1 /* 2 * Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved. 3 * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved 4 * Copyright 2005 Nokia. All rights reserved. 5 * 6 * Licensed under the OpenSSL license (the "License"). You may not use 7 * this file except in compliance with the License. You can obtain a copy 8 * in the file LICENSE in the source distribution or at 9 * https://www.openssl.org/source/license.html 10 */ 11 12 #include <stdio.h> 13 #include "ssl_local.h" 14 #include "e_os.h" 15 #include <openssl/objects.h> 16 #include <openssl/x509v3.h> 17 #include <openssl/rand.h> 18 #include <openssl/rand_drbg.h> 19 #include <openssl/ocsp.h> 20 #include <openssl/dh.h> 21 #include <openssl/engine.h> 22 #include <openssl/async.h> 23 #include <openssl/ct.h> 24 #include "internal/cryptlib.h" 25 #include "internal/refcount.h" 26 #include "internal/ktls.h" 27 28 const char SSL_version_str[] = OPENSSL_VERSION_TEXT; 29 30 static int ssl_undefined_function_1(SSL *ssl, SSL3_RECORD *r, size_t s, int t) 31 { 32 (void)r; 33 (void)s; 34 (void)t; 35 return ssl_undefined_function(ssl); 36 } 37 38 static int ssl_undefined_function_2(SSL *ssl, SSL3_RECORD *r, unsigned char *s, 39 int t) 40 { 41 (void)r; 42 (void)s; 43 (void)t; 44 return ssl_undefined_function(ssl); 45 } 46 47 static int ssl_undefined_function_3(SSL *ssl, unsigned char *r, 48 unsigned char *s, size_t t, size_t *u) 49 { 50 (void)r; 51 (void)s; 52 (void)t; 53 (void)u; 54 return ssl_undefined_function(ssl); 55 } 56 57 static int ssl_undefined_function_4(SSL *ssl, int r) 58 { 59 (void)r; 60 return ssl_undefined_function(ssl); 61 } 62 63 static size_t ssl_undefined_function_5(SSL *ssl, const char *r, size_t s, 64 unsigned char *t) 65 { 66 (void)r; 67 (void)s; 68 (void)t; 69 return ssl_undefined_function(ssl); 70 } 71 72 static int ssl_undefined_function_6(int r) 73 { 74 (void)r; 75 return ssl_undefined_function(NULL); 76 } 77 78 static int ssl_undefined_function_7(SSL *ssl, unsigned char *r, size_t s, 79 const char *t, size_t u, 80 const unsigned char *v, size_t w, int x) 81 { 82 (void)r; 83 (void)s; 84 (void)t; 85 (void)u; 86 (void)v; 87 (void)w; 88 (void)x; 89 return ssl_undefined_function(ssl); 90 } 91 92 SSL3_ENC_METHOD ssl3_undef_enc_method = { 93 ssl_undefined_function_1, 94 ssl_undefined_function_2, 95 ssl_undefined_function, 96 ssl_undefined_function_3, 97 ssl_undefined_function_4, 98 ssl_undefined_function_5, 99 NULL, /* client_finished_label */ 100 0, /* client_finished_label_len */ 101 NULL, /* server_finished_label */ 102 0, /* server_finished_label_len */ 103 ssl_undefined_function_6, 104 ssl_undefined_function_7, 105 }; 106 107 struct ssl_async_args { 108 SSL *s; 109 void *buf; 110 size_t num; 111 enum { READFUNC, WRITEFUNC, OTHERFUNC } type; 112 union { 113 int (*func_read) (SSL *, void *, size_t, size_t *); 114 int (*func_write) (SSL *, const void *, size_t, size_t *); 115 int (*func_other) (SSL *); 116 } f; 117 }; 118 119 static const struct { 120 uint8_t mtype; 121 uint8_t ord; 122 int nid; 123 } dane_mds[] = { 124 { 125 DANETLS_MATCHING_FULL, 0, NID_undef 126 }, 127 { 128 DANETLS_MATCHING_2256, 1, NID_sha256 129 }, 130 { 131 DANETLS_MATCHING_2512, 2, NID_sha512 132 }, 133 }; 134 135 static int dane_ctx_enable(struct dane_ctx_st *dctx) 136 { 137 const EVP_MD **mdevp; 138 uint8_t *mdord; 139 uint8_t mdmax = DANETLS_MATCHING_LAST; 140 int n = ((int)mdmax) + 1; /* int to handle PrivMatch(255) */ 141 size_t i; 142 143 if (dctx->mdevp != NULL) 144 return 1; 145 146 mdevp = OPENSSL_zalloc(n * sizeof(*mdevp)); 147 mdord = OPENSSL_zalloc(n * sizeof(*mdord)); 148 149 if (mdord == NULL || mdevp == NULL) { 150 OPENSSL_free(mdord); 151 OPENSSL_free(mdevp); 152 SSLerr(SSL_F_DANE_CTX_ENABLE, ERR_R_MALLOC_FAILURE); 153 return 0; 154 } 155 156 /* Install default entries */ 157 for (i = 0; i < OSSL_NELEM(dane_mds); ++i) { 158 const EVP_MD *md; 159 160 if (dane_mds[i].nid == NID_undef || 161 (md = EVP_get_digestbynid(dane_mds[i].nid)) == NULL) 162 continue; 163 mdevp[dane_mds[i].mtype] = md; 164 mdord[dane_mds[i].mtype] = dane_mds[i].ord; 165 } 166 167 dctx->mdevp = mdevp; 168 dctx->mdord = mdord; 169 dctx->mdmax = mdmax; 170 171 return 1; 172 } 173 174 static void dane_ctx_final(struct dane_ctx_st *dctx) 175 { 176 OPENSSL_free(dctx->mdevp); 177 dctx->mdevp = NULL; 178 179 OPENSSL_free(dctx->mdord); 180 dctx->mdord = NULL; 181 dctx->mdmax = 0; 182 } 183 184 static void tlsa_free(danetls_record *t) 185 { 186 if (t == NULL) 187 return; 188 OPENSSL_free(t->data); 189 EVP_PKEY_free(t->spki); 190 OPENSSL_free(t); 191 } 192 193 static void dane_final(SSL_DANE *dane) 194 { 195 sk_danetls_record_pop_free(dane->trecs, tlsa_free); 196 dane->trecs = NULL; 197 198 sk_X509_pop_free(dane->certs, X509_free); 199 dane->certs = NULL; 200 201 X509_free(dane->mcert); 202 dane->mcert = NULL; 203 dane->mtlsa = NULL; 204 dane->mdpth = -1; 205 dane->pdpth = -1; 206 } 207 208 /* 209 * dane_copy - Copy dane configuration, sans verification state. 210 */ 211 static int ssl_dane_dup(SSL *to, SSL *from) 212 { 213 int num; 214 int i; 215 216 if (!DANETLS_ENABLED(&from->dane)) 217 return 1; 218 219 num = sk_danetls_record_num(from->dane.trecs); 220 dane_final(&to->dane); 221 to->dane.flags = from->dane.flags; 222 to->dane.dctx = &to->ctx->dane; 223 to->dane.trecs = sk_danetls_record_new_reserve(NULL, num); 224 225 if (to->dane.trecs == NULL) { 226 SSLerr(SSL_F_SSL_DANE_DUP, ERR_R_MALLOC_FAILURE); 227 return 0; 228 } 229 230 for (i = 0; i < num; ++i) { 231 danetls_record *t = sk_danetls_record_value(from->dane.trecs, i); 232 233 if (SSL_dane_tlsa_add(to, t->usage, t->selector, t->mtype, 234 t->data, t->dlen) <= 0) 235 return 0; 236 } 237 return 1; 238 } 239 240 static int dane_mtype_set(struct dane_ctx_st *dctx, 241 const EVP_MD *md, uint8_t mtype, uint8_t ord) 242 { 243 int i; 244 245 if (mtype == DANETLS_MATCHING_FULL && md != NULL) { 246 SSLerr(SSL_F_DANE_MTYPE_SET, SSL_R_DANE_CANNOT_OVERRIDE_MTYPE_FULL); 247 return 0; 248 } 249 250 if (mtype > dctx->mdmax) { 251 const EVP_MD **mdevp; 252 uint8_t *mdord; 253 int n = ((int)mtype) + 1; 254 255 mdevp = OPENSSL_realloc(dctx->mdevp, n * sizeof(*mdevp)); 256 if (mdevp == NULL) { 257 SSLerr(SSL_F_DANE_MTYPE_SET, ERR_R_MALLOC_FAILURE); 258 return -1; 259 } 260 dctx->mdevp = mdevp; 261 262 mdord = OPENSSL_realloc(dctx->mdord, n * sizeof(*mdord)); 263 if (mdord == NULL) { 264 SSLerr(SSL_F_DANE_MTYPE_SET, ERR_R_MALLOC_FAILURE); 265 return -1; 266 } 267 dctx->mdord = mdord; 268 269 /* Zero-fill any gaps */ 270 for (i = dctx->mdmax + 1; i < mtype; ++i) { 271 mdevp[i] = NULL; 272 mdord[i] = 0; 273 } 274 275 dctx->mdmax = mtype; 276 } 277 278 dctx->mdevp[mtype] = md; 279 /* Coerce ordinal of disabled matching types to 0 */ 280 dctx->mdord[mtype] = (md == NULL) ? 0 : ord; 281 282 return 1; 283 } 284 285 static const EVP_MD *tlsa_md_get(SSL_DANE *dane, uint8_t mtype) 286 { 287 if (mtype > dane->dctx->mdmax) 288 return NULL; 289 return dane->dctx->mdevp[mtype]; 290 } 291 292 static int dane_tlsa_add(SSL_DANE *dane, 293 uint8_t usage, 294 uint8_t selector, 295 uint8_t mtype, unsigned const char *data, size_t dlen) 296 { 297 danetls_record *t; 298 const EVP_MD *md = NULL; 299 int ilen = (int)dlen; 300 int i; 301 int num; 302 303 if (dane->trecs == NULL) { 304 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_NOT_ENABLED); 305 return -1; 306 } 307 308 if (ilen < 0 || dlen != (size_t)ilen) { 309 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_DATA_LENGTH); 310 return 0; 311 } 312 313 if (usage > DANETLS_USAGE_LAST) { 314 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE_USAGE); 315 return 0; 316 } 317 318 if (selector > DANETLS_SELECTOR_LAST) { 319 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_SELECTOR); 320 return 0; 321 } 322 323 if (mtype != DANETLS_MATCHING_FULL) { 324 md = tlsa_md_get(dane, mtype); 325 if (md == NULL) { 326 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_MATCHING_TYPE); 327 return 0; 328 } 329 } 330 331 if (md != NULL && dlen != (size_t)EVP_MD_size(md)) { 332 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_DIGEST_LENGTH); 333 return 0; 334 } 335 if (!data) { 336 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_NULL_DATA); 337 return 0; 338 } 339 340 if ((t = OPENSSL_zalloc(sizeof(*t))) == NULL) { 341 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE); 342 return -1; 343 } 344 345 t->usage = usage; 346 t->selector = selector; 347 t->mtype = mtype; 348 t->data = OPENSSL_malloc(dlen); 349 if (t->data == NULL) { 350 tlsa_free(t); 351 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE); 352 return -1; 353 } 354 memcpy(t->data, data, dlen); 355 t->dlen = dlen; 356 357 /* Validate and cache full certificate or public key */ 358 if (mtype == DANETLS_MATCHING_FULL) { 359 const unsigned char *p = data; 360 X509 *cert = NULL; 361 EVP_PKEY *pkey = NULL; 362 363 switch (selector) { 364 case DANETLS_SELECTOR_CERT: 365 if (!d2i_X509(&cert, &p, ilen) || p < data || 366 dlen != (size_t)(p - data)) { 367 tlsa_free(t); 368 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE); 369 return 0; 370 } 371 if (X509_get0_pubkey(cert) == NULL) { 372 tlsa_free(t); 373 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE); 374 return 0; 375 } 376 377 if ((DANETLS_USAGE_BIT(usage) & DANETLS_TA_MASK) == 0) { 378 X509_free(cert); 379 break; 380 } 381 382 /* 383 * For usage DANE-TA(2), we support authentication via "2 0 0" TLSA 384 * records that contain full certificates of trust-anchors that are 385 * not present in the wire chain. For usage PKIX-TA(0), we augment 386 * the chain with untrusted Full(0) certificates from DNS, in case 387 * they are missing from the chain. 388 */ 389 if ((dane->certs == NULL && 390 (dane->certs = sk_X509_new_null()) == NULL) || 391 !sk_X509_push(dane->certs, cert)) { 392 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE); 393 X509_free(cert); 394 tlsa_free(t); 395 return -1; 396 } 397 break; 398 399 case DANETLS_SELECTOR_SPKI: 400 if (!d2i_PUBKEY(&pkey, &p, ilen) || p < data || 401 dlen != (size_t)(p - data)) { 402 tlsa_free(t); 403 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_PUBLIC_KEY); 404 return 0; 405 } 406 407 /* 408 * For usage DANE-TA(2), we support authentication via "2 1 0" TLSA 409 * records that contain full bare keys of trust-anchors that are 410 * not present in the wire chain. 411 */ 412 if (usage == DANETLS_USAGE_DANE_TA) 413 t->spki = pkey; 414 else 415 EVP_PKEY_free(pkey); 416 break; 417 } 418 } 419 420 /*- 421 * Find the right insertion point for the new record. 422 * 423 * See crypto/x509/x509_vfy.c. We sort DANE-EE(3) records first, so that 424 * they can be processed first, as they require no chain building, and no 425 * expiration or hostname checks. Because DANE-EE(3) is numerically 426 * largest, this is accomplished via descending sort by "usage". 427 * 428 * We also sort in descending order by matching ordinal to simplify 429 * the implementation of digest agility in the verification code. 430 * 431 * The choice of order for the selector is not significant, so we 432 * use the same descending order for consistency. 433 */ 434 num = sk_danetls_record_num(dane->trecs); 435 for (i = 0; i < num; ++i) { 436 danetls_record *rec = sk_danetls_record_value(dane->trecs, i); 437 438 if (rec->usage > usage) 439 continue; 440 if (rec->usage < usage) 441 break; 442 if (rec->selector > selector) 443 continue; 444 if (rec->selector < selector) 445 break; 446 if (dane->dctx->mdord[rec->mtype] > dane->dctx->mdord[mtype]) 447 continue; 448 break; 449 } 450 451 if (!sk_danetls_record_insert(dane->trecs, t, i)) { 452 tlsa_free(t); 453 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE); 454 return -1; 455 } 456 dane->umask |= DANETLS_USAGE_BIT(usage); 457 458 return 1; 459 } 460 461 /* 462 * Return 0 if there is only one version configured and it was disabled 463 * at configure time. Return 1 otherwise. 464 */ 465 static int ssl_check_allowed_versions(int min_version, int max_version) 466 { 467 int minisdtls = 0, maxisdtls = 0; 468 469 /* Figure out if we're doing DTLS versions or TLS versions */ 470 if (min_version == DTLS1_BAD_VER 471 || min_version >> 8 == DTLS1_VERSION_MAJOR) 472 minisdtls = 1; 473 if (max_version == DTLS1_BAD_VER 474 || max_version >> 8 == DTLS1_VERSION_MAJOR) 475 maxisdtls = 1; 476 /* A wildcard version of 0 could be DTLS or TLS. */ 477 if ((minisdtls && !maxisdtls && max_version != 0) 478 || (maxisdtls && !minisdtls && min_version != 0)) { 479 /* Mixing DTLS and TLS versions will lead to sadness; deny it. */ 480 return 0; 481 } 482 483 if (minisdtls || maxisdtls) { 484 /* Do DTLS version checks. */ 485 if (min_version == 0) 486 /* Ignore DTLS1_BAD_VER */ 487 min_version = DTLS1_VERSION; 488 if (max_version == 0) 489 max_version = DTLS1_2_VERSION; 490 #ifdef OPENSSL_NO_DTLS1_2 491 if (max_version == DTLS1_2_VERSION) 492 max_version = DTLS1_VERSION; 493 #endif 494 #ifdef OPENSSL_NO_DTLS1 495 if (min_version == DTLS1_VERSION) 496 min_version = DTLS1_2_VERSION; 497 #endif 498 /* Done massaging versions; do the check. */ 499 if (0 500 #ifdef OPENSSL_NO_DTLS1 501 || (DTLS_VERSION_GE(min_version, DTLS1_VERSION) 502 && DTLS_VERSION_GE(DTLS1_VERSION, max_version)) 503 #endif 504 #ifdef OPENSSL_NO_DTLS1_2 505 || (DTLS_VERSION_GE(min_version, DTLS1_2_VERSION) 506 && DTLS_VERSION_GE(DTLS1_2_VERSION, max_version)) 507 #endif 508 ) 509 return 0; 510 } else { 511 /* Regular TLS version checks. */ 512 if (min_version == 0) 513 min_version = SSL3_VERSION; 514 if (max_version == 0) 515 max_version = TLS1_3_VERSION; 516 #ifdef OPENSSL_NO_TLS1_3 517 if (max_version == TLS1_3_VERSION) 518 max_version = TLS1_2_VERSION; 519 #endif 520 #ifdef OPENSSL_NO_TLS1_2 521 if (max_version == TLS1_2_VERSION) 522 max_version = TLS1_1_VERSION; 523 #endif 524 #ifdef OPENSSL_NO_TLS1_1 525 if (max_version == TLS1_1_VERSION) 526 max_version = TLS1_VERSION; 527 #endif 528 #ifdef OPENSSL_NO_TLS1 529 if (max_version == TLS1_VERSION) 530 max_version = SSL3_VERSION; 531 #endif 532 #ifdef OPENSSL_NO_SSL3 533 if (min_version == SSL3_VERSION) 534 min_version = TLS1_VERSION; 535 #endif 536 #ifdef OPENSSL_NO_TLS1 537 if (min_version == TLS1_VERSION) 538 min_version = TLS1_1_VERSION; 539 #endif 540 #ifdef OPENSSL_NO_TLS1_1 541 if (min_version == TLS1_1_VERSION) 542 min_version = TLS1_2_VERSION; 543 #endif 544 #ifdef OPENSSL_NO_TLS1_2 545 if (min_version == TLS1_2_VERSION) 546 min_version = TLS1_3_VERSION; 547 #endif 548 /* Done massaging versions; do the check. */ 549 if (0 550 #ifdef OPENSSL_NO_SSL3 551 || (min_version <= SSL3_VERSION && SSL3_VERSION <= max_version) 552 #endif 553 #ifdef OPENSSL_NO_TLS1 554 || (min_version <= TLS1_VERSION && TLS1_VERSION <= max_version) 555 #endif 556 #ifdef OPENSSL_NO_TLS1_1 557 || (min_version <= TLS1_1_VERSION && TLS1_1_VERSION <= max_version) 558 #endif 559 #ifdef OPENSSL_NO_TLS1_2 560 || (min_version <= TLS1_2_VERSION && TLS1_2_VERSION <= max_version) 561 #endif 562 #ifdef OPENSSL_NO_TLS1_3 563 || (min_version <= TLS1_3_VERSION && TLS1_3_VERSION <= max_version) 564 #endif 565 ) 566 return 0; 567 } 568 return 1; 569 } 570 571 static void clear_ciphers(SSL *s) 572 { 573 /* clear the current cipher */ 574 ssl_clear_cipher_ctx(s); 575 ssl_clear_hash_ctx(&s->read_hash); 576 ssl_clear_hash_ctx(&s->write_hash); 577 } 578 579 int SSL_clear(SSL *s) 580 { 581 if (s->method == NULL) { 582 SSLerr(SSL_F_SSL_CLEAR, SSL_R_NO_METHOD_SPECIFIED); 583 return 0; 584 } 585 586 if (ssl_clear_bad_session(s)) { 587 SSL_SESSION_free(s->session); 588 s->session = NULL; 589 } 590 SSL_SESSION_free(s->psksession); 591 s->psksession = NULL; 592 OPENSSL_free(s->psksession_id); 593 s->psksession_id = NULL; 594 s->psksession_id_len = 0; 595 s->hello_retry_request = 0; 596 s->sent_tickets = 0; 597 598 s->error = 0; 599 s->hit = 0; 600 s->shutdown = 0; 601 602 if (s->renegotiate) { 603 SSLerr(SSL_F_SSL_CLEAR, ERR_R_INTERNAL_ERROR); 604 return 0; 605 } 606 607 ossl_statem_clear(s); 608 609 s->version = s->method->version; 610 s->client_version = s->version; 611 s->rwstate = SSL_NOTHING; 612 613 BUF_MEM_free(s->init_buf); 614 s->init_buf = NULL; 615 clear_ciphers(s); 616 s->first_packet = 0; 617 618 s->key_update = SSL_KEY_UPDATE_NONE; 619 620 EVP_MD_CTX_free(s->pha_dgst); 621 s->pha_dgst = NULL; 622 623 /* Reset DANE verification result state */ 624 s->dane.mdpth = -1; 625 s->dane.pdpth = -1; 626 X509_free(s->dane.mcert); 627 s->dane.mcert = NULL; 628 s->dane.mtlsa = NULL; 629 630 /* Clear the verification result peername */ 631 X509_VERIFY_PARAM_move_peername(s->param, NULL); 632 633 /* Clear any shared connection state */ 634 OPENSSL_free(s->shared_sigalgs); 635 s->shared_sigalgs = NULL; 636 s->shared_sigalgslen = 0; 637 638 /* 639 * Check to see if we were changed into a different method, if so, revert 640 * back. 641 */ 642 if (s->method != s->ctx->method) { 643 s->method->ssl_free(s); 644 s->method = s->ctx->method; 645 if (!s->method->ssl_new(s)) 646 return 0; 647 } else { 648 if (!s->method->ssl_clear(s)) 649 return 0; 650 } 651 652 RECORD_LAYER_clear(&s->rlayer); 653 654 return 1; 655 } 656 657 /** Used to change an SSL_CTXs default SSL method type */ 658 int SSL_CTX_set_ssl_version(SSL_CTX *ctx, const SSL_METHOD *meth) 659 { 660 STACK_OF(SSL_CIPHER) *sk; 661 662 ctx->method = meth; 663 664 if (!SSL_CTX_set_ciphersuites(ctx, TLS_DEFAULT_CIPHERSUITES)) { 665 SSLerr(SSL_F_SSL_CTX_SET_SSL_VERSION, SSL_R_SSL_LIBRARY_HAS_NO_CIPHERS); 666 return 0; 667 } 668 sk = ssl_create_cipher_list(ctx->method, 669 ctx->tls13_ciphersuites, 670 &(ctx->cipher_list), 671 &(ctx->cipher_list_by_id), 672 SSL_DEFAULT_CIPHER_LIST, ctx->cert); 673 if ((sk == NULL) || (sk_SSL_CIPHER_num(sk) <= 0)) { 674 SSLerr(SSL_F_SSL_CTX_SET_SSL_VERSION, SSL_R_SSL_LIBRARY_HAS_NO_CIPHERS); 675 return 0; 676 } 677 return 1; 678 } 679 680 SSL *SSL_new(SSL_CTX *ctx) 681 { 682 SSL *s; 683 684 if (ctx == NULL) { 685 SSLerr(SSL_F_SSL_NEW, SSL_R_NULL_SSL_CTX); 686 return NULL; 687 } 688 if (ctx->method == NULL) { 689 SSLerr(SSL_F_SSL_NEW, SSL_R_SSL_CTX_HAS_NO_DEFAULT_SSL_VERSION); 690 return NULL; 691 } 692 693 s = OPENSSL_zalloc(sizeof(*s)); 694 if (s == NULL) 695 goto err; 696 697 s->references = 1; 698 s->lock = CRYPTO_THREAD_lock_new(); 699 if (s->lock == NULL) { 700 OPENSSL_free(s); 701 s = NULL; 702 goto err; 703 } 704 705 RECORD_LAYER_init(&s->rlayer, s); 706 707 s->options = ctx->options; 708 s->dane.flags = ctx->dane.flags; 709 s->min_proto_version = ctx->min_proto_version; 710 s->max_proto_version = ctx->max_proto_version; 711 s->mode = ctx->mode; 712 s->max_cert_list = ctx->max_cert_list; 713 s->max_early_data = ctx->max_early_data; 714 s->recv_max_early_data = ctx->recv_max_early_data; 715 s->num_tickets = ctx->num_tickets; 716 s->pha_enabled = ctx->pha_enabled; 717 718 /* Shallow copy of the ciphersuites stack */ 719 s->tls13_ciphersuites = sk_SSL_CIPHER_dup(ctx->tls13_ciphersuites); 720 if (s->tls13_ciphersuites == NULL) 721 goto err; 722 723 /* 724 * Earlier library versions used to copy the pointer to the CERT, not 725 * its contents; only when setting new parameters for the per-SSL 726 * copy, ssl_cert_new would be called (and the direct reference to 727 * the per-SSL_CTX settings would be lost, but those still were 728 * indirectly accessed for various purposes, and for that reason they 729 * used to be known as s->ctx->default_cert). Now we don't look at the 730 * SSL_CTX's CERT after having duplicated it once. 731 */ 732 s->cert = ssl_cert_dup(ctx->cert); 733 if (s->cert == NULL) 734 goto err; 735 736 RECORD_LAYER_set_read_ahead(&s->rlayer, ctx->read_ahead); 737 s->msg_callback = ctx->msg_callback; 738 s->msg_callback_arg = ctx->msg_callback_arg; 739 s->verify_mode = ctx->verify_mode; 740 s->not_resumable_session_cb = ctx->not_resumable_session_cb; 741 s->record_padding_cb = ctx->record_padding_cb; 742 s->record_padding_arg = ctx->record_padding_arg; 743 s->block_padding = ctx->block_padding; 744 s->sid_ctx_length = ctx->sid_ctx_length; 745 if (!ossl_assert(s->sid_ctx_length <= sizeof(s->sid_ctx))) 746 goto err; 747 memcpy(&s->sid_ctx, &ctx->sid_ctx, sizeof(s->sid_ctx)); 748 s->verify_callback = ctx->default_verify_callback; 749 s->generate_session_id = ctx->generate_session_id; 750 751 s->param = X509_VERIFY_PARAM_new(); 752 if (s->param == NULL) 753 goto err; 754 X509_VERIFY_PARAM_inherit(s->param, ctx->param); 755 s->quiet_shutdown = ctx->quiet_shutdown; 756 757 s->ext.max_fragment_len_mode = ctx->ext.max_fragment_len_mode; 758 s->max_send_fragment = ctx->max_send_fragment; 759 s->split_send_fragment = ctx->split_send_fragment; 760 s->max_pipelines = ctx->max_pipelines; 761 if (s->max_pipelines > 1) 762 RECORD_LAYER_set_read_ahead(&s->rlayer, 1); 763 if (ctx->default_read_buf_len > 0) 764 SSL_set_default_read_buffer_len(s, ctx->default_read_buf_len); 765 766 SSL_CTX_up_ref(ctx); 767 s->ctx = ctx; 768 s->ext.debug_cb = 0; 769 s->ext.debug_arg = NULL; 770 s->ext.ticket_expected = 0; 771 s->ext.status_type = ctx->ext.status_type; 772 s->ext.status_expected = 0; 773 s->ext.ocsp.ids = NULL; 774 s->ext.ocsp.exts = NULL; 775 s->ext.ocsp.resp = NULL; 776 s->ext.ocsp.resp_len = 0; 777 SSL_CTX_up_ref(ctx); 778 s->session_ctx = ctx; 779 #ifndef OPENSSL_NO_EC 780 if (ctx->ext.ecpointformats) { 781 s->ext.ecpointformats = 782 OPENSSL_memdup(ctx->ext.ecpointformats, 783 ctx->ext.ecpointformats_len); 784 if (!s->ext.ecpointformats) { 785 s->ext.ecpointformats_len = 0; 786 goto err; 787 } 788 s->ext.ecpointformats_len = 789 ctx->ext.ecpointformats_len; 790 } 791 if (ctx->ext.supportedgroups) { 792 s->ext.supportedgroups = 793 OPENSSL_memdup(ctx->ext.supportedgroups, 794 ctx->ext.supportedgroups_len 795 * sizeof(*ctx->ext.supportedgroups)); 796 if (!s->ext.supportedgroups) { 797 s->ext.supportedgroups_len = 0; 798 goto err; 799 } 800 s->ext.supportedgroups_len = ctx->ext.supportedgroups_len; 801 } 802 #endif 803 #ifndef OPENSSL_NO_NEXTPROTONEG 804 s->ext.npn = NULL; 805 #endif 806 807 if (s->ctx->ext.alpn) { 808 s->ext.alpn = OPENSSL_malloc(s->ctx->ext.alpn_len); 809 if (s->ext.alpn == NULL) { 810 s->ext.alpn_len = 0; 811 goto err; 812 } 813 memcpy(s->ext.alpn, s->ctx->ext.alpn, s->ctx->ext.alpn_len); 814 s->ext.alpn_len = s->ctx->ext.alpn_len; 815 } 816 817 s->verified_chain = NULL; 818 s->verify_result = X509_V_OK; 819 820 s->default_passwd_callback = ctx->default_passwd_callback; 821 s->default_passwd_callback_userdata = ctx->default_passwd_callback_userdata; 822 823 s->method = ctx->method; 824 825 s->key_update = SSL_KEY_UPDATE_NONE; 826 827 s->allow_early_data_cb = ctx->allow_early_data_cb; 828 s->allow_early_data_cb_data = ctx->allow_early_data_cb_data; 829 830 if (!s->method->ssl_new(s)) 831 goto err; 832 833 s->server = (ctx->method->ssl_accept == ssl_undefined_function) ? 0 : 1; 834 835 if (!SSL_clear(s)) 836 goto err; 837 838 if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL, s, &s->ex_data)) 839 goto err; 840 841 #ifndef OPENSSL_NO_PSK 842 s->psk_client_callback = ctx->psk_client_callback; 843 s->psk_server_callback = ctx->psk_server_callback; 844 #endif 845 s->psk_find_session_cb = ctx->psk_find_session_cb; 846 s->psk_use_session_cb = ctx->psk_use_session_cb; 847 848 s->job = NULL; 849 850 #ifndef OPENSSL_NO_CT 851 if (!SSL_set_ct_validation_callback(s, ctx->ct_validation_callback, 852 ctx->ct_validation_callback_arg)) 853 goto err; 854 #endif 855 856 return s; 857 err: 858 SSL_free(s); 859 SSLerr(SSL_F_SSL_NEW, ERR_R_MALLOC_FAILURE); 860 return NULL; 861 } 862 863 int SSL_is_dtls(const SSL *s) 864 { 865 return SSL_IS_DTLS(s) ? 1 : 0; 866 } 867 868 int SSL_up_ref(SSL *s) 869 { 870 int i; 871 872 if (CRYPTO_UP_REF(&s->references, &i, s->lock) <= 0) 873 return 0; 874 875 REF_PRINT_COUNT("SSL", s); 876 REF_ASSERT_ISNT(i < 2); 877 return ((i > 1) ? 1 : 0); 878 } 879 880 int SSL_CTX_set_session_id_context(SSL_CTX *ctx, const unsigned char *sid_ctx, 881 unsigned int sid_ctx_len) 882 { 883 if (sid_ctx_len > SSL_MAX_SID_CTX_LENGTH) { 884 SSLerr(SSL_F_SSL_CTX_SET_SESSION_ID_CONTEXT, 885 SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG); 886 return 0; 887 } 888 ctx->sid_ctx_length = sid_ctx_len; 889 memcpy(ctx->sid_ctx, sid_ctx, sid_ctx_len); 890 891 return 1; 892 } 893 894 int SSL_set_session_id_context(SSL *ssl, const unsigned char *sid_ctx, 895 unsigned int sid_ctx_len) 896 { 897 if (sid_ctx_len > SSL_MAX_SID_CTX_LENGTH) { 898 SSLerr(SSL_F_SSL_SET_SESSION_ID_CONTEXT, 899 SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG); 900 return 0; 901 } 902 ssl->sid_ctx_length = sid_ctx_len; 903 memcpy(ssl->sid_ctx, sid_ctx, sid_ctx_len); 904 905 return 1; 906 } 907 908 int SSL_CTX_set_generate_session_id(SSL_CTX *ctx, GEN_SESSION_CB cb) 909 { 910 CRYPTO_THREAD_write_lock(ctx->lock); 911 ctx->generate_session_id = cb; 912 CRYPTO_THREAD_unlock(ctx->lock); 913 return 1; 914 } 915 916 int SSL_set_generate_session_id(SSL *ssl, GEN_SESSION_CB cb) 917 { 918 CRYPTO_THREAD_write_lock(ssl->lock); 919 ssl->generate_session_id = cb; 920 CRYPTO_THREAD_unlock(ssl->lock); 921 return 1; 922 } 923 924 int SSL_has_matching_session_id(const SSL *ssl, const unsigned char *id, 925 unsigned int id_len) 926 { 927 /* 928 * A quick examination of SSL_SESSION_hash and SSL_SESSION_cmp shows how 929 * we can "construct" a session to give us the desired check - i.e. to 930 * find if there's a session in the hash table that would conflict with 931 * any new session built out of this id/id_len and the ssl_version in use 932 * by this SSL. 933 */ 934 SSL_SESSION r, *p; 935 936 if (id_len > sizeof(r.session_id)) 937 return 0; 938 939 r.ssl_version = ssl->version; 940 r.session_id_length = id_len; 941 memcpy(r.session_id, id, id_len); 942 943 CRYPTO_THREAD_read_lock(ssl->session_ctx->lock); 944 p = lh_SSL_SESSION_retrieve(ssl->session_ctx->sessions, &r); 945 CRYPTO_THREAD_unlock(ssl->session_ctx->lock); 946 return (p != NULL); 947 } 948 949 int SSL_CTX_set_purpose(SSL_CTX *s, int purpose) 950 { 951 return X509_VERIFY_PARAM_set_purpose(s->param, purpose); 952 } 953 954 int SSL_set_purpose(SSL *s, int purpose) 955 { 956 return X509_VERIFY_PARAM_set_purpose(s->param, purpose); 957 } 958 959 int SSL_CTX_set_trust(SSL_CTX *s, int trust) 960 { 961 return X509_VERIFY_PARAM_set_trust(s->param, trust); 962 } 963 964 int SSL_set_trust(SSL *s, int trust) 965 { 966 return X509_VERIFY_PARAM_set_trust(s->param, trust); 967 } 968 969 int SSL_set1_host(SSL *s, const char *hostname) 970 { 971 return X509_VERIFY_PARAM_set1_host(s->param, hostname, 0); 972 } 973 974 int SSL_add1_host(SSL *s, const char *hostname) 975 { 976 return X509_VERIFY_PARAM_add1_host(s->param, hostname, 0); 977 } 978 979 void SSL_set_hostflags(SSL *s, unsigned int flags) 980 { 981 X509_VERIFY_PARAM_set_hostflags(s->param, flags); 982 } 983 984 const char *SSL_get0_peername(SSL *s) 985 { 986 return X509_VERIFY_PARAM_get0_peername(s->param); 987 } 988 989 int SSL_CTX_dane_enable(SSL_CTX *ctx) 990 { 991 return dane_ctx_enable(&ctx->dane); 992 } 993 994 unsigned long SSL_CTX_dane_set_flags(SSL_CTX *ctx, unsigned long flags) 995 { 996 unsigned long orig = ctx->dane.flags; 997 998 ctx->dane.flags |= flags; 999 return orig; 1000 } 1001 1002 unsigned long SSL_CTX_dane_clear_flags(SSL_CTX *ctx, unsigned long flags) 1003 { 1004 unsigned long orig = ctx->dane.flags; 1005 1006 ctx->dane.flags &= ~flags; 1007 return orig; 1008 } 1009 1010 int SSL_dane_enable(SSL *s, const char *basedomain) 1011 { 1012 SSL_DANE *dane = &s->dane; 1013 1014 if (s->ctx->dane.mdmax == 0) { 1015 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_CONTEXT_NOT_DANE_ENABLED); 1016 return 0; 1017 } 1018 if (dane->trecs != NULL) { 1019 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_DANE_ALREADY_ENABLED); 1020 return 0; 1021 } 1022 1023 /* 1024 * Default SNI name. This rejects empty names, while set1_host below 1025 * accepts them and disables host name checks. To avoid side-effects with 1026 * invalid input, set the SNI name first. 1027 */ 1028 if (s->ext.hostname == NULL) { 1029 if (!SSL_set_tlsext_host_name(s, basedomain)) { 1030 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_ERROR_SETTING_TLSA_BASE_DOMAIN); 1031 return -1; 1032 } 1033 } 1034 1035 /* Primary RFC6125 reference identifier */ 1036 if (!X509_VERIFY_PARAM_set1_host(s->param, basedomain, 0)) { 1037 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_ERROR_SETTING_TLSA_BASE_DOMAIN); 1038 return -1; 1039 } 1040 1041 dane->mdpth = -1; 1042 dane->pdpth = -1; 1043 dane->dctx = &s->ctx->dane; 1044 dane->trecs = sk_danetls_record_new_null(); 1045 1046 if (dane->trecs == NULL) { 1047 SSLerr(SSL_F_SSL_DANE_ENABLE, ERR_R_MALLOC_FAILURE); 1048 return -1; 1049 } 1050 return 1; 1051 } 1052 1053 unsigned long SSL_dane_set_flags(SSL *ssl, unsigned long flags) 1054 { 1055 unsigned long orig = ssl->dane.flags; 1056 1057 ssl->dane.flags |= flags; 1058 return orig; 1059 } 1060 1061 unsigned long SSL_dane_clear_flags(SSL *ssl, unsigned long flags) 1062 { 1063 unsigned long orig = ssl->dane.flags; 1064 1065 ssl->dane.flags &= ~flags; 1066 return orig; 1067 } 1068 1069 int SSL_get0_dane_authority(SSL *s, X509 **mcert, EVP_PKEY **mspki) 1070 { 1071 SSL_DANE *dane = &s->dane; 1072 1073 if (!DANETLS_ENABLED(dane) || s->verify_result != X509_V_OK) 1074 return -1; 1075 if (dane->mtlsa) { 1076 if (mcert) 1077 *mcert = dane->mcert; 1078 if (mspki) 1079 *mspki = (dane->mcert == NULL) ? dane->mtlsa->spki : NULL; 1080 } 1081 return dane->mdpth; 1082 } 1083 1084 int SSL_get0_dane_tlsa(SSL *s, uint8_t *usage, uint8_t *selector, 1085 uint8_t *mtype, unsigned const char **data, size_t *dlen) 1086 { 1087 SSL_DANE *dane = &s->dane; 1088 1089 if (!DANETLS_ENABLED(dane) || s->verify_result != X509_V_OK) 1090 return -1; 1091 if (dane->mtlsa) { 1092 if (usage) 1093 *usage = dane->mtlsa->usage; 1094 if (selector) 1095 *selector = dane->mtlsa->selector; 1096 if (mtype) 1097 *mtype = dane->mtlsa->mtype; 1098 if (data) 1099 *data = dane->mtlsa->data; 1100 if (dlen) 1101 *dlen = dane->mtlsa->dlen; 1102 } 1103 return dane->mdpth; 1104 } 1105 1106 SSL_DANE *SSL_get0_dane(SSL *s) 1107 { 1108 return &s->dane; 1109 } 1110 1111 int SSL_dane_tlsa_add(SSL *s, uint8_t usage, uint8_t selector, 1112 uint8_t mtype, unsigned const char *data, size_t dlen) 1113 { 1114 return dane_tlsa_add(&s->dane, usage, selector, mtype, data, dlen); 1115 } 1116 1117 int SSL_CTX_dane_mtype_set(SSL_CTX *ctx, const EVP_MD *md, uint8_t mtype, 1118 uint8_t ord) 1119 { 1120 return dane_mtype_set(&ctx->dane, md, mtype, ord); 1121 } 1122 1123 int SSL_CTX_set1_param(SSL_CTX *ctx, X509_VERIFY_PARAM *vpm) 1124 { 1125 return X509_VERIFY_PARAM_set1(ctx->param, vpm); 1126 } 1127 1128 int SSL_set1_param(SSL *ssl, X509_VERIFY_PARAM *vpm) 1129 { 1130 return X509_VERIFY_PARAM_set1(ssl->param, vpm); 1131 } 1132 1133 X509_VERIFY_PARAM *SSL_CTX_get0_param(SSL_CTX *ctx) 1134 { 1135 return ctx->param; 1136 } 1137 1138 X509_VERIFY_PARAM *SSL_get0_param(SSL *ssl) 1139 { 1140 return ssl->param; 1141 } 1142 1143 void SSL_certs_clear(SSL *s) 1144 { 1145 ssl_cert_clear_certs(s->cert); 1146 } 1147 1148 void SSL_free(SSL *s) 1149 { 1150 