s->scts_parsed = 1; 5155 } 5156 return s->scts; 5157 err: 5158 return NULL; 5159 } 5160 5161 static int ct_permissive(const CT_POLICY_EVAL_CTX * ctx, 5162 const STACK_OF(SCT) *scts, void *unused_arg) 5163 { 5164 return 1; 5165 } 5166 5167 static int ct_strict(const CT_POLICY_EVAL_CTX * ctx, 5168 const STACK_OF(SCT) *scts, void *unused_arg) 5169 { 5170 int count = scts != NULL ? sk_SCT_num(scts) : 0; 5171 int i; 5172 5173 for (i = 0; i < count; ++i) { 5174 SCT *sct = sk_SCT_value(scts, i); 5175 int status = SCT_get_validation_status(sct); 5176 5177 if (status == SCT_VALIDATION_STATUS_VALID) 5178 return 1; 5179 } 5180 ERR_raise(ERR_LIB_SSL, SSL_R_NO_VALID_SCTS); 5181 return 0; 5182 } 5183 5184 int SSL_set_ct_validation_callback(SSL *s, ssl_ct_validation_cb callback, 5185 void *arg) 5186 { 5187 /* 5188 * Since code exists that uses the custom extension handler for CT, look 5189 * for this and throw an error if they have already registered to use CT. 5190 */ 5191 if (callback != NULL && SSL_CTX_has_client_custom_ext(s->ctx, 5192 TLSEXT_TYPE_signed_certificate_timestamp)) 5193 { 5194 ERR_raise(ERR_LIB_SSL, SSL_R_CUSTOM_EXT_HANDLER_ALREADY_INSTALLED); 5195 return 0; 5196 } 5197 5198 if (callback != NULL) { 5199 /* 5200 * If we are validating CT, then we MUST accept SCTs served via OCSP 5201 */ 5202 if (!SSL_set_tlsext_status_type(s, TLSEXT_STATUSTYPE_ocsp)) 5203 return 0; 5204 } 5205 5206 s->ct_validation_callback = callback; 5207 s->ct_validation_callback_arg = arg; 5208 5209 return 1; 5210 } 5211 5212 int SSL_CTX_set_ct_validation_callback(SSL_CTX *ctx, 5213 ssl_ct_validation_cb callback, void *arg) 5214 { 5215 /* 5216 * Since code exists that uses the custom extension handler for CT, look for 5217 * this and throw an error if they have already registered to use CT. 5218 */ 5219 if (callback != NULL && SSL_CTX_has_client_custom_ext(ctx, 5220 TLSEXT_TYPE_signed_certificate_timestamp)) 5221 { 5222 ERR_raise(ERR_LIB_SSL, SSL_R_CUSTOM_EXT_HANDLER_ALREADY_INSTALLED); 5223 return 0; 5224 } 5225 5226 ctx->ct_validation_callback = callback; 5227 ctx->ct_validation_callback_arg = arg; 5228 return 1; 5229 } 5230 5231 int SSL_ct_is_enabled(const SSL *s) 5232 { 5233 return s->ct_validation_callback != NULL; 5234 } 5235 5236 int SSL_CTX_ct_is_enabled(const SSL_CTX *ctx) 5237 { 5238 return ctx->ct_validation_callback != NULL; 5239 } 5240 5241 int ssl_validate_ct(SSL *s) 5242 { 5243 int ret = 0; 5244 X509 *cert = s->session != NULL ? s->session->peer : NULL; 5245 X509 *issuer; 5246 SSL_DANE *dane = &s->dane; 5247 CT_POLICY_EVAL_CTX *ctx = NULL; 5248 const STACK_OF(SCT) *scts; 5249 5250 /* 5251 * If no callback is set, the peer is anonymous, or its chain is invalid, 5252 * skip SCT validation - just return success. Applications that continue 5253 * handshakes without certificates, with unverified chains, or pinned leaf 5254 * certificates are outside the scope of the WebPKI and CT. 5255 * 5256 * The above exclusions notwithstanding the vast majority of peers will 5257 * have rather ordinary certificate chains validated by typical 5258 * applications that perform certificate verification and therefore will 5259 * process SCTs when enabled. 