1 /* 2 * Copyright 1995-2022 The OpenSSL Project Authors. All Rights Reserved. 3 * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved 4 * Copyright 2005 Nokia. All rights reserved. 5 * 6 * Licensed under the OpenSSL license (the "License"). You may not use 7 * this file except in compliance with the License. You can obtain a copy 8 * in the file LICENSE in the source distribution or at 9 * https://www.openssl.org/source/license.html 10 */ 11 12 #include <stdio.h> 13 #include "ssl_local.h" 14 #include "e_os.h" 15 #include <openssl/objects.h> 16 #include <openssl/x509v3.h> 17 #include <openssl/rand.h> 18 #include <openssl/rand_drbg.h> 19 #include <openssl/ocsp.h> 20 #include <openssl/dh.h> 21 #include <openssl/engine.h> 22 #include <openssl/async.h> 23 #include <openssl/ct.h> 24 #include "internal/cryptlib.h" 25 #include "internal/refcount.h" 26 #include "internal/ktls.h" 27 28 const char SSL_version_str[] = OPENSSL_VERSION_TEXT; 29 30 static int ssl_undefined_function_1(SSL *ssl, SSL3_RECORD *r, size_t s, int t) 31 { 32 (void)r; 33 (void)s; 34 (void)t; 35 return ssl_undefined_function(ssl); 36 } 37 38 static int ssl_undefined_function_2(SSL *ssl, SSL3_RECORD *r, unsigned char *s, 39 int t) 40 { 41 (void)r; 42 (void)s; 43 (void)t; 44 return ssl_undefined_function(ssl); 45 } 46 47 static int ssl_undefined_function_3(SSL *ssl, unsigned char *r, 48 unsigned char *s, size_t t, size_t *u) 49 { 50 (void)r; 51 (void)s; 52 (void)t; 53 (void)u; 54 return ssl_undefined_function(ssl); 55 } 56 57 static int ssl_undefined_function_4(SSL *ssl, int r) 58 { 59 (void)r; 60 return ssl_undefined_function(ssl); 61 } 62 63 static size_t ssl_undefined_function_5(SSL *ssl, const char *r, size_t s, 64 unsigned char *t) 65 { 66 (void)r; 67 (void)s; 68 (void)t; 69 return ssl_undefined_function(ssl); 70 } 71 72 static int ssl_undefined_function_6(int r) 73 { 74 (void)r; 75 return ssl_undefined_function(NULL); 76 } 77 78 static int ssl_undefined_function_7(SSL *ssl, unsigned char *r, size_t s, 79 const char *t, size_t u, 80 const unsigned char *v, size_t w, int x) 81 { 82 (void)r; 83 (void)s; 84 (void)t; 85 (void)u; 86 (void)v; 87 (void)w; 88 (void)x; 89 return ssl_undefined_function(ssl); 90 } 91 92 SSL3_ENC_METHOD ssl3_undef_enc_method = { 93 ssl_undefined_function_1, 94 ssl_undefined_function_2, 95 ssl_undefined_function, 96 ssl_undefined_function_3, 97 ssl_undefined_function_4, 98 ssl_undefined_function_5, 99 NULL, /* client_finished_label */ 100 0, /* client_finished_label_len */ 101 NULL, /* server_finished_label */ 102 0, /* server_finished_label_len */ 103 ssl_undefined_function_6, 104 ssl_undefined_function_7, 105 }; 106 107 struct ssl_async_args { 108 SSL *s; 109 void *buf; 110 size_t num; 111 enum { READFUNC, WRITEFUNC, OTHERFUNC } type; 112 union { 113 int (*func_read) (SSL *, void *, size_t, size_t *); 114 int (*func_write) (SSL *, const void *, size_t, size_t *); 115 int (*func_other) (SSL *); 116 } f; 117 }; 118 119 static const struct { 120 uint8_t mtype; 121 uint8_t ord; 122 int nid; 123 } dane_mds[] = { 124 { 125 DANETLS_MATCHING_FULL, 0, NID_undef 126 }, 127 { 128 DANETLS_MATCHING_2256, 1, NID_sha256 129 }, 130 { 131 DANETLS_MATCHING_2512, 2, NID_sha512 132 }, 133 }; 134 135 static int dane_ctx_enable(struct dane_ctx_st *dctx) 136 { 137 const EVP_MD **mdevp; 138 uint8_t *mdord; 139 uint8_t mdmax = DANETLS_MATCHING_LAST; 140 int n = ((int)mdmax) + 1; /* int to handle PrivMatch(255) */ 141 size_t i; 142 143 if (dctx->mdevp != NULL) 144 return 1; 145 146 mdevp = OPENSSL_zalloc(n * sizeof(*mdevp)); 147 mdord = OPENSSL_zalloc(n * sizeof(*mdord)); 148 149 if (mdord == NULL || mdevp == NULL) { 150 OPENSSL_free(mdord); 151 OPENSSL_free(mdevp); 152 SSLerr(SSL_F_DANE_CTX_ENABLE, ERR_R_MALLOC_FAILURE); 153 return 0; 154 } 155 156 /* Install default entries */ 157 for (i = 0; i < OSSL_NELEM(dane_mds); ++i) { 158 const EVP_MD *md; 159 160 if (dane_mds[i].nid == NID_undef || 161 (md = EVP_get_digestbynid(dane_mds[i].nid)) == NULL) 162 continue; 163 mdevp[dane_mds[i].mtype] = md; 164 mdord[dane_mds[i].mtype] = dane_mds[i].ord; 165 } 166 167 dctx->mdevp = mdevp; 168 dctx->mdord = mdord; 169 dctx->mdmax = mdmax; 170 171 return 1; 172 } 173 174 static void dane_ctx_final(struct dane_ctx_st *dctx) 175 { 176 OPENSSL_free(dctx->mdevp); 177 dctx->mdevp = NULL; 178 179 OPENSSL_free(dctx->mdord); 180 dctx->mdord = NULL; 181 dctx->mdmax = 0; 182 } 183 184 static void tlsa_free(danetls_record *t) 185 { 186 if (t == NULL) 187 return; 188 OPENSSL_free(t->data); 189 EVP_PKEY_free(t->spki); 190 OPENSSL_free(t); 191 } 192 193 static void dane_final(SSL_DANE *dane) 194 { 195 sk_danetls_record_pop_free(dane->trecs, tlsa_free); 196 dane->trecs = NULL; 197 198 sk_X509_pop_free(dane->certs, X509_free); 199 dane->certs = NULL; 200 201 X509_free(dane->mcert); 202 dane->mcert = NULL; 203 dane->mtlsa = NULL; 204 dane->mdpth = -1; 205 dane->pdpth = -1; 206 } 207 208 /* 209 * dane_copy - Copy dane configuration, sans verification state. 210 */ 211 static int ssl_dane_dup(SSL *to, SSL *from) 212 { 213 int num; 214 int i; 215 216 if (!DANETLS_ENABLED(&from->dane)) 217 return 1; 218 219 num = sk_danetls_record_num(from->dane.trecs); 220 dane_final(&to->dane); 221 to->dane.flags = from->dane.flags; 222 to->dane.dctx = &to->ctx->dane; 223 to->dane.trecs = sk_danetls_record_new_reserve(NULL, num); 224 225 if (to->dane.trecs == NULL) { 226 SSLerr(SSL_F_SSL_DANE_DUP, ERR_R_MALLOC_FAILURE); 227 return 0; 228 } 229 230 for (i = 0; i < num; ++i) { 231 danetls_record *t = sk_danetls_record_value(from->dane.trecs, i); 232 233 if (SSL_dane_tlsa_add(to, t->usage, t->selector, t->mtype, 234 t->data, t->dlen) <= 0) 235 return 0; 236 } 237 return 1; 238 } 239 240 static int dane_mtype_set(struct dane_ctx_st *dctx, 241 const EVP_MD *md, uint8_t mtype, uint8_t ord) 242 { 243 int i; 244 245 if (mtype == DANETLS_MATCHING_FULL && md != NULL) { 246 SSLerr(SSL_F_DANE_MTYPE_SET, SSL_R_DANE_CANNOT_OVERRIDE_MTYPE_FULL); 247 return 0; 248 } 249 250 if (mtype > dctx->mdmax) { 251 const EVP_MD **mdevp; 252 uint8_t *mdord; 253 int n = ((int)mtype) + 1; 254 255 mdevp = OPENSSL_realloc(dctx->mdevp, n * sizeof(*mdevp)); 256 if (mdevp == NULL) { 257 SSLerr(SSL_F_DANE_MTYPE_SET, ERR_R_MALLOC_FAILURE); 258 return -1; 259 } 260 dctx->mdevp = mdevp; 261 262 mdord = OPENSSL_realloc(dctx->mdord, n * sizeof(*mdord)); 263 if (mdord == NULL) { 264 SSLerr(SSL_F_DANE_MTYPE_SET, ERR_R_MALLOC_FAILURE); 265 return -1; 266 } 267 dctx->mdord = mdord; 268 269 /* Zero-fill any gaps */ 270 for (i = dctx->mdmax + 1; i < mtype; ++i) { 271 mdevp[i] = NULL; 272 mdord[i] = 0; 273 } 274 275 dctx->mdmax = mtype; 276 } 277 278 dctx->mdevp[mtype] = md; 279 /* Coerce ordinal of disabled matching types to 0 */ 280 dctx->mdord[mtype] = (md == NULL) ? 0 : ord; 281 282 return 1; 283 } 284 285 static const EVP_MD *tlsa_md_get(SSL_DANE *dane, uint8_t mtype) 286 { 287 if (mtype > dane->dctx->mdmax) 288 return NULL; 289 return dane->dctx->mdevp[mtype]; 290 } 291 292 static int dane_tlsa_add(SSL_DANE *dane, 293 uint8_t usage, 294 uint8_t selector, 295 uint8_t mtype, unsigned const char *data, size_t dlen) 296 { 297 danetls_record *t; 298 const EVP_MD *md = NULL; 299 int ilen = (int)dlen; 300 int i; 301 int num; 302 303 if (dane->trecs == NULL) { 304 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_NOT_ENABLED); 305 return -1; 306 } 307 308 if (ilen < 0 || dlen != (size_t)ilen) { 309 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_DATA_LENGTH); 310 return 0; 311 } 312 313 if (usage > DANETLS_USAGE_LAST) { 314 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE_USAGE); 315 return 0; 316 } 317 318 if (selector > DANETLS_SELECTOR_LAST) { 319 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_SELECTOR); 320 return 0; 321 } 322 323 if (mtype != DANETLS_MATCHING_FULL) { 324 md = tlsa_md_get(dane, mtype); 325 if (md == NULL) { 326 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_MATCHING_TYPE); 327 return 0; 328 } 329 } 330 331 if (md != NULL && dlen != (size_t)EVP_MD_size(md)) { 332 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_DIGEST_LENGTH); 333 return 0; 334 } 335 if (!data) { 336 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_NULL_DATA); 337 return 0; 338 } 339 340 if ((t = OPENSSL_zalloc(sizeof(*t))) == NULL) { 341 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE); 342 return -1; 343 } 344 345 t->usage = usage; 346 t->selector = selector; 347 t->mtype = mtype; 348 t->data = OPENSSL_malloc(dlen); 349 if (t->data == NULL) { 350 tlsa_free(t); 351 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE); 352 return -1; 353 } 354 memcpy(t->data, data, dlen); 355 t->dlen = dlen; 356 357 /* Validate and cache full certificate or public key */ 358 if (mtype == DANETLS_MATCHING_FULL) { 359 const unsigned char *p = data; 360 X509 *cert = NULL; 361 EVP_PKEY *pkey = NULL; 362 363 switch (selector) { 364 case DANETLS_SELECTOR_CERT: 365 if (!d2i_X509(&cert, &p, ilen) || p < data || 366 dlen != (size_t)(p - data)) { 367 tlsa_free(t); 368 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE); 369 return 0; 370 } 371 if (X509_get0_pubkey(cert) == NULL) { 372 tlsa_free(t); 373 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE); 374 return 0; 375 } 376 377 if ((DANETLS_USAGE_BIT(usage) & DANETLS_TA_MASK) == 0) { 378 X509_free(cert); 379 break; 380 } 381 382 /* 383 * For usage DANE-TA(2), we support authentication via "2 0 0" TLSA 384 * records that contain full certificates of trust-anchors that are 385 * not present in the wire chain. For usage PKIX-TA(0), we augment 386 * the chain with untrusted Full(0) certificates from DNS, in case 387 * they are missing from the chain. 388 */ 389 if ((dane->certs == NULL && 390 (dane->certs = sk_X509_new_null()) == NULL) || 391 !sk_X509_push(dane->certs, cert)) { 392 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE); 393 X509_free(cert); 394 tlsa_free(t); 395 return -1; 396 } 397 break; 398 399 case DANETLS_SELECTOR_SPKI: 400 if (!d2i_PUBKEY(&pkey, &p, ilen) || p < data || 401 dlen != (size_t)(p - data)) { 402 tlsa_free(t); 403 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_PUBLIC_KEY); 404 return 0; 405 } 406 407 /* 408 * For usage DANE-TA(2), we support authentication via "2 1 0" TLSA 409 * records that contain full bare keys of trust-anchors that are 410 * not present in the wire chain. 411 */ 412 if (usage == DANETLS_USAGE_DANE_TA) 413 t->spki = pkey; 414 else 415 EVP_PKEY_free(pkey); 416 break; 417 } 418 } 419 420 /*- 421 * Find the right insertion point for the new record. 422 * 423 * See crypto/x509/x509_vfy.c. We sort DANE-EE(3) records first, so that 424 * they can be processed first, as they require no chain building, and no 425 * expiration or hostname checks. Because DANE-EE(3) is numerically 426 * largest, this is accomplished via descending sort by "usage". 427 * 428 * We also sort in descending order by matching ordinal to simplify 429 * the implementation of digest agility in the verification code. 430 * 431 * The choice of order for the selector is not significant, so we 432 * use the same descending order for consistency. 433 */ 434 num = sk_danetls_record_num(dane->trecs); 435 for (i = 0; i < num; ++i) { 436 danetls_record *rec = sk_danetls_record_value(dane->trecs, i); 437 438 if (rec->usage > usage) 439 continue; 440 if (rec->usage < usage) 441 break; 442 if (rec->selector > selector) 443 continue; 444 if (rec->selector < selector) 445 break; 446 if (dane->dctx->mdord[rec->mtype] > dane->dctx->mdord[mtype]) 447 continue; 448 break; 449 } 450 451 if (!sk_danetls_record_insert(dane->trecs, t, i)) { 452 tlsa_free(t); 453 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE); 454 return -1; 455 } 456 dane->umask |= DANETLS_USAGE_BIT(usage); 457 458 return 1; 459 } 460 461 /* 462 * Return 0 if there is only one version configured and it was disabled 463 * at configure time. Return 1 otherwise. 464 */ 465 static int ssl_check_allowed_versions(int min_version, int max_version) 466 { 467 int minisdtls = 0, maxisdtls = 0; 468 469 /* Figure out if we're doing DTLS versions or TLS versions */ 470 if (min_version == DTLS1_BAD_VER 471 || min_version >> 8 == DTLS1_VERSION_MAJOR) 472 minisdtls = 1; 473 if (max_version == DTLS1_BAD_VER 474 || max_version >> 8 == DTLS1_VERSION_MAJOR) 475 maxisdtls = 1; 476 /* A wildcard version of 0 could be DTLS or TLS. */ 477 if ((minisdtls && !maxisdtls && max_version != 0) 478 || (maxisdtls && !minisdtls && min_version != 0)) { 479 /* Mixing DTLS and TLS versions will lead to sadness; deny it. */ 480 return 0; 481 } 482 483 if (minisdtls || maxisdtls) { 484 /* Do DTLS version checks. */ 485 if (min_version == 0) 486 /* Ignore DTLS1_BAD_VER */ 487 min_version = DTLS1_VERSION; 488 if (max_version == 0) 489 max_version = DTLS1_2_VERSION; 490 #ifdef OPENSSL_NO_DTLS1_2 491 if (max_version == DTLS1_2_VERSION) 492 max_version = DTLS1_VERSION; 493 #endif 494 #ifdef OPENSSL_NO_DTLS1 495 if (min_version == DTLS1_VERSION) 496 min_version = DTLS1_2_VERSION; 497 #endif 498 /* Done massaging versions; do the check. */ 499 if (0 500 #ifdef OPENSSL_NO_DTLS1 501 || (DTLS_VERSION_GE(min_version, DTLS1_VERSION) 502 && DTLS_VERSION_GE(DTLS1_VERSION, max_version)) 503 #endif 504 #ifdef OPENSSL_NO_DTLS1_2 505 || (DTLS_VERSION_GE(min_version, DTLS1_2_VERSION) 506 && DTLS_VERSION_GE(DTLS1_2_VERSION, max_version)) 507 #endif 508 ) 509 return 0; 510 } else { 511 /* Regular TLS version checks. */ 512 if (min_version == 0) 513 min_version = SSL3_VERSION; 514 if (max_version == 0) 515 max_version = TLS1_3_VERSION; 516 #ifdef OPENSSL_NO_TLS1_3 517 if (max_version == TLS1_3_VERSION) 518 max_version = TLS1_2_VERSION; 519 #endif 520 #ifdef OPENSSL_NO_TLS1_2 521 if (max_version == TLS1_2_VERSION) 522 max_version = TLS1_1_VERSION; 523 #endif 524 #ifdef OPENSSL_NO_TLS1_1 525 if (max_version == TLS1_1_VERSION) 526 max_version = TLS1_VERSION; 527 #endif 528 #ifdef OPENSSL_NO_TLS1 529 if (max_version == TLS1_VERSION) 530 max_version = SSL3_VERSION; 531 #endif 532 #ifdef OPENSSL_NO_SSL3 533 if (min_version == SSL3_VERSION) 534 min_version = TLS1_VERSION; 535 #endif 536 #ifdef OPENSSL_NO_TLS1 537 if (min_version == TLS1_VERSION) 538 min_version = TLS1_1_VERSION; 539 #endif 540 #ifdef OPENSSL_NO_TLS1_1 541 if (min_version == TLS1_1_VERSION) 542 min_version = TLS1_2_VERSION; 543 #endif 544 #ifdef OPENSSL_NO_TLS1_2 545 if (min_version == TLS1_2_VERSION) 546 min_version = TLS1_3_VERSION; 547 #endif 548 /* Done massaging versions; do the check. */ 549 if (0 550 #ifdef OPENSSL_NO_SSL3 551 || (min_version <= SSL3_VERSION && SSL3_VERSION <= max_version) 552 #endif 553 #ifdef OPENSSL_NO_TLS1 554 || (min_version <= TLS1_VERSION && TLS1_VERSION <= max_version) 555 #endif 556 #ifdef OPENSSL_NO_TLS1_1 557 || (min_version <= TLS1_1_VERSION && TLS1_1_VERSION <= max_version) 558 #endif 559 #ifdef OPENSSL_NO_TLS1_2 560 || (min_version <= TLS1_2_VERSION && TLS1_2_VERSION <= max_version) 561 #endif 562 #ifdef OPENSSL_NO_TLS1_3 563 || (min_version <= TLS1_3_VERSION && TLS1_3_VERSION <= max_version) 564 #endif 565 ) 566 return 0; 567 } 568 return 1; 569 } 570 571 static void clear_ciphers(SSL *s) 572 { 573 /* clear the current cipher */ 574 ssl_clear_cipher_ctx(s); 575 ssl_clear_hash_ctx(&s->read_hash); 576 ssl_clear_hash_ctx(&s->write_hash); 577 } 578 579 int SSL_clear(SSL *s) 580 { 581 if (s->method == NULL) { 582 SSLerr(SSL_F_SSL_CLEAR, SSL_R_NO_METHOD_SPECIFIED); 583 return 0; 584 } 585 586 if (ssl_clear_bad_session(s)) { 587 SSL_SESSION_free(s->session); 588 s->session = NULL; 589 } 590 SSL_SESSION_free(s->psksession); 591 s->psksession = NULL; 592 OPENSSL_free(s->psksession_id); 593 s->psksession_id = NULL; 594 s->psksession_id_len = 0; 595 s->hello_retry_request = 0; 596 s->sent_tickets = 0; 597 598 s->error = 0; 599 s->hit = 0; 600 s->shutdown = 0; 601 602 if (s->renegotiate) { 603 SSLerr(SSL_F_SSL_CLEAR, ERR_R_INTERNAL_ERROR); 604 return 0; 605 } 606 607 ossl_statem_clear(s); 608 609 s->version = s->method->version; 610 s->client_version = s->version; 611 s->rwstate = SSL_NOTHING; 612 613 BUF_MEM_free(s->init_buf); 614 s->init_buf = NULL; 615 clear_ciphers(s); 616 s->first_packet = 0; 617 618 s->key_update = SSL_KEY_UPDATE_NONE; 619 620 EVP_MD_CTX_free(s->pha_dgst); 621 s->pha_dgst = NULL; 622 623 /* Reset DANE verification result state */ 624 s->dane.mdpth = -1; 625 s->dane.pdpth = -1; 626 X509_free(s->dane.mcert); 627 s->dane.mcert = NULL; 628 s->dane.mtlsa = NULL; 629 630 /* Clear the verification result peername */ 631 X509_VERIFY_PARAM_move_peername(s->param, NULL); 632 633 /* Clear any shared connection state */ 634 OPENSSL_free(s->shared_sigalgs); 635 s->shared_sigalgs = NULL; 636 s->shared_sigalgslen = 0; 637 638 /* 639 * Check to see if we were changed into a different method, if so, revert 640 * back. 641 */ 642 if (s->method != s->ctx->method) { 643 s->method->ssl_free(s); 644 s->method = s->ctx->method; 645 if (!s->method->ssl_new(s)) 646 return 0; 647 } else { 648 if (!s->method->ssl_clear(s)) 649 return 0; 650 } 651 652 RECORD_LAYER_clear(&s->rlayer); 653 654 return 1; 655 } 656 657 /** Used to change an SSL_CTXs default SSL method type */ 658 int SSL_CTX_set_ssl_version(SSL_CTX *ctx, const SSL_METHOD *meth) 659 { 660 STACK_OF(SSL_CIPHER) *sk; 661 662 ctx->method = meth; 663 664 if (!SSL_CTX_set_ciphersuites(ctx, TLS_DEFAULT_CIPHERSUITES)) { 665 SSLerr(SSL_F_SSL_CTX_SET_SSL_VERSION, SSL_R_SSL_LIBRARY_HAS_NO_CIPHERS); 666 return 0; 667 } 668 sk = ssl_create_cipher_list(ctx->method, 669 ctx->tls13_ciphersuites, 670 &(ctx->cipher_list), 671 &(ctx->cipher_list_by_id), 672 SSL_DEFAULT_CIPHER_LIST, ctx->cert); 673 if ((sk == NULL) || (sk_SSL_CIPHER_num(sk) <= 0)) { 674 SSLerr(SSL_F_SSL_CTX_SET_SSL_VERSION, SSL_R_SSL_LIBRARY_HAS_NO_CIPHERS); 675 return 0; 676 } 677 return 1; 678 } 679 680 SSL *SSL_new(SSL_CTX *ctx) 681 { 682 SSL *s; 683 684 if (ctx == NULL) { 685 SSLerr(SSL_F_SSL_NEW, SSL_R_NULL_SSL_CTX); 686 return NULL; 687 } 688 if (ctx->method == NULL) { 689 SSLerr(SSL_F_SSL_NEW, SSL_R_SSL_CTX_HAS_NO_DEFAULT_SSL_VERSION); 690 return NULL; 691 } 692 693 s = OPENSSL_zalloc(sizeof(*s)); 694 if (s == NULL) 695 goto err; 696 697 s->references = 1; 698 s->lock = CRYPTO_THREAD_lock_new(); 699 if (s->lock == NULL) { 700 OPENSSL_free(s); 701 s = NULL; 702 goto err; 703 } 704 705 RECORD_LAYER_init(&s->rlayer, s); 706 707 s->options = ctx->options; 708 s->dane.flags = ctx->dane.flags; 709 s->min_proto_version = ctx->min_proto_version; 710 s->max_proto_version = ctx->max_proto_version; 711 s->mode = ctx->mode; 712 s->max_cert_list = ctx->max_cert_list; 713 s->max_early_data = ctx->max_early_data; 714 s->recv_max_early_data = ctx->recv_max_early_data; 715 s->num_tickets = ctx->num_tickets; 716 s->pha_enabled = ctx->pha_enabled; 717 718 /* Shallow copy of the ciphersuites stack */ 719 s->tls13_ciphersuites = sk_SSL_CIPHER_dup(ctx->tls13_ciphersuites); 720 if (s->tls13_ciphersuites == NULL) 721 goto err; 722 723 /* 724 * Earlier library versions used to copy the pointer to the CERT, not 725 * its contents; only when setting new parameters for the per-SSL 726 * copy, ssl_cert_new would be called (and the direct reference to 727 * the per-SSL_CTX settings would be lost, but those still were 728 * indirectly accessed for various purposes, and for that reason they 729 * used to be known as s->ctx->default_cert). Now we don't look at the 730 * SSL_CTX's CERT after having duplicated it once. 731 */ 732 s->cert = ssl_cert_dup(ctx->cert); 733 if (s->cert == NULL) 734 goto err; 735 736 RECORD_LAYER_set_read_ahead(&s->rlayer, ctx->read_ahead); 737 s->msg_callback = ctx->msg_callback; 738 s->msg_callback_arg = ctx->msg_callback_arg; 739 s->verify_mode = ctx->verify_mode; 740 s->not_resumable_session_cb = ctx->not_resumable_session_cb; 741 s->record_padding_cb = ctx->record_padding_cb; 742 s->record_padding_arg = ctx->record_padding_arg; 743 s->block_padding = ctx->block_padding; 744 s->sid_ctx_length = ctx->sid_ctx_length; 745 if (!ossl_assert(s->sid_ctx_length <= sizeof(s->sid_ctx))) 746 goto err; 747 memcpy(&s->sid_ctx, &ctx->sid_ctx, sizeof(s->sid_ctx)); 748 s->verify_callback = ctx->default_verify_callback; 749 s->generate_session_id = ctx->generate_session_id; 750 751 s->param = X509_VERIFY_PARAM_new(); 752 if (s->param == NULL) 753 goto err; 754 X509_VERIFY_PARAM_inherit(s->param, ctx->param); 755 s->quiet_shutdown = ctx->quiet_shutdown; 756 757 s->ext.max_fragment_len_mode = ctx->ext.max_fragment_len_mode; 758 s->max_send_fragment = ctx->max_send_fragment; 759 s->split_send_fragment = ctx->split_send_fragment; 760 s->max_pipelines = ctx->max_pipelines; 761 if (s->max_pipelines > 1) 762 RECORD_LAYER_set_read_ahead(&s->rlayer, 1); 763 if (ctx->default_read_buf_len > 0) 764 SSL_set_default_read_buffer_len(s, ctx->default_read_buf_len); 765 766 SSL_CTX_up_ref(ctx); 767 s->ctx = ctx; 768 s->ext.debug_cb = 0; 769 s->ext.debug_arg = NULL; 770 s->ext.ticket_expected = 0; 771 s->ext.status_type = ctx->ext.status_type; 772 s->ext.status_expected = 0; 773 s->ext.ocsp.ids = NULL; 774 s->ext.ocsp.exts = NULL; 775 s->ext.ocsp.resp = NULL; 776 s->ext.ocsp.resp_len = 0; 777 SSL_CTX_up_ref(ctx); 778 s->session_ctx = ctx; 779 #ifndef OPENSSL_NO_EC 780 if (ctx->ext.ecpointformats) { 781 s->ext.ecpointformats = 782 OPENSSL_memdup(ctx->ext.ecpointformats, 783 ctx->ext.ecpointformats_len); 784 if (!s->ext.ecpointformats) { 785 s->ext.ecpointformats_len = 0; 786 goto err; 787 } 788 s->ext.ecpointformats_len = 789 ctx->ext.ecpointformats_len; 790 } 791 if (ctx->ext.supportedgroups) { 792 s->ext.supportedgroups = 793 OPENSSL_memdup(ctx->ext.supportedgroups, 794 ctx->ext.supportedgroups_len 795 * sizeof(*ctx->ext.supportedgroups)); 796 if (!s->ext.supportedgroups) { 797 s->ext.supportedgroups_len = 0; 798 goto err; 799 } 800 s->ext.supportedgroups_len = ctx->ext.supportedgroups_len; 801 } 802 #endif 803 #ifndef OPENSSL_NO_NEXTPROTONEG 804 s->ext.npn = NULL; 805 #endif 806 807 if (s->ctx->ext.alpn) { 808 s->ext.alpn = OPENSSL_malloc(s->ctx->ext.alpn_len); 809 if (s->ext.alpn == NULL) { 810 s->ext.alpn_len = 0; 811 goto err; 812 } 813 memcpy(s->ext.alpn, s->ctx->ext.alpn, s->ctx->ext.alpn_len); 814 s->ext.alpn_len = s->ctx->ext.alpn_len; 815 } 816 817 s->verified_chain = NULL; 818 s->verify_result = X509_V_OK; 819 820 s->default_passwd_callback = ctx->default_passwd_callback; 821 s->default_passwd_callback_userdata = ctx->default_passwd_callback_userdata; 822 823 s->method = ctx->method; 824 825 s->key_update = SSL_KEY_UPDATE_NONE; 826 827 s->allow_early_data_cb = ctx->allow_early_data_cb; 828 s->allow_early_data_cb_data = ctx->allow_early_data_cb_data; 829 830 if (!s->method->ssl_new(s)) 831 goto err; 832 833 s->server = (ctx->method->ssl_accept == ssl_undefined_function) ? 