int i; 1151 1152 if (s == NULL) 1153 return; 1154 CRYPTO_DOWN_REF(&s->references, &i, s->lock); 1155 REF_PRINT_COUNT("SSL", s); 1156 if (i > 0) 1157 return; 1158 REF_ASSERT_ISNT(i < 0); 1159 1160 X509_VERIFY_PARAM_free(s->param); 1161 dane_final(&s->dane); 1162 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL, s, &s->ex_data); 1163 1164 RECORD_LAYER_release(&s->rlayer); 1165 1166 /* Ignore return value */ 1167 ssl_free_wbio_buffer(s); 1168 1169 BIO_free_all(s->wbio); 1170 s->wbio = NULL; 1171 BIO_free_all(s->rbio); 1172 s->rbio = NULL; 1173 1174 BUF_MEM_free(s->init_buf); 1175 1176 /* add extra stuff */ 1177 sk_SSL_CIPHER_free(s->cipher_list); 1178 sk_SSL_CIPHER_free(s->cipher_list_by_id); 1179 sk_SSL_CIPHER_free(s->tls13_ciphersuites); 1180 sk_SSL_CIPHER_free(s->peer_ciphers); 1181 1182 /* Make the next call work :-) */ 1183 if (s->session != NULL) { 1184 ssl_clear_bad_session(s); 1185 SSL_SESSION_free(s->session); 1186 } 1187 SSL_SESSION_free(s->psksession); 1188 OPENSSL_free(s->psksession_id); 1189 1190 clear_ciphers(s); 1191 1192 ssl_cert_free(s->cert); 1193 OPENSSL_free(s->shared_sigalgs); 1194 /* Free up if allocated */ 1195 1196 OPENSSL_free(s->ext.hostname); 1197 SSL_CTX_free(s->session_ctx); 1198 #ifndef OPENSSL_NO_EC 1199 OPENSSL_free(s->ext.ecpointformats); 1200 OPENSSL_free(s->ext.peer_ecpointformats); 1201 OPENSSL_free(s->ext.supportedgroups); 1202 OPENSSL_free(s->ext.peer_supportedgroups); 1203 #endif /* OPENSSL_NO_EC */ 1204 sk_X509_EXTENSION_pop_free(s->ext.ocsp.exts, X509_EXTENSION_free); 1205 #ifndef OPENSSL_NO_OCSP 1206 sk_OCSP_RESPID_pop_free(s->ext.ocsp.ids, OCSP_RESPID_free); 1207 #endif 1208 #ifndef OPENSSL_NO_CT 1209 SCT_LIST_free(s->scts); 1210 OPENSSL_free(s->ext.scts); 1211 #endif 1212 OPENSSL_free(s->ext.ocsp.resp); 1213 OPENSSL_free(s->ext.alpn); 1214 OPENSSL_free(s->ext.tls13_cookie); 1215 if (s->clienthello != NULL) 1216 OPENSSL_free(s->clienthello->pre_proc_exts); 1217 OPENSSL_free(s->clienthello); 1218 OPENSSL_free(s->pha_context); 1219 EVP_MD_CTX_free(s->pha_dgst); 1220 1221 sk_X509_NAME_pop_free(s->ca_names, X509_NAME_free); 1222 sk_X509_NAME_pop_free(s->client_ca_names, X509_NAME_free); 1223 1224 sk_X509_pop_free(s->verified_chain, X509_free); 1225 1226 if (s->method != NULL) 1227 s->method->ssl_free(s); 1228 1229 SSL_CTX_free(s->ctx); 1230 1231 ASYNC_WAIT_CTX_free(s->waitctx); 1232 1233 #if !defined(OPENSSL_NO_NEXTPROTONEG) 1234 OPENSSL_free(s->ext.npn); 1235 #endif 1236 1237 #ifndef OPENSSL_NO_SRTP 1238 sk_SRTP_PROTECTION_PROFILE_free(s->srtp_profiles); 1239 #endif 1240 1241 CRYPTO_THREAD_lock_free(s->lock); 1242 1243 OPENSSL_free(s); 1244 } 1245 1246 void SSL_set0_rbio(SSL *s, BIO *rbio) 1247 { 1248 BIO_free_all(s->rbio); 1249 s->rbio = rbio; 1250 } 1251 1252 void SSL_set0_wbio(SSL *s, BIO *wbio) 1253 { 1254 /* 1255 * If the output buffering BIO is still in place, remove it 1256 */ 1257 if (s->bbio != NULL) 1258 s->wbio = BIO_pop(s->wbio); 1259 1260 BIO_free_all(s->wbio); 1261 s->wbio = wbio; 1262 1263 /* Re-attach |bbio| to the new |wbio|. */ 1264 if (s->bbio != NULL) 1265 s->wbio = BIO_push(s->bbio, s->wbio); 1266 } 1267 1268 void SSL_set_bio(SSL *s, BIO *rbio, BIO *wbio) 1269 { 1270 /* 1271 * For historical reasons, this function has many different cases in 1272 * ownership handling. 1273 */ 1274 1275 /* If nothing has changed, do nothing */ 1276 if (rbio == SSL_get_rbio(s) && wbio == SSL_get_wbio(s)) 1277 return; 1278 1279 /* 1280 * If the two arguments are equal then one fewer reference is granted by the 1281 * caller than we want to take 1282 */ 1283 if (rbio != NULL && rbio == wbio) 1284 BIO_up_ref(rbio); 1285 1286 /* 1287 * If only the wbio is changed only adopt one reference. 1288 */ 1289 if (rbio == SSL_get_rbio(s)) { 1290 SSL_set0_wbio(s, wbio); 1291 return; 1292 } 1293 /* 1294 * There is an asymmetry here for historical reasons. If only the rbio is 1295 * changed AND the rbio and wbio were originally different, then we only 1296 * adopt one reference. 1297 */ 1298 if (wbio == SSL_get_wbio(s) && SSL_get_rbio(s) != SSL_get_wbio(s)) { 1299 SSL_set0_rbio(s, rbio); 1300 return; 1301 } 1302 1303 /* Otherwise, adopt both references. */ 1304 SSL_set0_rbio(s, rbio); 1305 SSL_set0_wbio(s, wbio); 1306 } 1307 1308 BIO *SSL_get_rbio(const SSL *s) 1309 { 1310 return s->rbio; 1311 } 1312 1313 BIO *SSL_get_wbio(const SSL *s) 1314 { 1315 if (s->bbio != NULL) { 1316 /* 1317 * If |bbio| is active, the true caller-configured BIO is its 1318 * |next_bio|. 1319 */ 1320 return BIO_next(s->bbio); 1321 } 1322 return s->wbio; 1323 } 1324 1325 int SSL_get_fd(const SSL *s) 1326 { 1327 return SSL_get_rfd(s); 1328 } 1329 1330 int SSL_get_rfd(const SSL *s) 1331 { 1332 int ret = -1; 1333 BIO *b, *r; 1334 1335 b = SSL_get_rbio(s); 1336 r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR); 1337 if (r != NULL) 1338 BIO_get_fd(r, &ret); 1339 return ret; 1340 } 1341 1342 int SSL_get_wfd(const SSL *s) 1343 { 1344 int ret = -1; 1345 BIO *b, *r; 1346 1347 b = SSL_get_wbio(s); 1348 r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR); 1349 if (r != NULL) 1350 BIO_get_fd(r, &ret); 1351 return ret; 1352 } 1353 1354 #ifndef OPENSSL_NO_SOCK 1355 int SSL_set_fd(SSL *s, int fd) 1356 { 1357 int ret = 0; 1358 BIO *bio = NULL; 1359 1360 bio = BIO_new(BIO_s_socket()); 1361 1362 if (bio == NULL) { 1363 SSLerr(SSL_F_SSL_SET_FD, ERR_R_BUF_LIB); 1364 goto err; 1365 } 1366 BIO_set_fd(bio, fd, BIO_NOCLOSE); 1367 SSL_set_bio(s, bio, bio); 1368 #ifndef OPENSSL_NO_KTLS 1369 /* 1370 * The new socket is created successfully regardless of ktls_enable. 1371 * ktls_enable doesn't change any functionality of the socket, except 1372 * changing the setsockopt to enable the processing of ktls_start. 1373 * Thus, it is not a problem to call it for non-TLS sockets. 1374 */ 1375 ktls_enable(fd); 1376 #endif /* OPENSSL_NO_KTLS */ 1377 ret = 1; 1378 err: 1379 return ret; 1380 } 1381 1382 int SSL_set_wfd(SSL *s, int fd) 1383 { 1384 BIO *rbio = SSL_get_rbio(s); 1385 1386 if (rbio == NULL || BIO_method_type(rbio) != BIO_TYPE_SOCKET 1387 || (int)BIO_get_fd(rbio, NULL) != fd) { 1388 BIO *bio = BIO_new(BIO_s_socket()); 1389 1390 if (bio == NULL) { 1391 SSLerr(SSL_F_SSL_SET_WFD, ERR_R_BUF_LIB); 1392 return 0; 1393 } 1394 BIO_set_fd(bio, fd, BIO_NOCLOSE); 1395 SSL_set0_wbio(s, bio); 1396 #ifndef OPENSSL_NO_KTLS 1397 /* 1398 * The new socket is created successfully regardless of ktls_enable. 1399 * ktls_enable doesn't change any functionality of the socket, except 1400 * changing the setsockopt to enable the processing of ktls_start. 1401 * Thus, it is not a problem to call it for non-TLS sockets. 1402 */ 1403 ktls_enable(fd); 1404 #endif /* OPENSSL_NO_KTLS */ 1405 } else { 1406 BIO_up_ref(rbio); 1407 SSL_set0_wbio(s, rbio); 1408 } 1409 return 1; 1410 } 1411 1412 int SSL_set_rfd(SSL *s, int fd) 1413 { 1414 BIO *wbio = SSL_get_wbio(s); 1415 1416 if (wbio == NULL || BIO_method_type(wbio) != BIO_TYPE_SOCKET 1417 || ((int)BIO_get_fd(wbio, NULL) != fd)) { 1418 BIO *bio = BIO_new(BIO_s_socket()); 1419 1420 if (bio == NULL) { 1421 SSLerr(SSL_F_SSL_SET_RFD, ERR_R_BUF_LIB); 1422 return 0; 1423 } 1424 BIO_set_fd(bio, fd, BIO_NOCLOSE); 1425 SSL_set0_rbio(s, bio); 1426 } else { 1427 BIO_up_ref(wbio); 1428 SSL_set0_rbio(s, wbio); 1429 } 1430 1431 return 1; 1432 } 1433 #endif 1434 1435 /* return length of latest Finished message we sent, copy to 'buf' */ 1436 size_t SSL_get_finished(const SSL *s, void *buf, size_t count) 1437 { 1438 size_t ret = 0; 1439 1440 if (s->s3 != NULL) { 1441 ret = s->s3->tmp.finish_md_len; 1442 if (count > ret) 1443 count = ret; 1444 memcpy(buf, s->s3->tmp.finish_md, count); 1445 } 1446 return ret; 1447 } 1448 1449 /* return length of latest Finished message we expected, copy to 'buf' */ 1450 size_t SSL_get_peer_finished(const SSL *s, void *buf, size_t count) 1451 { 1452 size_t ret = 0; 1453 1454 if (s->s3 != NULL) { 1455 ret = s->s3->tmp.peer_finish_md_len; 1456 if (count > ret) 1457 count = ret; 1458 memcpy(buf, s->s3->tmp.peer_finish_md, count); 1459 } 1460 return ret; 1461 } 1462 1463 int SSL_get_verify_mode(const SSL *s) 1464 { 1465 return s->verify_mode; 1466 } 1467 1468 int SSL_get_verify_depth(const SSL *s) 1469 { 1470 return X509_VERIFY_PARAM_get_depth(s->param); 1471 } 1472 1473 int (*SSL_get_verify_callback(const SSL *s)) (int, X509_STORE_CTX *) { 1474 return s->verify_callback; 1475 } 1476 1477 int SSL_CTX_get_verify_mode(const SSL_CTX *ctx) 1478 { 1479 return ctx->verify_mode; 1480 } 1481 1482 int SSL_CTX_get_verify_depth(const SSL_CTX *ctx) 1483 { 1484 return X509_VERIFY_PARAM_get_depth(ctx->param); 1485 } 1486 1487 int (*SSL_CTX_get_verify_callback(const SSL_CTX *ctx)) (int, X509_STORE_CTX *) { 1488 return ctx->default_verify_callback; 1489 } 1490 1491 void SSL_set_verify(SSL *s, int mode, 1492 int (*callback) (int ok, X509_STORE_CTX *ctx)) 1493 { 1494 s->verify_mode = mode; 1495 if (callback != NULL) 1496 s->verify_callback = callback; 1497 } 1498 1499 void SSL_set_verify_depth(SSL *s, int depth) 1500 { 1501 X509_VERIFY_PARAM_set_depth(s->param, depth); 1502 } 1503 1504 void SSL_set_read_ahead(SSL *s, int yes) 1505 { 1506 RECORD_LAYER_set_read_ahead(&s->rlayer, yes); 1507 } 1508 1509 int SSL_get_read_ahead(const SSL *s) 1510 { 1511 return RECORD_LAYER_get_read_ahead(&s->rlayer); 1512 } 1513 1514 int SSL_pending(const SSL *s) 1515 { 1516 size_t pending = s->method->ssl_pending(s); 1517 1518 /* 1519 * SSL_pending cannot work properly if read-ahead is enabled 1520 * (SSL_[CTX_]ctrl(..., SSL_CTRL_SET_READ_AHEAD, 1, NULL)), and it is 1521 * impossible to fix since SSL_pending cannot report errors that may be 1522 * observed while scanning the new data. (Note that SSL_pending() is 1523 * often used as a boolean value, so we'd better not return -1.) 1524 * 1525 * SSL_pending also cannot work properly if the value >INT_MAX. In that case 1526 * we just return INT_MAX. 1527 */ 1528 return pending < INT_MAX ? (int)pending : INT_MAX; 1529 } 1530 1531 int SSL_has_pending(const SSL *s) 1532 { 1533 /* 1534 * Similar to SSL_pending() but returns a 1 to indicate that we have 1535 * unprocessed data available or 0 otherwise (as opposed to the number of 1536 * bytes available). Unlike SSL_pending() this will take into account 1537 * read_ahead data. A 1 return simply indicates that we have unprocessed 1538 * data. That data may not result in any application data, or we may fail 1539 * to parse the records for some reason. 1540 */ 1541 if (RECORD_LAYER_processed_read_pending(&s->rlayer)) 1542 return 1; 1543 1544 return RECORD_LAYER_read_pending(&s->rlayer); 1545 } 1546 1547 X509 *SSL_get_peer_certificate(const SSL *s) 1548 { 1549 X509 *r; 1550 1551 if ((s == NULL) || (s->session == NULL)) 1552 r = NULL; 1553 else 1554 r = s->session->peer; 1555 1556 if (r == NULL) 1557 return r; 1558 1559 X509_up_ref(r); 1560 1561 return r; 1562 } 1563 1564 STACK_OF(X509) *SSL_get_peer_cert_chain(const SSL *s) 1565 { 1566 STACK_OF(X509) *r; 1567 1568 if ((s == NULL) || (s->session == NULL)) 1569 r = NULL; 1570 else 1571 r = s->session->peer_chain; 1572 1573 /* 1574 * If we are a client, cert_chain includes the peer's own certificate; if 1575 * we are a server, it does not. 1576 */ 1577 1578 return r; 1579 } 1580 1581 /* 1582 * Now in theory, since the calling process own 't' it should be safe to 1583 * modify. We need to be able to read f without being hassled 1584 */ 1585 int SSL_copy_session_id(SSL *t, const SSL *f) 1586 { 1587 int i; 1588 /* Do we need to to SSL locking? */ 1589 if (!SSL_set_session(t, SSL_get_session(f))) { 1590 return 0; 1591 } 1592 1593 /* 1594 * what if we are setup for one protocol version but want to talk another 1595 */ 1596 if (t->method != f->method) { 1597 t->method->ssl_free(t); 1598 t->method = f->method; 1599 if (t->method->ssl_new(t) == 0) 1600 return 0; 1601 } 1602 1603 CRYPTO_UP_REF(&f->cert->references, &i, f->cert->lock); 1604 ssl_cert_free(t->cert); 1605 t->cert = f->cert; 1606 if (!SSL_set_session_id_context(t, f->sid_ctx, (int)f->sid_ctx_length)) { 1607 return 0; 1608 } 1609 1610 return 1; 1611 } 1612 1613 /* Fix this so it checks all the valid key/cert options */ 1614 int SSL_CTX_check_private_key(const SSL_CTX *ctx) 1615 { 1616 if ((ctx == NULL) || (ctx->cert->key->x509 == NULL)) { 1617 SSLerr(SSL_F_SSL_CTX_CHECK_PRIVATE_KEY, SSL_R_NO_CERTIFICATE_ASSIGNED); 1618 return 0; 1619 } 1620 if (ctx->cert->key->privatekey == NULL) { 1621 SSLerr(SSL_F_SSL_CTX_CHECK_PRIVATE_KEY, SSL_R_NO_PRIVATE_KEY_ASSIGNED); 1622 return 0; 1623 } 1624 return X509_check_private_key 1625 (ctx->cert->key->x509, ctx->cert->key->privatekey); 1626 } 1627 1628 /* Fix this function so that it takes an optional type parameter */ 1629 int SSL_check_private_key(const SSL *ssl) 1630 { 1631 if (ssl == NULL) { 1632 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, ERR_R_PASSED_NULL_PARAMETER); 1633 return 0; 1634 } 1635 if (ssl->cert->key->x509 == NULL) { 1636 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, SSL_R_NO_CERTIFICATE_ASSIGNED); 1637 return 0; 1638 } 1639 if (ssl->cert->key->privatekey == NULL) { 1640 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, SSL_R_NO_PRIVATE_KEY_ASSIGNED); 1641 return 0; 1642 } 1643 return X509_check_private_key(ssl->cert->key->x509, 1644 ssl->cert->key->privatekey); 1645 } 1646 1647 int SSL_waiting_for_async(SSL *s) 1648 { 1649 if (s->job) 1650 return 1; 1651 1652 return 0; 1653 } 1654 1655 int SSL_get_all_async_fds(SSL *s, OSSL_ASYNC_FD *fds, size_t *numfds) 1656 { 1657 ASYNC_WAIT_CTX *ctx = s->waitctx; 1658 1659 if (ctx == NULL) 1660 return 0; 1661 return ASYNC_WAIT_CTX_get_all_fds(ctx, fds, numfds); 1662 } 1663 1664 int SSL_get_changed_async_fds(SSL *s, OSSL_ASYNC_FD *addfd, size_t *numaddfds, 1665 OSSL_ASYNC_FD *delfd, size_t *numdelfds) 1666 { 1667 ASYNC_WAIT_CTX *ctx = s->waitctx; 1668 1669 if (ctx == NULL) 1670 return 0; 1671 return ASYNC_WAIT_CTX_get_changed_fds(ctx, addfd, numaddfds, delfd, 1672 numdelfds); 1673 } 1674 1675 int SSL_accept(SSL *s) 1676 { 1677 if (s->handshake_func == NULL) { 1678 /* Not properly initialized yet */ 1679 SSL_set_accept_state(s); 1680 } 1681 1682 return SSL_do_handshake(s); 1683 } 1684 1685 int SSL_connect(SSL *s) 1686 { 1687 if (s->handshake_func == NULL) { 1688 /* Not properly initialized yet */ 1689 SSL_set_connect_state(s); 1690 } 1691 1692 return SSL_do_handshake(s); 1693 } 1694 1695 long SSL_get_default_timeout(const SSL *s) 1696 { 1697 return s->method->get_timeout(); 1698 } 1699 1700 static int ssl_start_async_job(SSL *s, struct ssl_async_args *args, 1701 int (*func) (void *)) 1702 { 1703 int ret; 1704 if (s->waitctx == NULL) { 1705 s->waitctx = ASYNC_WAIT_CTX_new(); 1706 if (s->waitctx == NULL) 1707 return -1; 1708 } 1709 1710 s->rwstate = SSL_NOTHING; 1711 switch (ASYNC_start_job(&s->job, s->waitctx, &ret, func, args, 1712 sizeof(struct ssl_async_args))) { 1713 case ASYNC_ERR: 1714 s->rwstate = SSL_NOTHING; 1715 SSLerr(SSL_F_SSL_START_ASYNC_JOB, SSL_R_FAILED_TO_INIT_ASYNC); 1716 return -1; 1717 case ASYNC_PAUSE: 1718 s->rwstate = SSL_ASYNC_PAUSED; 1719 return -1; 1720 case ASYNC_NO_JOBS: 1721 s->rwstate = SSL_ASYNC_NO_JOBS; 1722 return -1; 1723 case ASYNC_FINISH: 1724 s->job = NULL; 1725 return ret; 1726 default: 1727 s->rwstate = SSL_NOTHING; 1728 SSLerr(SSL_F_SSL_START_ASYNC_JOB, ERR_R_INTERNAL_ERROR); 1729 /* Shouldn't happen */ 1730 return -1; 1731 } 1732 } 1733 1734 static int ssl_io_intern(void *vargs) 1735 { 1736 struct ssl_async_args *args; 1737 SSL *s; 1738 void *buf; 1739 size_t num; 1740 1741 args = (struct ssl_async_args *)vargs; 1742 s = args->s; 1743 buf = args->buf; 1744 num = args->num; 1745 switch (args->type) { 1746 case READFUNC: 1747 return args->f.func_read(s, buf, num, &s->asyncrw); 1748 case WRITEFUNC: 1749 return args->f.func_write(s, buf, num, &s->asyncrw); 1750 case OTHERFUNC: 1751 return args->f.func_other(s); 1752 } 1753 return -1; 1754 } 1755 1756 int ssl_read_internal(SSL *s, void *buf, size_t num, size_t *readbytes) 1757 { 1758 if (s->handshake_func == NULL) { 1759 SSLerr(SSL_F_SSL_READ_INTERNAL, SSL_R_UNINITIALIZED); 1760 return -1; 1761 } 1762 1763 if (s->shutdown & SSL_RECEIVED_SHUTDOWN) { 1764 s->rwstate = SSL_NOTHING; 1765 return 0; 1766 } 1767 1768 if (s->early_data_state == SSL_EARLY_DATA_CONNECT_RETRY 1769 || s->early_data_state == SSL_EARLY_DATA_ACCEPT_RETRY) { 1770 SSLerr(SSL_F_SSL_READ_INTERNAL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 1771 return 0; 1772 } 1773 /* 1774 * If we are a client and haven't received the ServerHello etc then we 1775 * better do that 1776 */ 1777 ossl_statem_check_finish_init(s, 0); 1778 1779 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) { 1780 struct ssl_async_args args; 1781 int ret; 1782 1783 args.s = s; 1784 args.buf = buf; 1785 args.num = num; 1786 args.type = READFUNC; 1787 args.f.func_read = s->method->ssl_read; 1788 1789 ret = ssl_start_async_job(s, &args, ssl_io_intern); 1790 *readbytes = s->asyncrw; 1791 return ret; 1792 } else { 1793 return s->method->ssl_read(s, buf, num, readbytes); 1794 } 1795 } 1796 1797 int SSL_read(SSL *s, void *buf, int num) 1798 { 1799 int ret; 1800 size_t readbytes; 1801 1802 if (num < 0) { 1803 SSLerr(SSL_F_SSL_READ, SSL_R_BAD_LENGTH); 1804 return -1; 1805 } 1806 1807 ret = ssl_read_internal(s, buf, (size_t)num, &readbytes); 1808 1809 /* 1810 * The cast is safe here because ret should be <= INT_MAX because num is 1811 * <= INT_MAX 1812 */ 1813 if (ret > 0) 1814 ret = (int)readbytes; 1815 1816 return ret; 1817 } 1818 1819 int SSL_read_ex(SSL *s, void *buf, size_t num, size_t *readbytes) 1820 { 1821 int ret = ssl_read_internal(s, buf, num, readbytes); 1822 1823 if (ret < 0) 1824 ret = 0; 1825 return ret; 1826 } 1827 1828 int SSL_read_early_data(SSL *s, void *buf, size_t num, size_t *readbytes) 1829 { 1830 int ret; 1831 1832 if (!s->server) { 1833 SSLerr(SSL_F_SSL_READ_EARLY_DATA, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 1834 return SSL_READ_EARLY_DATA_ERROR; 1835 } 1836 1837 switch (s->early_data_state) { 1838 case SSL_EARLY_DATA_NONE: 1839 if (!SSL_in_before(s)) { 1840 SSLerr(SSL_F_SSL_READ_EARLY_DATA, 1841 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 1842 return SSL_READ_EARLY_DATA_ERROR; 1843 } 1844 /* fall through */ 1845 1846 case SSL_EARLY_DATA_ACCEPT_RETRY: 1847 s->early_data_state = SSL_EARLY_DATA_ACCEPTING; 1848 ret = SSL_accept(s); 1849 if (ret <= 0) { 1850 /* NBIO or error */ 1851 s->early_data_state = SSL_EARLY_DATA_ACCEPT_RETRY; 1852 return SSL_READ_EARLY_DATA_ERROR; 1853 } 1854 /* fall through */ 1855 1856 case SSL_EARLY_DATA_READ_RETRY: 1857 if (s->ext.early_data == SSL_EARLY_DATA_ACCEPTED) { 1858 s->early_data_state = SSL_EARLY_DATA_READING; 1859 ret = SSL_read_ex(s, buf, num, readbytes); 1860 /* 1861 * State machine will update early_data_state to 1862 * SSL_EARLY_DATA_FINISHED_READING if we get an EndOfEarlyData 1863 * message 1864 */ 1865 if (ret > 0 || (ret <= 0 && s->early_data_state 1866 != SSL_EARLY_DATA_FINISHED_READING)) { 1867 s->early_data_state = SSL_EARLY_DATA_READ_RETRY; 1868 return ret > 0 ? SSL_READ_EARLY_DATA_SUCCESS 1869 : SSL_READ_EARLY_DATA_ERROR; 1870 } 1871 } else { 1872 s->early_data_state = SSL_EARLY_DATA_FINISHED_READING; 1873 } 1874 *readbytes = 0; 1875 return SSL_READ_EARLY_DATA_FINISH; 1876 1877 default: 1878 SSLerr(SSL_F_SSL_READ_EARLY_DATA, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 1879 return SSL_READ_EARLY_DATA_ERROR; 1880 } 1881 } 1882 1883 int SSL_get_early_data_status(const SSL *s) 1884 { 1885 return s->ext.early_data; 1886 } 1887 1888 static int ssl_peek_internal(SSL *s, void *buf, size_t num, size_t *readbytes) 1889 { 1890 if (s->handshake_func == NULL) { 1891 SSLerr(SSL_F_SSL_PEEK_INTERNAL, SSL_R_UNINITIALIZED); 1892 return -1; 1893 } 1894 1895 if (s->shutdown & SSL_RECEIVED_SHUTDOWN) { 1896 return 0; 1897 } 1898 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) { 1899 struct ssl_async_args args; 1900 int ret; 1901 1902 args.s = s; 1903 args.buf = buf; 1904 args.num = num; 1905 args.type = READFUNC; 1906 args.f.func_read = s->method->ssl_peek; 1907 1908 ret = ssl_start_async_job(s, &args, ssl_io_intern); 1909 *readbytes = s->asyncrw; 1910 return ret; 1911 } else { 1912 return s->method->ssl_peek(s, buf, num, readbytes); 1913 } 1914 } 1915 1916 int SSL_peek(SSL *s, void *buf, int num) 1917 { 1918 int ret; 1919 size_t readbytes; 1920 1921 if (num < 0) { 1922 SSLerr(SSL_F_SSL_PEEK, SSL_R_BAD_LENGTH); 1923 return -1; 1924 } 1925 1926 ret = ssl_peek_internal(s, buf, (size_t)num, &readbytes); 1927 1928 /* 1929 * The cast is safe here because ret should be <= INT_MAX because num is 1930 * <= INT_MAX 1931 */ 1932 if (ret > 0) 1933 ret = (int)readbytes; 1934 1935 return ret; 1936 } 1937 1938 1939 int SSL_peek_ex(SSL *s, void *buf, size_t num, size_t *readbytes) 1940 { 1941 int ret = ssl_peek_internal(s, buf, num, readbytes); 1942 1943 if (ret < 0) 1944 ret = 0; 1945 return ret; 1946 } 1947 1948 int ssl_write_internal(SSL *s, const void *buf, size_t num, size_t *written) 1949 { 1950 if (s->handshake_func == NULL) { 1951 SSLerr(SSL_F_SSL_WRITE_INTERNAL, SSL_R_UNINITIALIZED); 1952 return -1; 1953 } 1954 1955 if (s->shutdown & SSL_SENT_SHUTDOWN) { 1956 s->rwstate = SSL_NOTHING; 1957 SSLerr(SSL_F_SSL_WRITE_INTERNAL, SSL_R_PROTOCOL_IS_SHUTDOWN); 1958 return -1; 1959 } 1960 1961 if (s->early_data_state == SSL_EARLY_DATA_CONNECT_RETRY 1962 || s->early_data_state == SSL_EARLY_DATA_ACCEPT_RETRY 1963 || s->early_data_state == SSL_EARLY_DATA_READ_RETRY) { 1964 SSLerr(SSL_F_SSL_WRITE_INTERNAL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 1965 return 0; 1966 } 1967 /* If we are a client and haven't sent the Finished we better do that */ 1968 ossl_statem_check_finish_init(s, 1); 1969 1970 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) { 1971 int ret; 1972 struct ssl_async_args args; 1973 1974 args.s = s; 1975 args.buf = (void *)buf; 1976 args.num = num; 1977 args.type = WRITEFUNC; 1978 args.f.func_write = s->method->ssl_write; 1979 1980 ret = ssl_start_async_job(s, &args, ssl_io_intern); 1981 *written = s->asyncrw; 1982 return ret; 1983 } else { 1984 return s->method->ssl_write(s, buf, num, written); 1985 } 1986 } 1987 1988 ossl_ssize_t SSL_sendfile(SSL *s, int fd, off_t offset, size_t size, int flags) 1989 { 1990 ossl_ssize_t ret; 1991 1992 if (s->handshake_func == NULL) { 1993 SSLerr(SSL_F_SSL_SENDFILE, SSL_R_UNINITIALIZED); 1994 return -1; 1995 } 1996 1997 if (s->shutdown & SSL_SENT_SHUTDOWN) { 1998 s->rwstate = SSL_NOTHING; 1999 SSLerr(SSL_F_SSL_SENDFILE, SSL_R_PROTOCOL_IS_SHUTDOWN); 2000 return -1; 2001 } 2002 2003 if (!BIO_get_ktls_send(s->wbio)) { 2004 SSLerr(SSL_F_SSL_SENDFILE, SSL_R_UNINITIALIZED); 2005 return -1; 2006 } 2007 2008 /* If we have an alert to send, lets send it */ 2009 if (s->s3->alert_dispatch) { 2010 ret = (ossl_ssize_t)s->method->ssl_dispatch_alert(s); 2011 if (ret <= 0) { 2012 /* SSLfatal() already called if appropriate */ 2013 return ret; 2014 } 2015 /* if it went, fall through and send more stuff */ 2016 } 2017 2018 s->rwstate = SSL_WRITING; 2019 if (BIO_flush(s->wbio) <= 0) { 2020 if (!BIO_should_retry(s->wbio)) { 2021 s->rwstate = SSL_NOTHING; 2022 } else { 2023 #ifdef EAGAIN 2024 set_sys_error(EAGAIN); 2025 #endif 2026 } 2027 return -1; 2028 } 2029 2030 #ifdef OPENSSL_NO_KTLS 2031 SYSerr(SSL_F_SSL_SENDFILE, ERR_R_INTERNAL_ERROR); 2032 ERR_add_error_data(1, "calling sendfile()"); 2033 return -1; 2034 #else 2035 ret = ktls_sendfile(SSL_get_wfd(s), fd, offset, size, flags); 2036 if (ret < 0) { 2037 #if defined(EAGAIN) && defined(EINTR) && defined(EBUSY) 2038 if ((get_last_sys_error() == EAGAIN) || 2039 (get_last_sys_error() == EINTR) || 2040 (get_last_sys_error() == EBUSY)) 2041 BIO_set_retry_write(s->wbio); 2042 else 2043 #endif 2044 SSLerr(SSL_F_SSL_SENDFILE, SSL_R_UNINITIALIZED); 2045 return ret; 2046 } 2047 s->rwstate = SSL_NOTHING; 2048 return ret; 2049 #endif 2050 } 2051 2052 int SSL_write(SSL *s, const void *buf, int num) 2053 { 2054 int ret; 2055 size_t written; 2056 2057 if (num < 0) { 2058 SSLerr(SSL_F_SSL_WRITE, SSL_R_BAD_LENGTH); 2059 return -1; 2060 } 2061 2062 ret = ssl_write_internal(s, buf, (size_t)num, &written); 2063 2064 /* 2065 * The cast is safe here because ret should be <= INT_MAX because num is 2066 * <= INT_MAX 2067 */ 2068 if (ret > 0) 2069 ret = (int)written; 2070 2071 return ret; 2072 } 2073 2074 int SSL_write_ex(SSL *s, const void *buf, size_t num, size_t *written) 2075 { 2076 int ret = ssl_write_internal(s, buf, num, written); 2077 2078 if (ret < 0) 2079 ret = 0; 2080 return ret; 2081 } 2082 2083 int SSL_write_early_data(SSL *s, const void *buf, size_t num, size_t *written) 2084 { 2085 int ret, early_data_state; 2086 size_t writtmp; 2087 uint32_t partialwrite; 2088 2089 switch (s->early_data_state) { 2090 case SSL_EARLY_DATA_NONE: 2091 if (s->server 2092 || !SSL_in_before(s) 2093 || ((s->session == NULL || s->session->ext.max_early_data == 0) 2094 && (s->psk_use_session_cb == NULL))) { 2095 SSLerr(SSL_F_SSL_WRITE_EARLY_DATA, 2096 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 2097 return 0; 2098 } 2099 /* fall through */ 2100 2101 case SSL_EARLY_DATA_CONNECT_RETRY: 2102 s->early_data_state = SSL_EARLY_DATA_CONNECTING; 2103 ret = SSL_connect(s); 2104 if (ret <= 0) { 2105 /* NBIO or error */ 2106 s->early_data_state = SSL_EARLY_DATA_CONNECT_RETRY; 2107 return 0; 2108 } 2109 /* fall through */ 2110 2111 case SSL_EARLY_DATA_WRITE_RETRY: 2112 s->early_data_state = SSL_EARLY_DATA_WRITING; 2113 /* 2114 * We disable partial write for early data because we don't keep track 2115 * of how many bytes we've written between the SSL_write_ex() call and 2116 * the flush if the flush needs to be retried) 2117 */ 2118 partialwrite = s->mode & SSL_MODE_ENABLE_PARTIAL_WRITE; 2119 s->mode &= ~SSL_MODE_ENABLE_PARTIAL_WRITE; 2120 ret = SSL_write_ex(s, buf, num, &writtmp); 2121 s->mode |= partialwrite; 2122 if (!ret) { 2123 s->early_data_state = SSL_EARLY_DATA_WRITE_RETRY; 2124 return ret; 2125 } 2126 s->early_data_state = SSL_EARLY_DATA_WRITE_FLUSH; 2127 /* fall through */ 2128 2129 case SSL_EARLY_DATA_WRITE_FLUSH: 2130 /* The buffering BIO is still in place so we need to flush it */ 2131 if (statem_flush(s) != 1) 2132 return 0; 2133 *written = num; 2134 s->early_data_state = SSL_EARLY_DATA_WRITE_RETRY; 2135 return 1; 2136 2137 case SSL_EARLY_DATA_FINISHED_READING: 2138 case SSL_EARLY_DATA_READ_RETRY: 2139 early_data_state = s->early_data_state; 2140 /* We are a server writing to an unauthenticated client */ 2141 s->early_data_state = SSL_EARLY_DATA_UNAUTH_WRITING; 2142 ret = SSL_write_ex(s, buf, num, written); 2143 /* The buffering BIO is still in place */ 2144 if (ret) 2145 (void)BIO_flush(s->wbio); 2146 s->early_data_state = early_data_state; 2147 return ret; 2148 2149 default: 2150 SSLerr(SSL_F_SSL_WRITE_EARLY_DATA, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 2151 return 0; 2152 } 2153 } 2154 2155 int SSL_shutdown(SSL *s) 2156 { 2157 /* 2158 * Note that this function behaves differently from what one might 2159 * expect. Return values are 0 for no success (yet), 1 for success; but 2160 * calling it once is usually not enough, even if blocking I/O is used 2161 * (see ssl3_shutdown). 2162 */ 2163 2164 if (s->handshake_func == NULL) { 2165 SSLerr(SSL_F_SSL_SHUTDOWN, SSL_R_UNINITIALIZED); 2166 return -1; 2167 } 2168 2169 if (!SSL_in_init(s)) { 2170 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) { 2171 struct ssl_async_args args; 2172 2173 args.s = s; 2174 args.type = OTHERFUNC; 2175 args.f.func_other = s->method->ssl_shutdown; 2176 2177 return ssl_start_async_job(s, &args, ssl_io_intern); 2178 } else { 2179 return s->method->ssl_shutdown(s); 2180 } 2181 } else { 2182 SSLerr(SSL_F_SSL_SHUTDOWN, SSL_R_SHUTDOWN_WHILE_IN_INIT); 2183 return -1; 2184 } 2185 } 2186 2187 int SSL_key_update(SSL *s, int updatetype) 2188 { 2189 /* 2190 * TODO(TLS1.3): How will applications know whether TLSv1.3 has been 2191 * negotiated, and that it is appropriate to call SSL_key_update() instead 2192 * of SSL_renegotiate(). 2193 */ 2194 if (!SSL_IS_TLS13(s)) { 2195 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_WRONG_SSL_VERSION); 2196 return 0; 2197 } 2198 2199 if (updatetype != SSL_KEY_UPDATE_NOT_REQUESTED 2200 && updatetype != SSL_KEY_UPDATE_REQUESTED) { 2201 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_INVALID_KEY_UPDATE_TYPE); 2202 return 0; 2203 } 2204 2205 if (!SSL_is_init_finished(s)) { 2206 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_STILL_IN_INIT); 2207 return 0; 2208 } 2209 2210 if (RECORD_LAYER_write_pending(&s->rlayer)) { 2211 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_BAD_WRITE_RETRY); 2212 return 0; 2213 } 2214 2215 ossl_statem_set_in_init(s, 1); 2216 s->key_update = updatetype; 2217 return 1; 2218 } 2219 2220 int SSL_get_key_update_type(const SSL *s) 2221 { 2222 return s->key_update; 2223 } 2224 2225 int SSL_renegotiate(SSL *s) 2226 { 2227 if (SSL_IS_TLS13(s)) { 2228 SSLerr(SSL_F_SSL_RENEGOTIATE, SSL_R_WRONG_SSL_VERSION); 2229 return 0; 2230 } 2231 2232 if ((s->options & SSL_OP_NO_RENEGOTIATION)) { 2233 SSLerr(SSL_F_SSL_RENEGOTIATE, SSL_R_NO_RENEGOTIATION); 2234 return 0; 2235 } 2236 2237 s->renegotiate = 1; 2238 s->new_session = 1; 2239 2240 return s->method->ssl_renegotiate(s); 2241 } 2242 2243 int SSL_renegotiate_abbreviated(SSL *s) 2244 { 2245 if (SSL_IS_TLS13(s)) { 2246 SSLerr(SSL_F_SSL_RENEGOTIATE_ABBREVIATED, SSL_R_WRONG_SSL_VERSION); 2247 return 0; 2248 } 2249 2250 if ((s->options & SSL_OP_NO_RENEGOTIATION)) { 2251 SSLerr(SSL_F_SSL_RENEGOTIATE_ABBREVIATED, SSL_R_NO_RENEGOTIATION); 2252 return 0; 2253 } 2254 2255 s->renegotiate = 1; 2256 s->new_session = 0; 2257 2258 return s->method->ssl_renegotiate(s); 2259 } 2260 2261 int SSL_renegotiate_pending(const SSL *s) 2262 { 2263 /* 2264 * becomes true when negotiation is requested; false again once a 2265 * handshake has finished 2266 */ 2267 return (s->renegotiate != 0); 2268 } 2269 2270 long SSL_ctrl(SSL *s, int cmd, long larg, void *parg) 2271 { 2272 long l; 2273 2274 switch (cmd) { 2275 case SSL_CTRL_GET_READ_AHEAD: 2276 return RECORD_LAYER_get_read_ahead(&s->rlayer); 2277 case SSL_CTRL_SET_READ_AHEAD: 2278 l = RECORD_LAYER_get_read_ahead(&s->rlayer); 2279 RECORD_LAYER_set_read_ahead(&s->rlayer, larg); 2280 return l; 2281 2282 case SSL_CTRL_SET_MSG_CALLBACK_ARG: 2283 s->msg_callback_arg = parg; 2284 return 1; 2285 2286 case SSL_CTRL_MODE: 2287 return (s->mode |= larg); 2288 case SSL_CTRL_CLEAR_MODE: 2289 return (s->mode &= ~larg); 2290 case SSL_CTRL_GET_MAX_CERT_LIST: 2291 return (long)s->max_cert_list; 2292 case SSL_CTRL_SET_MAX_CERT_LIST: 2293 if (larg < 0) 2294 return 0; 2295 l = (long)s->max_cert_list; 2296 s->max_cert_list = (size_t)larg; 2297 return l; 2298 case SSL_CTRL_SET_MAX_SEND_FRAGMENT: 2299 if (larg < 512 || larg > SSL3_RT_MAX_PLAIN_LENGTH) 2300 return 0; 2301 #ifndef OPENSSL_NO_KTLS 2302 if (s->wbio != NULL && BIO_get_ktls_send(s->wbio)) 2303 return 0; 2304 #endif /* OPENSSL_NO_KTLS */ 2305 s->max_send_fragment = larg; 2306 if (s->max_send_fragment < s->split_send_fragment) 