5260 */ 5261 if (s->ct_validation_callback == NULL || cert == NULL || 5262 s->verify_result != X509_V_OK || 5263 s->verified_chain == NULL || sk_X509_num(s->verified_chain) <= 1) 5264 return 1; 5265 5266 /* 5267 * CT not applicable for chains validated via DANE-TA(2) or DANE-EE(3) 5268 * trust-anchors. See https://tools.ietf.org/html/rfc7671#section-4.2 5269 */ 5270 if (DANETLS_ENABLED(dane) && dane->mtlsa != NULL) { 5271 switch (dane->mtlsa->usage) { 5272 case DANETLS_USAGE_DANE_TA: 5273 case DANETLS_USAGE_DANE_EE: 5274 return 1; 5275 } 5276 } 5277 5278 ctx = CT_POLICY_EVAL_CTX_new_ex(s->ctx->libctx, s->ctx->propq); 5279 if (ctx == NULL) { 5280 SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_MALLOC_FAILURE); 5281 goto end; 5282 } 5283 5284 issuer = sk_X509_value(s->verified_chain, 1); 5285 CT_POLICY_EVAL_CTX_set1_cert(ctx, cert); 5286 CT_POLICY_EVAL_CTX_set1_issuer(ctx, issuer); 5287 CT_POLICY_EVAL_CTX_set_shared_CTLOG_STORE(ctx, s->ctx->ctlog_store); 5288 CT_POLICY_EVAL_CTX_set_time( 5289 ctx, (uint64_t)SSL_SESSION_get_time(SSL_get0_session(s)) * 1000); 5290 5291 scts = SSL_get0_peer_scts(s); 5292 5293 /* 5294 * This function returns success (> 0) only when all the SCTs are valid, 0 5295 * when some are invalid, and < 0 on various internal errors (out of 5296 * memory, etc.). Having some, or even all, invalid SCTs is not sufficient 5297 * reason to abort the handshake, that decision is up to the callback. 5298 * Therefore, we error out only in the unexpected case that the return 5299 * value is negative. 5300 * 5301 * XXX: One might well argue that the return value of this function is an 5302 * unfortunate design choice. Its job is only to determine the validation 5303 * status of each of the provided SCTs. So long as it correctly separates 5304 * the wheat from the chaff it should return success. Failure in this case 5305 * ought to correspond to an inability to carry out its duties. 5306 */ 5307 if (SCT_LIST_validate(scts, ctx) < 0) { 5308 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_SCT_VERIFICATION_FAILED); 5309 goto end; 5310 } 5311 5312 ret = s->ct_validation_callback(ctx, scts, s->ct_validation_callback_arg); 5313 if (ret < 0) 5314 ret = 0; /* This function returns 0 on failure */ 5315 if (!ret) 5316 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_CALLBACK_FAILED); 5317 5318 end: 5319 CT_POLICY_EVAL_CTX_free(ctx); 5320 /* 5321 * With SSL_VERIFY_NONE the session may be cached and re-used despite a 5322 * failure return code here. Also the application may wish the complete 5323 * the handshake, and then disconnect cleanly at a higher layer, after 5324 * checking the verification status of the completed connection. 5325 * 5326 * We therefore force a certificate verification failure which will be 5327 * visible via SSL_get_verify_result() and cached as part of any resumed 5328 * session. 5329 * 5330 * Note: the permissive callback is for information gathering only, always 5331 * returns success, and does not affect verification status. Only the 5332 * strict callback or a custom application-specified callback can trigger 5333 * connection failure or record a verification error. 