0 : 1; 834 835 if (!SSL_clear(s)) 836 goto err; 837 838 if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL, s, &s->ex_data)) 839 goto err; 840 841 #ifndef OPENSSL_NO_PSK 842 s->psk_client_callback = ctx->psk_client_callback; 843 s->psk_server_callback = ctx->psk_server_callback; 844 #endif 845 s->psk_find_session_cb = ctx->psk_find_session_cb; 846 s->psk_use_session_cb = ctx->psk_use_session_cb; 847 848 s->job = NULL; 849 850 #ifndef OPENSSL_NO_CT 851 if (!SSL_set_ct_validation_callback(s, ctx->ct_validation_callback, 852 ctx->ct_validation_callback_arg)) 853 goto err; 854 #endif 855 856 return s; 857 err: 858 SSL_free(s); 859 SSLerr(SSL_F_SSL_NEW, ERR_R_MALLOC_FAILURE); 860 return NULL; 861 } 862 863 int SSL_is_dtls(const SSL *s) 864 { 865 return SSL_IS_DTLS(s) ? 1 : 0; 866 } 867 868 int SSL_up_ref(SSL *s) 869 { 870 int i; 871 872 if (CRYPTO_UP_REF(&s->references, &i, s->lock) <= 0) 873 return 0; 874 875 REF_PRINT_COUNT("SSL", s); 876 REF_ASSERT_ISNT(i < 2); 877 return ((i > 1) ? 1 : 0); 878 } 879 880 int SSL_CTX_set_session_id_context(SSL_CTX *ctx, const unsigned char *sid_ctx, 881 unsigned int sid_ctx_len) 882 { 883 if (sid_ctx_len > SSL_MAX_SID_CTX_LENGTH) { 884 SSLerr(SSL_F_SSL_CTX_SET_SESSION_ID_CONTEXT, 885 SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG); 886 return 0; 887 } 888 ctx->sid_ctx_length = sid_ctx_len; 889 memcpy(ctx->sid_ctx, sid_ctx, sid_ctx_len); 890 891 return 1; 892 } 893 894 int SSL_set_session_id_context(SSL *ssl, const unsigned char *sid_ctx, 895 unsigned int sid_ctx_len) 896 { 897 if (sid_ctx_len > SSL_MAX_SID_CTX_LENGTH) { 898 SSLerr(SSL_F_SSL_SET_SESSION_ID_CONTEXT, 899 SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG); 900 return 0; 901 } 902 ssl->sid_ctx_length = sid_ctx_len; 903 memcpy(ssl->sid_ctx, sid_ctx, sid_ctx_len); 904 905 return 1; 906 } 907 908 int SSL_CTX_set_generate_session_id(SSL_CTX *ctx, GEN_SESSION_CB cb) 909 { 910 CRYPTO_THREAD_write_lock(ctx->lock); 911 ctx->generate_session_id = cb; 912 CRYPTO_THREAD_unlock(ctx->lock); 913 return 1; 914 } 915 916 int SSL_set_generate_session_id(SSL *ssl, GEN_SESSION_CB cb) 917 { 918 CRYPTO_THREAD_write_lock(ssl->lock); 919 ssl->generate_session_id = cb; 920 CRYPTO_THREAD_unlock(ssl->lock); 921 return 1; 922 } 923 924 int SSL_has_matching_session_id(const SSL *ssl, const unsigned char *id, 925 unsigned int id_len) 926 { 927 /* 928 * A quick examination of SSL_SESSION_hash and SSL_SESSION_cmp shows how 929 * we can "construct" a session to give us the desired check - i.e. to 930 * find if there's a session in the hash table that would conflict with 931 * any new session built out of this id/id_len and the ssl_version in use 932 * by this SSL. 933 */ 934 SSL_SESSION r, *p; 935 936 if (id_len > sizeof(r.session_id)) 937 return 0; 938 939 r.ssl_version = ssl->version; 940 r.session_id_length = id_len; 941 memcpy(r.session_id, id, id_len); 942 943 CRYPTO_THREAD_read_lock(ssl->session_ctx->lock); 944 p = lh_SSL_SESSION_retrieve(ssl->session_ctx->sessions, &r); 945 CRYPTO_THREAD_unlock(ssl->session_ctx->lock); 946 return (p != NULL); 947 } 948 949 int SSL_CTX_set_purpose(SSL_CTX *s, int purpose) 950 { 951 return X509_VERIFY_PARAM_set_purpose(s->param, purpose); 952 } 953 954 int SSL_set_purpose(SSL *s, int purpose) 955 { 956 return X509_VERIFY_PARAM_set_purpose(s->param, purpose); 957 } 958 959 int SSL_CTX_set_trust(SSL_CTX *s, int trust) 960 { 961 return X509_VERIFY_PARAM_set_trust(s->param, trust); 962 } 963 964 int SSL_set_trust(SSL *s, int trust) 965 { 966 return X509_VERIFY_PARAM_set_trust(s->param, trust); 967 } 968 969 int SSL_set1_host(SSL *s, const char *hostname) 970 { 971 return X509_VERIFY_PARAM_set1_host(s->param, hostname, 0); 972 } 973 974 int SSL_add1_host(SSL *s, const char *hostname) 975 { 976 return X509_VERIFY_PARAM_add1_host(s->param, hostname, 0); 977 } 978 979 void SSL_set_hostflags(SSL *s, unsigned int flags) 980 { 981 X509_VERIFY_PARAM_set_hostflags(s->param, flags); 982 } 983 984 const char *SSL_get0_peername(SSL *s) 985 { 986 return X509_VERIFY_PARAM_get0_peername(s->param); 987 } 988 989 int SSL_CTX_dane_enable(SSL_CTX *ctx) 990 { 991 return dane_ctx_enable(&ctx->dane); 992 } 993 994 unsigned long SSL_CTX_dane_set_flags(SSL_CTX *ctx, unsigned long flags) 995 { 996 unsigned long orig = ctx->dane.flags; 997 998 ctx->dane.flags |= flags; 999 return orig; 1000 } 1001 1002 unsigned long SSL_CTX_dane_clear_flags(SSL_CTX *ctx, unsigned long flags) 1003 { 1004 unsigned long orig = ctx->dane.flags; 1005 1006 ctx->dane.flags &= ~flags; 1007 return orig; 1008 } 1009 1010 int SSL_dane_enable(SSL *s, const char *basedomain) 1011 { 1012 SSL_DANE *dane = &s->dane; 1013 1014 if (s->ctx->dane.mdmax == 0) { 1015 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_CONTEXT_NOT_DANE_ENABLED); 1016 return 0; 1017 } 1018 if (dane->trecs != NULL) { 1019 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_DANE_ALREADY_ENABLED); 1020 return 0; 1021 } 1022 1023 /* 1024 * Default SNI name. This rejects empty names, while set1_host below 1025 * accepts them and disables host name checks. To avoid side-effects with 1026 * invalid input, set the SNI name first. 1027 */ 1028 if (s->ext.hostname == NULL) { 1029 if (!SSL_set_tlsext_host_name(s, basedomain)) { 1030 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_ERROR_SETTING_TLSA_BASE_DOMAIN); 1031 return -1; 1032 } 1033 } 1034 1035 /* Primary RFC6125 reference identifier */ 1036 if (!X509_VERIFY_PARAM_set1_host(s->param, basedomain, 0)) { 1037 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_ERROR_SETTING_TLSA_BASE_DOMAIN); 1038 return -1; 1039 } 1040 1041 dane->mdpth = -1; 1042 dane->pdpth = -1; 1043 dane->dctx = &s->ctx->dane; 1044 dane->trecs = sk_danetls_record_new_null(); 1045 1046 if (dane->trecs == NULL) { 1047 SSLerr(SSL_F_SSL_DANE_ENABLE, ERR_R_MALLOC_FAILURE); 1048 return -1; 1049 } 1050 return 1; 1051 } 1052 1053 unsigned long SSL_dane_set_flags(SSL *ssl, unsigned long flags) 1054 { 1055 unsigned long orig = ssl->dane.flags; 1056 1057 ssl->dane.flags |= flags; 1058 return orig; 1059 } 1060 1061 unsigned long SSL_dane_clear_flags(SSL *ssl, unsigned long flags) 1062 { 1063 unsigned long orig = ssl->dane.flags; 1064 1065 ssl->dane.flags &= ~flags; 1066 return orig; 1067 } 1068 1069 int SSL_get0_dane_authority(SSL *s, X509 **mcert, EVP_PKEY **mspki) 1070 { 1071 SSL_DANE *dane = &s->dane; 1072 1073 if (!DANETLS_ENABLED(dane) || s->verify_result != X509_V_OK) 1074 return -1; 1075 if (dane->mtlsa) { 1076 if (mcert) 1077 *mcert = dane->mcert; 1078 if (mspki) 1079 *mspki = (dane->mcert == NULL) ? dane->mtlsa->spki : NULL; 1080 } 1081 return dane->mdpth; 1082 } 1083 1084 int SSL_get0_dane_tlsa(SSL *s, uint8_t *usage, uint8_t *selector, 1085 uint8_t *mtype, unsigned const char **data, size_t *dlen) 1086 { 1087 SSL_DANE *dane = &s->dane; 1088 1089 if (!DANETLS_ENABLED(dane) || s->verify_result != X509_V_OK) 1090 return -1; 1091 if (dane->mtlsa) { 1092 if (usage) 1093 *usage = dane->mtlsa->usage; 1094 if (selector) 1095 *selector = dane->mtlsa->selector; 1096 if (mtype) 1097 *mtype = dane->mtlsa->mtype; 1098 if (data) 1099 *data = dane->mtlsa->data; 1100 if (dlen) 1101 *dlen = dane->mtlsa->dlen; 1102 } 1103 return dane->mdpth; 1104 } 1105 1106 SSL_DANE *SSL_get0_dane(SSL *s) 1107 { 1108 return &s->dane; 1109 } 1110 1111 int SSL_dane_tlsa_add(SSL *s, uint8_t usage, uint8_t selector, 1112 uint8_t mtype, unsigned const char *data, size_t dlen) 1113 { 1114 return dane_tlsa_add(&s->dane, usage, selector, mtype, data, dlen); 1115 } 1116 1117 int SSL_CTX_dane_mtype_set(SSL_CTX *ctx, const EVP_MD *md, uint8_t mtype, 1118 uint8_t ord) 1119 { 1120 return dane_mtype_set(&ctx->dane, md, mtype, ord); 1121 } 1122 1123 int SSL_CTX_set1_param(SSL_CTX *ctx, X509_VERIFY_PARAM *vpm) 1124 { 1125 return X509_VERIFY_PARAM_set1(ctx->param, vpm); 1126 } 1127 1128 int SSL_set1_param(SSL *ssl, X509_VERIFY_PARAM *vpm) 1129 { 1130 return X509_VERIFY_PARAM_set1(ssl->param, vpm); 1131 } 1132 1133 X509_VERIFY_PARAM *SSL_CTX_get0_param(SSL_CTX *ctx) 1134 { 1135 return ctx->param; 1136 } 1137 1138 X509_VERIFY_PARAM *SSL_get0_param(SSL *ssl) 1139 { 1140 return ssl->param; 1141 } 1142 1143 void SSL_certs_clear(SSL *s) 1144 { 1145 ssl_cert_clear_certs(s->cert); 1146 } 1147 1148 void SSL_free(SSL *s) 1149 { 1150 int i; 1151 1152 if (s == NULL) 1153 return; 1154 CRYPTO_DOWN_REF(&s->references, &i, s->lock); 1155 REF_PRINT_COUNT("SSL", s); 1156 if (i > 0) 1157 return; 1158 REF_ASSERT_ISNT(i < 0); 1159 1160 X509_VERIFY_PARAM_free(s->param); 1161 dane_final(&s->dane); 1162 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL, s, &s->ex_data); 1163 1164 RECORD_LAYER_release(&s->rlayer); 1165 1166 /* Ignore return value */ 1167 ssl_free_wbio_buffer(s); 1168 1169 BIO_free_all(s->wbio); 1170 s->wbio = NULL; 1171 BIO_free_all(s->rbio); 1172 s->rbio = NULL; 1173 1174 BUF_MEM_free(s->init_buf); 1175 1176 /* add extra stuff */ 1177 sk_SSL_CIPHER_free(s->cipher_list); 1178 sk_SSL_CIPHER_free(s->cipher_list_by_id); 1179 sk_SSL_CIPHER_free(s->tls13_ciphersuites); 1180 sk_SSL_CIPHER_free(s->peer_ciphers); 1181 1182 /* Make the next call work :-) */ 1183 if (s->session != NULL) { 1184 ssl_clear_bad_session(s); 1185 SSL_SESSION_free(s->session); 1186 } 1187 SSL_SESSION_free(s->psksession); 1188 OPENSSL_free(s->psksession_id); 1189 1190 clear_ciphers(s); 1191 1192 ssl_cert_free(s->cert); 1193 OPENSSL_free(s->shared_sigalgs); 1194 /* Free up if allocated */ 1195 1196 OPENSSL_free(s->ext.hostname); 1197 SSL_CTX_free(s->session_ctx); 1198 #ifndef OPENSSL_NO_EC 1199 OPENSSL_free(s->ext.ecpointformats); 1200 OPENSSL_free(s->ext.peer_ecpointformats); 1201 OPENSSL_free(s->ext.supportedgroups); 1202 OPENSSL_free(s->ext.peer_supportedgroups); 1203 #endif /* OPENSSL_NO_EC */ 1204 sk_X509_EXTENSION_pop_free(s->ext.ocsp.exts, X509_EXTENSION_free); 1205 #ifndef OPENSSL_NO_OCSP 1206 sk_OCSP_RESPID_pop_free(s->ext.ocsp.ids, OCSP_RESPID_free); 1207 #endif 1208 #ifndef OPENSSL_NO_CT 1209 SCT_LIST_free(s->scts); 1210 OPENSSL_free(s->ext.scts); 1211 #endif 1212 OPENSSL_free(s->ext.ocsp.resp); 1213 OPENSSL_free(s->ext.alpn); 1214 OPENSSL_free(s->ext.tls13_cookie); 1215 if (s->clienthello != NULL) 1216 OPENSSL_free(s->clienthello->pre_proc_exts); 1217 OPENSSL_free(s->clienthello); 1218 OPENSSL_free(s->pha_context); 1219 EVP_MD_CTX_free(s->pha_dgst); 1220 1221 sk_X509_NAME_pop_free(s->ca_names, X509_NAME_free); 1222 sk_X509_NAME_pop_free(s->client_ca_names, X509_NAME_free); 1223 1224 sk_X509_pop_free(s->verified_chain, X509_free); 1225 1226 if (s->method != NULL) 1227 s->method->ssl_free(s); 1228 1229 SSL_CTX_free(s->ctx); 1230 1231 ASYNC_WAIT_CTX_free(s->waitctx); 1232 1233 #if !defined(OPENSSL_NO_NEXTPROTONEG) 1234 OPENSSL_free(s->ext.npn); 1235 #endif 1236 1237 #ifndef OPENSSL_NO_SRTP 1238 sk_SRTP_PROTECTION_PROFILE_free(s->srtp_profiles); 1239 #endif 1240 1241 CRYPTO_THREAD_lock_free(s->lock); 1242 1243 OPENSSL_free(s); 1244 } 1245 1246 void SSL_set0_rbio(SSL *s, BIO *rbio) 1247 { 1248 BIO_free_all(s->rbio); 1249 s->rbio = rbio; 1250 } 1251 1252 void SSL_set0_wbio(SSL *s, BIO *wbio) 1253 { 1254 /* 1255 * If the output buffering BIO is still in place, remove it 1256 */ 1257 if (s->bbio != NULL) 1258 s->wbio = BIO_pop(s->wbio); 1259 1260 BIO_free_all(s->wbio); 1261 s->wbio = wbio; 1262 1263 /* Re-attach |bbio| to the new |wbio|. */ 1264 if (s->bbio != NULL) 1265 s->wbio = BIO_push(s->bbio, s->wbio); 1266 } 1267 1268 void SSL_set_bio(SSL *s, BIO *rbio, BIO *wbio) 1269 { 1270 /* 1271 * For historical reasons, this function has many different cases in 1272 * ownership handling. 1273 */ 1274 1275 /* If nothing has changed, do nothing */ 1276 if (rbio == SSL_get_rbio(s) && wbio == SSL_get_wbio(s)) 1277 return; 1278 1279 /* 1280 * If the two arguments are equal then one fewer reference is granted by the 1281 * caller than we want to take 1282 */ 1283 if (rbio != NULL && rbio == wbio) 1284 BIO_up_ref(rbio); 1285 1286 /* 1287 * If only the wbio is changed only adopt one reference. 1288 */ 1289 if (rbio == SSL_get_rbio(s)) { 1290 SSL_set0_wbio(s, wbio); 1291 return; 1292 } 1293 /* 1294 * There is an asymmetry here for historical reasons. If only the rbio is 1295 * changed AND the rbio and wbio were originally different, then we only 1296 * adopt one reference. 1297 */ 1298 if (wbio == SSL_get_wbio(s) && SSL_get_rbio(s) != SSL_get_wbio(s)) { 1299 SSL_set0_rbio(s, rbio); 1300 return; 1301 } 1302 1303 /* Otherwise, adopt both references. */ 1304 SSL_set0_rbio(s, rbio); 1305 SSL_set0_wbio(s, wbio); 1306 } 1307 1308 BIO *SSL_get_rbio(const SSL *s) 1309 { 1310 return s->rbio; 1311 } 1312 1313 BIO *SSL_get_wbio(const SSL *s) 1314 { 1315 if (s->bbio != NULL) { 1316 /* 1317 * If |bbio| is active, the true caller-configured BIO is its 1318 * |next_bio|. 1319 */ 1320 return BIO_next(s->bbio); 1321 } 1322 return s->wbio; 1323 } 1324 1325 int SSL_get_fd(const SSL *s) 1326 { 1327 return SSL_get_rfd(s); 1328 } 1329 1330 int SSL_get_rfd(const SSL *s) 1331 { 1332 int ret = -1; 1333 BIO *b, *r; 1334 1335 b = SSL_get_rbio(s); 1336 r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR); 1337 if (r != NULL) 1338 BIO_get_fd(r, &ret); 1339 return ret; 1340 } 1341 1342 int SSL_get_wfd(const SSL *s) 1343 { 1344 int ret = -1; 1345 BIO *b, *r; 1346 1347 b = SSL_get_wbio(s); 1348 r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR); 1349 if (r != NULL) 1350 BIO_get_fd(r, &ret); 1351 return ret; 1352 } 1353 1354 #ifndef OPENSSL_NO_SOCK 1355 int SSL_set_fd(SSL *s, int fd) 1356 { 1357 int ret = 0; 1358 BIO *bio = NULL; 1359 1360 bio = BIO_new(BIO_s_socket()); 1361 1362 if (bio == NULL) { 1363 SSLerr(SSL_F_SSL_SET_FD, ERR_R_BUF_LIB); 1364 goto err; 1365 } 1366 BIO_set_fd(bio, fd, BIO_NOCLOSE); 1367 SSL_set_bio(s, bio, bio); 1368 #ifndef OPENSSL_NO_KTLS 1369 /* 1370 * The new socket is created successfully regardless of ktls_enable. 1371 * ktls_enable doesn't change any functionality of the socket, except 1372 * changing the setsockopt to enable the processing of ktls_start. 1373 * Thus, it is not a problem to call it for non-TLS sockets. 1374 */ 1375 ktls_enable(fd); 1376 #endif /* OPENSSL_NO_KTLS */ 1377 ret = 1; 1378 err: 1379 return ret; 1380 } 1381 1382 int SSL_set_wfd(SSL *s, int fd) 1383 { 1384 BIO *rbio = SSL_get_rbio(s); 1385 1386 if (rbio == NULL || BIO_method_type(rbio) != BIO_TYPE_SOCKET 1387 || (int)BIO_get_fd(rbio, NULL) != fd) { 1388 BIO *bio = BIO_new(BIO_s_socket()); 1389 1390 if (bio == NULL) { 1391 SSLerr(SSL_F_SSL_SET_WFD, ERR_R_BUF_LIB); 1392 return 0; 1393 } 1394 BIO_set_fd(bio, fd, BIO_NOCLOSE); 1395 SSL_set0_wbio(s, bio); 1396 #ifndef OPENSSL_NO_KTLS 1397 /* 1398 * The new socket is created successfully regardless of ktls_enable. 1399 * ktls_enable doesn't change any functionality of the socket, except 1400 * changing the setsockopt to enable the processing of ktls_start. 1401 * Thus, it is not a problem to call it for non-TLS sockets. 1402 */ 1403 ktls_enable(fd); 1404 #endif /* OPENSSL_NO_KTLS */ 1405 } else { 1406 BIO_up_ref(rbio); 1407 SSL_set0_wbio(s, rbio); 1408 } 1409 return 1; 1410 } 1411 1412 int SSL_set_rfd(SSL *s, int fd) 1413 { 1414 BIO *wbio = SSL_get_wbio(s); 1415 1416 if (wbio == NULL || BIO_method_type(wbio) != BIO_TYPE_SOCKET 1417 || ((int)BIO_get_fd(wbio, NULL) != fd)) { 1418 BIO *bio = BIO_new(BIO_s_socket()); 1419 1420 if (bio == NULL) { 1421 SSLerr(SSL_F_SSL_SET_RFD, ERR_R_BUF_LIB); 1422 return 0; 1423 } 1424 BIO_set_fd(bio, fd, BIO_NOCLOSE); 1425 SSL_set0_rbio(s, bio); 1426 } else { 1427 BIO_up_ref(wbio); 1428 SSL_set0_rbio(s, wbio); 1429 } 1430 1431 return 1; 1432 } 1433 #endif 1434 1435 /* return length of latest Finished message we sent, copy to 'buf' */ 1436 size_t SSL_get_finished(const SSL *s, void *buf, size_t count) 1437 { 1438 size_t ret = 0; 1439 1440 if (s->s3 != NULL) { 1441 ret = s->s3->tmp.finish_md_len; 1442 if (count > ret) 1443 count = ret; 1444 memcpy(buf, s->s3->tmp.finish_md, count); 1445 } 1446 return ret; 1447 } 1448 1449 /* return length of latest Finished message we expected, copy to 'buf' */ 1450 size_t SSL_get_peer_finished(const SSL *s, void *buf, size_t count) 1451 { 1452 size_t ret = 0; 1453 1454 if (s->s3 != NULL) { 1455 ret = s->s3->tmp.peer_finish_md_len; 1456 if (count > ret) 1457 count = ret; 1458 memcpy(buf, s->s3->tmp.peer_finish_md, count); 1459 } 1460 return ret; 1461 } 1462 1463 int SSL_get_verify_mode(const SSL *s) 1464 { 1465 return s->verify_mode; 1466 } 1467 1468 int SSL_get_verify_depth(const SSL *s) 1469 { 1470 return X509_VERIFY_PARAM_get_depth(s->param); 1471 } 1472 1473 int (*SSL_get_verify_callback(const SSL *s)) (int, X509_STORE_CTX *) { 1474 return s->verify_callback; 1475 } 1476 1477 int SSL_CTX_get_verify_mode(const SSL_CTX *ctx) 1478 { 1479 return ctx->verify_mode; 1480 } 1481 1482 int SSL_CTX_get_verify_depth(const SSL_CTX *ctx) 1483 { 1484 return X509_VERIFY_PARAM_get_depth(ctx->param); 1485 } 1486 1487 int (*SSL_CTX_get_verify_callback(const SSL_CTX *ctx)) (int, X509_STORE_CTX *) { 1488 return ctx->default_verify_callback; 1489 } 1490 1491 void SSL_set_verify(SSL *s, int mode, 1492 int (*callback) (int ok, X509_STORE_CTX *ctx)) 1493 { 1494 s->verify_mode = mode; 1495 if (callback != NULL) 1496 s->verify_callback = callback; 1497 } 1498 1499 void SSL_set_verify_depth(SSL *s, int depth) 1500 { 1501 X509_VERIFY_PARAM_set_depth(s->param, depth); 1502 } 1503 1504 void SSL_set_read_ahead(SSL *s, int yes) 1505 { 1506 RECORD_LAYER_set_read_ahead(&s->rlayer, yes); 1507 } 1508 1509 int SSL_get_read_ahead(const SSL *s) 1510 { 1511 return RECORD_LAYER_get_read_ahead(&s->rlayer); 1512 } 1513 1514 int SSL_pending(const SSL *s) 1515 { 1516 size_t pending = s->method->ssl_pending(s); 1517 1518 /* 1519 * SSL_pending cannot work properly if read-ahead is enabled 1520 * (SSL_[CTX_]ctrl(..., SSL_CTRL_SET_READ_AHEAD, 1, NULL)), and it is 1521 * impossible to fix since SSL_pending cannot report errors that may be 1522 * observed while scanning the new data. (Note that SSL_pending() is 1523 * often used as a boolean value, so we'd better not return -1.) 1524 * 1525 * SSL_pending also cannot work properly if the value >INT_MAX. In that case 1526 * we just return INT_MAX. 1527 */ 1528 return pending < INT_MAX ? (int)pending : INT_MAX; 1529 } 1530 1531 int SSL_has_pending(const SSL *s) 1532 { 1533 /* 1534 * Similar to SSL_pending() but returns a 1 to indicate that we have 1535 * processed or unprocessed data available or 0 otherwise (as opposed to the 1536 * number of bytes available). Unlike SSL_pending() this will take into 1537 * account read_ahead data. A 1 return simply indicates that we have data. 1538 * That data may not result in any application data, or we may fail to parse 1539 * the records for some reason. 