2307 s->split_send_fragment = s->max_send_fragment; 2308 return 1; 2309 case SSL_CTRL_SET_SPLIT_SEND_FRAGMENT: 2310 if ((size_t)larg > s->max_send_fragment || larg == 0) 2311 return 0; 2312 s->split_send_fragment = larg; 2313 return 1; 2314 case SSL_CTRL_SET_MAX_PIPELINES: 2315 if (larg < 1 || larg > SSL_MAX_PIPELINES) 2316 return 0; 2317 s->max_pipelines = larg; 2318 if (larg > 1) 2319 RECORD_LAYER_set_read_ahead(&s->rlayer, 1); 2320 return 1; 2321 case SSL_CTRL_GET_RI_SUPPORT: 2322 if (s->s3) 2323 return s->s3->send_connection_binding; 2324 else 2325 return 0; 2326 case SSL_CTRL_CERT_FLAGS: 2327 return (s->cert->cert_flags |= larg); 2328 case SSL_CTRL_CLEAR_CERT_FLAGS: 2329 return (s->cert->cert_flags &= ~larg); 2330 2331 case SSL_CTRL_GET_RAW_CIPHERLIST: 2332 if (parg) { 2333 if (s->s3->tmp.ciphers_raw == NULL) 2334 return 0; 2335 *(unsigned char **)parg = s->s3->tmp.ciphers_raw; 2336 return (int)s->s3->tmp.ciphers_rawlen; 2337 } else { 2338 return TLS_CIPHER_LEN; 2339 } 2340 case SSL_CTRL_GET_EXTMS_SUPPORT: 2341 if (!s->session || SSL_in_init(s) || ossl_statem_get_in_handshake(s)) 2342 return -1; 2343 if (s->session->flags & SSL_SESS_FLAG_EXTMS) 2344 return 1; 2345 else 2346 return 0; 2347 case SSL_CTRL_SET_MIN_PROTO_VERSION: 2348 return ssl_check_allowed_versions(larg, s->max_proto_version) 2349 && ssl_set_version_bound(s->ctx->method->version, (int)larg, 2350 &s->min_proto_version); 2351 case SSL_CTRL_GET_MIN_PROTO_VERSION: 2352 return s->min_proto_version; 2353 case SSL_CTRL_SET_MAX_PROTO_VERSION: 2354 return ssl_check_allowed_versions(s->min_proto_version, larg) 2355 && ssl_set_version_bound(s->ctx->method->version, (int)larg, 2356 &s->max_proto_version); 2357 case SSL_CTRL_GET_MAX_PROTO_VERSION: 2358 return s->max_proto_version; 2359 default: 2360 return s->method->ssl_ctrl(s, cmd, larg, parg); 2361 } 2362 } 2363 2364 long SSL_callback_ctrl(SSL *s, int cmd, void (*fp) (void)) 2365 { 2366 switch (cmd) { 2367 case SSL_CTRL_SET_MSG_CALLBACK: 2368 s->msg_callback = (void (*) 2369 (int write_p, int version, int content_type, 2370 const void *buf, size_t len, SSL *ssl, 2371 void *arg))(fp); 2372 return 1; 2373 2374 default: 2375 return s->method->ssl_callback_ctrl(s, cmd, fp); 2376 } 2377 } 2378 2379 LHASH_OF(SSL_SESSION) *SSL_CTX_sessions(SSL_CTX *ctx) 2380 { 2381 return ctx->sessions; 2382 } 2383 2384 long SSL_CTX_ctrl(SSL_CTX *ctx, int cmd, long larg, void *parg) 2385 { 2386 long l; 2387 /* For some cases with ctx == NULL perform syntax checks */ 2388 if (ctx == NULL) { 2389 switch (cmd) { 2390 #ifndef OPENSSL_NO_EC 2391 case SSL_CTRL_SET_GROUPS_LIST: 2392 return tls1_set_groups_list(NULL, NULL, parg); 2393 #endif 2394 case SSL_CTRL_SET_SIGALGS_LIST: 2395 case SSL_CTRL_SET_CLIENT_SIGALGS_LIST: 2396 return tls1_set_sigalgs_list(NULL, parg, 0); 2397 default: 2398 return 0; 2399 } 2400 } 2401 2402 switch (cmd) { 2403 case SSL_CTRL_GET_READ_AHEAD: 2404 return ctx->read_ahead; 2405 case SSL_CTRL_SET_READ_AHEAD: 2406 l = ctx->read_ahead; 2407 ctx->read_ahead = larg; 2408 return l; 2409 2410 case SSL_CTRL_SET_MSG_CALLBACK_ARG: 2411 ctx->msg_callback_arg = parg; 2412 return 1; 2413 2414 case SSL_CTRL_GET_MAX_CERT_LIST: 2415 return (long)ctx->max_cert_list; 2416 case SSL_CTRL_SET_MAX_CERT_LIST: 2417 if (larg < 0) 2418 return 0; 2419 l = (long)ctx->max_cert_list; 2420 ctx->max_cert_list = (size_t)larg; 2421 return l; 2422 2423 case SSL_CTRL_SET_SESS_CACHE_SIZE: 2424 if (larg < 0) 2425 return 0; 2426 l = (long)ctx->session_cache_size; 2427 ctx->session_cache_size = (size_t)larg; 2428 return l; 2429 case SSL_CTRL_GET_SESS_CACHE_SIZE: 2430 return (long)ctx->session_cache_size; 2431 case SSL_CTRL_SET_SESS_CACHE_MODE: 2432 l = ctx->session_cache_mode; 2433 ctx->session_cache_mode = larg; 2434 return l; 2435 case SSL_CTRL_GET_SESS_CACHE_MODE: 2436 return ctx->session_cache_mode; 2437 2438 case SSL_CTRL_SESS_NUMBER: 2439 return lh_SSL_SESSION_num_items(ctx->sessions); 2440 case SSL_CTRL_SESS_CONNECT: 2441 return tsan_load(&ctx->stats.sess_connect); 2442 case SSL_CTRL_SESS_CONNECT_GOOD: 2443 return tsan_load(&ctx->stats.sess_connect_good); 2444 case SSL_CTRL_SESS_CONNECT_RENEGOTIATE: 2445 return tsan_load(&ctx->stats.sess_connect_renegotiate); 2446 case SSL_CTRL_SESS_ACCEPT: 2447 return tsan_load(&ctx->stats.sess_accept); 2448 case SSL_CTRL_SESS_ACCEPT_GOOD: 2449 return tsan_load(&ctx->stats.sess_accept_good); 2450 case SSL_CTRL_SESS_ACCEPT_RENEGOTIATE: 2451 return tsan_load(&ctx->stats.sess_accept_renegotiate); 2452 case SSL_CTRL_SESS_HIT: 2453 return tsan_load(&ctx->stats.sess_hit); 2454 case SSL_CTRL_SESS_CB_HIT: 2455 return tsan_load(&ctx->stats.sess_cb_hit); 2456 case SSL_CTRL_SESS_MISSES: 2457 return tsan_load(&ctx->stats.sess_miss); 2458 case SSL_CTRL_SESS_TIMEOUTS: 2459 return tsan_load(&ctx->stats.sess_timeout); 2460 case SSL_CTRL_SESS_CACHE_FULL: 2461 return tsan_load(&ctx->stats.sess_cache_full); 2462 case SSL_CTRL_MODE: 2463 return (ctx->mode |= larg); 2464 case SSL_CTRL_CLEAR_MODE: 2465 return (ctx->mode &= ~larg); 2466 case SSL_CTRL_SET_MAX_SEND_FRAGMENT: 2467 if (larg < 512 || larg > SSL3_RT_MAX_PLAIN_LENGTH) 2468 return 0; 2469 ctx->max_send_fragment = larg; 2470 if (ctx->max_send_fragment < ctx->split_send_fragment) 2471 ctx->split_send_fragment = ctx->max_send_fragment; 2472 return 1; 2473 case SSL_CTRL_SET_SPLIT_SEND_FRAGMENT: 2474 if ((size_t)larg > ctx->max_send_fragment || larg == 0) 2475 return 0; 2476 ctx->split_send_fragment = larg; 2477 return 1; 2478 case SSL_CTRL_SET_MAX_PIPELINES: 2479 if (larg < 1 || larg > SSL_MAX_PIPELINES) 2480 return 0; 2481 ctx->max_pipelines = larg; 2482 return 1; 2483 case SSL_CTRL_CERT_FLAGS: 2484 return (ctx->cert->cert_flags |= larg); 2485 case SSL_CTRL_CLEAR_CERT_FLAGS: 2486 return (ctx->cert->cert_flags &= ~larg); 2487 case SSL_CTRL_SET_MIN_PROTO_VERSION: 2488 return ssl_check_allowed_versions(larg, ctx->max_proto_version) 2489 && ssl_set_version_bound(ctx->method->version, (int)larg, 2490 &ctx->min_proto_version); 2491 case SSL_CTRL_GET_MIN_PROTO_VERSION: 2492 return ctx->min_proto_version; 2493 case SSL_CTRL_SET_MAX_PROTO_VERSION: 2494 return ssl_check_allowed_versions(ctx->min_proto_version, larg) 2495 && ssl_set_version_bound(ctx->method->version, (int)larg, 2496 &ctx->max_proto_version); 2497 case SSL_CTRL_GET_MAX_PROTO_VERSION: 2498 return ctx->max_proto_version; 2499 default: 2500 return ctx->method->ssl_ctx_ctrl(ctx, cmd, larg, parg); 2501 } 2502 } 2503 2504 long SSL_CTX_callback_ctrl(SSL_CTX *ctx, int cmd, void (*fp) (void)) 2505 { 2506 switch (cmd) { 2507 case SSL_CTRL_SET_MSG_CALLBACK: 2508 ctx->msg_callback = (void (*) 2509 (int write_p, int version, int content_type, 2510 const void *buf, size_t len, SSL *ssl, 2511 void *arg))(fp); 2512 return 1; 2513 2514 default: 2515 return ctx->method->ssl_ctx_callback_ctrl(ctx, cmd, fp); 2516 } 2517 } 2518 2519 int ssl_cipher_id_cmp(const SSL_CIPHER *a, const SSL_CIPHER *b) 2520 { 2521 if (a->id > b->id) 2522 return 1; 2523 if (a->id < b->id) 2524 return -1; 2525 return 0; 2526 } 2527 2528 int ssl_cipher_ptr_id_cmp(const SSL_CIPHER *const *ap, 2529 const SSL_CIPHER *const *bp) 2530 { 2531 if ((*ap)->id > (*bp)->id) 2532 return 1; 2533 if ((*ap)->id < (*bp)->id) 2534 return -1; 2535 return 0; 2536 } 2537 2538 /** return a STACK of the ciphers available for the SSL and in order of 2539 * preference */ 2540 STACK_OF(SSL_CIPHER) *SSL_get_ciphers(const SSL *s) 2541 { 2542 if (s != NULL) { 2543 if (s->cipher_list != NULL) { 2544 return s->cipher_list; 2545 } else if ((s->ctx != NULL) && (s->ctx->cipher_list != NULL)) { 2546 return s->ctx->cipher_list; 2547 } 2548 } 2549 return NULL; 2550 } 2551 2552 STACK_OF(SSL_CIPHER) *SSL_get_client_ciphers(const SSL *s) 2553 { 2554 if ((s == NULL) || !s->server) 2555 return NULL; 2556 return s->peer_ciphers; 2557 } 2558 2559 STACK_OF(SSL_CIPHER) *SSL_get1_supported_ciphers(SSL *s) 2560 { 2561 STACK_OF(SSL_CIPHER) *sk = NULL, *ciphers; 2562 int i; 2563 2564 ciphers = SSL_get_ciphers(s); 2565 if (!ciphers) 2566 return NULL; 2567 if (!ssl_set_client_disabled(s)) 2568 return NULL; 2569 for (i = 0; i < sk_SSL_CIPHER_num(ciphers); i++) { 2570 const SSL_CIPHER *c = sk_SSL_CIPHER_value(ciphers, i); 2571 if (!ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0)) { 2572 if (!sk) 2573 sk = sk_SSL_CIPHER_new_null(); 2574 if (!sk) 2575 return NULL; 2576 if (!sk_SSL_CIPHER_push(sk, c)) { 2577 sk_SSL_CIPHER_free(sk); 2578 return NULL; 2579 } 2580 } 2581 } 2582 return sk; 2583 } 2584 2585 /** return a STACK of the ciphers available for the SSL and in order of 2586 * algorithm id */ 2587 STACK_OF(SSL_CIPHER) *ssl_get_ciphers_by_id(SSL *s) 2588 { 2589 if (s != NULL) { 2590 if (s->cipher_list_by_id != NULL) { 2591 return s->cipher_list_by_id; 2592 } else if ((s->ctx != NULL) && (s->ctx->cipher_list_by_id != NULL)) { 2593 return s->ctx->cipher_list_by_id; 2594 } 2595 } 2596 return NULL; 2597 } 2598 2599 /** The old interface to get the same thing as SSL_get_ciphers() */ 2600 const char *SSL_get_cipher_list(const SSL *s, int n) 2601 { 2602 const SSL_CIPHER *c; 2603 STACK_OF(SSL_CIPHER) *sk; 2604 2605 if (s == NULL) 2606 return NULL; 2607 sk = SSL_get_ciphers(s); 2608 if ((sk == NULL) || (sk_SSL_CIPHER_num(sk) <= n)) 2609 return NULL; 2610 c = sk_SSL_CIPHER_value(sk, n); 2611 if (c == NULL) 2612 return NULL; 2613 return c->name; 2614 } 2615 2616 /** return a STACK of the ciphers available for the SSL_CTX and in order of 2617 * preference */ 2618 STACK_OF(SSL_CIPHER) *SSL_CTX_get_ciphers(const SSL_CTX *ctx) 2619 { 2620 if (ctx != NULL) 2621 return ctx->cipher_list; 2622 return NULL; 2623 } 2624 2625 /* 2626 * Distinguish between ciphers controlled by set_ciphersuite() and 2627 * set_cipher_list() when counting. 2628 */ 2629 static int cipher_list_tls12_num(STACK_OF(SSL_CIPHER) *sk) 2630 { 2631 int i, num = 0; 2632 const SSL_CIPHER *c; 2633 2634 if (sk == NULL) 2635 return 0; 2636 for (i = 0; i < sk_SSL_CIPHER_num(sk); ++i) { 2637 c = sk_SSL_CIPHER_value(sk, i); 2638 if (c->min_tls >= TLS1_3_VERSION) 2639 continue; 2640 num++; 2641 } 2642 return num; 2643 } 2644 2645 /** specify the ciphers to be used by default by the SSL_CTX */ 2646 int SSL_CTX_set_cipher_list(SSL_CTX *ctx, const char *str) 2647 { 2648 STACK_OF(SSL_CIPHER) *sk; 2649 2650 sk = ssl_create_cipher_list(ctx->method, ctx->tls13_ciphersuites, 2651 &ctx->cipher_list, &ctx->cipher_list_by_id, str, 2652 ctx->cert); 2653 /* 2654 * ssl_create_cipher_list may return an empty stack if it was unable to 2655 * find a cipher matching the given rule string (for example if the rule 2656 * string specifies a cipher which has been disabled). This is not an 2657 * error as far as ssl_create_cipher_list is concerned, and hence 2658 * ctx->cipher_list and ctx->cipher_list_by_id has been updated. 2659 */ 2660 if (sk == NULL) 2661 return 0; 2662 else if (cipher_list_tls12_num(sk) == 0) { 2663 SSLerr(SSL_F_SSL_CTX_SET_CIPHER_LIST, SSL_R_NO_CIPHER_MATCH); 2664 return 0; 2665 } 2666 return 1; 2667 } 2668 2669 /** specify the ciphers to be used by the SSL */ 2670 int SSL_set_cipher_list(SSL *s, const char *str) 2671 { 2672 STACK_OF(SSL_CIPHER) *sk; 2673 2674 sk = ssl_create_cipher_list(s->ctx->method, s->tls13_ciphersuites, 2675 &s->cipher_list, &s->cipher_list_by_id, str, 2676 s->cert); 2677 /* see comment in SSL_CTX_set_cipher_list */ 2678 if (sk == NULL) 2679 return 0; 2680 else if (cipher_list_tls12_num(sk) == 0) { 2681 SSLerr(SSL_F_SSL_SET_CIPHER_LIST, SSL_R_NO_CIPHER_MATCH); 2682 return 0; 2683 } 2684 return 1; 2685 } 2686 2687 char *SSL_get_shared_ciphers(const SSL *s, char *buf, int size) 2688 { 2689 char *p; 2690 STACK_OF(SSL_CIPHER) *clntsk, *srvrsk; 2691 const SSL_CIPHER *c; 2692 int i; 2693 2694 if (!s->server 2695 || s->peer_ciphers == NULL 2696 || size < 2) 2697 return NULL; 2698 2699 p = buf; 2700 clntsk = s->peer_ciphers; 2701 srvrsk = SSL_get_ciphers(s); 2702 if (clntsk == NULL || srvrsk == NULL) 2703 return NULL; 2704 2705 if (sk_SSL_CIPHER_num(clntsk) == 0 || sk_SSL_CIPHER_num(srvrsk) == 0) 2706 return NULL; 2707 2708 for (i = 0; i < sk_SSL_CIPHER_num(clntsk); i++) { 2709 int n; 2710 2711 c = sk_SSL_CIPHER_value(clntsk, i); 2712 if (sk_SSL_CIPHER_find(srvrsk, c) < 0) 2713 continue; 2714 2715 n = strlen(c->name); 2716 if (n + 1 > size) { 2717 if (p != buf) 2718 --p; 2719 *p = '\0'; 2720 return buf; 2721 } 2722 strcpy(p, c->name); 2723 p += n; 2724 *(p++) = ':'; 2725 size -= n + 1; 2726 } 2727 p[-1] = '\0'; 2728 return buf; 2729 } 2730 2731 /** 2732 * Return the requested servername (SNI) value. Note that the behaviour varies 2733 * depending on: 2734 * - whether this is called by the client or the server, 2735 * - if we are before or during/after the handshake, 2736 * - if a resumption or normal handshake is being attempted/has occurred 2737 * - whether we have negotiated TLSv1.2 (or below) or TLSv1.3 2738 * 2739 * Note that only the host_name type is defined (RFC 3546). 2740 */ 2741 const char *SSL_get_servername(const SSL *s, const int type) 2742 { 2743 /* 2744 * If we don't know if we are the client or the server yet then we assume 2745 * client. 2746 */ 2747 int server = s->handshake_func == NULL ? 0 : s->server; 2748 if (type != TLSEXT_NAMETYPE_host_name) 2749 return NULL; 2750 2751 if (server) { 2752 /** 2753 * Server side 2754 * In TLSv1.3 on the server SNI is not associated with the session 2755 * but in TLSv1.2 or below it is. 2756 * 2757 * Before the handshake: 2758 * - return NULL 2759 * 2760 * During/after the handshake (TLSv1.2 or below resumption occurred): 2761 * - If a servername was accepted by the server in the original 2762 * handshake then it will return that servername, or NULL otherwise. 2763 * 2764 * During/after the handshake (TLSv1.2 or below resumption did not occur): 2765 * - The function will return the servername requested by the client in 2766 * this handshake or NULL if none was requested. 2767 */ 2768 if (s->hit && !SSL_IS_TLS13(s)) 2769 return s->session->ext.hostname; 2770 } else { 2771 /** 2772 * Client side 2773 * 2774 * Before the handshake: 2775 * - If a servername has been set via a call to 2776 * SSL_set_tlsext_host_name() then it will return that servername 2777 * - If one has not been set, but a TLSv1.2 resumption is being 2778 * attempted and the session from the original handshake had a 2779 * servername accepted by the server then it will return that 2780 * servername 2781 * - Otherwise it returns NULL 2782 * 2783 * During/after the handshake (TLSv1.2 or below resumption occurred): 2784 * - If the session from the original handshake had a servername accepted 2785 * by the server then it will return that servername. 2786 * - Otherwise it returns the servername set via 2787 * SSL_set_tlsext_host_name() (or NULL if it was not called). 2788 * 2789 * During/after the handshake (TLSv1.2 or below resumption did not occur): 2790 * - It will return the servername set via SSL_set_tlsext_host_name() 2791 * (or NULL if it was not called). 