5334 */ 5335 if (ret <= 0) 5336 s->verify_result = X509_V_ERR_NO_VALID_SCTS; 5337 return ret; 5338 } 5339 5340 int SSL_CTX_enable_ct(SSL_CTX *ctx, int validation_mode) 5341 { 5342 switch (validation_mode) { 5343 default: 5344 ERR_raise(ERR_LIB_SSL, SSL_R_INVALID_CT_VALIDATION_TYPE); 5345 return 0; 5346 case SSL_CT_VALIDATION_PERMISSIVE: 5347 return SSL_CTX_set_ct_validation_callback(ctx, ct_permissive, NULL); 5348 case SSL_CT_VALIDATION_STRICT: 5349 return SSL_CTX_set_ct_validation_callback(ctx, ct_strict, NULL); 5350 } 5351 } 5352 5353 int SSL_enable_ct(SSL *s, int validation_mode) 5354 { 5355 switch (validation_mode) { 5356 default: 5357 ERR_raise(ERR_LIB_SSL, SSL_R_INVALID_CT_VALIDATION_TYPE); 5358 return 0; 5359 case SSL_CT_VALIDATION_PERMISSIVE: 5360 return SSL_set_ct_validation_callback(s, ct_permissive, NULL); 5361 case SSL_CT_VALIDATION_STRICT: 5362 return SSL_set_ct_validation_callback(s, ct_strict, NULL); 5363 } 5364 } 5365 5366 int SSL_CTX_set_default_ctlog_list_file(SSL_CTX *ctx) 5367 { 5368 return CTLOG_STORE_load_default_file(ctx->ctlog_store); 5369 } 5370 5371 int SSL_CTX_set_ctlog_list_file(SSL_CTX *ctx, const char *path) 5372 { 5373 return CTLOG_STORE_load_file(ctx->ctlog_store, path); 5374 } 5375 5376 void SSL_CTX_set0_ctlog_store(SSL_CTX *ctx, CTLOG_STORE * logs) 5377 { 5378 CTLOG_STORE_free(ctx->ctlog_store); 5379 ctx->ctlog_store = logs; 5380 } 5381 5382 const CTLOG_STORE *SSL_CTX_get0_ctlog_store(const SSL_CTX *ctx) 5383 { 5384 return ctx->ctlog_store; 5385 } 5386 5387 #endif /* OPENSSL_NO_CT */ 5388 5389 void SSL_CTX_set_client_hello_cb(SSL_CTX *c, SSL_client_hello_cb_fn cb, 5390 void *arg) 5391 { 5392 c->client_hello_cb = cb; 5393 c->client_hello_cb_arg = arg; 5394 } 5395 5396 int SSL_client_hello_isv2(SSL *s) 5397 { 5398 if (s->clienthello == NULL) 5399 return 0; 5400 return s->clienthello->isv2; 5401 } 5402 5403 unsigned int SSL_client_hello_get0_legacy_version(SSL *s) 5404 { 5405 if (s->clienthello == NULL) 5406 return 0; 5407 return s->clienthello->legacy_version; 5408 } 5409 5410 size_t SSL_client_hello_get0_random(SSL *s, const unsigned char **out) 5411 { 5412 if (s->clienthello == NULL) 5413 return 0; 5414 if (out != NULL) 5415 *out = s->clienthello->random; 5416 return SSL3_RANDOM_SIZE; 5417 } 5418 5419 size_t SSL_client_hello_get0_session_id(SSL *s, const unsigned char **out) 5420 { 5421 if (s->clienthello == NULL) 5422 return 0; 5423 if (out != NULL) 5424 *out = s->clienthello->session_id; 5425 return s->clienthello->session_id_len; 5426 } 5427 5428 size_t SSL_client_hello_get0_ciphers(SSL *s, const unsigned char **out) 5429 { 5430 if (s->clienthello == NULL) 5431 return 0; 5432 if (out != NULL) 5433 *out = PACKET_data(&s->clienthello->ciphersuites); 5434 return PACKET_remaining(&s->clienthello->ciphersuites); 5435 } 5436 5437 size_t SSL_client_hello_get0_compression_methods(SSL *s, const unsigned char **out) 5438 { 5439 if (s->clienthello == NULL) 5440 return 0; 5441 if (out != NULL) 5442 *out = s->clienthello->compressions; 5443 return s->clienthello->compressions_len; 5444 } 5445 5446 int SSL_client_hello_get1_extensions_present(SSL *s, int **out, size_t *outlen) 5447 { 5448 RAW_EXTENSION *ext; 5449 int *present; 5450 size_t num = 0, i; 5451 5452 if (s->clienthello == NULL || out == NULL || outlen == NULL) 5453 return 0; 5454 for (i = 0; i < s->clienthello->pre_proc_exts_len; i++) { 5455 ext = s->clienthello->pre_proc_exts + i; 5456 if (ext->present) 5457 num++; 5458 } 5459 if (num == 0) { 5460 *out = NULL; 5461 *outlen = 0; 5462 return 1; 5463 } 5464 if ((present = OPENSSL_malloc(sizeof(*present) * num)) == NULL) { 5465 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); 5466 return 0; 5467 } 5468 for (i = 0; i < s->clienthello->pre_proc_exts_len; i++) { 5469 ext = s->clienthello->pre_proc_exts + i; 5470 if (ext->present) { 5471 if (ext->received_order >= num) 5472 goto err; 5473 present[ext->received_order] = ext->type; 5474 } 5475 } 5476 *out = present; 5477 *outlen = num; 5478 return 1; 5479 err: 5480 OPENSSL_free(present); 5481 return 0; 5482 } 5483 5484 int SSL_client_hello_get0_ext(SSL *s, unsigned int type, const unsigned char **out, 5485 size_t *outlen) 5486 { 5487 size_t i; 5488 RAW_EXTENSION *r; 5489 5490 if (s->clienthello == NULL) 5491 return 0; 5492 for (i = 0; i < s->clienthello->pre_proc_exts_len; ++i) { 5493 r = s->clienthello->pre_proc_exts + i; 5494 if (r->present && r->type == type) { 5495 if (out != NULL) 5496 *out = PACKET_data(&r->data); 5497 if (outlen != NULL) 5498 *outlen = PACKET_remaining(&r->data); 5499 return 1; 5500 } 5501 } 5502 return 0; 5503 } 5504 5505 int SSL_free_buffers(SSL *ssl) 5506 { 5507 RECORD_LAYER *rl = &ssl->rlayer; 5508 5509 if (RECORD_LAYER_read_pending(rl) || RECORD_LAYER_write_pending(rl)) 5510 return 0; 5511 5512 if (RECORD_LAYER_data_present(rl)) 5513 return 0; 5514 5515 RECORD_LAYER_release(rl); 5516 return 1; 5517 } 5518 5519 int SSL_alloc_buffers(SSL *ssl) 5520 { 5521 return ssl3_setup_buffers(ssl); 5522 } 5523 5524 void SSL_CTX_set_keylog_callback(SSL_CTX *ctx, SSL_CTX_keylog_cb_func cb) 5525 { 5526 ctx->keylog_callback = cb; 5527 } 5528 5529 SSL_CTX_keylog_cb_func SSL_CTX_get_keylog_callback(const SSL_CTX *ctx) 5530 { 5531 return ctx->keylog_callback; 5532 } 5533 5534 static int nss_keylog_int(const char *prefix, 5535 SSL *ssl, 5536 const uint8_t *parameter_1, 5537 size_t parameter_1_len, 5538 const uint8_t *parameter_2, 5539 size_t parameter_2_len) 5540 { 5541 char *out = NULL; 5542 char *cursor = NULL; 5543 size_t out_len = 0; 5544 size_t i; 5545 size_t prefix_len; 5546 5547 if (ssl->ctx->keylog_callback == NULL) 5548 return 1; 5549 5550 /* 5551 * Our output buffer will contain the following strings, rendered with 5552 * space characters in between, terminated by a NULL character: first the 5553 * prefix, then the first parameter, then the second parameter. The 5554 * meaning of each parameter depends on the specific key material being 5555 * logged. Note that the first and second parameters are encoded in 5556 * hexadecimal, so we need a buffer that is twice their lengths. 5557 */ 5558 prefix_len = strlen(prefix); 5559 out_len = prefix_len + (2 * parameter_1_len) + (2 * parameter_2_len) + 3; 5560 if ((out = cursor = OPENSSL_malloc(out_len)) == NULL) { 5561 SSLfatal(ssl, SSL_AD_INTERNAL_ERROR, ERR_R_MALLOC_FAILURE); 5562 return 0; 5563 } 5564 5565 strcpy(cursor, prefix); 5566 cursor += prefix_len; 5567 *cursor++ = ' '; 5568 5569 for (i = 0; i < parameter_1_len; i++) { 5570 sprintf(cursor, "%02x", parameter_1[i]); 5571 cursor += 2; 5572 } 5573 *cursor++ = ' '; 5574 5575 for (i = 0; i < parameter_2_len; i++) { 5576 sprintf(cursor, "%02x", parameter_2[i]); 5577 cursor += 2; 5578 } 5579 *cursor = '\0'; 5580 5581 ssl->ctx->keylog_callback(ssl, (const char *)out); 5582 OPENSSL_clear_free(out, out_len); 5583 return 1; 5584 5585 } 5586 5587 int ssl_log_rsa_client_key_exchange(SSL *ssl, 5588 const uint8_t *encrypted_premaster, 5589 size_t encrypted_premaster_len, 5590 const uint8_t *premaster, 5591 size_t premaster_len) 5592 { 5593 if (encrypted_premaster_len < 8) { 5594 SSLfatal(ssl, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); 5595 return 0; 5596 } 5597 5598 /* We only want the first 8 bytes of the encrypted premaster as a tag. */ 5599 return nss_keylog_int("RSA", 5600 ssl, 5601 encrypted_premaster, 5602 8, 5603 premaster, 5604 premaster_len); 5605 } 5606 5607 int ssl_log_secret(SSL *ssl, 5608 const char *label, 5609 const uint8_t *secret, 5610 size_t secret_len) 5611 { 5612 return nss_keylog_int(label, 5613 ssl, 5614 ssl->s3.client_random, 5615 SSL3_RANDOM_SIZE, 5616 secret, 5617 secret_len); 5618 } 5619 5620 #define SSLV2_CIPHER_LEN 3 5621 5622 int ssl_cache_cipherlist(SSL *s, PACKET *cipher_suites, int sslv2format) 5623 { 5624 int n; 5625 5626 n = sslv2format ? SSLV2_CIPHER_LEN : TLS_CIPHER_LEN; 5627 5628 if (PACKET_remaining(cipher_suites) == 0) { 5629 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_NO_CIPHERS_SPECIFIED); 5630 return 0; 5631 } 5632 5633 if (PACKET_remaining(cipher_suites) % n != 0) { 5634 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST); 5635 return 0; 5636 } 5637 5638 OPENSSL_free(s->s3.tmp.ciphers_raw); 5639 s->s3.tmp.ciphers_raw = NULL; 5640 s->s3.tmp.ciphers_rawlen = 0; 5641 5642 if (sslv2format) { 5643 size_t numciphers = PACKET_remaining(cipher_suites) / n; 5644 PACKET sslv2ciphers = *cipher_suites; 5645 unsigned int leadbyte; 5646 unsigned char *raw; 5647 5648 /* 5649 * We store the raw ciphers list in SSLv3+ format so we need to do some 5650 * preprocessing to convert the list first. If there are any SSLv2 only 5651 * ciphersuites with a non-zero leading byte then we are going to 5652 * slightly over allocate because we won't store those. But that isn't a 5653 * problem. 5654 */ 5655 raw = OPENSSL_malloc(numciphers * TLS_CIPHER_LEN); 5656 s->s3.tmp.ciphers_raw = raw; 5657 if (raw == NULL) { 5658 SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_MALLOC_FAILURE); 5659 return 0; 5660 } 5661 for (s->s3.tmp.ciphers_rawlen = 0; 5662 PACKET_remaining(&sslv2ciphers) > 0; 5663 raw += TLS_CIPHER_LEN) { 5664 if (!PACKET_get_1(&sslv2ciphers, &leadbyte) 5665 || (leadbyte == 0 5666 && !PACKET_copy_bytes(&sslv2ciphers, raw, 5667 TLS_CIPHER_LEN)) 5668 || (leadbyte != 0 5669 && !PACKET_forward(&sslv2ciphers, TLS_CIPHER_LEN))) { 5670 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_R_BAD_PACKET); 5671 OPENSSL_free(s->s3.tmp.ciphers_raw); 5672 s->s3.tmp.ciphers_raw = NULL; 5673 s->s3.tmp.ciphers_rawlen = 0; 5674 return 0; 5675 } 5676 if (leadbyte == 0) 5677 s->s3.tmp.ciphers_rawlen += TLS_CIPHER_LEN; 5678 } 5679 } else if (!PACKET_memdup(cipher_suites, &s->s3.tmp.ciphers_raw, 5680 &s->s3.tmp.ciphers_rawlen)) { 5681 SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); 5682 return 0; 5683 } 5684 return 1; 5685 } 5686 5687 int SSL_bytes_to_cipher_list(SSL *s, const unsigned char *bytes, size_t len, 5688 int isv2format, STACK_OF(SSL_CIPHER) **sk, 5689 STACK_OF(SSL_CIPHER) **scsvs) 5690 { 5691 PACKET pkt; 5692 5693 if (!PACKET_buf_init(&pkt, bytes, len)) 5694 return 0; 5695 return bytes_to_cipher_list(s, &pkt, sk, scsvs, isv2format, 0); 5696 } 5697 5698 int bytes_to_cipher_list(SSL *s, PACKET *cipher_suites, 5699 STACK_OF(SSL_CIPHER) **skp, 5700 STACK_OF(SSL_CIPHER) **scsvs_out, 5701 int sslv2format, int fatal) 5702 { 5703 const SSL_CIPHER *c; 5704 STACK_OF(SSL_CIPHER) *sk = NULL; 5705 