1540 */ 1541 1542 /* Check buffered app data if any first */ 1543 if (SSL_IS_DTLS(s)) { 1544 DTLS1_RECORD_DATA *rdata; 1545 pitem *item, *iter; 1546 1547 iter = pqueue_iterator(s->rlayer.d->buffered_app_data.q); 1548 while ((item = pqueue_next(&iter)) != NULL) { 1549 rdata = item->data; 1550 if (rdata->rrec.length > 0) 1551 return 1; 1552 } 1553 } 1554 1555 if (RECORD_LAYER_processed_read_pending(&s->rlayer)) 1556 return 1; 1557 1558 return RECORD_LAYER_read_pending(&s->rlayer); 1559 } 1560 1561 X509 *SSL_get_peer_certificate(const SSL *s) 1562 { 1563 X509 *r; 1564 1565 if ((s == NULL) || (s->session == NULL)) 1566 r = NULL; 1567 else 1568 r = s->session->peer; 1569 1570 if (r == NULL) 1571 return r; 1572 1573 X509_up_ref(r); 1574 1575 return r; 1576 } 1577 1578 STACK_OF(X509) *SSL_get_peer_cert_chain(const SSL *s) 1579 { 1580 STACK_OF(X509) *r; 1581 1582 if ((s == NULL) || (s->session == NULL)) 1583 r = NULL; 1584 else 1585 r = s->session->peer_chain; 1586 1587 /* 1588 * If we are a client, cert_chain includes the peer's own certificate; if 1589 * we are a server, it does not. 1590 */ 1591 1592 return r; 1593 } 1594 1595 /* 1596 * Now in theory, since the calling process own 't' it should be safe to 1597 * modify. We need to be able to read f without being hassled 1598 */ 1599 int SSL_copy_session_id(SSL *t, const SSL *f) 1600 { 1601 int i; 1602 /* Do we need to to SSL locking? */ 1603 if (!SSL_set_session(t, SSL_get_session(f))) { 1604 return 0; 1605 } 1606 1607 /* 1608 * what if we are setup for one protocol version but want to talk another 1609 */ 1610 if (t->method != f->method) { 1611 t->method->ssl_free(t); 1612 t->method = f->method; 1613 if (t->method->ssl_new(t) == 0) 1614 return 0; 1615 } 1616 1617 CRYPTO_UP_REF(&f->cert->references, &i, f->cert->lock); 1618 ssl_cert_free(t->cert); 1619 t->cert = f->cert; 1620 if (!SSL_set_session_id_context(t, f->sid_ctx, (int)f->sid_ctx_length)) { 1621 return 0; 1622 } 1623 1624 return 1; 1625 } 1626 1627 /* Fix this so it checks all the valid key/cert options */ 1628 int SSL_CTX_check_private_key(const SSL_CTX *ctx) 1629 { 1630 if ((ctx == NULL) || (ctx->cert->key->x509 == NULL)) { 1631 SSLerr(SSL_F_SSL_CTX_CHECK_PRIVATE_KEY, SSL_R_NO_CERTIFICATE_ASSIGNED); 1632 return 0; 1633 } 1634 if (ctx->cert->key->privatekey == NULL) { 1635 SSLerr(SSL_F_SSL_CTX_CHECK_PRIVATE_KEY, SSL_R_NO_PRIVATE_KEY_ASSIGNED); 1636 return 0; 1637 } 1638 return X509_check_private_key 1639 (ctx->cert->key->x509, ctx->cert->key->privatekey); 1640 } 1641 1642 /* Fix this function so that it takes an optional type parameter */ 1643 int SSL_check_private_key(const SSL *ssl) 1644 { 1645 if (ssl == NULL) { 1646 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, ERR_R_PASSED_NULL_PARAMETER); 1647 return 0; 1648 } 1649 if (ssl->cert->key->x509 == NULL) { 1650 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, SSL_R_NO_CERTIFICATE_ASSIGNED); 1651 return 0; 1652 } 1653 if (ssl->cert->key->privatekey == NULL) { 1654 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, SSL_R_NO_PRIVATE_KEY_ASSIGNED); 1655 return 0; 1656 } 1657 return X509_check_private_key(ssl->cert->key->x509, 1658 ssl->cert->key->privatekey); 1659 } 1660 1661 int SSL_waiting_for_async(SSL *s) 1662 { 1663 if (s->job) 1664 return 1; 1665 1666 return 0; 1667 } 1668 1669 int SSL_get_all_async_fds(SSL *s, OSSL_ASYNC_FD *fds, size_t *numfds) 1670 { 1671 ASYNC_WAIT_CTX *ctx = s->waitctx; 1672 1673 if (ctx == NULL) 1674 return 0; 1675 return ASYNC_WAIT_CTX_get_all_fds(ctx, fds, numfds); 1676 } 1677 1678 int SSL_get_changed_async_fds(SSL *s, OSSL_ASYNC_FD *addfd, size_t *numaddfds, 1679 OSSL_ASYNC_FD *delfd, size_t *numdelfds) 1680 { 1681 ASYNC_WAIT_CTX *ctx = s->waitctx; 1682 1683 if (ctx == NULL) 1684 return 0; 1685 return ASYNC_WAIT_CTX_get_changed_fds(ctx, addfd, numaddfds, delfd, 1686 numdelfds); 1687 } 1688 1689 int SSL_accept(SSL *s) 1690 { 1691 if (s->handshake_func == NULL) { 1692 /* Not properly initialized yet */ 1693 SSL_set_accept_state(s); 1694 } 1695 1696 return SSL_do_handshake(s); 1697 } 1698 1699 int SSL_connect(SSL *s) 1700 { 1701 if (s->handshake_func == NULL) { 1702 /* Not properly initialized yet */ 1703 SSL_set_connect_state(s); 1704 } 1705 1706 return SSL_do_handshake(s); 1707 } 1708 1709 long SSL_get_default_timeout(const SSL *s) 1710 { 1711 return s->method->get_timeout(); 1712 } 1713 1714 static int ssl_start_async_job(SSL *s, struct ssl_async_args *args, 1715 int (*func) (void *)) 1716 { 1717 int ret; 1718 if (s->waitctx == NULL) { 1719 s->waitctx = ASYNC_WAIT_CTX_new(); 1720 if (s->waitctx == NULL) 1721 return -1; 1722 } 1723 1724 s->rwstate = SSL_NOTHING; 1725 switch (ASYNC_start_job(&s->job, s->waitctx, &ret, func, args, 1726 sizeof(struct ssl_async_args))) { 1727 case ASYNC_ERR: 1728 s->rwstate = SSL_NOTHING; 1729 SSLerr(SSL_F_SSL_START_ASYNC_JOB, SSL_R_FAILED_TO_INIT_ASYNC); 1730 return -1; 1731 case ASYNC_PAUSE: 1732 s->rwstate = SSL_ASYNC_PAUSED; 1733 return -1; 1734 case ASYNC_NO_JOBS: 1735 s->rwstate = SSL_ASYNC_NO_JOBS; 1736 return -1; 1737 case ASYNC_FINISH: 1738 s->job = NULL; 1739 return ret; 1740 default: 1741 s->rwstate = SSL_NOTHING; 1742 SSLerr(SSL_F_SSL_START_ASYNC_JOB, ERR_R_INTERNAL_ERROR); 1743 /* Shouldn't happen */ 1744 return -1; 1745 } 1746 } 1747 1748 static int ssl_io_intern(void *vargs) 1749 { 1750 struct ssl_async_args *args; 1751 SSL *s; 1752 void *buf; 1753 size_t num; 1754 1755 args = (struct ssl_async_args *)vargs; 1756 s = args->s; 1757 buf = args->buf; 1758 num = args->num; 1759 switch (args->type) { 1760 case READFUNC: 1761 return args->f.func_read(s, buf, num, &s->asyncrw); 1762 case WRITEFUNC: 1763 return args->f.func_write(s, buf, num, &s->asyncrw); 1764 case OTHERFUNC: 1765 return args->f.func_other(s); 1766 } 1767 return -1; 1768 } 1769 1770 int ssl_read_internal(SSL *s, void *buf, size_t num, size_t *readbytes) 1771 { 1772 if (s->handshake_func == NULL) { 1773 SSLerr(SSL_F_SSL_READ_INTERNAL, SSL_R_UNINITIALIZED); 1774 return -1; 1775 } 1776 1777 if (s->shutdown & SSL_RECEIVED_SHUTDOWN) { 1778 s->rwstate = SSL_NOTHING; 1779 return 0; 1780 } 1781 1782 if (s->early_data_state == SSL_EARLY_DATA_CONNECT_RETRY 1783 || s->early_data_state == SSL_EARLY_DATA_ACCEPT_RETRY) { 1784 SSLerr(SSL_F_SSL_READ_INTERNAL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 1785 return 0; 1786 } 1787 /* 1788 * If we are a client and haven't received the ServerHello etc then we 1789 * better do that 1790 */ 1791 ossl_statem_check_finish_init(s, 0); 1792 1793 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) { 1794 struct ssl_async_args args; 1795 int ret; 1796 1797 args.s = s; 1798 args.buf = buf; 1799 args.num = num; 1800 args.type = READFUNC; 1801 args.f.func_read = s->method->ssl_read; 1802 1803 ret = ssl_start_async_job(s, &args, ssl_io_intern); 1804 *readbytes = s->asyncrw; 1805 return ret; 1806 } else { 1807 return s->method->ssl_read(s, buf, num, readbytes); 1808 } 1809 } 1810 1811 int SSL_read(SSL *s, void *buf, int num) 1812 { 1813 int ret; 1814 size_t readbytes; 1815 1816 if (num < 0) { 1817 SSLerr(SSL_F_SSL_READ, SSL_R_BAD_LENGTH); 1818 return -1; 1819 } 1820 1821 ret = ssl_read_internal(s, buf, (size_t)num, &readbytes); 1822 1823 /* 1824 * The cast is safe here because ret should be <= INT_MAX because num is 1825 * <= INT_MAX 1826 */ 1827 if (ret > 0) 1828 ret = (int)readbytes; 1829 1830 return ret; 1831 } 1832 1833 int SSL_read_ex(SSL *s, void *buf, size_t num, size_t *readbytes) 1834 { 1835 int ret = ssl_read_internal(s, buf, num, readbytes); 1836 1837 if (ret < 0) 1838 ret = 0; 1839 return ret; 1840 } 1841 1842 int SSL_read_early_data(SSL *s, void *buf, size_t num, size_t *readbytes) 1843 { 1844 int ret; 1845 1846 if (!s->server) { 1847 SSLerr(SSL_F_SSL_READ_EARLY_DATA, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 1848 return SSL_READ_EARLY_DATA_ERROR; 1849 } 1850 1851 switch (s->early_data_state) { 1852 case SSL_EARLY_DATA_NONE: 1853 if (!SSL_in_before(s)) { 1854 SSLerr(SSL_F_SSL_READ_EARLY_DATA, 1855 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 1856 return SSL_READ_EARLY_DATA_ERROR; 1857 } 1858 /* fall through */ 1859 1860 case SSL_EARLY_DATA_ACCEPT_RETRY: 1861 s->early_data_state = SSL_EARLY_DATA_ACCEPTING; 1862 ret = SSL_accept(s); 1863 if (ret <= 0) { 1864 /* NBIO or error */ 1865 s->early_data_state = SSL_EARLY_DATA_ACCEPT_RETRY; 1866 return SSL_READ_EARLY_DATA_ERROR; 1867 } 1868 /* fall through */ 1869 1870 case SSL_EARLY_DATA_READ_RETRY: 1871 if (s->ext.early_data == SSL_EARLY_DATA_ACCEPTED) { 1872 s->early_data_state = SSL_EARLY_DATA_READING; 1873 ret = SSL_read_ex(s, buf, num, readbytes); 1874 /* 1875 * State machine will update early_data_state to 1876 * SSL_EARLY_DATA_FINISHED_READING if we get an EndOfEarlyData 1877 * message 1878 */ 1879 if (ret > 0 || (ret <= 0 && s->early_data_state 1880 != SSL_EARLY_DATA_FINISHED_READING)) { 1881 s->early_data_state = SSL_EARLY_DATA_READ_RETRY; 1882 return ret > 0 ? SSL_READ_EARLY_DATA_SUCCESS 1883 : SSL_READ_EARLY_DATA_ERROR; 1884 } 1885 } else { 1886 s->early_data_state = SSL_EARLY_DATA_FINISHED_READING; 1887 } 1888 *readbytes = 0; 1889 return SSL_READ_EARLY_DATA_FINISH; 1890 1891 default: 1892 SSLerr(SSL_F_SSL_READ_EARLY_DATA, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 1893 return SSL_READ_EARLY_DATA_ERROR; 1894 } 1895 } 1896 1897 int SSL_get_early_data_status(const SSL *s) 1898 { 1899 return s->ext.early_data; 1900 } 1901 1902 static int ssl_peek_internal(SSL *s, void *buf, size_t num, size_t *readbytes) 1903 { 1904 if (s->handshake_func == NULL) { 1905 SSLerr(SSL_F_SSL_PEEK_INTERNAL, SSL_R_UNINITIALIZED); 1906 return -1; 1907 } 1908 1909 if (s->shutdown & SSL_RECEIVED_SHUTDOWN) { 1910 return 0; 1911 } 1912 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) { 1913 struct ssl_async_args args; 1914 int ret; 1915 1916 args.s = s; 1917 args.buf = buf; 1918 args.num = num; 1919 args.type = READFUNC; 1920 args.f.func_read = s->method->ssl_peek; 1921 1922 ret = ssl_start_async_job(s, &args, ssl_io_intern); 1923 *readbytes = s->asyncrw; 1924 return ret; 1925 } else { 1926 return s->method->ssl_peek(s, buf, num, readbytes); 1927 } 1928 } 1929 1930 int SSL_peek(SSL *s, void *buf, int num) 1931 { 1932 int ret; 1933 size_t readbytes; 1934 1935 if (num < 0) { 1936 SSLerr(SSL_F_SSL_PEEK, SSL_R_BAD_LENGTH); 1937 return -1; 1938 } 1939 1940 ret = ssl_peek_internal(s, buf, (size_t)num, &readbytes); 1941 1942 /* 1943 * The cast is safe here because ret should be <= INT_MAX because num is 1944 * <= INT_MAX 1945 */ 1946 if (ret > 0) 1947 ret = (int)readbytes; 1948 1949 return ret; 1950 } 1951 1952 1953 int SSL_peek_ex(SSL *s, void *buf, size_t num, size_t *readbytes) 1954 { 1955 int ret = ssl_peek_internal(s, buf, num, readbytes); 1956 1957 if (ret < 0) 1958 ret = 0; 1959 return ret; 1960 } 1961 1962 int ssl_write_internal(SSL *s, const void *buf, size_t num, size_t *written) 1963 { 1964 if (s->handshake_func == NULL) { 1965 SSLerr(SSL_F_SSL_WRITE_INTERNAL, SSL_R_UNINITIALIZED); 1966 return -1; 1967 } 1968 1969 if (s->shutdown & SSL_SENT_SHUTDOWN) { 1970 s->rwstate = SSL_NOTHING; 1971 SSLerr(SSL_F_SSL_WRITE_INTERNAL, SSL_R_PROTOCOL_IS_SHUTDOWN); 1972 return -1; 1973 } 1974 1975 if (s->early_data_state == SSL_EARLY_DATA_CONNECT_RETRY 1976 || s->early_data_state == SSL_EARLY_DATA_ACCEPT_RETRY 1977 || s->early_data_state == SSL_EARLY_DATA_READ_RETRY) { 1978 SSLerr(SSL_F_SSL_WRITE_INTERNAL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 1979 return 0; 1980 } 1981 /* If we are a client and haven't sent the Finished we better do that */ 1982 ossl_statem_check_finish_init(s, 1); 1983 1984 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) { 1985 int ret; 1986 struct ssl_async_args args; 1987 1988 args.s = s; 1989 args.buf = (void *)buf; 1990 args.num = num; 1991 args.type = WRITEFUNC; 1992 args.f.func_write = s->method->ssl_write; 1993 1994 ret = ssl_start_async_job(s, &args, ssl_io_intern); 1995 *written = s->asyncrw; 1996 return ret; 1997 } else { 1998 return s->method->ssl_write(s, buf, num, written); 1999 } 2000 } 2001 2002 ossl_ssize_t SSL_sendfile(SSL *s, int fd, off_t offset, size_t size, int flags) 2003 { 2004 ossl_ssize_t ret; 2005 2006 if (s->handshake_func == NULL) { 2007 SSLerr(SSL_F_SSL_SENDFILE, SSL_R_UNINITIALIZED); 2008 return -1; 2009 } 2010 2011 if (s->shutdown & SSL_SENT_SHUTDOWN) { 2012 s->rwstate = SSL_NOTHING; 2013 SSLerr(SSL_F_SSL_SENDFILE, SSL_R_PROTOCOL_IS_SHUTDOWN); 2014 return -1; 2015 } 2016 2017 if (!BIO_get_ktls_send(s->wbio)) { 2018 SSLerr(SSL_F_SSL_SENDFILE, SSL_R_UNINITIALIZED); 2019 return -1; 2020 } 2021 2022 /* If we have an alert to send, lets send it */ 2023 if (s->s3->alert_dispatch) { 2024 ret = (ossl_ssize_t)s->method->ssl_dispatch_alert(s); 2025 if (ret <= 0) { 2026 /* SSLfatal() already called if appropriate */ 2027 return ret; 2028 } 2029 /* if it went, fall through and send more stuff */ 2030 } 2031 2032 s->rwstate = SSL_WRITING; 2033 if (BIO_flush(s->wbio) <= 0) { 2034 if (!BIO_should_retry(s->wbio)) { 2035 s->rwstate = SSL_NOTHING; 2036 } else { 2037 #ifdef EAGAIN 2038 set_sys_error(EAGAIN); 2039 #endif 2040 } 2041 return -1; 2042 } 2043 2044 #ifdef OPENSSL_NO_KTLS 2045 SYSerr(SSL_F_SSL_SENDFILE, ERR_R_INTERNAL_ERROR); 2046 ERR_add_error_data(1, "calling sendfile()"); 2047 return -1; 2048 #else 2049 ret = ktls_sendfile(SSL_get_wfd(s), fd, offset, size, flags); 2050 if (ret < 0) { 2051 #if defined(EAGAIN) && defined(EINTR) && defined(EBUSY) 2052 if ((get_last_sys_error() == EAGAIN) || 2053 (get_last_sys_error() == EINTR) || 2054 (get_last_sys_error() == EBUSY)) 2055 BIO_set_retry_write(s->wbio); 2056 else 2057 #endif 2058 SSLerr(SSL_F_SSL_SENDFILE, SSL_R_UNINITIALIZED); 2059 return ret; 2060 } 2061 s->rwstate = SSL_NOTHING; 2062 return ret; 2063 #endif 2064 } 2065 2066 int SSL_write(SSL *s, const void *buf, int num) 2067 { 2068 int ret; 2069 size_t written; 2070 2071 if (num < 0) { 2072 SSLerr(SSL_F_SSL_WRITE, SSL_R_BAD_LENGTH); 2073 return -1; 2074 } 2075 2076 ret = ssl_write_internal(s, buf, (size_t)num, &written); 2077 2078 /* 2079 * The cast is safe here because ret should be <= INT_MAX because num is 2080 * <= INT_MAX 2081 */ 2082 if (ret > 0) 2083 ret = (int)written; 2084 2085 return ret; 2086 } 2087 2088 int SSL_write_ex(SSL *s, const void *buf, size_t num, size_t *written) 2089 { 2090 int ret = ssl_write_internal(s, buf, num, written); 2091 2092 if (ret < 0) 2093 ret = 0; 2094 return ret; 2095 } 2096 2097 int SSL_write_early_data(SSL *s, const void *buf, size_t num, size_t *written) 2098 { 2099 int ret, early_data_state; 2100 size_t writtmp; 2101 uint32_t partialwrite; 2102 2103 switch (s->early_data_state) { 2104 case SSL_EARLY_DATA_NONE: 2105 if (s->server 2106 || !SSL_in_before(s) 2107 || ((s->session == NULL || s->session->ext.max_early_data == 0) 2108 && (s->psk_use_session_cb == NULL))) { 2109 SSLerr(SSL_F_SSL_WRITE_EARLY_DATA, 2110 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 2111 return 0; 2112 } 2113 /* fall through */ 2114 2115 case SSL_EARLY_DATA_CONNECT_RETRY: 2116 s->early_data_state = SSL_EARLY_DATA_CONNECTING; 2117 ret = SSL_connect(s); 2118 if (ret <= 0) { 2119 /* NBIO or error */ 2120 s->early_data_state = SSL_EARLY_DATA_CONNECT_RETRY; 2121 return 0; 2122 } 2123 /* fall through */ 2124 2125 case SSL_EARLY_DATA_WRITE_RETRY: 2126 s->early_data_state = SSL_EARLY_DATA_WRITING; 2127 /* 2128 * We disable partial write for early data because we don't keep track 2129 * of how many bytes we've written between the SSL_write_ex() call and 2130 * the flush if the flush needs to be retried) 2131 */ 2132 partialwrite = s->mode & SSL_MODE_ENABLE_PARTIAL_WRITE; 2133 s->mode &= ~SSL_MODE_ENABLE_PARTIAL_WRITE; 2134 ret = SSL_write_ex(s, buf, num, &writtmp); 2135 s->mode |= partialwrite; 2136 if (!ret) { 2137 s->early_data_state = SSL_EARLY_DATA_WRITE_RETRY; 2138 return ret; 2139 } 2140 s->early_data_state = SSL_EARLY_DATA_WRITE_FLUSH; 2141 /* fall through */ 2142 2143 case SSL_EARLY_DATA_WRITE_FLUSH: 2144 /* The buffering BIO is still in place so we need to flush it */ 2145 if (statem_flush(s) != 1) 2146 return 0; 2147 *written = num; 2148 s->early_data_state = SSL_EARLY_DATA_WRITE_RETRY; 2149 return 1; 2150 2151 case SSL_EARLY_DATA_FINISHED_READING: 2152 case SSL_EARLY_DATA_READ_RETRY: 2153 early_data_state = s->early_data_state; 2154 /* We are a server writing to an unauthenticated client */ 2155 s->early_data_state = SSL_EARLY_DATA_UNAUTH_WRITING; 2156 ret = SSL_write_ex(s, buf, num, written); 2157 /* The buffering BIO is still in place */ 2158 if (ret) 2159 (void)BIO_flush(s->wbio); 2160 s->early_data_state = early_data_state; 2161 return ret; 2162 2163 default: 2164 SSLerr(SSL_F_SSL_WRITE_EARLY_DATA, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 2165 return 0; 2166 } 2167 } 2168 2169 int SSL_shutdown(SSL *s) 2170 { 2171 /* 2172 * Note that this function behaves differently from what one might 2173 * expect. Return values are 0 for no success (yet), 1 for success; but 2174 * calling it once is usually not enough, even if blocking I/O is used 2175 * (see ssl3_shutdown). 2176 */ 2177 2178 if (s->handshake_func == NULL) { 2179 SSLerr(SSL_F_SSL_SHUTDOWN, SSL_R_UNINITIALIZED); 2180 return -1; 2181 } 2182 2183 if (!SSL_in_init(s)) { 2184 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) { 2185 struct ssl_async_args args; 2186 2187 memset(&args, 0, sizeof(args)); 2188 args.s = s; 2189 args.type = OTHERFUNC; 2190 args.f.func_other = s->method->ssl_shutdown; 2191 2192 return ssl_start_async_job(s, &args, ssl_io_intern); 2193 } else { 2194 return s->method->ssl_shutdown(s); 2195 } 2196 } else { 2197 SSLerr(SSL_F_SSL_SHUTDOWN, SSL_R_SHUTDOWN_WHILE_IN_INIT); 2198 return -1; 2199 } 2200 } 2201 2202 int SSL_key_update(SSL *s, int updatetype) 2203 { 2204 /* 2205 * TODO(TLS1.3): How will applications know whether TLSv1.3 has been 2206 * negotiated, and that it is appropriate to call SSL_key_update() instead 2207 * of SSL_renegotiate(). 