2792 */ 2793 if (SSL_in_before(s)) { 2794 if (s->ext.hostname == NULL 2795 && s->session != NULL 2796 && s->session->ssl_version != TLS1_3_VERSION) 2797 return s->session->ext.hostname; 2798 } else { 2799 if (!SSL_IS_TLS13(s) && s->hit && s->session->ext.hostname != NULL) 2800 return s->session->ext.hostname; 2801 } 2802 } 2803 2804 return s->ext.hostname; 2805 } 2806 2807 int SSL_get_servername_type(const SSL *s) 2808 { 2809 if (SSL_get_servername(s, TLSEXT_NAMETYPE_host_name) != NULL) 2810 return TLSEXT_NAMETYPE_host_name; 2811 return -1; 2812 } 2813 2814 /* 2815 * SSL_select_next_proto implements the standard protocol selection. It is 2816 * expected that this function is called from the callback set by 2817 * SSL_CTX_set_next_proto_select_cb. The protocol data is assumed to be a 2818 * vector of 8-bit, length prefixed byte strings. The length byte itself is 2819 * not included in the length. A byte string of length 0 is invalid. No byte 2820 * string may be truncated. The current, but experimental algorithm for 2821 * selecting the protocol is: 1) If the server doesn't support NPN then this 2822 * is indicated to the callback. In this case, the client application has to 2823 * abort the connection or have a default application level protocol. 2) If 2824 * the server supports NPN, but advertises an empty list then the client 2825 * selects the first protocol in its list, but indicates via the API that this 2826 * fallback case was enacted. 3) Otherwise, the client finds the first 2827 * protocol in the server's list that it supports and selects this protocol. 2828 * This is because it's assumed that the server has better information about 2829 * which protocol a client should use. 4) If the client doesn't support any 2830 * of the server's advertised protocols, then this is treated the same as 2831 * case 2. It returns either OPENSSL_NPN_NEGOTIATED if a common protocol was 2832 * found, or OPENSSL_NPN_NO_OVERLAP if the fallback case was reached. 2833 */ 2834 int SSL_select_next_proto(unsigned char **out, unsigned char *outlen, 2835 const unsigned char *server, 2836 unsigned int server_len, 2837 const unsigned char *client, unsigned int client_len) 2838 { 2839 unsigned int i, j; 2840 const unsigned char *result; 2841 int status = OPENSSL_NPN_UNSUPPORTED; 2842 2843 /* 2844 * For each protocol in server preference order, see if we support it. 2845 */ 2846 for (i = 0; i < server_len;) { 2847 for (j = 0; j < client_len;) { 2848 if (server[i] == client[j] && 2849 memcmp(&server[i + 1], &client[j + 1], server[i]) == 0) { 2850 /* We found a match */ 2851 result = &server[i]; 2852 status = OPENSSL_NPN_NEGOTIATED; 2853 goto found; 2854 } 2855 j += client[j]; 2856 j++; 2857 } 2858 i += server[i]; 2859 i++; 2860 } 2861 2862 /* There's no overlap between our protocols and the server's list. */ 2863 result = client; 2864 status = OPENSSL_NPN_NO_OVERLAP; 2865 2866 found: 2867 *out = (unsigned char *)result + 1; 2868 *outlen = result[0]; 2869 return status; 2870 } 2871 2872 #ifndef OPENSSL_NO_NEXTPROTONEG 2873 /* 2874 * SSL_get0_next_proto_negotiated sets *data and *len to point to the 2875 * client's requested protocol for this connection and returns 0. If the 2876 * client didn't request any protocol, then *data is set to NULL. Note that 2877 * the client can request any protocol it chooses. The value returned from 2878 * this function need not be a member of the list of supported protocols 2879 * provided by the callback. 2880 */ 2881 void SSL_get0_next_proto_negotiated(const SSL *s, const unsigned char **data, 2882 unsigned *len) 2883 { 2884 *data = s->ext.npn; 2885 if (!*data) { 2886 *len = 0; 2887 } else { 2888 *len = (unsigned int)s->ext.npn_len; 2889 } 2890 } 2891 2892 /* 2893 * SSL_CTX_set_npn_advertised_cb sets a callback that is called when 2894 * a TLS server needs a list of supported protocols for Next Protocol 2895 * Negotiation. The returned list must be in wire format. The list is 2896 * returned by setting |out| to point to it and |outlen| to its length. This 2897 * memory will not be modified, but one should assume that the SSL* keeps a 2898 * reference to it. The callback should return SSL_TLSEXT_ERR_OK if it 2899 * wishes to advertise. Otherwise, no such extension will be included in the 2900 * ServerHello. 2901 */ 2902 void SSL_CTX_set_npn_advertised_cb(SSL_CTX *ctx, 2903 SSL_CTX_npn_advertised_cb_func cb, 2904 void *arg) 2905 { 2906 ctx->ext.npn_advertised_cb = cb; 2907 ctx->ext.npn_advertised_cb_arg = arg; 2908 } 2909 2910 /* 2911 * SSL_CTX_set_next_proto_select_cb sets a callback that is called when a 2912 * client needs to select a protocol from the server's provided list. |out| 2913 * must be set to point to the selected protocol (which may be within |in|). 2914 * The length of the protocol name must be written into |outlen|. The 2915 * server's advertised protocols are provided in |in| and |inlen|. The 2916 * callback can assume that |in| is syntactically valid. The client must 2917 * select a protocol. It is fatal to the connection if this callback returns 2918 * a value other than SSL_TLSEXT_ERR_OK. 2919 */ 2920 void SSL_CTX_set_npn_select_cb(SSL_CTX *ctx, 2921 SSL_CTX_npn_select_cb_func cb, 2922 void *arg) 2923 { 2924 ctx->ext.npn_select_cb = cb; 2925 ctx->ext.npn_select_cb_arg = arg; 2926 } 2927 #endif 2928 2929 static int alpn_value_ok(const unsigned char *protos, unsigned int protos_len) 2930 { 2931 unsigned int idx; 2932 2933 if (protos_len < 2 || protos == NULL) 2934 return 0; 2935 2936 for (idx = 0; idx < protos_len; idx += protos[idx] + 1) { 2937 if (protos[idx] == 0) 2938 return 0; 2939 } 2940 return idx == protos_len; 2941 } 2942 /* 2943 * SSL_CTX_set_alpn_protos sets the ALPN protocol list on |ctx| to |protos|. 2944 * |protos| must be in wire-format (i.e. a series of non-empty, 8-bit 2945 * length-prefixed strings). Returns 0 on success. 2946 */ 2947 int SSL_CTX_set_alpn_protos(SSL_CTX *ctx, const unsigned char *protos, 2948 unsigned int protos_len) 2949 { 2950 unsigned char *alpn; 2951 2952 if (protos_len == 0 || protos == NULL) { 2953 OPENSSL_free(ctx->ext.alpn); 2954 ctx->ext.alpn = NULL; 2955 ctx->ext.alpn_len = 0; 2956 return 0; 2957 } 2958 /* Not valid per RFC */ 2959 if (!alpn_value_ok(protos, protos_len)) 2960 return 1; 2961 2962 alpn = OPENSSL_memdup(protos, protos_len); 2963 if (alpn == NULL) { 2964 SSLerr(SSL_F_SSL_CTX_SET_ALPN_PROTOS, ERR_R_MALLOC_FAILURE); 2965 return 1; 2966 } 2967 OPENSSL_free(ctx->ext.alpn); 2968 ctx->ext.alpn = alpn; 2969 ctx->ext.alpn_len = protos_len; 2970 2971 return 0; 2972 } 2973 2974 /* 2975 * SSL_set_alpn_protos sets the ALPN protocol list on |ssl| to |protos|. 2976 * |protos| must be in wire-format (i.e. a series of non-empty, 8-bit 2977 * length-prefixed strings). Returns 0 on success. 2978 */ 2979 int SSL_set_alpn_protos(SSL *ssl, const unsigned char *protos, 2980 unsigned int protos_len) 2981 { 2982 unsigned char *alpn; 2983 2984 if (protos_len == 0 || protos == NULL) { 2985 OPENSSL_free(ssl->ext.alpn); 2986 ssl->ext.alpn = NULL; 2987 ssl->ext.alpn_len = 0; 2988 return 0; 2989 } 2990 /* Not valid per RFC */ 2991 if (!alpn_value_ok(protos, protos_len)) 2992 return 1; 2993 2994 alpn = OPENSSL_memdup(protos, protos_len); 2995 if (alpn == NULL) { 2996 SSLerr(SSL_F_SSL_SET_ALPN_PROTOS, ERR_R_MALLOC_FAILURE); 2997 return 1; 2998 } 2999 OPENSSL_free(ssl->ext.alpn); 3000 ssl->ext.alpn = alpn; 3001 ssl->ext.alpn_len = protos_len; 3002 3003 return 0; 3004 } 3005 3006 /* 3007 * SSL_CTX_set_alpn_select_cb sets a callback function on |ctx| that is 3008 * called during ClientHello processing in order to select an ALPN protocol 3009 * from the client's list of offered protocols. 3010 */ 3011 void SSL_CTX_set_alpn_select_cb(SSL_CTX *ctx, 3012 SSL_CTX_alpn_select_cb_func cb, 3013 void *arg) 3014 { 3015 ctx->ext.alpn_select_cb = cb; 3016 ctx->ext.alpn_select_cb_arg = arg; 3017 } 3018 3019 /* 3020 * SSL_get0_alpn_selected gets the selected ALPN protocol (if any) from |ssl|. 3021 * On return it sets |*data| to point to |*len| bytes of protocol name 3022 * (not including the leading length-prefix byte). If the server didn't 3023 * respond with a negotiated protocol then |*len| will be zero. 3024 */ 3025 void SSL_get0_alpn_selected(const SSL *ssl, const unsigned char **data, 3026 unsigned int *len) 3027 { 3028 *data = NULL; 3029 if (ssl->s3) 3030 *data = ssl->s3->alpn_selected; 3031 if (*data == NULL) 3032 *len = 0; 3033 else 3034 *len = (unsigned int)ssl->s3->alpn_selected_len; 3035 } 3036 3037 int SSL_export_keying_material(SSL *s, unsigned char *out, size_t olen, 3038 const char *label, size_t llen, 3039 const unsigned char *context, size_t contextlen, 3040 int use_context) 3041 { 3042 if (s->session == NULL 3043 || (s->version < TLS1_VERSION && s->version != DTLS1_BAD_VER)) 3044 return -1; 3045 3046 return s->method->ssl3_enc->export_keying_material(s, out, olen, label, 3047 llen, context, 3048 contextlen, use_context); 3049 } 3050 3051 int SSL_export_keying_material_early(SSL *s, unsigned char *out, size_t olen, 3052 const char *label, size_t llen, 3053 const unsigned char *context, 3054 size_t contextlen) 3055 { 3056 if (s->version != TLS1_3_VERSION) 3057 return 0; 3058 3059 return tls13_export_keying_material_early(s, out, olen, label, llen, 3060 context, contextlen); 3061 } 3062 3063 static unsigned long ssl_session_hash(const SSL_SESSION *a) 3064 { 3065 const unsigned char *session_id = a->session_id; 3066 unsigned long l; 3067 unsigned char tmp_storage[4]; 3068 3069 if (a->session_id_length < sizeof(tmp_storage)) { 3070 memset(tmp_storage, 0, sizeof(tmp_storage)); 3071 memcpy(tmp_storage, a->session_id, a->session_id_length); 3072 session_id = tmp_storage; 3073 } 3074 3075 l = (unsigned long) 3076 ((unsigned long)session_id[0]) | 3077 ((unsigned long)session_id[1] << 8L) | 3078 ((unsigned long)session_id[2] << 16L) | 3079 ((unsigned long)session_id[3] << 24L); 3080 return l; 3081 } 3082 3083 /* 3084 * NB: If this function (or indeed the hash function which uses a sort of 3085 * coarser function than this one) is changed, ensure 3086 * SSL_CTX_has_matching_session_id() is checked accordingly. It relies on 3087 * being able to construct an SSL_SESSION that will collide with any existing 3088 * session with a matching session ID. 3089 */ 3090 static int ssl_session_cmp(const SSL_SESSION *a, const SSL_SESSION *b) 3091 { 3092 if (a->ssl_version != b->ssl_version) 3093 return 1; 3094 if (a->session_id_length != b->session_id_length) 3095 return 1; 3096 return memcmp(a->session_id, b->session_id, a->session_id_length); 3097 } 3098 3099 /* 3100 * These wrapper functions should remain rather than redeclaring 3101 * SSL_SESSION_hash and SSL_SESSION_cmp for void* types and casting each 3102 * variable. The reason is that the functions aren't static, they're exposed 3103 * via ssl.h. 3104 */ 3105 3106 SSL_CTX *SSL_CTX_new(const SSL_METHOD *meth) 3107 { 3108 SSL_CTX *ret = NULL; 3109 3110 if (meth == NULL) { 3111 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_NULL_SSL_METHOD_PASSED); 3112 return NULL; 3113 } 3114 3115 if (!OPENSSL_init_ssl(OPENSSL_INIT_LOAD_SSL_STRINGS, NULL)) 3116 return NULL; 3117 3118 if (SSL_get_ex_data_X509_STORE_CTX_idx() < 0) { 3119 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_X509_VERIFICATION_SETUP_PROBLEMS); 3120 goto err; 3121 } 3122 ret = OPENSSL_zalloc(sizeof(*ret)); 3123 if (ret == NULL) 3124 goto err; 3125 3126 ret->method = meth; 3127 ret->min_proto_version = 0; 3128 ret->max_proto_version = 0; 3129 ret->mode = SSL_MODE_AUTO_RETRY; 3130 ret->session_cache_mode = SSL_SESS_CACHE_SERVER; 3131 ret->session_cache_size = SSL_SESSION_CACHE_MAX_SIZE_DEFAULT; 3132 /* We take the system default. */ 3133 ret->session_timeout = meth->get_timeout(); 3134 ret->references = 1; 3135 ret->lock = CRYPTO_THREAD_lock_new(); 3136 if (ret->lock == NULL) { 3137 SSLerr(SSL_F_SSL_CTX_NEW, ERR_R_MALLOC_FAILURE); 3138 OPENSSL_free(ret); 3139 return NULL; 3140 } 3141 ret->max_cert_list = SSL_MAX_CERT_LIST_DEFAULT; 3142 ret->verify_mode = SSL_VERIFY_NONE; 3143 if ((ret->cert = ssl_cert_new()) == NULL) 3144 goto err; 3145 3146 ret->sessions = lh_SSL_SESSION_new(ssl_session_hash, ssl_session_cmp); 3147 if (ret->sessions == NULL) 3148 goto err; 3149 ret->cert_store = X509_STORE_new(); 3150 if (ret->cert_store == NULL) 3151 goto err; 3152 #ifndef OPENSSL_NO_CT 3153 ret->ctlog_store = CTLOG_STORE_new(); 3154 if (ret->ctlog_store == NULL) 3155 goto err; 3156 #endif 3157 3158 if (!SSL_CTX_set_ciphersuites(ret, TLS_DEFAULT_CIPHERSUITES)) 3159 goto err; 3160 3161 if (!ssl_create_cipher_list(ret->method, 3162 ret->tls13_ciphersuites, 3163 &ret->cipher_list, &ret->cipher_list_by_id, 3164 SSL_DEFAULT_CIPHER_LIST, ret->cert) 3165 || sk_SSL_CIPHER_num(ret->cipher_list) <= 0) { 3166 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_LIBRARY_HAS_NO_CIPHERS); 3167 goto err2; 3168 } 3169 3170 ret->param = X509_VERIFY_PARAM_new(); 3171 if (ret->param == NULL) 3172 goto err; 3173 3174 if ((ret->md5 = EVP_get_digestbyname("ssl3-md5")) == NULL) { 3175 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_UNABLE_TO_LOAD_SSL3_MD5_ROUTINES); 3176 goto err2; 3177 } 3178 if ((ret->sha1 = EVP_get_digestbyname("ssl3-sha1")) == NULL) { 3179 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_UNABLE_TO_LOAD_SSL3_SHA1_ROUTINES); 3180 goto err2; 3181 } 3182 3183 if ((ret->ca_names = sk_X509_NAME_new_null()) == NULL) 3184 goto err; 3185 3186 if ((ret->client_ca_names = sk_X509_NAME_new_null()) == NULL) 3187 goto err; 3188 3189 if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL_CTX, ret, &ret->ex_data)) 3190 goto err; 3191 3192 if ((ret->ext.secure = OPENSSL_secure_zalloc(sizeof(*ret->ext.secure))) == NULL) 3193 goto err; 3194 3195 /* No compression for DTLS */ 3196 if (!(meth->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS)) 3197 ret->comp_methods = SSL_COMP_get_compression_methods(); 3198 3199 ret->max_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH; 3200 ret->split_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH; 3201 3202 /* Setup RFC5077 ticket keys */ 3203 if ((RAND_bytes(ret->ext.tick_key_name, 3204 sizeof(ret->ext.tick_key_name)) <= 0) 3205 || (RAND_priv_bytes(ret->ext.secure->tick_hmac_key, 3206 sizeof(ret->ext.secure->tick_hmac_key)) <= 0) 3207 || (RAND_priv_bytes(ret->ext.secure->tick_aes_key, 3208 sizeof(ret->ext.secure->tick_aes_key)) <= 0)) 3209 ret->options |= SSL_OP_NO_TICKET; 3210 3211 if (RAND_priv_bytes(ret->ext.cookie_hmac_key, 3212 sizeof(ret->ext.cookie_hmac_key)) <= 0) 3213 goto err; 3214 3215 #ifndef OPENSSL_NO_SRP 3216 if (!SSL_CTX_SRP_CTX_init(ret)) 3217 goto err; 3218 #endif 3219 #ifndef OPENSSL_NO_ENGINE 3220 # ifdef OPENSSL_SSL_CLIENT_ENGINE_AUTO 3221 # define eng_strx(x) #x 3222 # define eng_str(x) eng_strx(x) 3223 /* Use specific client engine automatically... ignore errors */ 3224 { 3225 ENGINE *eng; 3226 eng = ENGINE_by_id(eng_str(OPENSSL_SSL_CLIENT_ENGINE_AUTO)); 3227 if (!eng) { 3228 ERR_clear_error(); 3229 ENGINE_load_builtin_engines(); 3230 eng = ENGINE_by_id(eng_str(OPENSSL_SSL_CLIENT_ENGINE_AUTO)); 3231 } 3232 if (!eng || !SSL_CTX_set_client_cert_engine(ret, eng)) 3233 ERR_clear_error(); 3234 } 3235 # endif 3236 #endif 3237 /* 3238 * Default is to connect to non-RI servers. When RI is more widely 3239 * deployed might change this. 3240 */ 3241 ret->options |= SSL_OP_LEGACY_SERVER_CONNECT; 3242 /* 3243 * Disable compression by default to prevent CRIME. Applications can 3244 * re-enable compression by configuring 3245 * SSL_CTX_clear_options(ctx, SSL_OP_NO_COMPRESSION); 3246 * or by using the SSL_CONF library. Similarly we also enable TLSv1.3 3247 * middlebox compatibility by default. This may be disabled by default in 3248 * a later OpenSSL version. 3249 */ 3250 ret->options |= SSL_OP_NO_COMPRESSION | SSL_OP_ENABLE_MIDDLEBOX_COMPAT; 3251 3252 ret->ext.status_type = TLSEXT_STATUSTYPE_nothing; 3253 3254 /* 3255 * We cannot usefully set a default max_early_data here (which gets 3256 * propagated in SSL_new(), for the following reason: setting the 3257 * SSL field causes tls_construct_stoc_early_data() to tell the 3258 * client that early data will be accepted when constructing a TLS 1.3 3259 * session ticket, and the client will accordingly send us early data 3260 * when using that ticket (if the client has early data to send). 