STACK_OF(SSL_CIPHER) *scsvs = NULL; 5706 int n; 5707 /* 3 = SSLV2_CIPHER_LEN > TLS_CIPHER_LEN = 2. */ 5708 unsigned char cipher[SSLV2_CIPHER_LEN]; 5709 5710 n = sslv2format ? SSLV2_CIPHER_LEN : TLS_CIPHER_LEN; 5711 5712 if (PACKET_remaining(cipher_suites) == 0) { 5713 if (fatal) 5714 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_NO_CIPHERS_SPECIFIED); 5715 else 5716 ERR_raise(ERR_LIB_SSL, SSL_R_NO_CIPHERS_SPECIFIED); 5717 return 0; 5718 } 5719 5720 if (PACKET_remaining(cipher_suites) % n != 0) { 5721 if (fatal) 5722 SSLfatal(s, SSL_AD_DECODE_ERROR, 5723 SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST); 5724 else 5725 ERR_raise(ERR_LIB_SSL, SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST); 5726 return 0; 5727 } 5728 5729 sk = sk_SSL_CIPHER_new_null(); 5730 scsvs = sk_SSL_CIPHER_new_null(); 5731 if (sk == NULL || scsvs == NULL) { 5732 if (fatal) 5733 SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_MALLOC_FAILURE); 5734 else 5735 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); 5736 goto err; 5737 } 5738 5739 while (PACKET_copy_bytes(cipher_suites, cipher, n)) { 5740 /* 5741 * SSLv3 ciphers wrapped in an SSLv2-compatible ClientHello have the 5742 * first byte set to zero, while true SSLv2 ciphers have a non-zero 5743 * first byte. We don't support any true SSLv2 ciphers, so skip them. 5744 */ 5745 if (sslv2format && cipher[0] != '\0') 5746 continue; 5747 5748 /* For SSLv2-compat, ignore leading 0-byte. */ 5749 c = ssl_get_cipher_by_char(s, sslv2format ? &cipher[1] : cipher, 1); 5750 if (c != NULL) { 5751 if ((c->valid && !sk_SSL_CIPHER_push(sk, c)) || 5752 (!c->valid && !sk_SSL_CIPHER_push(scsvs, c))) { 5753 if (fatal) 5754 SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_MALLOC_FAILURE); 5755 else 5756 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); 5757 goto err; 5758 } 5759 } 5760 } 5761 if (PACKET_remaining(cipher_suites) > 0) { 5762 if (fatal) 5763 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_R_BAD_LENGTH); 5764 else 5765 ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH); 5766 goto err; 5767 } 5768 5769 if (skp != NULL) 5770 *skp = sk; 5771 else 5772 sk_SSL_CIPHER_free(sk); 5773 if (scsvs_out != NULL) 5774 *scsvs_out = scsvs; 5775 else 5776 sk_SSL_CIPHER_free(scsvs); 5777 return 1; 5778 err: 5779 sk_SSL_CIPHER_free(sk); 5780 sk_SSL_CIPHER_free(scsvs); 5781 return 0; 5782 } 5783 5784 int SSL_CTX_set_max_early_data(SSL_CTX *ctx, uint32_t max_early_data) 5785 { 5786 ctx->max_early_data = max_early_data; 5787 5788 return 1; 5789 } 5790 5791 uint32_t SSL_CTX_get_max_early_data(const SSL_CTX *ctx) 5792 { 5793 return ctx->max_early_data; 5794 } 5795 5796 int SSL_set_max_early_data(SSL *s, uint32_t max_early_data) 5797 { 5798 s->max_early_data = max_early_data; 5799 5800 return 1; 5801 } 5802 5803 uint32_t SSL_get_max_early_data(const SSL *s) 5804 { 5805 return s->max_early_data; 5806 } 5807 5808 int SSL_CTX_set_recv_max_early_data(SSL_CTX *ctx, uint32_t recv_max_early_data) 5809 { 5810 ctx->recv_max_early_data = recv_max_early_data; 5811 5812 return 1; 5813 } 5814 5815 uint32_t SSL_CTX_get_recv_max_early_data(const SSL_CTX *ctx) 5816 { 5817 return ctx->recv_max_early_data; 5818 } 5819 5820 int SSL_set_recv_max_early_data(SSL *s, uint32_t recv_max_early_data) 5821 { 5822 s->recv_max_early_data = recv_max_early_data; 5823 5824 return 1; 