2208 */ 2209 if (!SSL_IS_TLS13(s)) { 2210 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_WRONG_SSL_VERSION); 2211 return 0; 2212 } 2213 2214 if (updatetype != SSL_KEY_UPDATE_NOT_REQUESTED 2215 && updatetype != SSL_KEY_UPDATE_REQUESTED) { 2216 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_INVALID_KEY_UPDATE_TYPE); 2217 return 0; 2218 } 2219 2220 if (!SSL_is_init_finished(s)) { 2221 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_STILL_IN_INIT); 2222 return 0; 2223 } 2224 2225 if (RECORD_LAYER_write_pending(&s->rlayer)) { 2226 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_BAD_WRITE_RETRY); 2227 return 0; 2228 } 2229 2230 ossl_statem_set_in_init(s, 1); 2231 s->key_update = updatetype; 2232 return 1; 2233 } 2234 2235 int SSL_get_key_update_type(const SSL *s) 2236 { 2237 return s->key_update; 2238 } 2239 2240 int SSL_renegotiate(SSL *s) 2241 { 2242 if (SSL_IS_TLS13(s)) { 2243 SSLerr(SSL_F_SSL_RENEGOTIATE, SSL_R_WRONG_SSL_VERSION); 2244 return 0; 2245 } 2246 2247 if ((s->options & SSL_OP_NO_RENEGOTIATION)) { 2248 SSLerr(SSL_F_SSL_RENEGOTIATE, SSL_R_NO_RENEGOTIATION); 2249 return 0; 2250 } 2251 2252 s->renegotiate = 1; 2253 s->new_session = 1; 2254 2255 return s->method->ssl_renegotiate(s); 2256 } 2257 2258 int SSL_renegotiate_abbreviated(SSL *s) 2259 { 2260 if (SSL_IS_TLS13(s)) { 2261 SSLerr(SSL_F_SSL_RENEGOTIATE_ABBREVIATED, SSL_R_WRONG_SSL_VERSION); 2262 return 0; 2263 } 2264 2265 if ((s->options & SSL_OP_NO_RENEGOTIATION)) { 2266 SSLerr(SSL_F_SSL_RENEGOTIATE_ABBREVIATED, SSL_R_NO_RENEGOTIATION); 2267 return 0; 2268 } 2269 2270 s->renegotiate = 1; 2271 s->new_session = 0; 2272 2273 return s->method->ssl_renegotiate(s); 2274 } 2275 2276 int SSL_renegotiate_pending(const SSL *s) 2277 { 2278 /* 2279 * becomes true when negotiation is requested; false again once a 2280 * handshake has finished 2281 */ 2282 return (s->renegotiate != 0); 2283 } 2284 2285 long SSL_ctrl(SSL *s, int cmd, long larg, void *parg) 2286 { 2287 long l; 2288 2289 switch (cmd) { 2290 case SSL_CTRL_GET_READ_AHEAD: 2291 return RECORD_LAYER_get_read_ahead(&s->rlayer); 2292 case SSL_CTRL_SET_READ_AHEAD: 2293 l = RECORD_LAYER_get_read_ahead(&s->rlayer); 2294 RECORD_LAYER_set_read_ahead(&s->rlayer, larg); 2295 return l; 2296 2297 case SSL_CTRL_SET_MSG_CALLBACK_ARG: 2298 s->msg_callback_arg = parg; 2299 return 1; 2300 2301 case SSL_CTRL_MODE: 2302 return (s->mode |= larg); 2303 case SSL_CTRL_CLEAR_MODE: 2304 return (s->mode &= ~larg); 2305 case SSL_CTRL_GET_MAX_CERT_LIST: 2306 return (long)s->max_cert_list; 2307 case SSL_CTRL_SET_MAX_CERT_LIST: 2308 if (larg < 0) 2309 return 0; 2310 l = (long)s->max_cert_list; 2311 s->max_cert_list = (size_t)larg; 2312 return l; 2313 case SSL_CTRL_SET_MAX_SEND_FRAGMENT: 2314 if (larg < 512 || larg > SSL3_RT_MAX_PLAIN_LENGTH) 2315 return 0; 2316 #ifndef OPENSSL_NO_KTLS 2317 if (s->wbio != NULL && BIO_get_ktls_send(s->wbio)) 2318 return 0; 2319 #endif /* OPENSSL_NO_KTLS */ 2320 s->max_send_fragment = larg; 2321 if (s->max_send_fragment < s->split_send_fragment) 2322 s->split_send_fragment = s->max_send_fragment; 2323 return 1; 2324 case SSL_CTRL_SET_SPLIT_SEND_FRAGMENT: 2325 if ((size_t)larg > s->max_send_fragment || larg == 0) 2326 return 0; 2327 s->split_send_fragment = larg; 2328 return 1; 2329 case SSL_CTRL_SET_MAX_PIPELINES: 2330 if (larg < 1 || larg > SSL_MAX_PIPELINES) 2331 return 0; 2332 s->max_pipelines = larg; 2333 if (larg > 1) 2334 RECORD_LAYER_set_read_ahead(&s->rlayer, 1); 2335 return 1; 2336 case SSL_CTRL_GET_RI_SUPPORT: 2337 if (s->s3) 2338 return s->s3->send_connection_binding; 2339 else 2340 return 0; 2341 case SSL_CTRL_CERT_FLAGS: 2342 return (s->cert->cert_flags |= larg); 2343 case SSL_CTRL_CLEAR_CERT_FLAGS: 2344 return (s->cert->cert_flags &= ~larg); 2345 2346 case SSL_CTRL_GET_RAW_CIPHERLIST: 2347 if (parg) { 2348 if (s->s3->tmp.ciphers_raw == NULL) 2349 return 0; 2350 *(unsigned char **)parg = s->s3->tmp.ciphers_raw; 2351 return (int)s->s3->tmp.ciphers_rawlen; 2352 } else { 2353 return TLS_CIPHER_LEN; 2354 } 2355 case SSL_CTRL_GET_EXTMS_SUPPORT: 2356 if (!s->session || SSL_in_init(s) || ossl_statem_get_in_handshake(s)) 2357 return -1; 2358 if (s->session->flags & SSL_SESS_FLAG_EXTMS) 2359 return 1; 2360 else 2361 return 0; 2362 case SSL_CTRL_SET_MIN_PROTO_VERSION: 2363 return ssl_check_allowed_versions(larg, s->max_proto_version) 2364 && ssl_set_version_bound(s->ctx->method->version, (int)larg, 2365 &s->min_proto_version); 2366 case SSL_CTRL_GET_MIN_PROTO_VERSION: 2367 return s->min_proto_version; 2368 case SSL_CTRL_SET_MAX_PROTO_VERSION: 2369 return ssl_check_allowed_versions(s->min_proto_version, larg) 2370 && ssl_set_version_bound(s->ctx->method->version, (int)larg, 2371 &s->max_proto_version); 2372 case SSL_CTRL_GET_MAX_PROTO_VERSION: 2373 return s->max_proto_version; 2374 default: 2375 return s->method->ssl_ctrl(s, cmd, larg, parg); 2376 } 2377 } 2378 2379 long SSL_callback_ctrl(SSL *s, int cmd, void (*fp) (void)) 2380 { 2381 switch (cmd) { 2382 case SSL_CTRL_SET_MSG_CALLBACK: 2383 s->msg_callback = (void (*) 2384 (int write_p, int version, int content_type, 2385 const void *buf, size_t len, SSL *ssl, 2386 void *arg))(fp); 2387 return 1; 2388 2389 default: 2390 return s->method->ssl_callback_ctrl(s, cmd, fp); 2391 } 2392 } 2393 2394 LHASH_OF(SSL_SESSION) *SSL_CTX_sessions(SSL_CTX *ctx) 2395 { 2396 return ctx->sessions; 2397 } 2398 2399 long SSL_CTX_ctrl(SSL_CTX *ctx, int cmd, long larg, void *parg) 2400 { 2401 long l; 2402 /* For some cases with ctx == NULL perform syntax checks */ 2403 if (ctx == NULL) { 2404 switch (cmd) { 2405 #ifndef OPENSSL_NO_EC 2406 case SSL_CTRL_SET_GROUPS_LIST: 2407 return tls1_set_groups_list(NULL, NULL, parg); 2408 #endif 2409 case SSL_CTRL_SET_SIGALGS_LIST: 2410 case SSL_CTRL_SET_CLIENT_SIGALGS_LIST: 2411 return tls1_set_sigalgs_list(NULL, parg, 0); 2412 default: 2413 return 0; 2414 } 2415 } 2416 2417 switch (cmd) { 2418 case SSL_CTRL_GET_READ_AHEAD: 2419 return ctx->read_ahead; 2420 case SSL_CTRL_SET_READ_AHEAD: 2421 l = ctx->read_ahead; 2422 ctx->read_ahead = larg; 2423 return l; 2424 2425 case SSL_CTRL_SET_MSG_CALLBACK_ARG: 2426 ctx->msg_callback_arg = parg; 2427 return 1; 2428 2429 case SSL_CTRL_GET_MAX_CERT_LIST: 2430 return (long)ctx->max_cert_list; 2431 case SSL_CTRL_SET_MAX_CERT_LIST: 2432 if (larg < 0) 2433 return 0; 2434 l = (long)ctx->max_cert_list; 2435 ctx->max_cert_list = (size_t)larg; 2436 return l; 2437 2438 case SSL_CTRL_SET_SESS_CACHE_SIZE: 2439 if (larg < 0) 2440 return 0; 2441 l = (long)ctx->session_cache_size; 2442 ctx->session_cache_size = (size_t)larg; 2443 return l; 2444 case SSL_CTRL_GET_SESS_CACHE_SIZE: 2445 return (long)ctx->session_cache_size; 2446 case SSL_CTRL_SET_SESS_CACHE_MODE: 2447 l = ctx->session_cache_mode; 2448 ctx->session_cache_mode = larg; 2449 return l; 2450 case SSL_CTRL_GET_SESS_CACHE_MODE: 2451 return ctx->session_cache_mode; 2452 2453 case SSL_CTRL_SESS_NUMBER: 2454 return lh_SSL_SESSION_num_items(ctx->sessions); 2455 case SSL_CTRL_SESS_CONNECT: 2456 return tsan_load(&ctx->stats.sess_connect); 2457 case SSL_CTRL_SESS_CONNECT_GOOD: 2458 return tsan_load(&ctx->stats.sess_connect_good); 2459 case SSL_CTRL_SESS_CONNECT_RENEGOTIATE: 2460 return tsan_load(&ctx->stats.sess_connect_renegotiate); 2461 case SSL_CTRL_SESS_ACCEPT: 2462 return tsan_load(&ctx->stats.sess_accept); 2463 case SSL_CTRL_SESS_ACCEPT_GOOD: 2464 return tsan_load(&ctx->stats.sess_accept_good); 2465 case SSL_CTRL_SESS_ACCEPT_RENEGOTIATE: 2466 return tsan_load(&ctx->stats.sess_accept_renegotiate); 2467 case SSL_CTRL_SESS_HIT: 2468 return tsan_load(&ctx->stats.sess_hit); 2469 case SSL_CTRL_SESS_CB_HIT: 2470 return tsan_load(&ctx->stats.sess_cb_hit); 2471 case SSL_CTRL_SESS_MISSES: 2472 return tsan_load(&ctx->stats.sess_miss); 2473 case SSL_CTRL_SESS_TIMEOUTS: 2474 return tsan_load(&ctx->stats.sess_timeout); 2475 case SSL_CTRL_SESS_CACHE_FULL: 2476 return tsan_load(&ctx->stats.sess_cache_full); 2477 case SSL_CTRL_MODE: 2478 return (ctx->mode |= larg); 2479 case SSL_CTRL_CLEAR_MODE: 2480 return (ctx->mode &= ~larg); 2481 case SSL_CTRL_SET_MAX_SEND_FRAGMENT: 2482 if (larg < 512 || larg > SSL3_RT_MAX_PLAIN_LENGTH) 2483 return 0; 2484 ctx->max_send_fragment = larg; 2485 if (ctx->max_send_fragment < ctx->split_send_fragment) 2486 ctx->split_send_fragment = ctx->max_send_fragment; 2487 return 1; 2488 case SSL_CTRL_SET_SPLIT_SEND_FRAGMENT: 2489 if ((size_t)larg > ctx->max_send_fragment || larg == 0) 2490 return 0; 2491 ctx->split_send_fragment = larg; 2492 return 1; 2493 case SSL_CTRL_SET_MAX_PIPELINES: 2494 if (larg < 1 || larg > SSL_MAX_PIPELINES) 2495 return 0; 2496 ctx->max_pipelines = larg; 2497 return 1; 2498 case SSL_CTRL_CERT_FLAGS: 2499 return (ctx->cert->cert_flags |= larg); 2500 case SSL_CTRL_CLEAR_CERT_FLAGS: 2501 return (ctx->cert->cert_flags &= ~larg); 2502 case SSL_CTRL_SET_MIN_PROTO_VERSION: 2503 return ssl_check_allowed_versions(larg, ctx->max_proto_version) 2504 && ssl_set_version_bound(ctx->method->version, (int)larg, 2505 &ctx->min_proto_version); 2506 case SSL_CTRL_GET_MIN_PROTO_VERSION: 2507 return ctx->min_proto_version; 2508 case SSL_CTRL_SET_MAX_PROTO_VERSION: 2509 return ssl_check_allowed_versions(ctx->min_proto_version, larg) 2510 && ssl_set_version_bound(ctx->method->version, (int)larg, 2511 &ctx->max_proto_version); 2512 case SSL_CTRL_GET_MAX_PROTO_VERSION: 2513 return ctx->max_proto_version; 2514 default: 2515 return ctx->method->ssl_ctx_ctrl(ctx, cmd, larg, parg); 2516 } 2517 } 2518 2519 long SSL_CTX_callback_ctrl(SSL_CTX *ctx, int cmd, void (*fp) (void)) 2520 { 2521 switch (cmd) { 2522 case SSL_CTRL_SET_MSG_CALLBACK: 2523 ctx->msg_callback = (void (*) 2524 (int write_p, int version, int content_type, 2525 const void *buf, size_t len, SSL *ssl, 2526 void *arg))(fp); 2527 return 1; 2528 2529 default: 2530 return ctx->method->ssl_ctx_callback_ctrl(ctx, cmd, fp); 2531 } 2532 } 2533 2534 int ssl_cipher_id_cmp(const SSL_CIPHER *a, const SSL_CIPHER *b) 2535 { 2536 if (a->id > b->id) 2537 return 1; 2538 if (a->id < b->id) 2539 return -1; 2540 return 0; 2541 } 2542 2543 int ssl_cipher_ptr_id_cmp(const SSL_CIPHER *const *ap, 2544 const SSL_CIPHER *const *bp) 2545 { 2546 if ((*ap)->id > (*bp)->id) 2547 return 1; 2548 if ((*ap)->id < (*bp)->id) 2549 return -1; 2550 return 0; 2551 } 2552 2553 /** return a STACK of the ciphers available for the SSL and in order of 2554 * preference */ 2555 STACK_OF(SSL_CIPHER) *SSL_get_ciphers(const SSL *s) 2556 { 2557 if (s != NULL) { 2558 if (s->cipher_list != NULL) { 2559 return s->cipher_list; 2560 } else if ((s->ctx != NULL) && (s->ctx->cipher_list != NULL)) { 2561 return s->ctx->cipher_list; 2562 } 2563 } 2564 return NULL; 2565 } 2566 2567 STACK_OF(SSL_CIPHER) *SSL_get_client_ciphers(const SSL *s) 2568 { 2569 if ((s == NULL) || !s->server) 2570 return NULL; 2571 return s->peer_ciphers; 2572 } 2573 2574 STACK_OF(SSL_CIPHER) *SSL_get1_supported_ciphers(SSL *s) 2575 { 2576 STACK_OF(SSL_CIPHER) *sk = NULL, *ciphers; 2577 int i; 2578 2579 ciphers = SSL_get_ciphers(s); 2580 if (!ciphers) 2581 return NULL; 2582 if (!ssl_set_client_disabled(s)) 2583 return NULL; 2584 for (i = 0; i < sk_SSL_CIPHER_num(ciphers); i++) { 2585 const SSL_CIPHER *c = sk_SSL_CIPHER_value(ciphers, i); 2586 if (!ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0)) { 2587 if (!sk) 2588 sk = sk_SSL_CIPHER_new_null(); 2589 if (!sk) 2590 return NULL; 2591 if (!sk_SSL_CIPHER_push(sk, c)) { 2592 sk_SSL_CIPHER_free(sk); 2593 return NULL; 2594 } 2595 } 2596 } 2597 return sk; 2598 } 2599 2600 /** return a STACK of the ciphers available for the SSL and in order of 2601 * algorithm id */ 2602 STACK_OF(SSL_CIPHER) *ssl_get_ciphers_by_id(SSL *s) 2603 { 2604 if (s != NULL) { 2605 if (s->cipher_list_by_id != NULL) { 2606 return s->cipher_list_by_id; 2607 } else if ((s->ctx != NULL) && (s->ctx->cipher_list_by_id != NULL)) { 2608 return s->ctx->cipher_list_by_id; 2609 } 2610 } 2611 return NULL; 2612 } 2613 2614 /** The old interface to get the same thing as SSL_get_ciphers() */ 2615 const char *SSL_get_cipher_list(const SSL *s, int n) 2616 { 2617 const SSL_CIPHER *c; 2618 STACK_OF(SSL_CIPHER) *sk; 2619 2620 if (s == NULL) 2621 return NULL; 2622 sk = SSL_get_ciphers(s); 2623 if ((sk == NULL) || (sk_SSL_CIPHER_num(sk) <= n)) 2624 return NULL; 2625 c = sk_SSL_CIPHER_value(sk, n); 2626 if (c == NULL) 2627 return NULL; 2628 return c->name; 2629 } 2630 2631 /** return a STACK of the ciphers available for the SSL_CTX and in order of 2632 * preference */ 2633 STACK_OF(SSL_CIPHER) *SSL_CTX_get_ciphers(const SSL_CTX *ctx) 2634 { 2635 if (ctx != NULL) 2636 return ctx->cipher_list; 2637 return NULL; 2638 } 2639 2640 /* 2641 * Distinguish between ciphers controlled by set_ciphersuite() and 2642 * set_cipher_list() when counting. 2643 */ 2644 static int cipher_list_tls12_num(STACK_OF(SSL_CIPHER) *sk) 2645 { 2646 int i, num = 0; 2647 const SSL_CIPHER *c; 2648 2649 if (sk == NULL) 2650 return 0; 2651 for (i = 0; i < sk_SSL_CIPHER_num(sk); ++i) { 2652 c = sk_SSL_CIPHER_value(sk, i); 2653 if (c->min_tls >= TLS1_3_VERSION) 2654 continue; 2655 num++; 2656 } 2657 return num; 2658 } 2659 2660 /** specify the ciphers to be used by default by the SSL_CTX */ 2661 int SSL_CTX_set_cipher_list(SSL_CTX *ctx, const char *str) 2662 { 2663 STACK_OF(SSL_CIPHER) *sk; 2664 2665 sk = ssl_create_cipher_list(ctx->method, ctx->tls13_ciphersuites, 2666 &ctx->cipher_list, &ctx->cipher_list_by_id, str, 2667 ctx->cert); 2668 /* 2669 * ssl_create_cipher_list may return an empty stack if it was unable to 2670 * find a cipher matching the given rule string (for example if the rule 2671 * string specifies a cipher which has been disabled). This is not an 2672 * error as far as ssl_create_cipher_list is concerned, and hence 2673 * ctx->cipher_list and ctx->cipher_list_by_id has been updated. 2674 */ 2675 if (sk == NULL) 2676 return 0; 2677 else if (cipher_list_tls12_num(sk) == 0) { 2678 SSLerr(SSL_F_SSL_CTX_SET_CIPHER_LIST, SSL_R_NO_CIPHER_MATCH); 2679 return 0; 2680 } 2681 return 1; 2682 } 2683 2684 /** specify the ciphers to be used by the SSL */ 2685 int SSL_set_cipher_list(SSL *s, const char *str) 2686 { 2687 STACK_OF(SSL_CIPHER) *sk; 2688 2689 sk = ssl_create_cipher_list(s->ctx->method, s->tls13_ciphersuites, 2690 &s->cipher_list, &s->cipher_list_by_id, str, 2691 s->cert); 2692 /* see comment in SSL_CTX_set_cipher_list */ 2693 if (sk == NULL) 2694 return 0; 2695 else if (cipher_list_tls12_num(sk) == 0) { 2696 SSLerr(SSL_F_SSL_SET_CIPHER_LIST, SSL_R_NO_CIPHER_MATCH); 2697 return 0; 2698 } 2699 return 1; 2700 } 2701 2702 char *SSL_get_shared_ciphers(const SSL *s, char *buf, int size) 2703 { 2704 char *p; 2705 STACK_OF(SSL_CIPHER) *clntsk, *srvrsk; 2706 const SSL_CIPHER *c; 2707 int i; 2708 2709 if (!s->server 2710 || s->peer_ciphers == NULL 2711 || size < 2) 2712 return NULL; 2713 2714 p = buf; 2715 clntsk = s->peer_ciphers; 2716 srvrsk = SSL_get_ciphers(s); 2717 if (clntsk == NULL || srvrsk == NULL) 2718 return NULL; 2719 2720 if (sk_SSL_CIPHER_num(clntsk) == 0 || sk_SSL_CIPHER_num(srvrsk) == 0) 2721 return NULL; 2722 2723 for (i = 0; i < sk_SSL_CIPHER_num(clntsk); i++) { 2724 int n; 2725 2726 c = sk_SSL_CIPHER_value(clntsk, i); 2727 if (sk_SSL_CIPHER_find(srvrsk, c) < 0) 2728 continue; 2729 2730 n = strlen(c->name); 2731 if (n + 1 > size) { 2732 if (p != buf) 2733 --p; 2734 *p = '\0'; 2735 return buf; 2736 } 2737 strcpy(p, c->name); 2738 p += n; 2739 *(p++) = ':'; 2740 size -= n + 1; 2741 } 2742 p[-1] = '\0'; 2743 return buf; 2744 } 2745 2746 /** 2747 * Return the requested servername (SNI) value. Note that the behaviour varies 2748 * depending on: 2749 * - whether this is called by the client or the server, 2750 * - if we are before or during/after the handshake, 2751 * - if a resumption or normal handshake is being attempted/has occurred 2752 * - whether we have negotiated TLSv1.2 (or below) or TLSv1.3 2753 * 2754 * Note that only the host_name type is defined (RFC 3546). 2755 */ 2756 const char *SSL_get_servername(const SSL *s, const int type) 2757 { 2758 /* 2759 * If we don't know if we are the client or the server yet then we assume 2760 * client. 2761 */ 2762 int server = s->handshake_func == NULL ? 0 : s->server; 2763 if (type != TLSEXT_NAMETYPE_host_name) 2764 return NULL; 2765 2766 if (server) { 2767 /** 2768 * Server side 2769 * In TLSv1.3 on the server SNI is not associated with the session 2770 * but in TLSv1.2 or below it is. 2771 * 2772 * Before the handshake: 2773 * - return NULL 2774 * 2775 * During/after the handshake (TLSv1.2 or below resumption occurred): 2776 * - If a servername was accepted by the server in the original 2777 * handshake then it will return that servername, or NULL otherwise. 2778 * 2779 * During/after the handshake (TLSv1.2 or below resumption did not occur): 2780 * - The function will return the servername requested by the client in 2781 * this handshake or NULL if none was requested. 2782 */ 2783 if (s->hit && !SSL_IS_TLS13(s)) 2784 return s->session->ext.hostname; 2785 } else { 2786 /** 2787 * Client side 2788 * 2789 * Before the handshake: 2790 * - If a servername has been set via a call to 2791 * SSL_set_tlsext_host_name() then it will return that servername 2792 * - If one has not been set, but a TLSv1.2 resumption is being 2793 * attempted and the session from the original handshake had a 2794 * servername accepted by the server then it will return that 2795 * servername 2796 * - Otherwise it returns NULL 2797 * 2798 * During/after the handshake (TLSv1.2 or below resumption occurred): 2799 * - If the session from the original handshake had a servername accepted 2800 * by the server then it will return that servername. 2801 * - Otherwise it returns the servername set via 2802 * SSL_set_tlsext_host_name() (or NULL if it was not called). 2803 * 2804 * During/after the handshake (TLSv1.2 or below resumption did not occur): 2805 * - It will return the servername set via SSL_set_tlsext_host_name() 2806 * (or NULL if it was not called). 2807 */ 2808 if (SSL_in_before(s)) { 2809 if (s->ext.hostname == NULL 2810 && s->session != NULL 2811 && s->session->ssl_version != TLS1_3_VERSION) 2812 return s->session->ext.hostname; 2813 } else { 2814 if (!SSL_IS_TLS13(s) && s->hit && s->session->ext.hostname != NULL) 2815 return s->session->ext.hostname; 2816 } 2817 } 2818 2819 return s->ext.hostname; 2820 } 2821 2822 int SSL_get_servername_type(const SSL *s) 2823 { 2824 if (SSL_get_servername(s, TLSEXT_NAMETYPE_host_name) != NULL) 2825 return TLSEXT_NAMETYPE_host_name; 2826 return -1; 2827 } 2828 2829 /* 2830 * SSL_select_next_proto implements the standard protocol selection. It is 2831 * expected that this function is called from the callback set by 2832 * SSL_CTX_set_next_proto_select_cb. The protocol data is assumed to be a 2833 * vector of 8-bit, length prefixed byte strings. The length byte itself is 2834 * not included in the length. A byte string of length 0 is invalid. No byte 2835 * string may be truncated. The current, but experimental algorithm for 2836 * selecting the protocol is: 1) If the server doesn't support NPN then this 2837 * is indicated to the callback. In this case, the client application has to 2838 * abort the connection or have a default application level protocol. 2) If 2839 * the server supports NPN, but advertises an empty list then the client 2840 * selects the first protocol in its list, but indicates via the API that this 2841 * fallback case was enacted. 3) Otherwise, the client finds the first 2842 * protocol in the server's list that it supports and selects this protocol. 2843 * This is because it's assumed that the server has better information about 2844 * which protocol a client should use. 4) If the client doesn't support any 2845 * of the server's advertised protocols, then this is treated the same as 2846 * case 2. It returns either OPENSSL_NPN_NEGOTIATED if a common protocol was 2847 * found, or OPENSSL_NPN_NO_OVERLAP if the fallback case was reached. 2848 */ 2849 int SSL_select_next_proto(unsigned char **out, unsigned char *outlen, 2850 const unsigned char *server, 2851 unsigned int server_len, 2852 const unsigned char *client, unsigned int client_len) 2853 { 2854 unsigned int i, j; 2855 const unsigned char *result; 2856 int status = OPENSSL_NPN_UNSUPPORTED; 2857 2858 /* 2859 * For each protocol in server preference order, see if we support it. 2860 */ 2861 for (i = 0; i < server_len;) { 2862 for (j = 0; j < client_len;) { 2863 if (server[i] == client[j] && 2864 memcmp(&server[i + 1], &client[j + 1], server[i]) == 0) { 2865 /* We found a match */ 2866 result = &server[i]; 2867 status = OPENSSL_NPN_NEGOTIATED; 2868 goto found; 2869 } 2870 j += client[j]; 2871 j++; 2872 } 2873 i += server[i]; 2874 i++; 2875 } 2876 2877 /* There's no overlap between our protocols and the server's list. */ 2878 result = client; 2879 status = OPENSSL_NPN_NO_OVERLAP; 2880 2881 found: 2882 *out = (unsigned char *)result + 1; 2883 *outlen = result[0]; 2884 return status; 2885 } 2886 2887 #ifndef OPENSSL_NO_NEXTPROTONEG 2888 /* 2889 * SSL_get0_next_proto_negotiated sets *data and *len to point to the 2890 * client's requested protocol for this connection and returns 0. If the 2891 * client didn't request any protocol, then *data is set to NULL. Note that 2892 * the client can request any protocol it chooses. The value returned from 2893 * this function need not be a member of the list of supported protocols 2894 * provided by the callback. 2895 */ 2896 void SSL_get0_next_proto_negotiated(const SSL *s, const unsigned char **data, 2897 unsigned *len) 2898 { 2899 *data = s->ext.npn; 2900 if (!*data) { 2901 *len = 0; 2902 } else { 2903 *len = (unsigned int)s->ext.npn_len; 2904 } 2905 } 2906 2907 /* 2908 * SSL_CTX_set_npn_advertised_cb sets a callback that is called when 2909 * a TLS server needs a list of supported protocols for Next Protocol 2910 * Negotiation. The returned list must be in wire format. The list is 2911 * returned by setting |out| to point to it and |outlen| to its length. This 2912 * memory will not be modified, but one should assume that the SSL* keeps a 2913 * reference to it. The callback should return SSL_TLSEXT_ERR_OK if it 2914 * wishes to advertise. Otherwise, no such extension will be included in the 2915 * ServerHello. 2916 */ 2917 void SSL_CTX_set_npn_advertised_cb(SSL_CTX *ctx, 2918 SSL_CTX_npn_advertised_cb_func cb, 2919 void *arg) 2920 { 2921 ctx->ext.npn_advertised_cb = cb; 2922 ctx->ext.npn_advertised_cb_arg = arg; 2923 } 2924 2925 /* 2926 * SSL_CTX_set_next_proto_select_cb sets a callback that is called when a 2927 * client needs to select a protocol from the server's provided list. |out| 2928 * must be set to point to the selected protocol (which may be within |in|). 