3261 * However, in order for the early data to actually be consumed by 3262 * the application, the application must also have calls to 3263 * SSL_read_early_data(); otherwise we'll just skip past the early data 3264 * and ignore it. So, since the application must add calls to 3265 * SSL_read_early_data(), we also require them to add 3266 * calls to SSL_CTX_set_max_early_data() in order to use early data, 3267 * eliminating the bandwidth-wasting early data in the case described 3268 * above. 3269 */ 3270 ret->max_early_data = 0; 3271 3272 /* 3273 * Default recv_max_early_data is a fully loaded single record. Could be 3274 * split across multiple records in practice. We set this differently to 3275 * max_early_data so that, in the default case, we do not advertise any 3276 * support for early_data, but if a client were to send us some (e.g. 3277 * because of an old, stale ticket) then we will tolerate it and skip over 3278 * it. 3279 */ 3280 ret->recv_max_early_data = SSL3_RT_MAX_PLAIN_LENGTH; 3281 3282 /* By default we send two session tickets automatically in TLSv1.3 */ 3283 ret->num_tickets = 2; 3284 3285 ssl_ctx_system_config(ret); 3286 3287 return ret; 3288 err: 3289 SSLerr(SSL_F_SSL_CTX_NEW, ERR_R_MALLOC_FAILURE); 3290 err2: 3291 SSL_CTX_free(ret); 3292 return NULL; 3293 } 3294 3295 int SSL_CTX_up_ref(SSL_CTX *ctx) 3296 { 3297 int i; 3298 3299 if (CRYPTO_UP_REF(&ctx->references, &i, ctx->lock) <= 0) 3300 return 0; 3301 3302 REF_PRINT_COUNT("SSL_CTX", ctx); 3303 REF_ASSERT_ISNT(i < 2); 3304 return ((i > 1) ? 1 : 0); 3305 } 3306 3307 void SSL_CTX_free(SSL_CTX *a) 3308 { 3309 int i; 3310 3311 if (a == NULL) 3312 return; 3313 3314 CRYPTO_DOWN_REF(&a->references, &i, a->lock); 3315 REF_PRINT_COUNT("SSL_CTX", a); 3316 if (i > 0) 3317 return; 3318 REF_ASSERT_ISNT(i < 0); 3319 3320 X509_VERIFY_PARAM_free(a->param); 3321 dane_ctx_final(&a->dane); 3322 3323 /* 3324 * Free internal session cache. However: the remove_cb() may reference 3325 * the ex_data of SSL_CTX, thus the ex_data store can only be removed 3326 * after the sessions were flushed. 3327 * As the ex_data handling routines might also touch the session cache, 3328 * the most secure solution seems to be: empty (flush) the cache, then 3329 * free ex_data, then finally free the cache. 3330 * (See ticket [openssl.org #212].) 3331 */ 3332 if (a->sessions != NULL) 3333 SSL_CTX_flush_sessions(a, 0); 3334 3335 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL_CTX, a, &a->ex_data); 3336 lh_SSL_SESSION_free(a->sessions); 3337 X509_STORE_free(a->cert_store); 3338 #ifndef OPENSSL_NO_CT 3339 CTLOG_STORE_free(a->ctlog_store); 3340 #endif 3341 sk_SSL_CIPHER_free(a->cipher_list); 3342 sk_SSL_CIPHER_free(a->cipher_list_by_id); 3343 sk_SSL_CIPHER_free(a->tls13_ciphersuites); 3344 ssl_cert_free(a->cert); 3345 sk_X509_NAME_pop_free(a->ca_names, X509_NAME_free); 3346 sk_X509_NAME_pop_free(a->client_ca_names, X509_NAME_free); 3347 sk_X509_pop_free(a->extra_certs, X509_free); 3348 a->comp_methods = NULL; 3349 #ifndef OPENSSL_NO_SRTP 3350 sk_SRTP_PROTECTION_PROFILE_free(a->srtp_profiles); 3351 #endif 3352 #ifndef OPENSSL_NO_SRP 3353 SSL_CTX_SRP_CTX_free(a); 3354 #endif 3355 #ifndef OPENSSL_NO_ENGINE 3356 ENGINE_finish(a->client_cert_engine); 3357 #endif 3358 3359 #ifndef OPENSSL_NO_EC 3360 OPENSSL_free(a->ext.ecpointformats); 3361 OPENSSL_free(a->ext.supportedgroups); 3362 #endif 3363 OPENSSL_free(a->ext.alpn); 3364 OPENSSL_secure_free(a->ext.secure); 3365 3366 CRYPTO_THREAD_lock_free(a->lock); 3367 3368 OPENSSL_free(a); 3369 } 3370 3371 void SSL_CTX_set_default_passwd_cb(SSL_CTX *ctx, pem_password_cb *cb) 3372 { 3373 ctx->default_passwd_callback = cb; 3374 } 3375 3376 void SSL_CTX_set_default_passwd_cb_userdata(SSL_CTX *ctx, void *u) 3377 { 3378 ctx->default_passwd_callback_userdata = u; 3379 } 3380 3381 pem_password_cb *SSL_CTX_get_default_passwd_cb(SSL_CTX *ctx) 3382 { 3383 return ctx->default_passwd_callback; 3384 } 3385 3386 void *SSL_CTX_get_default_passwd_cb_userdata(SSL_CTX *ctx) 3387 { 3388 return ctx->default_passwd_callback_userdata; 3389 } 3390 3391 void SSL_set_default_passwd_cb(SSL *s, pem_password_cb *cb) 3392 { 3393 s->default_passwd_callback = cb; 3394 } 3395 3396 void SSL_set_default_passwd_cb_userdata(SSL *s, void *u) 3397 { 3398 s->default_passwd_callback_userdata = u; 3399 } 3400 3401 pem_password_cb *SSL_get_default_passwd_cb(SSL *s) 3402 { 3403 return s->default_passwd_callback; 3404 } 3405 3406 void *SSL_get_default_passwd_cb_userdata(SSL *s) 3407 { 3408 return s->default_passwd_callback_userdata; 3409 } 3410 3411 void SSL_CTX_set_cert_verify_callback(SSL_CTX *ctx, 3412 int (*cb) (X509_STORE_CTX *, void *), 3413 void *arg) 3414 { 3415 ctx->app_verify_callback = cb; 3416 ctx->app_verify_arg = arg; 3417 } 3418 3419 void SSL_CTX_set_verify(SSL_CTX *ctx, int mode, 3420 int (*cb) (int, X509_STORE_CTX *)) 3421 { 3422 ctx->verify_mode = mode; 3423 ctx->default_verify_callback = cb; 3424 } 3425 3426 void SSL_CTX_set_verify_depth(SSL_CTX *ctx, int depth) 3427 { 3428 X509_VERIFY_PARAM_set_depth(ctx->param, depth); 3429 } 3430 3431 void SSL_CTX_set_cert_cb(SSL_CTX *c, int (*cb) (SSL *ssl, void *arg), void *arg) 3432 { 3433 ssl_cert_set_cert_cb(c->cert, cb, arg); 3434 } 3435 3436 void SSL_set_cert_cb(SSL *s, int (*cb) (SSL *ssl, void *arg), void *arg) 3437 { 3438 ssl_cert_set_cert_cb(s->cert, cb, arg); 3439 } 3440 3441 void ssl_set_masks(SSL *s) 3442 { 3443 CERT *c = s->cert; 3444 uint32_t *pvalid = s->s3->tmp.valid_flags; 3445 int rsa_enc, rsa_sign, dh_tmp, dsa_sign; 3446 unsigned long mask_k, mask_a; 3447 #ifndef OPENSSL_NO_EC 3448 int have_ecc_cert, ecdsa_ok; 3449 #endif 3450 if (c == NULL) 3451 return; 3452 3453 #ifndef OPENSSL_NO_DH 3454 dh_tmp = (c->dh_tmp != NULL || c->dh_tmp_cb != NULL || c->dh_tmp_auto); 3455 #else 3456 dh_tmp = 0; 3457 #endif 3458 3459 rsa_enc = pvalid[SSL_PKEY_RSA] & CERT_PKEY_VALID; 3460 rsa_sign = pvalid[SSL_PKEY_RSA] & CERT_PKEY_VALID; 3461 dsa_sign = pvalid[SSL_PKEY_DSA_SIGN] & CERT_PKEY_VALID; 3462 #ifndef OPENSSL_NO_EC 3463 have_ecc_cert = pvalid[SSL_PKEY_ECC] & CERT_PKEY_VALID; 3464 #endif 3465 mask_k = 0; 3466 mask_a = 0; 3467 3468 #ifdef CIPHER_DEBUG 3469 fprintf(stderr, "dht=%d re=%d rs=%d ds=%d\n", 3470 dh_tmp, rsa_enc, rsa_sign, dsa_sign); 3471 #endif 3472 3473 #ifndef OPENSSL_NO_GOST 3474 if (ssl_has_cert(s, SSL_PKEY_GOST12_512)) { 3475 mask_k |= SSL_kGOST; 3476 mask_a |= SSL_aGOST12; 3477 } 3478 if (ssl_has_cert(s, SSL_PKEY_GOST12_256)) { 3479 mask_k |= SSL_kGOST; 3480 mask_a |= SSL_aGOST12; 3481 } 3482 if (ssl_has_cert(s, SSL_PKEY_GOST01)) { 3483 mask_k |= SSL_kGOST; 3484 mask_a |= SSL_aGOST01; 3485 } 3486 #endif 3487 3488 if (rsa_enc) 3489 mask_k |= SSL_kRSA; 3490 3491 if (dh_tmp) 3492 mask_k |= SSL_kDHE; 3493 3494 /* 3495 * If we only have an RSA-PSS certificate allow RSA authentication 3496 * if TLS 1.2 and peer supports it. 3497 */ 3498 3499 if (rsa_enc || rsa_sign || (ssl_has_cert(s, SSL_PKEY_RSA_PSS_SIGN) 3500 && pvalid[SSL_PKEY_RSA_PSS_SIGN] & CERT_PKEY_EXPLICIT_SIGN 3501 && TLS1_get_version(s) == TLS1_2_VERSION)) 3502 mask_a |= SSL_aRSA; 3503 3504 if (dsa_sign) { 3505 mask_a |= SSL_aDSS; 3506 } 3507 3508 mask_a |= SSL_aNULL; 3509 3510 /* 3511 * An ECC certificate may be usable for ECDH and/or ECDSA cipher suites 3512 * depending on the key usage extension. 3513 */ 3514 #ifndef OPENSSL_NO_EC 3515 if (have_ecc_cert) { 3516 uint32_t ex_kusage; 3517 ex_kusage = X509_get_key_usage(c->pkeys[SSL_PKEY_ECC].x509); 3518 ecdsa_ok = ex_kusage & X509v3_KU_DIGITAL_SIGNATURE; 3519 if (!(pvalid[SSL_PKEY_ECC] & CERT_PKEY_SIGN)) 3520 ecdsa_ok = 0; 3521 if (ecdsa_ok) 3522 mask_a |= SSL_aECDSA; 3523 } 3524 /* Allow Ed25519 for TLS 1.2 if peer supports it */ 3525 if (!(mask_a & SSL_aECDSA) && ssl_has_cert(s, SSL_PKEY_ED25519) 3526 && pvalid[SSL_PKEY_ED25519] & CERT_PKEY_EXPLICIT_SIGN 3527 && TLS1_get_version(s) == TLS1_2_VERSION) 3528 mask_a |= SSL_aECDSA; 3529 3530 /* Allow Ed448 for TLS 1.2 if peer supports it */ 3531 if (!(mask_a & SSL_aECDSA) && ssl_has_cert(s, SSL_PKEY_ED448) 3532 && pvalid[SSL_PKEY_ED448] & CERT_PKEY_EXPLICIT_SIGN 3533 && TLS1_get_version(s) == TLS1_2_VERSION) 3534 mask_a |= SSL_aECDSA; 3535 #endif 3536 3537 #ifndef OPENSSL_NO_EC 3538 mask_k |= SSL_kECDHE; 3539 #endif 3540 3541 #ifndef OPENSSL_NO_PSK 3542 mask_k |= SSL_kPSK; 3543 mask_a |= SSL_aPSK; 3544 if (mask_k & SSL_kRSA) 3545 mask_k |= SSL_kRSAPSK; 3546 if (mask_k & SSL_kDHE) 3547 mask_k |= SSL_kDHEPSK; 3548 if (mask_k & SSL_kECDHE) 3549 mask_k |= SSL_kECDHEPSK; 3550 #endif 3551 3552 s->s3->tmp.mask_k = mask_k; 3553 s->s3->tmp.mask_a = mask_a; 3554 } 3555 3556 #ifndef OPENSSL_NO_EC 3557 3558 int ssl_check_srvr_ecc_cert_and_alg(X509 *x, SSL *s) 3559 { 3560 if (s->s3->tmp.new_cipher->algorithm_auth & SSL_aECDSA) { 3561 /* key usage, if present, must allow signing */ 3562 if (!(X509_get_key_usage(x) & X509v3_KU_DIGITAL_SIGNATURE)) { 3563 SSLerr(SSL_F_SSL_CHECK_SRVR_ECC_CERT_AND_ALG, 3564 SSL_R_ECC_CERT_NOT_FOR_SIGNING); 3565 return 0; 3566 } 3567 } 3568 return 1; /* all checks are ok */ 3569 } 3570 3571 #endif 3572 3573 int ssl_get_server_cert_serverinfo(SSL *s, const unsigned char **serverinfo, 3574 size_t *serverinfo_length) 3575 { 3576 CERT_PKEY *cpk = s->s3->tmp.cert; 3577 *serverinfo_length = 0; 3578 3579 if (cpk == NULL || cpk->serverinfo == NULL) 3580 return 0; 3581 3582 *serverinfo = cpk->serverinfo; 3583 *serverinfo_length = cpk->serverinfo_length; 3584 return 1; 3585 } 3586 3587 void ssl_update_cache(SSL *s, int mode) 3588 { 3589 int i; 3590 3591 /* 3592 * If the session_id_length is 0, we are not supposed to cache it, and it 3593 * would be rather hard to do anyway :-) 3594 */ 3595 if (s->session->session_id_length == 0) 3596 return; 3597 3598 /* 3599 * If sid_ctx_length is 0 there is no specific application context 3600 * associated with this session, so when we try to resume it and 3601 * SSL_VERIFY_PEER is requested to verify the client identity, we have no 3602 * indication that this is actually a session for the proper application 3603 * context, and the *handshake* will fail, not just the resumption attempt. 3604 * Do not cache (on the server) these sessions that are not resumable 3605 * (clients can set SSL_VERIFY_PEER without needing a sid_ctx set). 3606 */ 3607 if (s->server && s->session->sid_ctx_length == 0 3608 && (s->verify_mode & SSL_VERIFY_PEER) != 0) 3609 return; 3610 3611 i = s->session_ctx->session_cache_mode; 3612 if ((i & mode) != 0 3613 && (!s->hit || SSL_IS_TLS13(s))) { 3614 /* 3615 * Add the session to the internal cache. In server side TLSv1.3 we 3616 * normally don't do this because by default it's a full stateless ticket 3617 * with only a dummy session id so there is no reason to cache it, 3618 * unless: 3619 * - we are doing early_data, in which case we cache so that we can 3620 * detect replays 3621 * - the application has set a remove_session_cb so needs to know about 3622 * session timeout events 3623 * - SSL_OP_NO_TICKET is set in which case it is a stateful ticket 3624 */ 3625 if ((i & SSL_SESS_CACHE_NO_INTERNAL_STORE) == 0 3626 && (!SSL_IS_TLS13(s) 3627 || !s->server 3628 || (s->max_early_data > 0 3629 && (s->options & SSL_OP_NO_ANTI_REPLAY) == 0) 3630 || s->session_ctx->remove_session_cb != NULL 3631 || (s->options & SSL_OP_NO_TICKET) != 0)) 3632 SSL_CTX_add_session(s->session_ctx, s->session); 3633 3634 /* 3635 * Add the session to the external cache. We do this even in server side 3636 * TLSv1.3 without early data because some applications just want to 3637 * know about the creation of a session and aren't doing a full cache. 3638 */ 3639 if (s->session_ctx->new_session_cb != NULL) { 3640 SSL_SESSION_up_ref(s->session); 3641 if (!s->session_ctx->new_session_cb(s, s->session)) 3642 SSL_SESSION_free(s->session); 3643 } 3644 } 3645 3646 /* auto flush every 255 connections */ 3647 if ((!(i & SSL_SESS_CACHE_NO_AUTO_CLEAR)) && ((i & mode) == mode)) { 3648 TSAN_QUALIFIER int *stat; 3649 if (mode & SSL_SESS_CACHE_CLIENT) 3650 stat = &s->session_ctx->stats.sess_connect_good; 3651 else 3652 stat = &s->session_ctx->stats.sess_accept_good; 3653 if ((tsan_load(stat) & 0xff) == 0xff) 3654 SSL_CTX_flush_sessions(s->session_ctx, (unsigned long)time(NULL)); 3655 } 3656 } 3657 3658 const SSL_METHOD *SSL_CTX_get_ssl_method(const SSL_CTX *ctx) 3659 { 3660 return ctx->method; 3661 } 3662 3663 const SSL_METHOD *SSL_get_ssl_method(const SSL *s) 3664 { 3665 return s->method; 3666 } 3667 3668 int SSL_set_ssl_method(SSL *s, const SSL_METHOD *meth) 3669 { 3670 int ret = 1; 3671 3672 if (s->method != meth) { 3673 const SSL_METHOD *sm = s->method; 3674 int (*hf) (SSL *) = s->handshake_func; 3675 3676 if (sm->version == meth->version) 3677 s->method = meth; 3678 else { 3679 sm->ssl_free(s); 3680 s->method = meth; 3681 ret = s->method->ssl_new(s); 3682 } 3683 3684 if (hf == sm->ssl_connect) 3685 s->handshake_func = meth->ssl_connect; 3686 else if (hf == sm->ssl_accept) 3687 s->handshake_func = meth->ssl_accept; 3688 } 3689 return ret; 3690 } 3691 3692 int SSL_get_error(const SSL *s, int i) 3693 { 3694 int reason; 3695 unsigned long l; 3696 BIO *bio; 3697 3698 if (i > 0) 3699 return SSL_ERROR_NONE; 3700 3701 /* 3702 * Make things return SSL_ERROR_SYSCALL when doing SSL_do_handshake etc, 3703 * where we do encode the error 3704 */ 3705 if ((l = ERR_peek_error()) != 0) { 3706 if (ERR_GET_LIB(l) == ERR_LIB_SYS) 3707 return SSL_ERROR_SYSCALL; 3708 else 3709 return SSL_ERROR_SSL; 3710 } 3711 3712 if (SSL_want_read(s)) { 3713 bio = SSL_get_rbio(s); 3714 if (BIO_should_read(bio)) 3715 return SSL_ERROR_WANT_READ; 3716 else if (BIO_should_write(bio)) 3717 /* 3718 * This one doesn't make too much sense ... We never try to write 3719 * to the rbio, and an application program where rbio and wbio 3720 * are separate couldn't even know what it should wait for. 3721 * However if we ever set s->rwstate incorrectly (so that we have 3722 * SSL_want_read(s) instead of SSL_want_write(s)) and rbio and 3723 * wbio *are* the same, this test works around that bug; so it 3724 * might be safer to keep it. 3725 */ 3726 return SSL_ERROR_WANT_WRITE; 3727 else if (BIO_should_io_special(bio)) { 3728 reason = BIO_get_retry_reason(bio); 3729 if (reason == BIO_RR_CONNECT) 3730 return SSL_ERROR_WANT_CONNECT; 3731 else if (reason == BIO_RR_ACCEPT) 3732 return SSL_ERROR_WANT_ACCEPT; 3733 else 3734 return SSL_ERROR_SYSCALL; /* unknown */ 3735 } 3736 } 3737 3738 if (SSL_want_write(s)) { 3739 /* Access wbio directly - in order to use the buffered bio if present */ 3740 bio = s->wbio; 3741 if (BIO_should_write(bio)) 3742 return SSL_ERROR_WANT_WRITE; 3743 else if (BIO_should_read(bio)) 3744 /* 3745 * See above (SSL_want_read(s) with BIO_should_write(bio)) 3746 */ 3747 return SSL_ERROR_WANT_READ; 3748 else if (BIO_should_io_special(bio)) { 3749 reason = BIO_get_retry_reason(bio); 3750 if (reason == BIO_RR_CONNECT) 3751 return SSL_ERROR_WANT_CONNECT; 3752 else if (reason == BIO_RR_ACCEPT) 3753 return SSL_ERROR_WANT_ACCEPT; 3754 else 3755 return SSL_ERROR_SYSCALL; 3756 } 3757 } 3758 if (SSL_want_x509_lookup(s)) 3759 return SSL_ERROR_WANT_X509_LOOKUP; 3760 if (SSL_want_async(s)) 3761 return SSL_ERROR_WANT_ASYNC; 3762 if (SSL_want_async_job(s)) 3763 return SSL_ERROR_WANT_ASYNC_JOB; 3764 if (SSL_want_client_hello_cb(s)) 3765 return