5825 } 5826 5827 uint32_t SSL_get_recv_max_early_data(const SSL *s) 5828 { 5829 return s->recv_max_early_data; 5830 } 5831 5832 __owur unsigned int ssl_get_max_send_fragment(const SSL *ssl) 5833 { 5834 /* Return any active Max Fragment Len extension */ 5835 if (ssl->session != NULL && USE_MAX_FRAGMENT_LENGTH_EXT(ssl->session)) 5836 return GET_MAX_FRAGMENT_LENGTH(ssl->session); 5837 5838 /* return current SSL connection setting */ 5839 return ssl->max_send_fragment; 5840 } 5841 5842 __owur unsigned int ssl_get_split_send_fragment(const SSL *ssl) 5843 { 5844 /* Return a value regarding an active Max Fragment Len extension */ 5845 if (ssl->session != NULL && USE_MAX_FRAGMENT_LENGTH_EXT(ssl->session) 5846 && ssl->split_send_fragment > GET_MAX_FRAGMENT_LENGTH(ssl->session)) 5847 return GET_MAX_FRAGMENT_LENGTH(ssl->session); 5848 5849 /* else limit |split_send_fragment| to current |max_send_fragment| */ 5850 if (ssl->split_send_fragment > ssl->max_send_fragment) 5851 return ssl->max_send_fragment; 5852 5853 /* return current SSL connection setting */ 5854 return ssl->split_send_fragment; 5855 } 5856 5857 int SSL_stateless(SSL *s) 5858 { 5859 int ret; 5860 5861 /* Ensure there is no state left over from a previous invocation */ 5862 if (!SSL_clear(s)) 5863 return 0; 5864 5865 ERR_clear_error(); 5866 5867 s->s3.flags |= TLS1_FLAGS_STATELESS; 5868 ret = SSL_accept(s); 5869 s->s3.flags &= ~TLS1_FLAGS_STATELESS; 5870 5871 if (ret > 0 && s->ext.cookieok) 5872 return 1; 5873 5874 if (s->hello_retry_request == SSL_HRR_PENDING && !ossl_statem_in_error(s)) 5875 return 0; 5876 5877 return -1; 5878 } 5879 5880 void SSL_CTX_set_post_handshake_auth(SSL_CTX *ctx, int val) 5881 { 5882 ctx->pha_enabled = val; 5883 } 5884 5885 void SSL_set_post_handshake_auth(SSL *ssl, int val) 5886 { 5887 ssl->pha_enabled = val; 5888 } 5889 5890 int SSL_verify_client_post_handshake(SSL *ssl) 5891 { 5892 if (!SSL_IS_TLS13(ssl)) { 5893 ERR_raise(ERR_LIB_SSL, SSL_R_WRONG_SSL_VERSION); 5894 return 0; 5895 } 5896 if (!ssl->server) { 5897 ERR_raise(ERR_LIB_SSL, SSL_R_NOT_SERVER); 5898 return 0; 5899 } 5900 5901 if (!SSL_is_init_finished(ssl)) { 5902 ERR_raise(ERR_LIB_SSL, SSL_R_STILL_IN_INIT); 5903 return 0; 5904 } 5905 5906 switch (ssl->post_handshake_auth) { 5907 case SSL_PHA_NONE: 5908 ERR_raise(ERR_LIB_SSL, SSL_R_EXTENSION_NOT_RECEIVED); 5909 return 0; 5910 default: 5911 case SSL_PHA_EXT_SENT: 5912 ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR); 5913 return 0; 5914 case SSL_PHA_EXT_RECEIVED: 5915 break; 5916 case SSL_PHA_REQUEST_PENDING: 5917 ERR_raise(ERR_LIB_SSL, SSL_R_REQUEST_PENDING); 5918 return 0; 5919 case SSL_PHA_REQUESTED: 5920 ERR_raise(ERR_LIB_SSL, SSL_R_REQUEST_SENT); 5921 return 0; 5922 } 5923 5924 ssl->post_handshake_auth = SSL_PHA_REQUEST_PENDING; 5925 5926 /* checks verify_mode and algorithm_auth */ 5927 if (!send_certificate_request(ssl)) { 5928 ssl->post_handshake_auth = SSL_PHA_EXT_RECEIVED; /* restore on error */ 5929 ERR_raise(ERR_LIB_SSL, SSL_R_INVALID_CONFIG); 5930 return 0; 5931 } 5932 5933 ossl_statem_set_in_init(ssl, 1); 5934 return 1; 5935 } 5936 5937 int SSL_CTX_set_session_ticket_cb(SSL_CTX *ctx, 5938 SSL_CTX_generate_session_ticket_fn gen_cb, 5939 SSL_CTX_decrypt_session_ticket_fn dec_cb, 5940 void *arg) 5941 { 5942 ctx->generate_ticket_cb = gen_cb; 5943 ctx->decrypt_ticket_cb = dec_cb; 5944 