2929 * The length of the protocol name must be written into |outlen|. The 2930 * server's advertised protocols are provided in |in| and |inlen|. The 2931 * callback can assume that |in| is syntactically valid. The client must 2932 * select a protocol. It is fatal to the connection if this callback returns 2933 * a value other than SSL_TLSEXT_ERR_OK. 2934 */ 2935 void SSL_CTX_set_npn_select_cb(SSL_CTX *ctx, 2936 SSL_CTX_npn_select_cb_func cb, 2937 void *arg) 2938 { 2939 ctx->ext.npn_select_cb = cb; 2940 ctx->ext.npn_select_cb_arg = arg; 2941 } 2942 #endif 2943 2944 static int alpn_value_ok(const unsigned char *protos, unsigned int protos_len) 2945 { 2946 unsigned int idx; 2947 2948 if (protos_len < 2 || protos == NULL) 2949 return 0; 2950 2951 for (idx = 0; idx < protos_len; idx += protos[idx] + 1) { 2952 if (protos[idx] == 0) 2953 return 0; 2954 } 2955 return idx == protos_len; 2956 } 2957 /* 2958 * SSL_CTX_set_alpn_protos sets the ALPN protocol list on |ctx| to |protos|. 2959 * |protos| must be in wire-format (i.e. a series of non-empty, 8-bit 2960 * length-prefixed strings). Returns 0 on success. 2961 */ 2962 int SSL_CTX_set_alpn_protos(SSL_CTX *ctx, const unsigned char *protos, 2963 unsigned int protos_len) 2964 { 2965 unsigned char *alpn; 2966 2967 if (protos_len == 0 || protos == NULL) { 2968 OPENSSL_free(ctx->ext.alpn); 2969 ctx->ext.alpn = NULL; 2970 ctx->ext.alpn_len = 0; 2971 return 0; 2972 } 2973 /* Not valid per RFC */ 2974 if (!alpn_value_ok(protos, protos_len)) 2975 return 1; 2976 2977 alpn = OPENSSL_memdup(protos, protos_len); 2978 if (alpn == NULL) { 2979 SSLerr(SSL_F_SSL_CTX_SET_ALPN_PROTOS, ERR_R_MALLOC_FAILURE); 2980 return 1; 2981 } 2982 OPENSSL_free(ctx->ext.alpn); 2983 ctx->ext.alpn = alpn; 2984 ctx->ext.alpn_len = protos_len; 2985 2986 return 0; 2987 } 2988 2989 /* 2990 * SSL_set_alpn_protos sets the ALPN protocol list on |ssl| to |protos|. 2991 * |protos| must be in wire-format (i.e. a series of non-empty, 8-bit 2992 * length-prefixed strings). Returns 0 on success. 2993 */ 2994 int SSL_set_alpn_protos(SSL *ssl, const unsigned char *protos, 2995 unsigned int protos_len) 2996 { 2997 unsigned char *alpn; 2998 2999 if (protos_len == 0 || protos == NULL) { 3000 OPENSSL_free(ssl->ext.alpn); 3001 ssl->ext.alpn = NULL; 3002 ssl->ext.alpn_len = 0; 3003 return 0; 3004 } 3005 /* Not valid per RFC */ 3006 if (!alpn_value_ok(protos, protos_len)) 3007 return 1; 3008 3009 alpn = OPENSSL_memdup(protos, protos_len); 3010 if (alpn == NULL) { 3011 SSLerr(SSL_F_SSL_SET_ALPN_PROTOS, ERR_R_MALLOC_FAILURE); 3012 return 1; 3013 } 3014 OPENSSL_free(ssl->ext.alpn); 3015 ssl->ext.alpn = alpn; 3016 ssl->ext.alpn_len = protos_len; 3017 3018 return 0; 3019 } 3020 3021 /* 3022 * SSL_CTX_set_alpn_select_cb sets a callback function on |ctx| that is 3023 * called during ClientHello processing in order to select an ALPN protocol 3024 * from the client's list of offered protocols. 3025 */ 3026 void SSL_CTX_set_alpn_select_cb(SSL_CTX *ctx, 3027 SSL_CTX_alpn_select_cb_func cb, 3028 void *arg) 3029 { 3030 ctx->ext.alpn_select_cb = cb; 3031 ctx->ext.alpn_select_cb_arg = arg; 3032 } 3033 3034 /* 3035 * SSL_get0_alpn_selected gets the selected ALPN protocol (if any) from |ssl|. 3036 * On return it sets |*data| to point to |*len| bytes of protocol name 3037 * (not including the leading length-prefix byte). If the server didn't 3038 * respond with a negotiated protocol then |*len| will be zero. 3039 */ 3040 void SSL_get0_alpn_selected(const SSL *ssl, const unsigned char **data, 3041 unsigned int *len) 3042 { 3043 *data = NULL; 3044 if (ssl->s3) 3045 *data = ssl->s3->alpn_selected; 3046 if (*data == NULL) 3047 *len = 0; 3048 else 3049 *len = (unsigned int)ssl->s3->alpn_selected_len; 3050 } 3051 3052 int SSL_export_keying_material(SSL *s, unsigned char *out, size_t olen, 3053 const char *label, size_t llen, 3054 const unsigned char *context, size_t contextlen, 3055 int use_context) 3056 { 3057 if (s->session == NULL 3058 || (s->version < TLS1_VERSION && s->version != DTLS1_BAD_VER)) 3059 return -1; 3060 3061 return s->method->ssl3_enc->export_keying_material(s, out, olen, label, 3062 llen, context, 3063 contextlen, use_context); 3064 } 3065 3066 int SSL_export_keying_material_early(SSL *s, unsigned char *out, size_t olen, 3067 const char *label, size_t llen, 3068 const unsigned char *context, 3069 size_t contextlen) 3070 { 3071 if (s->version != TLS1_3_VERSION) 3072 return 0; 3073 3074 return tls13_export_keying_material_early(s, out, olen, label, llen, 3075 context, contextlen); 3076 } 3077 3078 static unsigned long ssl_session_hash(const SSL_SESSION *a) 3079 { 3080 const unsigned char *session_id = a->session_id; 3081 unsigned long l; 3082 unsigned char tmp_storage[4]; 3083 3084 if (a->session_id_length < sizeof(tmp_storage)) { 3085 memset(tmp_storage, 0, sizeof(tmp_storage)); 3086 memcpy(tmp_storage, a->session_id, a->session_id_length); 3087 session_id = tmp_storage; 3088 } 3089 3090 l = (unsigned long) 3091 ((unsigned long)session_id[0]) | 3092 ((unsigned long)session_id[1] << 8L) | 3093 ((unsigned long)session_id[2] << 16L) | 3094 ((unsigned long)session_id[3] << 24L); 3095 return l; 3096 } 3097 3098 /* 3099 * NB: If this function (or indeed the hash function which uses a sort of 3100 * coarser function than this one) is changed, ensure 3101 * SSL_CTX_has_matching_session_id() is checked accordingly. It relies on 3102 * being able to construct an SSL_SESSION that will collide with any existing 3103 * session with a matching session ID. 3104 */ 3105 static int ssl_session_cmp(const SSL_SESSION *a, const SSL_SESSION *b) 3106 { 3107 if (a->ssl_version != b->ssl_version) 3108 return 1; 3109 if (a->session_id_length != b->session_id_length) 3110 return 1; 3111 return memcmp(a->session_id, b->session_id, a->session_id_length); 3112 } 3113 3114 /* 3115 * These wrapper functions should remain rather than redeclaring 3116 * SSL_SESSION_hash and SSL_SESSION_cmp for void* types and casting each 3117 * variable. The reason is that the functions aren't static, they're exposed 3118 * via ssl.h. 3119 */ 3120 3121 SSL_CTX *SSL_CTX_new(const SSL_METHOD *meth) 3122 { 3123 SSL_CTX *ret = NULL; 3124 3125 if (meth == NULL) { 3126 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_NULL_SSL_METHOD_PASSED); 3127 return NULL; 3128 } 3129 3130 if (!OPENSSL_init_ssl(OPENSSL_INIT_LOAD_SSL_STRINGS, NULL)) 3131 return NULL; 3132 3133 if (SSL_get_ex_data_X509_STORE_CTX_idx() < 0) { 3134 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_X509_VERIFICATION_SETUP_PROBLEMS); 3135 goto err; 3136 } 3137 ret = OPENSSL_zalloc(sizeof(*ret)); 3138 if (ret == NULL) 3139 goto err; 3140 3141 ret->method = meth; 3142 ret->min_proto_version = 0; 3143 ret->max_proto_version = 0; 3144 ret->mode = SSL_MODE_AUTO_RETRY; 3145 ret->session_cache_mode = SSL_SESS_CACHE_SERVER; 3146 ret->session_cache_size = SSL_SESSION_CACHE_MAX_SIZE_DEFAULT; 3147 /* We take the system default. */ 3148 ret->session_timeout = meth->get_timeout(); 3149 ret->references = 1; 3150 ret->lock = CRYPTO_THREAD_lock_new(); 3151 if (ret->lock == NULL) { 3152 SSLerr(SSL_F_SSL_CTX_NEW, ERR_R_MALLOC_FAILURE); 3153 OPENSSL_free(ret); 3154 return NULL; 3155 } 3156 ret->max_cert_list = SSL_MAX_CERT_LIST_DEFAULT; 3157 ret->verify_mode = SSL_VERIFY_NONE; 3158 if ((ret->cert = ssl_cert_new()) == NULL) 3159 goto err; 3160 3161 ret->sessions = lh_SSL_SESSION_new(ssl_session_hash, ssl_session_cmp); 3162 if (ret->sessions == NULL) 3163 goto err; 3164 ret->cert_store = X509_STORE_new(); 3165 if (ret->cert_store == NULL) 3166 goto err; 3167 #ifndef OPENSSL_NO_CT 3168 ret->ctlog_store = CTLOG_STORE_new(); 3169 if (ret->ctlog_store == NULL) 3170 goto err; 3171 #endif 3172 3173 if (!SSL_CTX_set_ciphersuites(ret, TLS_DEFAULT_CIPHERSUITES)) 3174 goto err; 3175 3176 if (!ssl_create_cipher_list(ret->method, 3177 ret->tls13_ciphersuites, 3178 &ret->cipher_list, &ret->cipher_list_by_id, 3179 SSL_DEFAULT_CIPHER_LIST, ret->cert) 3180 || sk_SSL_CIPHER_num(ret->cipher_list) <= 0) { 3181 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_LIBRARY_HAS_NO_CIPHERS); 3182 goto err2; 3183 } 3184 3185 ret->param = X509_VERIFY_PARAM_new(); 3186 if (ret->param == NULL) 3187 goto err; 3188 3189 if ((ret->md5 = EVP_get_digestbyname("ssl3-md5")) == NULL) { 3190 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_UNABLE_TO_LOAD_SSL3_MD5_ROUTINES); 3191 goto err2; 3192 } 3193 if ((ret->sha1 = EVP_get_digestbyname("ssl3-sha1")) == NULL) { 3194 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_UNABLE_TO_LOAD_SSL3_SHA1_ROUTINES); 3195 goto err2; 3196 } 3197 3198 if ((ret->ca_names = sk_X509_NAME_new_null()) == NULL) 3199 goto err; 3200 3201 if ((ret->client_ca_names = sk_X509_NAME_new_null()) == NULL) 3202 goto err; 3203 3204 if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL_CTX, ret, &ret->ex_data)) 3205 goto err; 3206 3207 if ((ret->ext.secure = OPENSSL_secure_zalloc(sizeof(*ret->ext.secure))) == NULL) 3208 goto err; 3209 3210 /* No compression for DTLS */ 3211 if (!(meth->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS)) 3212 ret->comp_methods = SSL_COMP_get_compression_methods(); 3213 3214 ret->max_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH; 3215 ret->split_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH; 3216 3217 /* Setup RFC5077 ticket keys */ 3218 if ((RAND_bytes(ret->ext.tick_key_name, 3219 sizeof(ret->ext.tick_key_name)) <= 0) 3220 || (RAND_priv_bytes(ret->ext.secure->tick_hmac_key, 3221 sizeof(ret->ext.secure->tick_hmac_key)) <= 0) 3222 || (RAND_priv_bytes(ret->ext.secure->tick_aes_key, 3223 sizeof(ret->ext.secure->tick_aes_key)) <= 0)) 3224 ret->options |= SSL_OP_NO_TICKET; 3225 3226 if (RAND_priv_bytes(ret->ext.cookie_hmac_key, 3227 sizeof(ret->ext.cookie_hmac_key)) <= 0) 3228 goto err; 3229 3230 #ifndef OPENSSL_NO_SRP 3231 if (!SSL_CTX_SRP_CTX_init(ret)) 3232 goto err; 3233 #endif 3234 #ifndef OPENSSL_NO_ENGINE 3235 # ifdef OPENSSL_SSL_CLIENT_ENGINE_AUTO 3236 # define eng_strx(x) #x 3237 # define eng_str(x) eng_strx(x) 3238 /* Use specific client engine automatically... ignore errors */ 3239 { 3240 ENGINE *eng; 3241 eng = ENGINE_by_id(eng_str(OPENSSL_SSL_CLIENT_ENGINE_AUTO)); 3242 if (!eng) { 3243 ERR_clear_error(); 3244 ENGINE_load_builtin_engines(); 3245 eng = ENGINE_by_id(eng_str(OPENSSL_SSL_CLIENT_ENGINE_AUTO)); 3246 } 3247 if (!eng || !SSL_CTX_set_client_cert_engine(ret, eng)) 3248 ERR_clear_error(); 3249 } 3250 # endif 3251 #endif 3252 /* 3253 * Default is to connect to non-RI servers. When RI is more widely 3254 * deployed might change this. 3255 */ 3256 ret->options |= SSL_OP_LEGACY_SERVER_CONNECT; 3257 /* 3258 * Disable compression by default to prevent CRIME. Applications can 3259 * re-enable compression by configuring 3260 * SSL_CTX_clear_options(ctx, SSL_OP_NO_COMPRESSION); 3261 * or by using the SSL_CONF library. Similarly we also enable TLSv1.3 3262 * middlebox compatibility by default. This may be disabled by default in 3263 * a later OpenSSL version. 3264 */ 3265 ret->options |= SSL_OP_NO_COMPRESSION | SSL_OP_ENABLE_MIDDLEBOX_COMPAT; 3266 3267 ret->ext.status_type = TLSEXT_STATUSTYPE_nothing; 3268 3269 /* 3270 * We cannot usefully set a default max_early_data here (which gets 3271 * propagated in SSL_new(), for the following reason: setting the 3272 * SSL field causes tls_construct_stoc_early_data() to tell the 3273 * client that early data will be accepted when constructing a TLS 1.3 3274 * session ticket, and the client will accordingly send us early data 3275 * when using that ticket (if the client has early data to send). 3276 * However, in order for the early data to actually be consumed by 3277 * the application, the application must also have calls to 3278 * SSL_read_early_data(); otherwise we'll just skip past the early data 3279 * and ignore it. So, since the application must add calls to 3280 * SSL_read_early_data(), we also require them to add 3281 * calls to SSL_CTX_set_max_early_data() in order to use early data, 3282 * eliminating the bandwidth-wasting early data in the case described 3283 * above. 3284 */ 3285 ret->max_early_data = 0; 3286 3287 /* 3288 * Default recv_max_early_data is a fully loaded single record. Could be 3289 * split across multiple records in practice. We set this differently to 3290 * max_early_data so that, in the default case, we do not advertise any 3291 * support for early_data, but if a client were to send us some (e.g. 3292 * because of an old, stale ticket) then we will tolerate it and skip over 3293 * it. 3294 */ 3295 ret->recv_max_early_data = SSL3_RT_MAX_PLAIN_LENGTH; 3296 3297 /* By default we send two session tickets automatically in TLSv1.3 */ 3298 ret->num_tickets = 2; 3299 3300 ssl_ctx_system_config(ret); 3301 3302 return ret; 3303 err: 3304 SSLerr(SSL_F_SSL_CTX_NEW, ERR_R_MALLOC_FAILURE); 3305 err2: 3306 SSL_CTX_free(ret); 3307 return NULL; 3308 } 3309 3310 int SSL_CTX_up_ref(SSL_CTX *ctx) 3311 { 3312 int i; 3313 3314 if (CRYPTO_UP_REF(&ctx->references, &i, ctx->lock) <= 0) 3315 return 0; 3316 3317 REF_PRINT_COUNT("SSL_CTX", ctx); 3318 REF_ASSERT_ISNT(i < 2); 3319 return ((i > 1) ? 1 : 0); 3320 } 3321 3322 void SSL_CTX_free(SSL_CTX *a) 3323 { 3324 int i; 3325 3326 if (a == NULL) 3327 return; 3328 3329 CRYPTO_DOWN_REF(&a->references, &i, a->lock); 3330 REF_PRINT_COUNT("SSL_CTX", a); 3331 if (i > 0) 3332 return; 3333 REF_ASSERT_ISNT(i < 0); 3334 3335 X509_VERIFY_PARAM_free(a->param); 3336 dane_ctx_final(&a->dane); 3337 3338 /* 3339 * Free internal session cache. However: the remove_cb() may reference 3340 * the ex_data of SSL_CTX, thus the ex_data store can only be removed 3341 * after the sessions were flushed. 3342 * As the ex_data handling routines might also touch the session cache, 3343 * the most secure solution seems to be: empty (flush) the cache, then 3344 * free ex_data, then finally free the cache. 3345 * (See ticket [openssl.org #212].) 3346 */ 3347 if (a->sessions != NULL) 3348 SSL_CTX_flush_sessions(a, 0); 3349 3350 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL_CTX, a, &a->ex_data); 3351 lh_SSL_SESSION_free(a->sessions); 3352 X509_STORE_free(a->cert_store); 3353 #ifndef OPENSSL_NO_CT 3354 CTLOG_STORE_free(a->ctlog_store); 3355 #endif 3356 sk_SSL_CIPHER_free(a->cipher_list); 3357 sk_SSL_CIPHER_free(a->cipher_list_by_id); 3358 sk_SSL_CIPHER_free(a->tls13_ciphersuites); 3359 ssl_cert_free(a->cert); 3360 sk_X509_NAME_pop_free(a->ca_names, X509_NAME_free); 3361 sk_X509_NAME_pop_free(a->client_ca_names, X509_NAME_free); 3362 sk_X509_pop_free(a->extra_certs, X509_free); 3363 a->comp_methods = NULL; 3364 #ifndef OPENSSL_NO_SRTP 3365 sk_SRTP_PROTECTION_PROFILE_free(a->srtp_profiles); 3366 #endif 3367 #ifndef OPENSSL_NO_SRP 3368 SSL_CTX_SRP_CTX_free(a); 3369 #endif 3370 #ifndef OPENSSL_NO_ENGINE 3371 ENGINE_finish(a->client_cert_engine); 3372 #endif 3373 3374 #ifndef OPENSSL_NO_EC 3375 OPENSSL_free(a->ext.ecpointformats); 3376 OPENSSL_free(a->ext.supportedgroups); 3377 #endif 3378 OPENSSL_free(a->ext.alpn); 3379 OPENSSL_secure_free(a->ext.secure); 3380 3381 CRYPTO_THREAD_lock_free(a->lock); 3382 3383 OPENSSL_free(a); 3384 } 3385 3386 void SSL_CTX_set_default_passwd_cb(SSL_CTX *ctx, pem_password_cb *cb) 3387 { 3388 ctx->default_passwd_callback = cb; 3389 } 3390 3391 void SSL_CTX_set_default_passwd_cb_userdata(SSL_CTX *ctx, void *u) 3392 { 3393 ctx->default_passwd_callback_userdata = u; 3394 } 3395 3396 pem_password_cb *SSL_CTX_get_default_passwd_cb(SSL_CTX *ctx) 3397 { 3398 return ctx->default_passwd_callback; 3399 } 3400 3401 void *SSL_CTX_get_default_passwd_cb_userdata(SSL_CTX *ctx) 3402 { 3403 return ctx->default_passwd_callback_userdata; 3404 } 3405 3406 void SSL_set_default_passwd_cb(SSL *s, pem_password_cb *cb) 3407 { 3408 s->default_passwd_callback = cb; 3409 } 3410 3411 void SSL_set_default_passwd_cb_userdata(SSL *s, void *u) 3412 { 3413 s->default_passwd_callback_userdata = u; 3414 } 3415 3416 pem_password_cb *SSL_get_default_passwd_cb(SSL *s) 3417 { 3418 return s->default_passwd_callback; 3419 } 3420 3421 void *SSL_get_default_passwd_cb_userdata(SSL *s) 3422 { 3423 return s->default_passwd_callback_userdata; 3424 } 3425 3426 void SSL_CTX_set_cert_verify_callback(SSL_CTX *ctx, 3427 int (*cb) (X509_STORE_CTX *, void *), 3428 void *arg) 3429 { 3430 ctx->app_verify_callback = cb; 3431 ctx->app_verify_arg = arg; 3432 } 3433 3434 void SSL_CTX_set_verify(SSL_CTX *ctx, int mode, 3435 int (*cb) (int, X509_STORE_CTX *)) 3436 { 3437 ctx->verify_mode = mode; 3438 ctx->default_verify_callback = cb; 3439 } 3440 3441 void SSL_CTX_set_verify_depth(SSL_CTX *ctx, int depth) 3442 { 3443 X509_VERIFY_PARAM_set_depth(ctx->param, depth); 3444 } 3445 3446 void SSL_CTX_set_cert_cb(SSL_CTX *c, int (*cb) (SSL *ssl, void *arg), void *arg) 3447 { 3448 ssl_cert_set_cert_cb(c->cert, cb, arg); 3449 } 3450 3451 void SSL_set_cert_cb(SSL *s, int (*cb) (SSL *ssl, void *arg), void *arg) 3452 { 3453 ssl_cert_set_cert_cb(s->cert, cb, arg); 3454 } 3455 3456 void ssl_set_masks(SSL *s) 3457 { 3458 CERT *c = s->cert; 3459 uint32_t *pvalid = s->s3->tmp.valid_flags; 3460 int rsa_enc, rsa_sign, dh_tmp, dsa_sign; 3461 unsigned long mask_k, mask_a; 3462 #ifndef OPENSSL_NO_EC 3463 int have_ecc_cert, ecdsa_ok; 3464 #endif 3465 if (c == NULL) 3466 return; 3467 3468 #ifndef OPENSSL_NO_DH 3469 dh_tmp = (c->dh_tmp != NULL || c->dh_tmp_cb != NULL || c->dh_tmp_auto); 3470 #else 3471 dh_tmp = 0; 3472 #endif 3473 3474 rsa_enc = pvalid[SSL_PKEY_RSA] & CERT_PKEY_VALID; 3475 rsa_sign = pvalid[SSL_PKEY_RSA] & CERT_PKEY_VALID; 3476 dsa_sign = pvalid[SSL_PKEY_DSA_SIGN] & CERT_PKEY_VALID; 3477 #ifndef OPENSSL_NO_EC 3478 have_ecc_cert = pvalid[SSL_PKEY_ECC] & CERT_PKEY_VALID; 3479 #endif 3480 mask_k = 0; 3481 mask_a = 0; 3482 3483 #ifdef CIPHER_DEBUG 3484 fprintf(stderr, "dht=%d re=%d rs=%d ds=%d\n", 3485 dh_tmp, rsa_enc, rsa_sign, dsa_sign); 3486 #endif 3487 3488 #ifndef OPENSSL_NO_GOST 3489 if (ssl_has_cert(s, SSL_PKEY_GOST12_512)) { 3490 mask_k |= SSL_kGOST; 3491 mask_a |= SSL_aGOST12; 3492 } 3493 if (ssl_has_cert(s, SSL_PKEY_GOST12_256)) { 3494 mask_k |= SSL_kGOST; 3495 mask_a |= SSL_aGOST12; 3496 } 3497 if (ssl_has_cert(s, SSL_PKEY_GOST01)) { 3498 mask_k |= SSL_kGOST; 3499 mask_a |= SSL_aGOST01; 3500 } 3501 #endif 3502 3503 if (rsa_enc) 3504 mask_k |= SSL_kRSA; 3505 3506 if (dh_tmp) 3507 mask_k |= SSL_kDHE; 3508 3509 /* 3510 * If we only have an RSA-PSS certificate allow RSA authentication 3511 * if TLS 1.2 and peer supports it. 3512 */ 3513 3514 if (rsa_enc || rsa_sign || (ssl_has_cert(s, SSL_PKEY_RSA_PSS_SIGN) 3515 && pvalid[SSL_PKEY_RSA_PSS_SIGN] & CERT_PKEY_EXPLICIT_SIGN 3516 && TLS1_get_version(s) == TLS1_2_VERSION)) 3517 mask_a |= SSL_aRSA; 3518 3519 if (dsa_sign) { 3520 mask_a |= SSL_aDSS; 3521 } 3522 3523 mask_a |= SSL_aNULL; 3524 3525 /* 3526 * An ECC certificate may be usable for ECDH and/or ECDSA cipher suites 3527 * depending on the key usage extension. 3528 */ 3529 #ifndef OPENSSL_NO_EC 3530 if (have_ecc_cert) { 3531 uint32_t ex_kusage; 3532 ex_kusage = X509_get_key_usage(c->pkeys[SSL_PKEY_ECC].x509); 3533 ecdsa_ok = ex_kusage & X509v3_KU_DIGITAL_SIGNATURE; 3534 if (!(pvalid[SSL_PKEY_ECC] & CERT_PKEY_SIGN)) 3535 ecdsa_ok = 0; 3536 if (ecdsa_ok) 3537 mask_a |= SSL_aECDSA; 3538 } 3539 /* Allow Ed25519 for TLS 1.2 if peer supports it */ 3540 if (!(mask_a & SSL_aECDSA) && ssl_has_cert(s, SSL_PKEY_ED25519) 3541 && pvalid[SSL_PKEY_ED25519] & CERT_PKEY_EXPLICIT_SIGN 3542 && TLS1_get_version(s) == TLS1_2_VERSION) 3543 mask_a |= SSL_aECDSA; 3544 3545 /* Allow Ed448 for TLS 1.2 if peer supports it */ 3546 if (!(mask_a & SSL_aECDSA) && ssl_has_cert(s, SSL_PKEY_ED448) 3547 && pvalid[SSL_PKEY_ED448] & CERT_PKEY_EXPLICIT_SIGN 3548 && TLS1_get_version(s) == TLS1_2_VERSION) 3549 mask_a |= SSL_aECDSA; 3550 #endif 3551 3552 #ifndef OPENSSL_NO_EC 3553 mask_k |= SSL_kECDHE; 3554 #endif 3555 3556 #ifndef OPENSSL_NO_PSK 3557 mask_k |= SSL_kPSK; 3558 mask_a |= SSL_aPSK; 3559 if (mask_k & SSL_kRSA) 3560 mask_k |= SSL_kRSAPSK; 3561 if (mask_k & SSL_kDHE) 3562 mask_k |= SSL_kDHEPSK; 3563 if (mask_k & SSL_kECDHE) 3564 mask_k |= SSL_kECDHEPSK; 3565 #endif 3566 3567 s->s3->tmp.mask_k = mask_k; 3568 s->s3->tmp.mask_a = mask_a; 3569 } 3570 3571 #ifndef OPENSSL_NO_EC 3572 3573 int ssl_check_srvr_ecc_cert_and_alg(X509 *x, SSL *s) 3574 { 3575 if (s->s3->tmp.new_cipher->algorithm_auth & SSL_aECDSA) { 3576 /* key usage, if present, must allow signing */ 3577 if (!(X509_get_key_usage(x) & X509v3_KU_DIGITAL_SIGNATURE)) { 3578 SSLerr(SSL_F_SSL_CHECK_SRVR_ECC_CERT_AND_ALG, 3579 SSL_R_ECC_CERT_NOT_FOR_SIGNING); 3580 return 0; 3581 } 3582 } 3583 return 1; /* all checks are ok */ 3584 } 3585 3586 #endif 3587 3588 int ssl_get_server_cert_serverinfo(SSL *s, const unsigned char **serverinfo, 3589 size_t *serverinfo_length) 3590 { 3591 CERT_PKEY *cpk = s->s3->tmp.cert; 3592 *serverinfo_length = 0; 3593 3594 if (cpk == NULL || cpk->serverinfo == NULL) 3595 return 0; 3596 3597 *serverinfo = cpk->serverinfo; 3598 *serverinfo_length = cpk->serverinfo_length; 3599 return 1; 3600 } 3601 3602 void ssl_update_cache(SSL *s, int mode) 3603 { 3604 int i; 3605 3606 /* 3607 * If the session_id_length is 0, we are not supposed to cache it, and it 3608 * would be rather hard to do anyway :-) 3609 */ 3610 if (s->session->session_id_length == 0) 3611 return; 3612 3613 /* 3614 * If sid_ctx_length is 0 there is no specific application context 3615 * associated with this session, so when we try to resume it and 3616 * SSL_VERIFY_PEER is requested to verify the client identity, we have no 3617 * indication that this is actually a session for the proper application 3618 * context, and the *handshake* will fail, not just the resumption attempt. 3619 * Do not cache (on the server) these sessions that are not resumable 3620 * (clients can set SSL_VERIFY_PEER without needing a sid_ctx set). 3621 */ 3622 if (s->server && s->session->sid_ctx_length == 0 3623 && (s->verify_mode & SSL_VERIFY_PEER) != 0) 3624 return; 3625 3626 i = s->session_ctx->session_cache_mode; 3627 if ((i & mode) != 0 3628 && (!s->hit || SSL_IS_TLS13(s))) { 3629 /* 3630 * Add the session to the internal cache. In server side TLSv1.3 we 3631 * normally don't do this because by default it's a full stateless ticket 3632 * with only a dummy session id so there is no reason to cache it, 3633 * unless: 3634 * - we are doing early_data, in which case we cache so that we can 3635 * detect replays 3636 * - the application has set a remove_session_cb so needs to know about 3637 * session timeout events 3638 * - SSL_OP_NO_TICKET is set in which case it is a stateful ticket 3639 */ 3640 if ((i & SSL_SESS_CACHE_NO_INTERNAL_STORE) == 0 3641 && (!SSL_IS_TLS13(s) 3642 || !s->server 3643 || (s->max_early_data > 0 3644 && (s->options & SSL_OP_NO_ANTI_REPLAY) == 0) 3645 || s->session_ctx->remove_session_cb != NULL 3646 || (s->options & SSL_OP_NO_TICKET) != 0)) 3647 SSL_CTX_add_session(s->session_ctx, s->session); 3648 3649 /* 3650 * Add the session to the external cache. We do this even in server side 3651 * TLSv1.3 without early data because some applications just want to 3652 * know about the creation of a session and aren't doing a full cache. 3653 */ 3654 if (s->session_ctx->new_session_cb != NULL) { 3655 SSL_SESSION_up_ref(s->session); 3656 if (!s->session_ctx->new_session_cb(s, s->session)) 3657 SSL_SESSION_free(s->session); 3658 } 3659 } 3660 3661 /* auto flush every 255 connections */ 3662 if ((!(i & SSL_SESS_CACHE_NO_AUTO_CLEAR)) && ((i & mode) == mode)) { 3663 TSAN_QUALIFIER int *stat; 3664 if (mode & SSL_SESS_CACHE_CLIENT) 3665 stat = &s->session_ctx->stats.sess_connect_good; 3666 else 3667 stat = &s->session_ctx->stats.sess_accept_good; 3668 if ((tsan_load(stat) & 0xff) == 0xff) 3669 SSL_CTX_flush_sessions(s->session_ctx, (unsigned long)time(NULL)); 3670 } 3671 } 3672 3673 const SSL_METHOD *SSL_CTX_get_ssl_method(const SSL_CTX *ctx) 3674 { 3675 return ctx->method; 3676 } 3677 3678 const SSL_METHOD *SSL_get_ssl_method(const SSL *s) 3679 { 3680 return s->method; 3681 } 3682 3683 int SSL_set_ssl_method(SSL *s, const SSL_METHOD *meth) 3684 { 3685 int ret = 1; 3686 3687 if (s->method != meth) { 3688 const SSL_METHOD *sm = s->method; 3689 int (*hf) (SSL *) = s->handshake_func; 3690 3691 if (sm->version == meth->version) 3692 s->method = meth; 3693 else { 3694 sm->ssl_free(s); 3695 s->method = meth; 3696 ret = s->method->ssl_new(s); 3697 } 3698 3699 if (hf == sm->ssl_connect) 3700 s->handshake_func = meth->ssl_connect; 3701 else if (hf == sm->ssl_accept) 3702 s->handshake_func = meth->ssl_accept; 3703 } 3704 return ret; 3705 } 3706 3707 int SSL_get_error(const SSL *s, int i) 3708 { 3709 int reason; 3710 unsigned long l; 3711 BIO *bio; 3712 3713 if (i > 0) 3714 return SSL_ERROR_NONE; 3715 3716 /* 3717 * Make things return SSL_ERROR_SYSCALL when doing SSL_do_handshake etc, 3718 * where we do encode the error 3719 */ 3720 if ((l = ERR_peek_error()) != 0) { 3721 if (ERR_GET_LIB(l) == ERR_LIB_SYS) 3722 return SSL_ERROR_SYSCALL; 3723 else 3724 return SSL_ERROR_SSL; 3725 } 3726 3727 if (SSL_want_read(s)) { 3728 bio = SSL_get_rbio(s); 3729 if (BIO_should_read(bio)) 3730 return SSL_ERROR_WANT_READ; 3731 else if (BIO_should_write(bio)) 3732 /* 3733 * This one doesn't make too much sense ... We never try to write 3734 * to the rbio, and an application program where rbio and wbio 3735 * are separate couldn't even know what it should wait for. 3736 * However if we ever set s->rwstate incorrectly (so that we have 3737 * SSL_want_read(s) instead of SSL_want_write(s)) and rbio and 3738 * wbio *are* the same, this test works around that bug; so it 3739 * might be safer to keep it. 3740 */ 3741 return SSL_ERROR_WANT_WRITE; 3742 else if (BIO_should_io_special(bio)) { 3743 reason = BIO_get_retry_reason(bio); 3744 if (reason == BIO_RR_CONNECT) 3745 return SSL_ERROR_WANT_CONNECT; 3746 else if (reason == BIO_RR_ACCEPT) 3747 return SSL_ERROR_WANT_ACCEPT; 3748 else 3749 return SSL_ERROR_SYSCALL; /* unknown */ 3750 } 3751 } 3752 3753 if (SSL_want_write(s)) { 3754 /* Access wbio directly - in order to use the buffered bio if present */ 3755 bio = s->wbio; 3756 if (BIO_should_write(bio)) 3757 return SSL_ERROR_WANT_WRITE; 3758 else if (BIO_should_read(bio)) 3759 /* 3760 * See above (SSL_want_read(s) with BIO_should_write(bio)) 3761 */ 3762 return SSL_ERROR_WANT_READ; 3763 else if (BIO_should_io_special(bio)) { 3764 reason = BIO_get_retry_reason(bio); 3765 if (reason == BIO_RR_CONNECT) 3766 return SSL_ERROR_WANT_CONNECT; 3767 else if (reason == BIO_RR_ACCEPT) 3768 return SSL_ERROR_WANT_ACCEPT; 3769 else 3770 return SSL_ERROR_SYSCALL; 3771 } 3772 } 3773 if (SSL_want_x509_lookup(s)) 3774 return SSL_ERROR_WANT_X509_LOOKUP; 3775 if (SSL_want_async(s)) 3776 return SSL_ERROR_WANT_ASYNC; 3777 if (SSL_want_async_job(s)) 3778 return SSL_ERROR_WANT_ASYNC_JOB; 3779 if (SSL_want_client_hello_cb(s)) 3780 return SSL_ERROR_WANT_CLIENT_HELLO_CB; 3781 3782 if ((s->shutdown & SSL_RECEIVED_SHUTDOWN) && 3783 (s->s3->warn_alert == SSL_AD_CLOSE_NOTIFY)) 3784 return SSL_ERROR_ZERO_RETURN; 3785 3786 return SSL_ERROR_SYSCALL; 3787 } 3788 3789 static int ssl_do_handshake_intern(void *vargs) 3790 { 3791 struct ssl_async_args *args; 3792 SSL *s; 3793 3794 args = (struct ssl_async_args *)vargs; 3795 s = args->s; 3796 3797 return s->handshake_func(s); 3798 } 3799 3800 int SSL_do_handshake(SSL *s) 3801 { 3802 int ret = 1; 3803 3804 if (s->handshake_func == NULL) { 3805 SSLerr(SSL_F_SSL_DO_HANDSHAKE, SSL_R_CONNECTION_TYPE_NOT_SET); 3806 return -1; 3807 } 3808 3809 ossl_statem_check_finish_init(s, -1); 3810 3811 s->method->ssl_renegotiate_check(s, 0); 3812 3813 if (SSL_in_init(s) || SSL_in_before(s)) { 3814 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) { 3815 struct ssl_async_args args; 3816 3817 memset(&args, 0, sizeof(args)); 3818 args.s = s; 3819 3820 ret = ssl_start_async_job(s, &args, ssl_do_handshake_intern); 3821 } else { 3822 ret = s->handshake_func(s); 3823 } 3824 } 3825 return ret; 3826 } 3827 3828 void SSL_set_accept_state(SSL *s) 3829 { 3830 s->server = 1; 3831 s->shutdown = 0; 3832 ossl_statem_clear(s); 3833 s->handshake_func = s->method->ssl_accept; 3834 clear_ciphers(s); 3835 } 3836 3837 void SSL_set_connect_state(SSL *s) 3838 { 3839 s->server = 0; 3840 s->shutdown = 0; 3841 ossl_statem_clear(s); 3842 s->handshake_func = s->method->ssl_connect; 3843 clear_ciphers(s); 3844 } 3845 3846 int ssl_undefined_function(SSL *s) 3847 { 3848 SSLerr(SSL_F_SSL_UNDEFINED_FUNCTION, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 3849 return 0; 3850 } 3851 3852 int ssl_undefined_void_function(void) 3853 { 3854 SSLerr(SSL_F_SSL_UNDEFINED_VOID_FUNCTION, 3855 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 3856 return 0; 3857 } 3858 3859 int ssl_undefined_const_function(const SSL *s) 3860 { 3861 return 0; 3862 } 3863 3864 const SSL_METHOD *ssl_bad_method(int ver) 3865 { 3866 SSLerr(SSL_F_SSL_BAD_METHOD, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 3867 return NULL; 3868 } 3869 3870 const char *ssl_protocol_to_string(int version) 3871 { 3872 switch(version) 3873 { 3874 case TLS1_3_VERSION: 3875 return "TLSv1.3"; 3876 3877 case TLS1_2_VERSION: 3878 return "TLSv1.2"; 3879 3880 case TLS1_1_VERSION: 3881 return "TLSv1.1"; 3882 3883 case TLS1_VERSION: 3884 return "TLSv1"; 3885 3886 case SSL3_VERSION: 3887 return "SSLv3"; 3888 3889 case DTLS1_BAD_VER: 3890 return "DTLSv0.9"; 3891 3892 case DTLS1_VERSION: 3893 return "DTLSv1"; 3894 3895 case DTLS1_2_VERSION: 3896 return "DTLSv1.2"; 3897 3898 default: 3899 return "unknown"; 3900 } 3901 } 3902 3903 const char *SSL_get_version(const SSL *s) 3904 { 3905 return ssl_protocol_to_string(s->version); 3906 } 3907 3908 static int dup_ca_names(STACK_OF(X509_NAME) **dst, STACK_OF(X509_NAME) *src) 3909 { 3910 STACK_OF(X509_NAME) *sk; 3911 X509_NAME *xn; 3912 int i; 3913 3914 if (src == NULL) { 3915 *dst = NULL; 3916 return 1; 3917 } 3918 3919 if ((sk = sk_X509_NAME_new_null()) == NULL) 3920 return 0; 3921 for (i = 0; i < sk_X509_NAME_num(src); i++) { 3922 xn = X509_NAME_dup(sk_X509_NAME_value(src, i)); 3923 if (xn == NULL) { 3924 sk_X509_NAME_pop_free(sk, X509_NAME_free); 3925 return 0; 3926 } 3927 if (sk_X509_NAME_insert(sk, xn, i) == 0) { 3928 X509_NAME_free(xn); 3929 sk_X509_NAME_pop_free(sk, X509_NAME_free); 3930 return 0; 3931 } 3932 } 3933 *dst = sk; 3934 3935 return 1; 3936 } 3937 3938 SSL *SSL_dup(SSL *s) 3939 { 3940 SSL *ret; 3941 int i; 3942 3943 /* If we're not quiescent, just up_ref! */ 3944 if (!SSL_in_init(s) || !SSL_in_before(s)) { 3945 CRYPTO_UP_REF(&s->references, &i, s->lock); 3946 return s; 3947 } 3948 3949 /* 3950 * Otherwise, copy configuration state, and session if set. 3951 */ 3952 if ((ret = SSL_new(SSL_get_SSL_CTX(s))) == NULL) 3953 return NULL; 3954 3955 if (s->session != NULL) { 3956 /* 3957 * Arranges to share the same session via up_ref. This "copies" 3958 * session-id, SSL_METHOD, sid_ctx, and 'cert' 3959 */ 3960 if (!SSL_copy_session_id(ret, s)) 3961 goto err; 3962 } else { 3963 /* 3964 * No session has been established yet, so we have to expect that 3965 * s->cert or ret->cert will be changed later -- they should not both 3966 * point to the same object, and thus we can't use 3967 * SSL_copy_session_id. 3968 */ 3969 if (!SSL_set_ssl_method(ret, s->method)) 3970 goto err; 3971 3972 if (s->cert != NULL) { 3973 ssl_cert_free(ret->cert); 3974 ret->cert = ssl_cert_dup(s->cert); 3975 if (ret->cert == NULL) 3976 goto err; 3977 } 3978 3979 if (!SSL_set_session_id_context(ret, s->sid_ctx, 3980 (int)s->sid_ctx_length)) 3981 goto err; 3982 } 3983 3984 if (!ssl_dane_dup(ret, s)) 3985 goto err; 3986 ret->version = s->version; 3987 ret->options = s->options; 3988 ret->min_proto_version = s->min_proto_version; 3989 ret->max_proto_version = s->max_proto_version; 3990 ret->mode = s->mode; 3991 SSL_set_max_cert_list(ret, SSL_get_max_cert_list(s)); 3992 SSL_set_read_ahead(ret, SSL_get_read_ahead(s)); 3993 ret->msg_callback = s->msg_callback; 3994 ret->msg_callback_arg = s->msg_callback_arg; 3995 SSL_set_verify(ret, SSL_get_verify_mode(s), SSL_get_verify_callback(s)); 3996 SSL_set_verify_depth(ret, SSL_get_verify_depth(s)); 3997 ret->generate_session_id = s->generate_session_id; 3998 3999 SSL_set_info_callback(ret, SSL_get_info_callback(s)); 4000 4001 /* copy app data, a little dangerous perhaps */ 4002 if (!CRYPTO_dup_ex_data(CRYPTO_EX_INDEX_SSL, &ret->ex_data, &s->ex_data)) 4003 goto err; 4004 4005 ret->server = s->server; 4006 if (s->handshake_func) { 4007 if (s->server) 4008 SSL_set_accept_state(ret); 4009 else 4010 SSL_set_connect_state(ret); 4011 } 4012 ret->shutdown = s->shutdown; 4013 ret->hit = s->hit; 4014 4015 ret->default_passwd_callback = s->default_passwd_callback; 4016 ret->default_passwd_callback_userdata = s->default_passwd_callback_userdata; 4017 4018 X509_VERIFY_PARAM_inherit(ret->param, s->param); 4019 4020 /* dup the cipher_list and cipher_list_by_id stacks */ 4021 if (s->cipher_list != NULL) { 4022 if ((ret->cipher_list = sk_SSL_CIPHER_dup(s->cipher_list)) == NULL) 4023 goto err; 4024 } 4025 if (s->cipher_list_by_id != NULL) 4026 if ((ret->cipher_list_by_id = sk_SSL_CIPHER_dup(s->cipher_list_by_id)) 4027 == NULL) 4028 goto err; 4029 4030 /* Dup the client_CA list */ 4031 if (!dup_ca_names(&ret->ca_names, s->ca_names) 4032 || !dup_ca_names(&ret->client_ca_names, s->client_ca_names)) 4033 goto err; 4034 4035 return ret; 4036 4037 err: 4038 SSL_free(ret); 4039 return NULL; 4040 } 4041 4042 void ssl_clear_cipher_ctx(SSL *s) 4043 { 4044 if (s->enc_read_ctx != NULL) { 4045 EVP_CIPHER_CTX_free(s->enc_read_ctx); 4046 s->enc_read_ctx = NULL; 4047 } 4048 if (s->enc_write_ctx != NULL) { 4049 EVP_CIPHER_CTX_free(s->enc_write_ctx); 4050 s->enc_write_ctx = NULL; 4051 } 4052 #ifndef OPENSSL_NO_COMP 4053 COMP_CTX_free(s->expand); 4054 s->expand = NULL; 4055 COMP_CTX_free(s->compress); 4056 s->compress = NULL; 4057 #endif 4058 } 4059 4060 X509 *SSL_get_certificate(const SSL *s) 4061 { 4062 if (s->cert != NULL) 4063 return s->cert->key->x509; 4064 else 4065 return NULL; 4066 } 4067 4068 EVP_PKEY *SSL_get_privatekey(const SSL *s) 4069 { 4070 if (s->cert != NULL) 4071 return s->cert->key->privatekey; 4072 else 4073 return NULL; 4074 } 4075 4076 X509 *SSL_CTX_get0_certificate(const SSL_CTX *ctx) 4077 { 4078 if (ctx->cert != NULL) 4079 return ctx->cert->key->x509; 4080 else 4081 return NULL; 4082 } 4083 4084 EVP_PKEY *SSL_CTX_get0_privatekey(const SSL_CTX *ctx) 4085 { 4086 if (ctx->cert != NULL) 4087 return ctx->cert->key->privatekey; 4088 else 4089 return NULL; 4090 } 4091 4092 const SSL_CIPHER *SSL_get_current_cipher(const SSL *s) 4093 { 4094 if ((s->session != NULL) && (s->session->cipher != NULL)) 4095 return s->session->cipher; 4096 return NULL; 4097 } 4098 4099 const SSL_CIPHER *SSL_get_pending_cipher(const SSL *s) 4100 { 4101 return s->s3->tmp.new_cipher; 4102 } 4103 4104 const COMP_METHOD *SSL_get_current_compression(const SSL *s) 4105 { 4106 #ifndef OPENSSL_NO_COMP 4107 return s->compress ? COMP_CTX_get_method(s->compress) : NULL; 4108 #else 4109 return NULL; 4110 #endif 4111 } 4112 4113 const COMP_METHOD *SSL_get_current_expansion(const SSL *s) 4114 { 4115 #ifndef OPENSSL_NO_COMP 4116 return s->expand ? COMP_CTX_get_method(s->expand) : NULL; 4117 #else 4118 return NULL; 4119 #endif 4120 } 4121 4122 int ssl_init_wbio_buffer(SSL *s) 4123 { 4124 BIO *bbio; 4125 4126 if (s->bbio != NULL) { 4127 /* Already buffered. */ 4128 return 1; 4129 } 4130 4131 bbio = BIO_new(BIO_f_buffer()); 4132 if (bbio == NULL || !BIO_set_read_buffer_size(bbio, 1)) { 4133 BIO_free(bbio); 4134 SSLerr(SSL_F_SSL_INIT_WBIO_BUFFER, ERR_R_BUF_LIB); 4135 return 0; 4136 } 4137 s->bbio = bbio; 4138 s->wbio = BIO_push(bbio, s->wbio); 4139 4140 return 1; 4141 } 4142 4143 int ssl_free_wbio_buffer(SSL *s) 4144 { 4145 /* callers ensure s is never null */ 4146 if (s->bbio == NULL) 4147 return 1; 4148 4149 s->wbio = BIO_pop(s->wbio); 4150 BIO_free(s->bbio); 4151 s->bbio = NULL; 4152 4153 return 1; 4154 } 4155 4156 void SSL_CTX_set_quiet_shutdown(SSL_CTX *ctx, int mode) 4157 { 4158 ctx->quiet_shutdown = mode; 4159 } 4160 4161 int SSL_CTX_get_quiet_shutdown(const SSL_CTX *ctx) 4162 { 4163 return ctx->quiet_shutdown; 4164 } 4165 4166 void SSL_set_quiet_shutdown(SSL *s, int mode) 4167 { 4168 s->quiet_shutdown = mode; 4169 } 4170 4171 int SSL_get_quiet_shutdown(const SSL *s) 4172 { 4173 return s->quiet_shutdown; 4174 } 4175 4176 void SSL_set_shutdown(SSL *s, int mode) 4177 { 4178 s->shutdown = mode; 4179 } 4180 4181 int SSL_get_shutdown(const SSL *s) 4182 { 4183 return s->shutdown; 4184 } 4185 4186 int SSL_version(const SSL *s) 4187 { 4188 return s->version; 4189 } 4190 4191 int SSL_client_version(const SSL *s) 4192 { 4193 return s->client_version; 4194 } 4195 4196 SSL_CTX *SSL_get_SSL_CTX(const SSL *ssl) 4197 { 4198 return ssl->ctx; 4199 } 4200 4201 SSL_CTX *SSL_set_SSL_CTX(SSL *ssl, SSL_CTX *ctx) 4202 { 4203 CERT *new_cert; 4204 if (ssl->ctx == ctx) 4205 return ssl->ctx; 4206 if (ctx == NULL) 4207 ctx = ssl->session_ctx; 4208 new_cert = ssl_cert_dup(ctx->cert); 4209 if (new_cert == NULL) { 4210 return NULL; 4211 } 4212 4213 if (!custom_exts_copy_flags(&new_cert->custext, &ssl->cert->custext)) { 4214 ssl_cert_free(new_cert); 4215 return NULL; 4216 } 4217 4218 ssl_cert_free(ssl->cert); 4219 ssl->cert = new_cert; 4220 4221 /* 4222 * Program invariant: |sid_ctx| has fixed size (SSL_MAX_SID_CTX_LENGTH), 4223 * so setter APIs must prevent invalid lengths from entering the system. 4224 */ 4225 if (!ossl_assert(ssl->sid_ctx_length <= sizeof(ssl->sid_ctx))) 4226 return NULL; 4227 4228 /* 4229 * If the session ID context matches that of the parent SSL_CTX, 4230 * inherit it from the new SSL_CTX as well. If however the context does 4231 * not match (i.e., it was set per-ssl with SSL_set_session_id_context), 4232 * leave it unchanged. 4233 */ 4234 if ((ssl->ctx != NULL) && 4235 (ssl->sid_ctx_length == ssl->ctx->sid_ctx_length) && 4236 (memcmp(ssl->sid_ctx, ssl->ctx->sid_ctx, ssl->sid_ctx_length) == 0)) { 4237 ssl->sid_ctx_length = ctx->sid_ctx_length; 4238 memcpy(&ssl->sid_ctx, &ctx->sid_ctx, sizeof(ssl->sid_ctx)); 4239 } 4240 4241 SSL_CTX_up_ref(ctx); 4242 SSL_CTX_free(ssl->ctx); /* decrement reference count */ 4243 ssl->ctx = ctx; 4244 4245 return ssl->ctx; 4246 } 4247 4248 int SSL_CTX_set_default_verify_paths(SSL_CTX *ctx) 4249 { 4250 return X509_STORE_set_default_paths(ctx->cert_store); 4251 } 4252 4253 int SSL_CTX_set_default_verify_dir(SSL_CTX *ctx) 4254 { 4255 X509_LOOKUP *lookup; 4256 4257 lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_hash_dir()); 4258 if (lookup == NULL) 4259 return 0; 4260 X509_LOOKUP_add_dir(lookup, NULL, X509_FILETYPE_DEFAULT); 4261 4262 /* Clear any errors if the default directory does not exist */ 4263 ERR_clear_error(); 4264 4265 return 1; 4266 } 4267 4268 int SSL_CTX_set_default_verify_file(SSL_CTX *ctx) 4269 { 4270 X509_LOOKUP *lookup; 4271 4272 lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_file()); 4273 if (lookup == NULL) 4274 return 0; 4275 4276 X509_LOOKUP_load_file(lookup, NULL, X509_FILETYPE_DEFAULT); 4277 4278 /* Clear any errors if the default file does not exist */ 4279 ERR_clear_error(); 4280 4281 return 1; 4282 } 4283 4284 int SSL_CTX_load_verify_locations(SSL_CTX *ctx, const char *CAfile, 4285 const char *CApath) 4286 { 4287 return X509_STORE_load_locations(ctx->cert_store, CAfile, CApath); 4288 } 4289 4290 void SSL_set_info_callback(SSL *ssl, 4291 void (*cb) (const SSL *ssl, int type, int val)) 4292 { 4293 ssl->info_callback = cb; 4294 } 4295 4296 /* 4297 * One compiler (Diab DCC) doesn't like argument names in returned function 4298 * pointer. 4299 */ 4300 void (*SSL_get_info_callback(const SSL *ssl)) (const SSL * /* ssl */ , 4301 int /* type */ , 4302 int /* val */ ) { 4303 return ssl->info_callback; 4304 } 4305 4306 void SSL_set_verify_result(SSL *ssl, long arg) 4307 { 4308 ssl->verify_result = arg; 4309 } 4310 4311 long SSL_get_verify_result(const SSL *ssl) 4312 { 4313 return ssl->verify_result; 4314 } 4315 4316 size_t SSL_get_client_random(const SSL *ssl, unsigned char *out, size_t outlen) 4317 { 4318 if (outlen == 0) 4319 return sizeof(ssl->s3->client_random); 4320 if (outlen > sizeof(ssl->s3->client_random)) 4321 outlen = sizeof(ssl->s3->client_random); 4322 memcpy(out, ssl->s3->client_random, outlen); 4323 return outlen; 4324 } 4325 4326 size_t SSL_get_server_random(const SSL *ssl, unsigned char *out, size_t outlen) 4327 { 4328 if (outlen == 0) 4329 return sizeof(ssl->s3->server_random); 4330 if (outlen > sizeof(ssl->s3->server_random)) 4331 outlen = sizeof(ssl->s3->server_random); 4332 memcpy(out, ssl->s3->server_random, outlen); 4333 return outlen; 4334 } 4335 4336 size_t SSL_SESSION_get_master_key(const SSL_SESSION *session, 4337 unsigned char *out, size_t outlen) 4338 { 4339 if (outlen == 0) 4340 return session->master_key_length; 4341 if (outlen > session->master_key_length) 4342 outlen = session->master_key_length; 4343 memcpy(out, session->master_key, outlen); 4344 return outlen; 4345 } 4346 4347 int SSL_SESSION_set1_master_key(SSL_SESSION *sess, const unsigned char *in, 4348 size_t len) 4349 { 4350 if (len > sizeof(sess->master_key)) 4351 return 0; 4352 4353 memcpy(sess->master_key, in, len); 4354 sess->master_key_length = len; 4355 return 1; 4356 } 4357 4358 4359 int SSL_set_ex_data(SSL *s, int idx, void *arg) 4360 { 4361 return CRYPTO_set_ex_data(&s->ex_data, idx, arg); 4362 } 4363 4364 void *SSL_get_ex_data(const SSL *s, int idx) 4365 { 4366 return CRYPTO_get_ex_data(&s->ex_data, idx); 4367 } 4368 4369 int SSL_CTX_set_ex_data(SSL_CTX *s, int idx, void *arg) 4370 { 4371 return CRYPTO_set_ex_data(&s->ex_data, idx, arg); 4372 } 4373 4374 void *SSL_CTX_get_ex_data(const SSL_CTX *s, int idx) 4375 { 4376 return CRYPTO_get_ex_data(&s->ex_data, idx); 4377 } 4378 4379 X509_STORE *SSL_CTX_get_cert_store(const SSL_CTX *ctx) 4380 { 4381 return ctx->cert_store; 4382 } 4383 4384 void SSL_CTX_set_cert_store(SSL_CTX *ctx, X509_STORE *store) 4385 { 4386 X509_STORE_free(ctx->cert_store); 4387 ctx->cert_store = store; 4388 } 4389 4390 void SSL_CTX_set1_cert_store(SSL_CTX *ctx, X509_STORE *store) 4391 { 4392 if (store != NULL) 4393 X509_STORE_up_ref(store); 4394 SSL_CTX_set_cert_store(ctx, store); 4395 } 4396 4397 int SSL_want(const SSL *s) 4398 { 4399 return s->rwstate; 4400 } 4401 4402 /** 4403 * \brief Set the callback for generating temporary DH keys. 4404 * \param ctx the SSL context. 