ctx->ticket_cb_data = arg; 5945 return 1; 5946 } 5947 5948 void SSL_CTX_set_allow_early_data_cb(SSL_CTX *ctx, 5949 SSL_allow_early_data_cb_fn cb, 5950 void *arg) 5951 { 5952 ctx->allow_early_data_cb = cb; 5953 ctx->allow_early_data_cb_data = arg; 5954 } 5955 5956 void SSL_set_allow_early_data_cb(SSL *s, 5957 SSL_allow_early_data_cb_fn cb, 5958 void *arg) 5959 { 5960 s->allow_early_data_cb = cb; 5961 s->allow_early_data_cb_data = arg; 5962 } 5963 5964 const EVP_CIPHER *ssl_evp_cipher_fetch(OSSL_LIB_CTX *libctx, 5965 int nid, 5966 const char *properties) 5967 { 5968 const EVP_CIPHER *ciph; 5969 5970 ciph = tls_get_cipher_from_engine(nid); 5971 if (ciph != NULL) 5972 return ciph; 5973 5974 /* 5975 * If there is no engine cipher then we do an explicit fetch. This may fail 5976 * and that could be ok 5977 */ 5978 ERR_set_mark(); 5979 ciph = EVP_CIPHER_fetch(libctx, OBJ_nid2sn(nid), properties); 5980 ERR_pop_to_mark(); 5981 return ciph; 5982 } 5983 5984 5985 int ssl_evp_cipher_up_ref(const EVP_CIPHER *cipher) 5986 { 5987 /* Don't up-ref an implicit EVP_CIPHER */ 5988 if (EVP_CIPHER_get0_provider(cipher) == NULL) 5989 return 1; 5990 5991 /* 5992 * The cipher was explicitly fetched and therefore it is safe to cast 5993 * away the const 5994 */ 5995 return EVP_CIPHER_up_ref((EVP_CIPHER *)cipher); 5996 } 5997 5998 void ssl_evp_cipher_free(const EVP_CIPHER *cipher) 5999 { 6000 if (cipher == NULL) 6001 return; 6002 6003 if (EVP_CIPHER_get0_provider(cipher) != NULL) { 6004 /* 6005 * The cipher was explicitly fetched and therefore it is safe to cast 6006 * away the const 6007 */ 6008 EVP_CIPHER_free((EVP_CIPHER *)cipher); 6009 } 6010 } 6011 6012 const EVP_MD *ssl_evp_md_fetch(OSSL_LIB_CTX *libctx, 6013 int nid, 6014 const char *properties) 6015 { 6016 const EVP_MD *md; 6017 6018 md = tls_get_digest_from_engine(nid); 6019 if (md != NULL) 6020 return md; 6021 6022 /* Otherwise we do an explicit fetch */ 6023 ERR_set_mark(); 6024 md = EVP_MD_fetch(libctx, OBJ_nid2sn(nid), properties); 6025 ERR_pop_to_mark(); 6026 return md; 6027 } 6028 6029 int ssl_evp_md_up_ref(const EVP_MD *md) 6030 { 6031 /* Don't up-ref an implicit EVP_MD */ 6032 if (EVP_MD_get0_provider(md) == NULL) 6033 return 1; 6034 6035 /* 6036 * The digest was explicitly fetched and therefore it is safe to cast 6037 * away the const 6038 */ 6039 return EVP_MD_up_ref((EVP_MD *)md); 6040 } 6041 6042 void ssl_evp_md_free(const EVP_MD *md) 6043 { 6044 if (md == NULL) 6045 return; 6046 6047 if (EVP_MD_get0_provider(md) != NULL) { 6048 /* 6049 * The digest was explicitly fetched and therefore it is safe to cast 6050 * away the const 6051 */ 6052 EVP_MD_free((EVP_MD *)md); 6053 } 6054 } 6055 6056 int SSL_set0_tmp_dh_pkey(SSL *s, EVP_PKEY *dhpkey) 6057 { 6058 if (!ssl_security(s, SSL_SECOP_TMP_DH, 6059 EVP_PKEY_get_security_bits(dhpkey), 0, dhpkey)) { 6060 ERR_raise(ERR_LIB_SSL, SSL_R_DH_KEY_TOO_SMALL); 6061 return 0; 6062 } 6063 EVP_PKEY_free(s->cert->dh_tmp); 6064 s->cert->dh_tmp = dhpkey; 6065 return 1; 6066 } 6067 6068 int SSL_CTX_set0_tmp_dh_pkey(SSL_CTX *ctx, EVP_PKEY *dhpkey) 6069 { 6070 if (!ssl_ctx_security(ctx, SSL_SECOP_TMP_DH, 6071 EVP_PKEY_get_security_bits(dhpkey), 0, dhpkey)) { 6072 ERR_raise(ERR_LIB_SSL, SSL_R_DH_KEY_TOO_SMALL); 6073 return 0; 6074 } 6075 EVP_PKEY_free(ctx->cert->dh_tmp); 6076 ctx->cert->dh_tmp = dhpkey; 6077 return 1; 6078 } 6079