4405 * \param dh the callback 4406 */ 4407 4408 #ifndef OPENSSL_NO_DH 4409 void SSL_CTX_set_tmp_dh_callback(SSL_CTX *ctx, 4410 DH *(*dh) (SSL *ssl, int is_export, 4411 int keylength)) 4412 { 4413 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_TMP_DH_CB, (void (*)(void))dh); 4414 } 4415 4416 void SSL_set_tmp_dh_callback(SSL *ssl, DH *(*dh) (SSL *ssl, int is_export, 4417 int keylength)) 4418 { 4419 SSL_callback_ctrl(ssl, SSL_CTRL_SET_TMP_DH_CB, (void (*)(void))dh); 4420 } 4421 #endif 4422 4423 #ifndef OPENSSL_NO_PSK 4424 int SSL_CTX_use_psk_identity_hint(SSL_CTX *ctx, const char *identity_hint) 4425 { 4426 if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) { 4427 SSLerr(SSL_F_SSL_CTX_USE_PSK_IDENTITY_HINT, SSL_R_DATA_LENGTH_TOO_LONG); 4428 return 0; 4429 } 4430 OPENSSL_free(ctx->cert->psk_identity_hint); 4431 if (identity_hint != NULL) { 4432 ctx->cert->psk_identity_hint = OPENSSL_strdup(identity_hint); 4433 if (ctx->cert->psk_identity_hint == NULL) 4434 return 0; 4435 } else 4436 ctx->cert->psk_identity_hint = NULL; 4437 return 1; 4438 } 4439 4440 int SSL_use_psk_identity_hint(SSL *s, const char *identity_hint) 4441 { 4442 if (s == NULL) 4443 return 0; 4444 4445 if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) { 4446 SSLerr(SSL_F_SSL_USE_PSK_IDENTITY_HINT, SSL_R_DATA_LENGTH_TOO_LONG); 4447 return 0; 4448 } 4449 OPENSSL_free(s->cert->psk_identity_hint); 4450 if (identity_hint != NULL) { 4451 s->cert->psk_identity_hint = OPENSSL_strdup(identity_hint); 4452 if (s->cert->psk_identity_hint == NULL) 4453 return 0; 4454 } else 4455 s->cert->psk_identity_hint = NULL; 4456 return 1; 4457 } 4458 4459 const char *SSL_get_psk_identity_hint(const SSL *s) 4460 { 4461 if (s == NULL || s->session == NULL) 4462 return NULL; 4463 return s->session->psk_identity_hint; 4464 } 4465 4466 const char *SSL_get_psk_identity(const SSL *s) 4467 { 4468 if (s == NULL || s->session == NULL) 4469 return NULL; 4470 return s->session->psk_identity; 4471 } 4472 4473 void SSL_set_psk_client_callback(SSL *s, SSL_psk_client_cb_func cb) 4474 { 4475 s->psk_client_callback = cb; 4476 } 4477 4478 void SSL_CTX_set_psk_client_callback(SSL_CTX *ctx, SSL_psk_client_cb_func cb) 4479 { 4480 ctx->psk_client_callback = cb; 4481 } 4482 4483 void SSL_set_psk_server_callback(SSL *s, SSL_psk_server_cb_func cb) 4484 { 4485 s->psk_server_callback = cb; 4486 } 4487 4488 void SSL_CTX_set_psk_server_callback(SSL_CTX *ctx, SSL_psk_server_cb_func cb) 4489 { 4490 ctx->psk_server_callback = cb; 4491 } 4492 #endif 4493 4494 void SSL_set_psk_find_session_callback(SSL *s, SSL_psk_find_session_cb_func cb) 4495 { 4496 s->psk_find_session_cb = cb; 4497 } 4498 4499 void SSL_CTX_set_psk_find_session_callback(SSL_CTX *ctx, 4500 SSL_psk_find_session_cb_func cb) 4501 { 4502 ctx->psk_find_session_cb = cb; 4503 } 4504 4505 void SSL_set_psk_use_session_callback(SSL *s, SSL_psk_use_session_cb_func cb) 4506 { 4507 s->psk_use_session_cb = cb; 4508 } 4509 4510 void SSL_CTX_set_psk_use_session_callback(SSL_CTX *ctx, 4511 SSL_psk_use_session_cb_func cb) 4512 { 4513 ctx->psk_use_session_cb = cb; 4514 } 4515 4516 void SSL_CTX_set_msg_callback(SSL_CTX *ctx, 4517 void (*cb) (int write_p, int version, 4518 int content_type, const void *buf, 4519 size_t len, SSL *ssl, void *arg)) 4520 { 4521 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_MSG_CALLBACK, (void (*)(void))cb); 4522 } 4523 4524 void SSL_set_msg_callback(SSL *ssl, 4525 void (*cb) (int write_p, int version, 4526 int content_type, const void *buf, 4527 size_t len, SSL *ssl, void *arg)) 4528 { 4529 SSL_callback_ctrl(ssl, SSL_CTRL_SET_MSG_CALLBACK, (void (*)(void))cb); 4530 } 4531 4532 void SSL_CTX_set_not_resumable_session_callback(SSL_CTX *ctx, 4533 int (*cb) (SSL *ssl, 4534 int 4535 is_forward_secure)) 4536 { 4537 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB, 4538 (void (*)(void))cb); 4539 } 4540 4541 void SSL_set_not_resumable_session_callback(SSL *ssl, 4542 int (*cb) (SSL *ssl, 4543 int is_forward_secure)) 4544 { 4545 SSL_callback_ctrl(ssl, SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB, 4546 (void (*)(void))cb); 4547 } 4548 4549 void SSL_CTX_set_record_padding_callback(SSL_CTX *ctx, 4550 size_t (*cb) (SSL *ssl, int type, 4551 size_t len, void *arg)) 4552 { 4553 ctx->record_padding_cb = cb; 4554 } 4555 4556 void SSL_CTX_set_record_padding_callback_arg(SSL_CTX *ctx, void *arg) 4557 { 4558 ctx->record_padding_arg = arg; 4559 } 4560 4561 void *SSL_CTX_get_record_padding_callback_arg(const SSL_CTX *ctx) 4562 { 4563 return ctx->record_padding_arg; 4564 } 4565 4566 int SSL_CTX_set_block_padding(SSL_CTX *ctx, size_t block_size) 4567 { 4568 /* block size of 0 or 1 is basically no padding */ 4569 if (block_size == 1) 4570 ctx->block_padding = 0; 4571 else if (block_size <= SSL3_RT_MAX_PLAIN_LENGTH) 4572 ctx->block_padding = block_size; 4573 else 4574 return 0; 4575 return 1; 4576 } 4577 4578 int SSL_set_record_padding_callback(SSL *ssl, 4579 size_t (*cb) (SSL *ssl, int type, 4580 size_t len, void *arg)) 4581 { 4582 BIO *b; 4583 4584 b = SSL_get_wbio(ssl); 4585 if (b == NULL || !BIO_get_ktls_send(b)) { 4586 ssl->record_padding_cb = cb; 4587 return 1; 4588 } 4589 return 0; 4590 } 4591 4592 void SSL_set_record_padding_callback_arg(SSL *ssl, void *arg) 4593 { 4594 ssl->record_padding_arg = arg; 4595 } 4596 4597 void *SSL_get_record_padding_callback_arg(const SSL *ssl) 4598 { 4599 return ssl->record_padding_arg; 4600 } 4601 4602 int SSL_set_block_padding(SSL *ssl, size_t block_size) 4603 { 4604 /* block size of 0 or 1 is basically no padding */ 4605 if (block_size == 1) 4606 ssl->block_padding = 0; 4607 else if (block_size <= SSL3_RT_MAX_PLAIN_LENGTH) 4608 ssl->block_padding = block_size; 4609 else 4610 return 0; 4611 return 1; 4612 } 4613 4614 int SSL_set_num_tickets(SSL *s, size_t num_tickets) 4615 { 4616 s->num_tickets = num_tickets; 4617 4618 return 1; 4619 } 4620 4621 size_t SSL_get_num_tickets(const SSL *s) 4622 { 4623 return s->num_tickets; 4624 } 4625 4626 int SSL_CTX_set_num_tickets(SSL_CTX *ctx, size_t num_tickets) 4627 { 4628 ctx->num_tickets = num_tickets; 4629 4630 return 1; 4631 } 4632 4633 size_t SSL_CTX_get_num_tickets(const SSL_CTX *ctx) 4634 { 4635 return ctx->num_tickets; 4636 } 4637 4638 /* 4639 * Allocates new EVP_MD_CTX and sets pointer to it into given pointer 4640 * variable, freeing EVP_MD_CTX previously stored in that variable, if any. 4641 * If EVP_MD pointer is passed, initializes ctx with this |md|. 4642 * Returns the newly allocated ctx; 4643 */ 4644 4645 EVP_MD_CTX *ssl_replace_hash(EVP_MD_CTX **hash, const EVP_MD *md) 4646 { 4647 ssl_clear_hash_ctx(hash); 4648 *hash = EVP_MD_CTX_new(); 4649 if (*hash == NULL || (md && EVP_DigestInit_ex(*hash, md, NULL) <= 0)) { 4650 EVP_MD_CTX_free(*hash); 4651 *hash = NULL; 4652 return NULL; 4653 } 4654 return *hash; 4655 } 4656 4657 void ssl_clear_hash_ctx(EVP_MD_CTX **hash) 4658 { 4659 4660 EVP_MD_CTX_free(*hash); 4661 *hash = NULL; 4662 } 4663 4664 /* Retrieve handshake hashes */ 4665 int ssl_handshake_hash(SSL *s, unsigned char *out, size_t outlen, 4666 size_t *hashlen) 4667 { 4668 EVP_MD_CTX *ctx = NULL; 4669 EVP_MD_CTX *hdgst = s->s3->handshake_dgst; 4670 int hashleni = EVP_MD_CTX_size(hdgst); 4671 int ret = 0; 4672 4673 if (hashleni < 0 || (size_t)hashleni > outlen) { 4674 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_HANDSHAKE_HASH, 4675 ERR_R_INTERNAL_ERROR); 4676 goto err; 4677 } 4678 4679 ctx = EVP_MD_CTX_new(); 4680 if (ctx == NULL) { 4681 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_HANDSHAKE_HASH, 4682 ERR_R_INTERNAL_ERROR); 4683 goto err; 4684 } 4685 4686 if (!EVP_MD_CTX_copy_ex(ctx, hdgst) 4687 || EVP_DigestFinal_ex(ctx, out, NULL) <= 0) { 4688 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_HANDSHAKE_HASH, 4689 ERR_R_INTERNAL_ERROR); 4690 goto err; 4691 } 4692 4693 *hashlen = hashleni; 4694 4695 ret = 1; 4696 err: 4697 EVP_MD_CTX_free(ctx); 4698 return ret; 4699 } 4700 4701 int SSL_session_reused(const SSL *s) 4702 { 4703 return s->hit; 4704 } 4705 4706 int SSL_is_server(const SSL *s) 4707 { 4708 return s->server; 4709 } 4710 4711 #if OPENSSL_API_COMPAT < 0x10100000L 4712 void SSL_set_debug(SSL *s, int debug) 4713 { 4714 /* Old function was do-nothing anyway... */ 4715 (void)s; 4716 (void)debug; 4717 } 4718 #endif 4719 4720 void SSL_set_security_level(SSL *s, int level) 4721 { 4722 s->cert->sec_level = level; 4723 } 4724 4725 int SSL_get_security_level(const SSL *s) 4726 { 4727 return s->cert->sec_level; 4728 } 4729 4730 void SSL_set_security_callback(SSL *s, 4731 int (*cb) (const SSL *s, const SSL_CTX *ctx, 4732 int op, int bits, int nid, 4733 void *other, void *ex)) 4734 { 4735 s->cert->sec_cb = cb; 4736 } 4737 4738 int (*SSL_get_security_callback(const SSL *s)) (const SSL *s, 4739 const SSL_CTX *ctx, int op, 4740 int bits, int nid, void *other, 4741 void *ex) { 4742 return s->cert->sec_cb; 4743 } 4744 4745 void SSL_set0_security_ex_data(SSL *s, void *ex) 4746 { 4747 s->cert->sec_ex = ex; 4748 } 4749 4750 void *SSL_get0_security_ex_data(const SSL *s) 4751 { 4752 return s->cert->sec_ex; 4753 } 4754 4755 void SSL_CTX_set_security_level(SSL_CTX *ctx, int level) 4756 { 4757 ctx->cert->sec_level = level; 4758 } 4759 4760 int SSL_CTX_get_security_level(const SSL_CTX *ctx) 4761 { 4762 return ctx->cert->sec_level; 4763 } 4764 4765 void SSL_CTX_set_security_callback(SSL_CTX *ctx, 4766 int (*cb) (const SSL *s, const SSL_CTX *ctx, 4767 int op, int bits, int nid, 4768 void *other, void *ex)) 4769 { 4770 ctx->cert->sec_cb = cb; 4771 } 4772 4773 int (*SSL_CTX_get_security_callback(const SSL_CTX *ctx)) (const SSL *s, 4774 const SSL_CTX *ctx, 4775 int op, int bits, 4776 int nid, 4777 void *other, 4778 void *ex) { 4779 return ctx->cert->sec_cb; 4780 } 4781 4782 void SSL_CTX_set0_security_ex_data(SSL_CTX *ctx, void *ex) 4783 { 4784 ctx->cert->sec_ex = ex; 4785 } 4786 4787 void *SSL_CTX_get0_security_ex_data(const SSL_CTX *ctx) 4788 { 4789 return ctx->cert->sec_ex; 4790 } 4791 4792 /* 4793 * Get/Set/Clear options in SSL_CTX or SSL, formerly macros, now functions that 4794 * can return unsigned long, instead of the generic long return value from the 4795 * control interface. 4796 */ 4797 unsigned long SSL_CTX_get_options(const SSL_CTX *ctx) 4798 { 4799 return ctx->options; 4800 } 4801 4802 unsigned long SSL_get_options(const SSL *s) 4803 { 4804 return s->options; 4805 } 4806 4807 unsigned long SSL_CTX_set_options(SSL_CTX *ctx, unsigned long op) 4808 { 4809 return ctx->options |= op; 4810 } 4811 4812 unsigned long SSL_set_options(SSL *s, unsigned long op) 4813 { 4814 return s->options |= op; 4815 } 4816 4817 unsigned long SSL_CTX_clear_options(SSL_CTX *ctx, unsigned long op) 4818 { 4819 return ctx->options &= ~op; 4820 } 4821 4822 unsigned long SSL_clear_options(SSL *s, unsigned long op) 4823 { 4824 return s->options &= ~op; 4825 } 4826 4827 STACK_OF(X509) *SSL_get0_verified_chain(const SSL *s) 4828 { 4829 return s->verified_chain; 4830 } 4831 4832 IMPLEMENT_OBJ_BSEARCH_GLOBAL_CMP_FN(SSL_CIPHER, SSL_CIPHER, ssl_cipher_id); 4833 4834 #ifndef OPENSSL_NO_CT 4835 4836 /* 4837 * Moves SCTs from the |src| stack to the |dst| stack. 4838 * The source of each SCT will be set to |origin|. 4839 * If |dst| points to a NULL pointer, a new stack will be created and owned by 4840 * the caller. 4841 * Returns the number of SCTs moved, or a negative integer if an error occurs. 4842 */ 4843 static int ct_move_scts(STACK_OF(SCT) **dst, STACK_OF(SCT) *src, 4844 sct_source_t origin) 4845 { 4846 int scts_moved = 0; 4847 SCT *sct = NULL; 4848 4849 if (*dst == NULL) { 4850 *dst = sk_SCT_new_null(); 4851 if (*dst == NULL) { 4852 SSLerr(SSL_F_CT_MOVE_SCTS, ERR_R_MALLOC_FAILURE); 4853 goto err; 4854 } 4855 } 4856 4857 while ((sct = sk_SCT_pop(src)) != NULL) { 4858 if (SCT_set_source(sct, origin) != 1) 4859 goto err; 4860 4861 if (sk_SCT_push(*dst, sct) <= 0) 4862 goto err; 4863 scts_moved += 1; 4864 } 4865 4866 return scts_moved; 4867 err: 4868 if (sct != NULL) 4869 sk_SCT_push(src, sct); /* Put the SCT back */ 4870 return -1; 4871 } 4872 4873 /* 4874 * Look for data collected during ServerHello and parse if found. 4875 * Returns the number of SCTs extracted. 4876 */ 4877 static int ct_extract_tls_extension_scts(SSL *s) 4878 { 4879 int scts_extracted = 0; 4880 4881 if (s->ext.scts != NULL) { 4882 const unsigned char *p = s->ext.scts; 4883 STACK_OF(SCT) *scts = o2i_SCT_LIST(NULL, &p, s->ext.scts_len); 4884 4885 scts_extracted = ct_move_scts(&s->scts, scts, SCT_SOURCE_TLS_EXTENSION); 4886 4887 SCT_LIST_free(scts); 4888 } 4889 4890 return scts_extracted; 4891 } 4892 4893 /* 4894 * Checks for an OCSP response and then attempts to extract any SCTs found if it 4895 * contains an SCT X509 extension. They will be stored in |s->scts|. 4896 * Returns: 4897 * - The number of SCTs extracted, assuming an OCSP response exists. 4898 * - 0 if no OCSP response exists or it contains no SCTs. 4899 * - A negative integer if an error occurs. 4900 */ 4901 static int ct_extract_ocsp_response_scts(SSL *s) 4902 { 4903 # ifndef OPENSSL_NO_OCSP 4904 int scts_extracted = 0; 4905 const unsigned char *p; 4906 OCSP_BASICRESP *br = NULL; 4907 OCSP_RESPONSE *rsp = NULL; 4908 STACK_OF(SCT) *scts = NULL; 4909 int i; 4910 4911 if (s->ext.ocsp.resp == NULL || s->ext.ocsp.resp_len == 0) 4912 goto err; 4913 4914 p = s->ext.ocsp.resp; 4915 rsp = d2i_OCSP_RESPONSE(NULL, &p, (int)s->ext.ocsp.resp_len); 4916 if (rsp == NULL) 4917 goto err; 4918 4919 br = OCSP_response_get1_basic(rsp); 4920 if (br == NULL) 4921 goto err; 4922 4923 for (i = 0; i < OCSP_resp_count(br); ++i) { 4924 OCSP_SINGLERESP *single = OCSP_resp_get0(br, i); 4925 4926 if (single == NULL) 4927 continue; 4928 4929 scts = 4930 OCSP_SINGLERESP_get1_ext_d2i(single, NID_ct_cert_scts, NULL, NULL); 4931 scts_extracted = 4932 ct_move_scts(&s->scts, scts, SCT_SOURCE_OCSP_STAPLED_RESPONSE); 4933 if (scts_extracted < 0) 4934 goto err; 4935 } 4936 err: 4937 SCT_LIST_free(scts); 4938 OCSP_BASICRESP_free(br); 4939 OCSP_RESPONSE_free(rsp); 4940 return scts_extracted; 4941 # else 4942 /* Behave as if no OCSP response exists */ 4943 return 0; 4944 # endif 4945 } 4946 4947 /* 4948 * Attempts to extract SCTs from the peer certificate. 4949 * Return the number of SCTs extracted, or a negative integer if an error 4950 * occurs. 4951 */ 4952 static int ct_extract_x509v3_extension_scts(SSL *s) 4953 { 4954 int scts_extracted = 0; 4955 X509 *cert = s->session != NULL ? s->session->peer : NULL; 4956 4957 if (cert != NULL) { 4958 STACK_OF(SCT) *scts = 4959 X509_get_ext_d2i(cert, NID_ct_precert_scts, NULL, NULL); 4960 4961 scts_extracted = 4962 ct_move_scts(&s->scts, scts, SCT_SOURCE_X509V3_EXTENSION); 4963 4964 SCT_LIST_free(scts); 4965 } 4966 4967 return scts_extracted; 4968 } 4969 4970 /* 4971 * Attempts to find all received SCTs by checking TLS extensions, the OCSP 4972 * response (if it exists) and X509v3 extensions in the certificate. 4973 * Returns NULL if an error occurs. 4974 */ 4975 const STACK_OF(SCT) *SSL_get0_peer_scts(SSL *s) 4976 { 4977 if (!s->scts_parsed) { 4978 if (ct_extract_tls_extension_scts(s) < 0 || 4979 ct_extract_ocsp_response_scts(s) < 0 || 4980 ct_extract_x509v3_extension_scts(s) < 0) 4981 goto err; 4982 4983 s->scts_parsed = 1; 4984 } 4985 return s->scts; 4986 err: 4987 return NULL; 4988 } 4989 4990 static int ct_permissive(const CT_POLICY_EVAL_CTX * ctx, 4991 const STACK_OF(SCT) *scts, void *unused_arg) 4992 { 4993 return 1; 4994 } 4995 4996 static int ct_strict(const CT_POLICY_EVAL_CTX * ctx, 4997 const STACK_OF(SCT) *scts, void *unused_arg) 4998 { 4999 int count = scts != NULL ? sk_SCT_num(scts) : 0; 5000 int i; 5001 5002 for (i = 0; i < count; ++i) { 5003 SCT *sct = sk_SCT_value(scts, i); 5004 int status = SCT_get_validation_status(sct); 5005 5006 if (status == SCT_VALIDATION_STATUS_VALID) 5007 return 1; 5008 } 5009 SSLerr(SSL_F_CT_STRICT, SSL_R_NO_VALID_SCTS); 5010 return 0; 5011 } 5012 5013 int SSL_set_ct_validation_callback(SSL *s, ssl_ct_validation_cb callback, 5014 void *arg) 5015 { 5016 /* 5017 * Since code exists that uses the custom extension handler for CT, look 5018 * for this and throw an error if they have already registered to use CT. 5019 */ 5020 if (callback != NULL && SSL_CTX_has_client_custom_ext(s->ctx, 5021 TLSEXT_TYPE_signed_certificate_timestamp)) 5022 { 5023 SSLerr(SSL_F_SSL_SET_CT_VALIDATION_CALLBACK, 5024 SSL_R_CUSTOM_EXT_HANDLER_ALREADY_INSTALLED); 5025 return 0; 5026 } 5027 5028 if (callback != NULL) { 5029 /* 5030 * If we are validating CT, then we MUST accept SCTs served via OCSP 5031 */ 5032 if (!SSL_set_tlsext_status_type(s, TLSEXT_STATUSTYPE_ocsp)) 5033 return 0; 5034 } 5035 5036 s->ct_validation_callback = callback; 5037 s->ct_validation_callback_arg = arg; 5038 5039 return 1; 5040 } 5041 5042 int SSL_CTX_set_ct_validation_callback(SSL_CTX *ctx, 5043 ssl_ct_validation_cb callback, void *arg) 5044 { 5045 /* 5046 * Since code exists that uses the custom extension handler for CT, look for 5047 * this and throw an error if they have already registered to use CT. 5048 */ 5049 if (callback != NULL && SSL_CTX_has_client_custom_ext(ctx, 5050 TLSEXT_TYPE_signed_certificate_timestamp)) 5051 { 5052 SSLerr(SSL_F_SSL_CTX_SET_CT_VALIDATION_CALLBACK, 5053 SSL_R_CUSTOM_EXT_HANDLER_ALREADY_INSTALLED); 5054 return 0; 5055 } 5056 5057 ctx->ct_validation_callback = callback; 5058 ctx->ct_validation_callback_arg = arg; 5059 return 1; 5060 } 5061 5062 int SSL_ct_is_enabled(const SSL *s) 5063 { 5064 return s->ct_validation_callback != NULL; 5065 } 5066 5067 int SSL_CTX_ct_is_enabled(const SSL_CTX *ctx) 5068 { 5069 return ctx->ct_validation_callback != NULL; 5070 } 5071 5072 int ssl_validate_ct(SSL *s) 5073 { 5074 int ret = 0; 5075 X509 *cert = s->session != NULL ? s->session->peer : NULL; 5076 X509 *issuer; 5077 SSL_DANE *dane = &s->dane; 5078 CT_POLICY_EVAL_CTX *ctx = NULL; 5079 const STACK_OF(SCT) *scts; 5080 5081 /* 5082 * If no callback is set, the peer is anonymous, or its chain is invalid, 5083 * skip SCT validation - just return success. Applications that continue 5084 * handshakes without certificates, with unverified chains, or pinned leaf 5085 * certificates are outside the scope of the WebPKI and CT. 5086 * 5087 * The above exclusions notwithstanding the vast majority of peers will 5088 * have rather ordinary certificate chains validated by typical 5089 * applications that perform certificate verification and therefore will 5090 * process SCTs when enabled. 5091 */ 5092 if (s->ct_validation_callback == NULL || cert == NULL || 5093 s->verify_result != X509_V_OK || 5094 s->verified_chain == NULL || sk_X509_num(s->verified_chain) <= 1) 5095 return 1; 5096 5097 /* 5098 * CT not applicable for chains validated via DANE-TA(2) or DANE-EE(3) 5099 * trust-anchors. See https://tools.ietf.org/html/rfc7671#section-4.2 5100 */ 5101 if (DANETLS_ENABLED(dane) && dane->mtlsa != NULL) { 5102 switch (dane->mtlsa->usage) { 5103 case DANETLS_USAGE_DANE_TA: 5104 case DANETLS_USAGE_DANE_EE: 5105 return 1; 5106 } 5107 } 5108 5109 ctx = CT_POLICY_EVAL_CTX_new(); 5110 if (ctx == NULL) { 5111 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_VALIDATE_CT, 5112 ERR_R_MALLOC_FAILURE); 5113 goto end; 5114 } 5115 5116 issuer = sk_X509_value(s->verified_chain, 1); 5117 CT_POLICY_EVAL_CTX_set1_cert(ctx, cert); 5118 CT_POLICY_EVAL_CTX_set1_issuer(ctx, issuer); 5119 CT_POLICY_EVAL_CTX_set_shared_CTLOG_STORE(ctx, s->ctx->ctlog_store); 5120 CT_POLICY_EVAL_CTX_set_time( 5121 ctx, (uint64_t)SSL_SESSION_get_time(SSL_get0_session(s)) * 1000); 5122 5123 scts = SSL_get0_peer_scts(s); 5124 5125 /* 5126 * This function returns success (> 0) only when all the SCTs are valid, 0 5127 * when some are invalid, and < 0 on various internal errors (out of 5128 * memory, etc.). Having some, or even all, invalid SCTs is not sufficient 5129 * reason to abort the handshake, that decision is up to the callback. 5130 * Therefore, we error out only in the unexpected case that the return 5131 * value is negative. 5132 * 5133 * XXX: One might well argue that the return value of this function is an 5134 * unfortunate design choice. Its job is only to determine the validation 5135 * status of each of the provided SCTs. So long as it correctly separates 5136 * the wheat from the chaff it should return success. Failure in this case 5137 * ought to correspond to an inability to carry out its duties. 5138 */ 5139 if (SCT_LIST_validate(scts, ctx) < 0) { 5140 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_SSL_VALIDATE_CT, 5141 SSL_R_SCT_VERIFICATION_FAILED); 5142 goto end; 5143 } 5144 5145 ret = s->ct_validation_callback(ctx, scts, s->ct_validation_callback_arg); 5146 if (ret < 0) 5147 ret = 0; /* This function returns 0 on failure */ 5148 if (!ret) 5149 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_SSL_VALIDATE_CT, 5150 SSL_R_CALLBACK_FAILED); 5151 5152 end: 5153 CT_POLICY_EVAL_CTX_free(ctx); 5154 /* 5155 * With SSL_VERIFY_NONE the session may be cached and re-used despite a 5156 * failure return code here. Also the application may wish the complete 5157 * the handshake, and then disconnect cleanly at a higher layer, after 5158 * checking the verification status of the completed connection. 5159 * 5160 * We therefore force a certificate verification failure which will be 5161 * visible via SSL_get_verify_result() and cached as part of any resumed 5162 * session. 5163 * 5164 * Note: the permissive callback is for information gathering only, always 5165 * returns success, and does not affect verification status. Only the 5166 * strict callback or a custom application-specified callback can trigger 5167 * connection failure or record a verification error. 5168 */ 5169 if (ret <= 0) 5170 s->verify_result = X509_V_ERR_NO_VALID_SCTS; 5171 return ret; 5172 } 5173 5174 int SSL_CTX_enable_ct(SSL_CTX *ctx, int validation_mode) 5175 { 5176 switch (validation_mode) { 5177 default: 5178 SSLerr(SSL_F_SSL_CTX_ENABLE_CT, SSL_R_INVALID_CT_VALIDATION_TYPE); 5179 return 0; 5180 case SSL_CT_VALIDATION_PERMISSIVE: 5181 return SSL_CTX_set_ct_validation_callback(ctx, ct_permissive, NULL); 5182 case SSL_CT_VALIDATION_STRICT: 5183 return SSL_CTX_set_ct_validation_callback(ctx, ct_strict, NULL); 5184 } 5185 } 5186 5187 int SSL_enable_ct(SSL *s, int validation_mode) 5188 { 5189 switch (validation_mode) { 5190 default: 5191 SSLerr(SSL_F_SSL_ENABLE_CT, SSL_R_INVALID_CT_VALIDATION_TYPE); 5192 return 0; 5193 case SSL_CT_VALIDATION_PERMISSIVE: 5194 return SSL_set_ct_validation_callback(s, ct_permissive, NULL); 5195 case SSL_CT_VALIDATION_STRICT: 5196 return SSL_set_ct_validation_callback(s, ct_strict, NULL); 5197 } 5198 } 5199 5200 int SSL_CTX_set_default_ctlog_list_file(SSL_CTX *ctx) 5201 { 5202 return CTLOG_STORE_load_default_file(ctx->ctlog_store); 5203 } 5204 5205 int SSL_CTX_set_ctlog_list_file(SSL_CTX *ctx, const char *path) 5206 { 5207 return CTLOG_STORE_load_file(ctx->ctlog_store, path); 5208 } 5209 5210 void SSL_CTX_set0_ctlog_store(SSL_CTX *ctx, CTLOG_STORE * logs) 5211 { 5212 CTLOG_STORE_free(ctx->ctlog_store); 5213 ctx->ctlog_store = logs; 5214 } 5215 5216 const CTLOG_STORE *SSL_CTX_get0_ctlog_store(const SSL_CTX *ctx) 5217 { 5218 return ctx->ctlog_store; 5219 } 5220 5221 #endif /* OPENSSL_NO_CT */ 5222 5223 void SSL_CTX_set_client_hello_cb(SSL_CTX *c, SSL_client_hello_cb_fn cb, 5224 void *arg) 5225 { 5226 c->client_hello_cb = cb; 5227 c->client_hello_cb_arg = arg; 5228 } 5229 5230 int SSL_client_hello_isv2(SSL *s) 5231 { 5232 if (s->clienthello == NULL) 5233 return 0; 5234 return s->clienthello->isv2; 5235 } 5236 5237 unsigned int SSL_client_hello_get0_legacy_version(SSL *s) 5238 { 5239 if (s->clienthello == NULL) 5240 return 0; 5241 return s->clienthello->legacy_version; 5242 } 5243 5244 size_t SSL_client_hello_get0_random(SSL *s, const unsigned char **out) 5245 { 5246 if (s->clienthello == NULL) 5247 return 0; 5248 if (out != NULL) 5249 *out = s->clienthello->random; 5250 return SSL3_RANDOM_SIZE; 5251 } 5252 5253 size_t SSL_client_hello_get0_session_id(SSL *s, const unsigned char **out) 5254 { 5255 if (s->clienthello == NULL) 5256 return 0; 5257 if (out != NULL) 5258 *out = s->clienthello->session_id; 5259 return s->clienthello->session_id_len; 5260 } 5261 5262 size_t SSL_client_hello_get0_ciphers(SSL *s, const unsigned char **out) 5263 { 5264 if (s->clienthello == NULL) 5265 return 0; 5266 if (out != NULL) 5267 *out = PACKET_data(&s->clienthello->ciphersuites); 5268 return PACKET_remaining(&s->clienthello->ciphersuites); 5269 } 5270 5271 size_t SSL_client_hello_get0_compression_methods(SSL *s, const unsigned char **out) 5272 { 5273 if (s->clienthello == NULL) 5274 return 0; 5275 if (out != NULL) 5276 *out = s->clienthello->compressions; 5277 return s->clienthello->compressions_len; 5278 } 5279 5280 int SSL_client_hello_get1_extensions_present(SSL *s, int **out, size_t *outlen) 5281 { 5282 RAW_EXTENSION *ext; 5283 int *present; 5284 size_t num = 0, i; 5285 5286 if (s->clienthello == NULL || out == NULL || outlen == NULL) 5287 return 0; 5288 for (i = 0; i < s->clienthello->pre_proc_exts_len; i++) { 5289 ext = s->clienthello->pre_proc_exts + i; 5290 if (ext->present) 5291 num++; 5292 } 5293 if (num == 0) { 5294 *out = NULL; 5295 *outlen = 0; 5296 return 1; 5297 } 5298 if ((present = OPENSSL_malloc(sizeof(*present) * num)) == NULL) { 5299 SSLerr(SSL_F_SSL_CLIENT_HELLO_GET1_EXTENSIONS_PRESENT, 5300 ERR_R_MALLOC_FAILURE); 5301 return 0; 5302 } 5303 for (i = 0; i < s->clienthello->pre_proc_exts_len; i++) { 5304 ext = s->clienthello->pre_proc_exts + i; 5305 if (ext->present) { 5306 if (ext->received_order >= num) 5307 goto err; 5308 present[ext->received_order] = ext->type; 5309 } 5310 } 5311 *out = present; 5312 *outlen = num; 5313 return 1; 5314 err: 5315 OPENSSL_free(present); 5316 return 0; 5317 } 5318 5319 int SSL_client_hello_get0_ext(SSL *s, unsigned int type, const unsigned char **out, 5320 size_t *outlen) 5321 { 5322 size_t i; 5323 RAW_EXTENSION *r; 5324 5325 if (s->clienthello == NULL) 5326 return 0; 5327 for (i = 0; i < s->clienthello->pre_proc_exts_len; ++i) { 5328 r = s->clienthello->pre_proc_exts + i; 5329 if (r->present && r->type == type) { 5330 if (out != NULL) 5331 *out = PACKET_data(&r->data); 5332 if (outlen != NULL) 5333 *outlen = PACKET_remaining(&r->data); 5334 return 1; 5335 } 5336 } 5337 return 0; 5338 } 5339 5340 int SSL_free_buffers(SSL *ssl) 5341 { 5342 RECORD_LAYER *rl = &ssl->rlayer; 5343 5344 if (RECORD_LAYER_read_pending(rl) || RECORD_LAYER_write_pending(rl)) 5345 return 0; 5346 5347 RECORD_LAYER_release(rl); 5348 return 1; 5349 } 5350 5351 int SSL_alloc_buffers(SSL *ssl) 5352 { 5353 return ssl3_setup_buffers(ssl); 5354 } 5355 5356 void SSL_CTX_set_keylog_callback(SSL_CTX *ctx, SSL_CTX_keylog_cb_func cb) 5357 { 5358 ctx->keylog_callback = cb; 5359 } 5360 5361 SSL_CTX_keylog_cb_func SSL_CTX_get_keylog_callback(const SSL_CTX *ctx) 5362 { 5363 return ctx->keylog_callback; 5364 } 5365 5366 static int nss_keylog_int(const char *prefix, 5367 SSL *ssl, 5368 const uint8_t *parameter_1, 5369 size_t parameter_1_len, 5370 const uint8_t *parameter_2, 5371 size_t parameter_2_len) 5372 { 5373 char *out = NULL; 5374 char *cursor = NULL; 5375 size_t out_len = 0; 5376 size_t i; 5377 size_t prefix_len; 5378 5379 if (ssl->ctx->keylog_callback == NULL) 5380 return 1; 5381 5382 /* 5383 * Our output buffer will contain the following strings, rendered with 5384 * space characters in between, terminated by a NULL character: first the 5385 * prefix, then the first parameter, then the second parameter. The 5386 * meaning of each parameter depends on the specific key material being 5387 * logged. Note that the first and second parameters are encoded in 5388 * hexadecimal, so we need a buffer that is twice their lengths. 5389 */ 5390 prefix_len = strlen(prefix); 5391 out_len = prefix_len + (2 * parameter_1_len) + (2 * parameter_2_len) + 3; 5392 if ((out = cursor = OPENSSL_malloc(out_len)) == NULL) { 5393 SSLfatal(ssl, SSL_AD_INTERNAL_ERROR, SSL_F_NSS_KEYLOG_INT, 5394 ERR_R_MALLOC_FAILURE); 5395 return 0; 5396 } 5397 5398 strcpy(cursor, prefix); 5399 cursor += prefix_len; 5400 *cursor++ = ' '; 5401 5402 for (i = 0; i < parameter_1_len; i++) { 5403 sprintf(cursor, "%02x", parameter_1[i]); 5404 cursor += 2; 5405 } 5406 *cursor++ = ' '; 5407 5408 for (i = 0; i < parameter_2_len; i++) { 5409 sprintf(cursor, "%02x", parameter_2[i]); 5410 cursor += 2; 5411 } 5412 *cursor = '\0'; 5413 5414 ssl->ctx->keylog_callback(ssl, (const char *)out); 5415 OPENSSL_clear_free(out, out_len); 5416 return 1; 5417 5418 } 5419 5420 int ssl_log_rsa_client_key_exchange(SSL *ssl, 5421 const uint8_t *encrypted_premaster, 5422 size_t encrypted_premaster_len, 5423 const uint8_t *premaster, 5424 size_t premaster_len) 5425 { 5426 if (encrypted_premaster_len < 8) { 5427 SSLfatal(ssl, SSL_AD_INTERNAL_ERROR, 5428 SSL_F_SSL_LOG_RSA_CLIENT_KEY_EXCHANGE, ERR_R_INTERNAL_ERROR); 5429 return 0; 5430 } 5431 5432 /* We only want the first 8 bytes of the encrypted premaster as a tag. */ 5433 return nss_keylog_int("RSA", 5434 ssl, 5435 encrypted_premaster, 5436 8, 5437 premaster, 5438 premaster_len); 5439 } 5440 5441 int ssl_log_secret(SSL *ssl, 5442 const char *label, 5443 const uint8_t *secret, 5444 size_t secret_len) 5445 { 5446 return nss_keylog_int(label, 5447 ssl, 5448 ssl->s3->client_random, 5449 SSL3_RANDOM_SIZE, 5450 secret, 5451 secret_len); 5452 } 5453 5454 #define SSLV2_CIPHER_LEN 3 5455 5456 int ssl_cache_cipherlist(SSL *s, PACKET *cipher_suites, int sslv2format) 5457 { 5458 int n; 5459 5460 n = sslv2format ? SSLV2_CIPHER_LEN : TLS_CIPHER_LEN; 5461 5462 if (PACKET_remaining(cipher_suites) == 0) { 5463 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_SSL_CACHE_CIPHERLIST, 5464 SSL_R_NO_CIPHERS_SPECIFIED); 5465 return 0; 5466 } 5467 5468 if (PACKET_remaining(cipher_suites) % n != 0) { 5469 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_SSL_CACHE_CIPHERLIST, 5470 SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST); 5471 return 0; 5472 } 5473 5474 OPENSSL_free(s->s3->tmp.ciphers_raw); 5475 s->s3->tmp.ciphers_raw = NULL; 5476 s->s3->tmp.ciphers_rawlen = 0; 5477 5478 if (sslv2format) { 5479 size_t numciphers = PACKET_remaining(cipher_suites) / n; 5480 PACKET sslv2ciphers = *cipher_suites; 5481 unsigned int leadbyte; 5482 unsigned char *raw; 5483 5484 /* 5485 * We store the raw ciphers list in SSLv3+ format so we need to do some 5486 * preprocessing to convert the list first. If there are any SSLv2 only 5487 * ciphersuites with a non-zero leading byte then we are going to 5488 * slightly over allocate because we won't store those. But that isn't a 5489 * problem. 5490 */ 5491 raw = OPENSSL_malloc(numciphers * TLS_CIPHER_LEN); 5492 s->s3->tmp.ciphers_raw = raw; 5493 if (raw == NULL) { 5494 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_CACHE_CIPHERLIST, 5495 ERR_R_MALLOC_FAILURE); 5496 return 0; 5497 } 5498 for (s->s3->tmp.ciphers_rawlen = 0; 5499 PACKET_remaining(&sslv2ciphers) > 0; 5500 raw += TLS_CIPHER_LEN) { 5501 if (!PACKET_get_1(&sslv2ciphers, &leadbyte) 5502 || (leadbyte == 0 5503 && !PACKET_copy_bytes(&sslv2ciphers, raw, 5504 TLS_CIPHER_LEN)) 5505 || (leadbyte != 0 5506 && !PACKET_forward(&sslv2ciphers, TLS_CIPHER_LEN))) { 5507 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_SSL_CACHE_CIPHERLIST, 5508 SSL_R_BAD_PACKET); 5509 OPENSSL_free(s->s3->tmp.ciphers_raw); 5510 s->s3->tmp.ciphers_raw = NULL; 5511 s->s3->tmp.ciphers_rawlen = 0; 5512 return 0; 5513 } 5514 if (leadbyte == 0) 5515 s->s3->tmp.ciphers_rawlen += TLS_CIPHER_LEN; 5516 } 5517 } else if (!PACKET_memdup(cipher_suites, &s->s3->tmp.ciphers_raw, 5518 &s->s3->tmp.ciphers_rawlen)) { 5519 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_CACHE_CIPHERLIST, 5520 ERR_R_INTERNAL_ERROR); 5521 return 0; 5522 } 5523 return 1; 5524 } 5525 5526 int SSL_bytes_to_cipher_list(SSL *s, const unsigned char *bytes, size_t len, 5527 int isv2format, STACK_OF(SSL_CIPHER) **sk, 5528 STACK_OF(SSL_CIPHER) **scsvs) 5529 { 5530 PACKET pkt; 5531 5532 if (!PACKET_buf_init(&pkt, bytes, len)) 5533 return 0; 5534 return bytes_to_cipher_list(s, &pkt, sk, scsvs, isv2format, 0); 5535 } 5536 5537 int bytes_to_cipher_list(SSL *s, PACKET *cipher_suites, 5538 STACK_OF(SSL_CIPHER) **skp, 5539 STACK_OF(SSL_CIPHER) **scsvs_out, 5540 int sslv2format, int fatal) 5541 { 5542 const SSL_CIPHER *c; 5543 STACK_OF(SSL_CIPHER) *sk = NULL; 5544 STACK_OF(SSL_CIPHER) *scsvs = NULL; 5545 int n; 5546 /* 3 = SSLV2_CIPHER_LEN > TLS_CIPHER_LEN = 2. */ 5547 unsigned char cipher[SSLV2_CIPHER_LEN]; 5548 5549 n = sslv2format ? SSLV2_CIPHER_LEN : TLS_CIPHER_LEN; 5550 5551 if (PACKET_remaining(cipher_suites) == 0) { 5552 if (fatal) 5553 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_BYTES_TO_CIPHER_LIST, 5554 SSL_R_NO_CIPHERS_SPECIFIED); 5555 else 5556 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, SSL_R_NO_CIPHERS_SPECIFIED); 5557 return 0; 5558 } 5559 5560 if (PACKET_remaining(cipher_suites) % n != 0) { 5561 if (fatal) 5562 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_BYTES_TO_CIPHER_LIST, 5563 SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST); 5564 else 5565 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, 5566 SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST); 5567 return 0; 5568 } 5569 5570 sk = sk_SSL_CIPHER_new_null(); 5571 scsvs = sk_SSL_CIPHER_new_null(); 5572 if (sk == NULL || scsvs == NULL) { 5573 if (fatal) 5574 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_BYTES_TO_CIPHER_LIST, 5575 ERR_R_MALLOC_FAILURE); 5576 else 5577 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, ERR_R_MALLOC_FAILURE); 5578 goto err; 5579 } 5580 5581 while (PACKET_copy_bytes(cipher_suites, cipher, n)) { 5582 /* 5583 * SSLv3 ciphers wrapped in an SSLv2-compatible ClientHello have the 5584 * first byte set to zero, while true SSLv2 ciphers have a non-zero 5585 * first byte. We don't support any true SSLv2 ciphers, so skip them. 5586 */ 5587 if (sslv2format && cipher[0] != '\0') 5588 continue; 5589 5590 /* For SSLv2-compat, ignore leading 0-byte. */ 5591 c = ssl_get_cipher_by_char(s, sslv2format ? &cipher[1] : cipher, 1); 5592 if (c != NULL) { 5593 if ((c->valid && !sk_SSL_CIPHER_push(sk, c)) || 5594 (!c->valid && !sk_SSL_CIPHER_push(scsvs, c))) { 5595 if (fatal) 5596 SSLfatal(s, SSL_AD_INTERNAL_ERROR, 5597 SSL_F_BYTES_TO_CIPHER_LIST, ERR_R_MALLOC_FAILURE); 5598 else 5599 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, ERR_R_MALLOC_FAILURE); 5600 goto err; 5601 } 5602 } 5603 } 5604 if (PACKET_remaining(cipher_suites) > 0) { 5605 if (fatal) 5606 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_BYTES_TO_CIPHER_LIST, 5607 SSL_R_BAD_LENGTH); 5608 else 5609 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, SSL_R_BAD_LENGTH); 5610 goto err; 5611 } 5612 5613 if (skp != NULL) 5614 *skp = sk; 5615 else 5616 sk_SSL_CIPHER_free(sk); 5617 if (scsvs_out != NULL) 5618 *scsvs_out = scsvs; 5619 else 5620 sk_SSL_CIPHER_free(scsvs); 5621 return 1; 5622 err: 5623 sk_SSL_CIPHER_free(sk); 5624 sk_SSL_CIPHER_free(scsvs); 5625 return 0; 5626 } 5627 5628 int SSL_CTX_set_max_early_data(SSL_CTX *ctx, uint32_t max_early_data) 5629 { 5630 ctx->max_early_data = max_early_data; 5631 5632 return 1; 5633 } 5634 5635 uint32_t SSL_CTX_get_max_early_data(const SSL_CTX *ctx) 5636 { 5637 return ctx->max_early_data; 5638 } 5639 5640 int SSL_set_max_early_data(SSL *s, uint32_t max_early_data) 5641 { 5642 s->max_early_data = max_early_data; 5643 5644 return 1; 5645 } 5646 5647 uint32_t SSL_get_max_early_data(const SSL *s) 5648 { 5649 return s->max_early_data; 5650 } 5651 5652 int SSL_CTX_set_recv_max_early_data(SSL_CTX *ctx, uint32_t recv_max_early_data) 5653 { 5654 ctx->recv_max_early_data = recv_max_early_data; 5655 5656 return 1; 5657 } 5658 5659 uint32_t SSL_CTX_get_recv_max_early_data(const SSL_CTX *ctx) 5660 { 5661 return ctx->recv_max_early_data; 5662 } 5663 5664 int SSL_set_recv_max_early_data(SSL *s, uint32_t recv_max_early_data) 5665 { 5666 s->recv_max_early_data = recv_max_early_data; 5667 5668 return 1; 5669 } 5670 5671 uint32_t SSL_get_recv_max_early_data(const SSL *s) 5672 { 5673 return s->recv_max_early_data; 5674 } 5675 5676 __owur unsigned int ssl_get_max_send_fragment(const SSL *ssl) 5677 { 5678 /* Return any active Max Fragment Len extension */ 5679 if (ssl->session != NULL && USE_MAX_FRAGMENT_LENGTH_EXT(ssl->session)) 5680 return GET_MAX_FRAGMENT_LENGTH(ssl->session); 5681 5682 /* return current SSL connection setting */ 5683 return ssl->max_send_fragment; 5684 } 5685 5686 __owur unsigned int ssl_get_split_send_fragment(const SSL *ssl) 5687 { 5688 /* Return a value regarding an active Max Fragment Len extension */ 5689 if (ssl->session != NULL && USE_MAX_FRAGMENT_LENGTH_EXT(ssl->session) 5690 && ssl->split_send_fragment > GET_MAX_FRAGMENT_LENGTH(ssl->session)) 5691 return GET_MAX_FRAGMENT_LENGTH(ssl->session); 5692 5693 /* else limit |split_send_fragment| to current |max_send_fragment| */ 5694 if (ssl->split_send_fragment > ssl->max_send_fragment) 5695 return ssl->max_send_fragment; 5696 5697 /* return current SSL connection setting */ 5698 return ssl->split_send_fragment; 5699 } 5700 5701 int SSL_stateless(SSL *s) 5702 { 5703 int ret; 5704 5705 /* Ensure there is no state left over from a previous invocation */ 5706 if (!SSL_clear(s)) 5707 return 0; 5708 5709 ERR_clear_error(); 5710 5711 s->s3->flags |= TLS1_FLAGS_STATELESS; 5712 ret = SSL_accept(s); 5713 s->s3->flags &= ~TLS1_FLAGS_STATELESS; 5714 5715 if (ret > 0 && s->ext.cookieok) 5716 return 1; 5717 5718 if (s->hello_retry_request == SSL_HRR_PENDING && !ossl_statem_in_error(s)) 5719 return 0; 5720 5721 return -1; 5722 } 5723 5724 void SSL_CTX_set_post_handshake_auth(SSL_CTX *ctx, int val) 5725 { 5726 ctx->pha_enabled = val; 5727 } 5728 5729 void SSL_set_post_handshake_auth(SSL *ssl, int val) 5730 { 5731 ssl->pha_enabled = val; 5732 } 5733 5734 int SSL_verify_client_post_handshake(SSL *ssl) 5735 { 5736 if (!SSL_IS_TLS13(ssl)) { 5737 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_WRONG_SSL_VERSION); 5738 return 0; 5739 } 5740 if (!ssl->server) { 5741 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_NOT_SERVER); 5742 return 0; 5743 } 5744 5745 if (!SSL_is_init_finished(ssl)) { 5746 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_STILL_IN_INIT); 5747 return 0; 5748 } 5749 5750 switch (ssl->post_handshake_auth) { 5751 case SSL_PHA_NONE: 5752 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_EXTENSION_NOT_RECEIVED); 5753 return 0; 5754 default: 5755 case SSL_PHA_EXT_SENT: 5756 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, ERR_R_INTERNAL_ERROR); 5757 return 0; 5758 case SSL_PHA_EXT_RECEIVED: 5759 break; 5760 case SSL_PHA_REQUEST_PENDING: 5761 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_REQUEST_PENDING); 5762 return 0; 5763 case SSL_PHA_REQUESTED: 5764 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_REQUEST_SENT); 5765 return 0; 5766 } 5767 5768 ssl->post_handshake_auth = SSL_PHA_REQUEST_PENDING; 5769 5770 /* checks verify_mode and algorithm_auth */ 5771 if (!send_certificate_request(ssl)) { 5772 ssl->post_handshake_auth = SSL_PHA_EXT_RECEIVED; /* restore on error */ 5773 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_INVALID_CONFIG); 5774 return 0; 5775 } 5776 5777 ossl_statem_set_in_init(ssl, 1); 5778 return 1; 5779 } 5780 5781 int SSL_CTX_set_session_ticket_cb(SSL_CTX *ctx, 5782 SSL_CTX_generate_session_ticket_fn gen_cb, 5783 SSL_CTX_decrypt_session_ticket_fn dec_cb, 5784 void *arg) 5785 { 5786 ctx->generate_ticket_cb = gen_cb; 5787 ctx->decrypt_ticket_cb = dec_cb; 5788 ctx->ticket_cb_data = arg; 5789 return 1; 5790 } 5791 5792 void SSL_CTX_set_allow_early_data_cb(SSL_CTX *ctx, 5793 SSL_allow_early_data_cb_fn cb, 5794 void *arg) 5795 { 5796 ctx->allow_early_data_cb = cb; 5797 ctx->allow_early_data_cb_data = arg; 5798 } 5799 5800 void SSL_set_allow_early_data_cb(SSL *s, 5801 SSL_allow_early_data_cb_fn cb, 5802 void *arg) 5803 { 5804 s->allow_early_data_cb = cb; 5805 s->allow_early_data_cb_data = arg; 5806 } 5807