SSL_ERROR_WANT_CLIENT_HELLO_CB; 3766 3767 if ((s->shutdown & SSL_RECEIVED_SHUTDOWN) && 3768 (s->s3->warn_alert == SSL_AD_CLOSE_NOTIFY)) 3769 return SSL_ERROR_ZERO_RETURN; 3770 3771 return SSL_ERROR_SYSCALL; 3772 } 3773 3774 static int ssl_do_handshake_intern(void *vargs) 3775 { 3776 struct ssl_async_args *args; 3777 SSL *s; 3778 3779 args = (struct ssl_async_args *)vargs; 3780 s = args->s; 3781 3782 return s->handshake_func(s); 3783 } 3784 3785 int SSL_do_handshake(SSL *s) 3786 { 3787 int ret = 1; 3788 3789 if (s->handshake_func == NULL) { 3790 SSLerr(SSL_F_SSL_DO_HANDSHAKE, SSL_R_CONNECTION_TYPE_NOT_SET); 3791 return -1; 3792 } 3793 3794 ossl_statem_check_finish_init(s, -1); 3795 3796 s->method->ssl_renegotiate_check(s, 0); 3797 3798 if (SSL_in_init(s) || SSL_in_before(s)) { 3799 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) { 3800 struct ssl_async_args args; 3801 3802 args.s = s; 3803 3804 ret = ssl_start_async_job(s, &args, ssl_do_handshake_intern); 3805 } else { 3806 ret = s->handshake_func(s); 3807 } 3808 } 3809 return ret; 3810 } 3811 3812 void SSL_set_accept_state(SSL *s) 3813 { 3814 s->server = 1; 3815 s->shutdown = 0; 3816 ossl_statem_clear(s); 3817 s->handshake_func = s->method->ssl_accept; 3818 clear_ciphers(s); 3819 } 3820 3821 void SSL_set_connect_state(SSL *s) 3822 { 3823 s->server = 0; 3824 s->shutdown = 0; 3825 ossl_statem_clear(s); 3826 s->handshake_func = s->method->ssl_connect; 3827 clear_ciphers(s); 3828 } 3829 3830 int ssl_undefined_function(SSL *s) 3831 { 3832 SSLerr(SSL_F_SSL_UNDEFINED_FUNCTION, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 3833 return 0; 3834 } 3835 3836 int ssl_undefined_void_function(void) 3837 { 3838 SSLerr(SSL_F_SSL_UNDEFINED_VOID_FUNCTION, 3839 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 3840 return 0; 3841 } 3842 3843 int ssl_undefined_const_function(const SSL *s) 3844 { 3845 return 0; 3846 } 3847 3848 const SSL_METHOD *ssl_bad_method(int ver) 3849 { 3850 SSLerr(SSL_F_SSL_BAD_METHOD, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 3851 return NULL; 3852 } 3853 3854 const char *ssl_protocol_to_string(int version) 3855 { 3856 switch(version) 3857 { 3858 case TLS1_3_VERSION: 3859 return "TLSv1.3"; 3860 3861 case TLS1_2_VERSION: 3862 return "TLSv1.2"; 3863 3864 case TLS1_1_VERSION: 3865 return "TLSv1.1"; 3866 3867 case TLS1_VERSION: 3868 return "TLSv1"; 3869 3870 case SSL3_VERSION: 3871 return "SSLv3"; 3872 3873 case DTLS1_BAD_VER: 3874 return "DTLSv0.9"; 3875 3876 case DTLS1_VERSION: 3877 return "DTLSv1"; 3878 3879 case DTLS1_2_VERSION: 3880 return "DTLSv1.2"; 3881 3882 default: 3883 return "unknown"; 3884 } 3885 } 3886 3887 const char *SSL_get_version(const SSL *s) 3888 { 3889 return ssl_protocol_to_string(s->version); 3890 } 3891 3892 static int dup_ca_names(STACK_OF(X509_NAME) **dst, STACK_OF(X509_NAME) *src) 3893 { 3894 STACK_OF(X509_NAME) *sk; 3895 X509_NAME *xn; 3896 int i; 3897 3898 if (src == NULL) { 3899 *dst = NULL; 3900 return 1; 3901 } 3902 3903 if ((sk = sk_X509_NAME_new_null()) == NULL) 3904 return 0; 3905 for (i = 0; i < sk_X509_NAME_num(src); i++) { 3906 xn = X509_NAME_dup(sk_X509_NAME_value(src, i)); 3907 if (xn == NULL) { 3908 sk_X509_NAME_pop_free(sk, X509_NAME_free); 3909 return 0; 3910 } 3911 if (sk_X509_NAME_insert(sk, xn, i) == 0) { 3912 X509_NAME_free(xn); 3913 sk_X509_NAME_pop_free(sk, X509_NAME_free); 3914 return 0; 3915 } 3916 } 3917 *dst = sk; 3918 3919 return 1; 3920 } 3921 3922 SSL *SSL_dup(SSL *s) 3923 { 3924 SSL *ret; 3925 int i; 3926 3927 /* If we're not quiescent, just up_ref! */ 3928 if (!SSL_in_init(s) || !SSL_in_before(s)) { 3929 CRYPTO_UP_REF(&s->references, &i, s->lock); 3930 return s; 3931 } 3932 3933 /* 3934 * Otherwise, copy configuration state, and session if set. 3935 */ 3936 if ((ret = SSL_new(SSL_get_SSL_CTX(s))) == NULL) 3937 return NULL; 3938 3939 if (s->session != NULL) { 3940 /* 3941 * Arranges to share the same session via up_ref. This "copies" 3942 * session-id, SSL_METHOD, sid_ctx, and 'cert' 3943 */ 3944 if (!SSL_copy_session_id(ret, s)) 3945 goto err; 3946 } else { 3947 /* 3948 * No session has been established yet, so we have to expect that 3949 * s->cert or ret->cert will be changed later -- they should not both 3950 * point to the same object, and thus we can't use 3951 * SSL_copy_session_id. 3952 */ 3953 if (!SSL_set_ssl_method(ret, s->method)) 3954 goto err; 3955 3956 if (s->cert != NULL) { 3957 ssl_cert_free(ret->cert); 3958 ret->cert = ssl_cert_dup(s->cert); 3959 if (ret->cert == NULL) 3960 goto err; 3961 } 3962 3963 if (!SSL_set_session_id_context(ret, s->sid_ctx, 3964 (int)s->sid_ctx_length)) 3965 goto err; 3966 } 3967 3968 if (!ssl_dane_dup(ret, s)) 3969 goto err; 3970 ret->version = s->version; 3971 ret->options = s->options; 3972 ret->min_proto_version = s->min_proto_version; 3973 ret->max_proto_version = s->max_proto_version; 3974 ret->mode = s->mode; 3975 SSL_set_max_cert_list(ret, SSL_get_max_cert_list(s)); 3976 SSL_set_read_ahead(ret, SSL_get_read_ahead(s)); 3977 ret->msg_callback = s->msg_callback; 3978 ret->msg_callback_arg = s->msg_callback_arg; 3979 SSL_set_verify(ret, SSL_get_verify_mode(s), SSL_get_verify_callback(s)); 3980 SSL_set_verify_depth(ret, SSL_get_verify_depth(s)); 3981 ret->generate_session_id = s->generate_session_id; 3982 3983 SSL_set_info_callback(ret, SSL_get_info_callback(s)); 3984 3985 /* copy app data, a little dangerous perhaps */ 3986 if (!CRYPTO_dup_ex_data(CRYPTO_EX_INDEX_SSL, &ret->ex_data, &s->ex_data)) 3987 goto err; 3988 3989 ret->server = s->server; 3990 if (s->handshake_func) { 3991 if (s->server) 3992 SSL_set_accept_state(ret); 3993 else 3994 SSL_set_connect_state(ret); 3995 } 3996 ret->shutdown = s->shutdown; 3997 ret->hit = s->hit; 3998 3999 ret->default_passwd_callback = s->default_passwd_callback; 4000 ret->default_passwd_callback_userdata = s->default_passwd_callback_userdata; 4001 4002 X509_VERIFY_PARAM_inherit(ret->param, s->param); 4003 4004 /* dup the cipher_list and cipher_list_by_id stacks */ 4005 if (s->cipher_list != NULL) { 4006 if ((ret->cipher_list = sk_SSL_CIPHER_dup(s->cipher_list)) == NULL) 4007 goto err; 4008 } 4009 if (s->cipher_list_by_id != NULL) 4010 if ((ret->cipher_list_by_id = sk_SSL_CIPHER_dup(s->cipher_list_by_id)) 4011 == NULL) 4012 goto err; 4013 4014 /* Dup the client_CA list */ 4015 if (!dup_ca_names(&ret->ca_names, s->ca_names) 4016 || !dup_ca_names(&ret->client_ca_names, s->client_ca_names)) 4017 goto err; 4018 4019 return ret; 4020 4021 err: 4022 SSL_free(ret); 4023 return NULL; 4024 } 4025 4026 void ssl_clear_cipher_ctx(SSL *s) 4027 { 4028 if (s->enc_read_ctx != NULL) { 4029 EVP_CIPHER_CTX_free(s->enc_read_ctx); 4030 s->enc_read_ctx = NULL; 4031 } 4032 if (s->enc_write_ctx != NULL) { 4033 EVP_CIPHER_CTX_free(s->enc_write_ctx); 4034 s->enc_write_ctx = NULL; 4035 } 4036 #ifndef OPENSSL_NO_COMP 4037 COMP_CTX_free(s->expand); 4038 s->expand = NULL; 4039 COMP_CTX_free(s->compress); 4040 s->compress = NULL; 4041 #endif 4042 } 4043 4044 X509 *SSL_get_certificate(const SSL *s) 4045 { 4046 if (s->cert != NULL) 4047 return s->cert->key->x509; 4048 else 4049 return NULL; 4050 } 4051 4052 EVP_PKEY *SSL_get_privatekey(const SSL *s) 4053 { 4054 if (s->cert != NULL) 4055 return s->cert->key->privatekey; 4056 else 4057 return NULL; 4058 } 4059 4060 X509 *SSL_CTX_get0_certificate(const SSL_CTX *ctx) 4061 { 4062 if (ctx->cert != NULL) 4063 return ctx->cert->key->x509; 4064 else 4065 return NULL; 4066 } 4067 4068 EVP_PKEY *SSL_CTX_get0_privatekey(const SSL_CTX *ctx) 4069 { 4070 if (ctx->cert != NULL) 4071 return ctx->cert->key->privatekey; 4072 else 4073 return NULL; 4074 } 4075 4076 const SSL_CIPHER *SSL_get_current_cipher(const SSL *s) 4077 { 4078 if ((s->session != NULL) && (s->session->cipher != NULL)) 4079 return s->session->cipher; 4080 return NULL; 4081 } 4082 4083 const SSL_CIPHER *SSL_get_pending_cipher(const SSL *s) 4084 { 4085 return s->s3->tmp.new_cipher; 4086 } 4087 4088 const COMP_METHOD *SSL_get_current_compression(const SSL *s) 4089 { 4090 #ifndef OPENSSL_NO_COMP 4091 return s->compress ? COMP_CTX_get_method(s->compress) : NULL; 4092 #else 4093 return NULL; 4094 #endif 4095 } 4096 4097 const COMP_METHOD *SSL_get_current_expansion(const SSL *s) 4098 { 4099 #ifndef OPENSSL_NO_COMP 4100 return s->expand ? COMP_CTX_get_method(s->expand) : NULL; 4101 #else 4102 return NULL; 4103 #endif 4104 } 4105 4106 int ssl_init_wbio_buffer(SSL *s) 4107 { 4108 BIO *bbio; 4109 4110 if (s->bbio != NULL) { 4111 /* Already buffered. */ 4112 return 1; 4113 } 4114 4115 bbio = BIO_new(BIO_f_buffer()); 4116 if (bbio == NULL || !BIO_set_read_buffer_size(bbio, 1)) { 4117 BIO_free(bbio); 4118 SSLerr(SSL_F_SSL_INIT_WBIO_BUFFER, ERR_R_BUF_LIB); 4119 return 0; 4120 } 4121 s->bbio = bbio; 4122 s->wbio = BIO_push(bbio, s->wbio); 4123 4124 return 1; 4125 } 4126 4127 int ssl_free_wbio_buffer(SSL *s) 4128 { 4129 /* callers ensure s is never null */ 4130 if (s->bbio == NULL) 4131 return 1; 4132 4133 s->wbio = BIO_pop(s->wbio); 4134 BIO_free(s->bbio); 4135 s->bbio = NULL; 4136 4137 return 1; 4138 } 4139 4140 void SSL_CTX_set_quiet_shutdown(SSL_CTX *ctx, int mode) 4141 { 4142 ctx->quiet_shutdown = mode; 4143 } 4144 4145 int SSL_CTX_get_quiet_shutdown(const SSL_CTX *ctx) 4146 { 4147 return ctx->quiet_shutdown; 4148 } 4149 4150 void SSL_set_quiet_shutdown(SSL *s, int mode) 4151 { 4152 s->quiet_shutdown = mode; 4153 } 4154 4155 int SSL_get_quiet_shutdown(const SSL *s) 4156 { 4157 return s->quiet_shutdown; 4158 } 4159 4160 void SSL_set_shutdown(SSL *s, int mode) 4161 { 4162 s->shutdown = mode; 4163 } 4164 4165 int SSL_get_shutdown(const SSL *s) 4166 { 4167 return s->shutdown; 4168 } 4169 4170 int SSL_version(const SSL *s) 4171 { 4172 return s->version; 4173 } 4174 4175 int SSL_client_version(const SSL *s) 4176 { 4177 return s->client_version; 4178 } 4179 4180 SSL_CTX *SSL_get_SSL_CTX(const SSL *ssl) 4181 { 4182 return ssl->ctx; 4183 } 4184 4185 SSL_CTX *SSL_set_SSL_CTX(SSL *ssl, SSL_CTX *ctx) 4186 { 4187 CERT *new_cert; 4188 if (ssl->ctx == ctx) 4189 return ssl->ctx; 4190 if (ctx == NULL) 4191 ctx = ssl->session_ctx; 4192 new_cert = ssl_cert_dup(ctx->cert); 4193 if (new_cert == NULL) { 4194 return NULL; 4195 } 4196 4197 if (!custom_exts_copy_flags(&new_cert->custext, &ssl->cert->custext)) { 4198 ssl_cert_free(new_cert); 4199 return NULL; 4200 } 4201 4202 ssl_cert_free(ssl->cert); 4203 ssl->cert = new_cert; 4204 4205 /* 4206 * Program invariant: |sid_ctx| has fixed size (SSL_MAX_SID_CTX_LENGTH), 4207 * so setter APIs must prevent invalid lengths from entering the system. 4208 */ 4209 if (!ossl_assert(ssl->sid_ctx_length <= sizeof(ssl->sid_ctx))) 4210 return NULL; 4211 4212 /* 4213 * If the session ID context matches that of the parent SSL_CTX, 4214 * inherit it from the new SSL_CTX as well. If however the context does 4215 * not match (i.e., it was set per-ssl with SSL_set_session_id_context), 4216 * leave it unchanged. 4217 */ 4218 if ((ssl->ctx != NULL) && 4219 (ssl->sid_ctx_length == ssl->ctx->sid_ctx_length) && 4220 (memcmp(ssl->sid_ctx, ssl->ctx->sid_ctx, ssl->sid_ctx_length) == 0)) { 4221 ssl->sid_ctx_length = ctx->sid_ctx_length; 4222 memcpy(&ssl->sid_ctx, &ctx->sid_ctx, sizeof(ssl->sid_ctx)); 4223 } 4224 4225 SSL_CTX_up_ref(ctx); 4226 SSL_CTX_free(ssl->ctx); /* decrement reference count */ 4227 ssl->ctx = ctx; 4228 4229 return ssl->ctx; 4230 } 4231 4232 int SSL_CTX_set_default_verify_paths(SSL_CTX *ctx) 4233 { 4234 return X509_STORE_set_default_paths(ctx->cert_store); 4235 } 4236 4237 int SSL_CTX_set_default_verify_dir(SSL_CTX *ctx) 4238 { 4239 X509_LOOKUP *lookup; 4240 4241 lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_hash_dir()); 4242 if (lookup == NULL) 4243 return 0; 4244 X509_LOOKUP_add_dir(lookup, NULL, X509_FILETYPE_DEFAULT); 4245 4246 /* Clear any errors if the default directory does not exist */ 4247 ERR_clear_error(); 4248 4249 return 1; 4250 } 4251 4252 int SSL_CTX_set_default_verify_file(SSL_CTX *ctx) 4253 { 4254 X509_LOOKUP *lookup; 4255 4256 lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_file()); 4257 if (lookup == NULL) 4258 return 0; 4259 4260 X509_LOOKUP_load_file(lookup, NULL, X509_FILETYPE_DEFAULT); 4261 4262 /* Clear any errors if the default file does not exist */ 4263 ERR_clear_error(); 4264 4265 return 1; 4266 } 4267 4268 int SSL_CTX_load_verify_locations(SSL_CTX *ctx, const char *CAfile, 4269 const char *CApath) 4270 { 4271 return X509_STORE_load_locations(ctx->cert_store, CAfile, CApath); 4272 } 4273 4274 void SSL_set_info_callback(SSL *ssl, 4275 void (*cb) (const SSL *ssl, int type, int val)) 4276 { 4277 ssl->info_callback = cb; 4278 } 4279 4280 /* 4281 * One compiler (Diab DCC) doesn't like argument names in returned function 4282 * pointer. 4283 */ 4284 void (*SSL_get_info_callback(const SSL *ssl)) (const SSL * /* ssl */ , 4285 int /* type */ , 4286 int /* val */ ) { 4287 return ssl->info_callback; 4288 } 4289 4290 void SSL_set_verify_result(SSL *ssl, long arg) 4291 { 4292 ssl->verify_result = arg; 4293 } 4294 4295 long SSL_get_verify_result(const SSL *ssl) 4296 { 4297 return ssl->verify_result; 4298 } 4299 4300 size_t SSL_get_client_random(const SSL *ssl, unsigned char *out, size_t outlen) 4301 { 4302 if (outlen == 0) 4303 return sizeof(ssl->s3->client_random); 4304 if (outlen > sizeof(ssl->s3->client_random)) 4305 outlen = sizeof(ssl->s3->client_random); 4306 memcpy(out, ssl->s3->client_random, outlen); 4307 return outlen; 4308 } 4309 4310 size_t SSL_get_server_random(const SSL *ssl, unsigned char *out, size_t outlen) 4311 { 4312 if (outlen == 0) 4313 return sizeof(ssl->s3->server_random); 4314 if (outlen > sizeof(ssl->s3->server_random)) 4315 outlen = sizeof(ssl->s3->server_random); 4316 memcpy(out, ssl->s3->server_random, outlen); 4317 return outlen; 4318 } 4319 4320 size_t SSL_SESSION_get_master_key(const SSL_SESSION *session, 4321 unsigned char *out, size_t outlen) 4322 { 4323 if (outlen == 0) 4324 return session->master_key_length; 4325 if (outlen > session->master_key_length) 4326 outlen = session->master_key_length; 4327 memcpy(out, session->master_key, outlen); 4328 return outlen; 4329 } 4330 4331 int SSL_SESSION_set1_master_key(SSL_SESSION *sess, const unsigned char *in, 4332 size_t len) 4333 { 4334 if (len > sizeof(sess->master_key)) 4335 return 0; 4336 4337 memcpy(sess->master_key, in, len); 4338 sess->master_key_length = len; 4339 return 1; 4340 } 4341 4342 4343 int SSL_set_ex_data(SSL *s, int idx, void *arg) 4344 { 4345 return CRYPTO_set_ex_data(&s->ex_data, idx, arg); 4346 } 4347 4348 void *SSL_get_ex_data(const SSL *s, int idx) 4349 { 4350 return CRYPTO_get_ex_data(&s->ex_data, idx); 4351 } 4352 4353 int SSL_CTX_set_ex_data(SSL_CTX *s, int idx, void *arg) 4354 { 4355 return CRYPTO_set_ex_data(&s->ex_data, idx, arg); 4356 } 4357 4358 void *SSL_CTX_get_ex_data(const SSL_CTX *s, int idx) 4359 { 4360 return CRYPTO_get_ex_data(&s->ex_data, idx); 4361 } 4362 4363 X509_STORE *SSL_CTX_get_cert_store(const SSL_CTX *ctx) 4364 { 4365 return ctx->cert_store; 4366 } 4367 4368 void SSL_CTX_set_cert_store(SSL_CTX *ctx, X509_STORE *store) 4369 { 4370 X509_STORE_free(ctx->cert_store); 4371 ctx->cert_store = store; 4372 } 4373 4374 void SSL_CTX_set1_cert_store(SSL_CTX *ctx, X509_STORE *store) 4375 { 4376 if (store != NULL) 4377 X509_STORE_up_ref(store); 4378 SSL_CTX_set_cert_store(ctx, store); 4379 } 4380 4381 int SSL_want(const SSL *s) 4382 { 4383 return s->rwstate; 4384 } 4385 4386 /** 4387 * \brief Set the callback for generating temporary DH keys. 4388 * \param ctx the SSL context. 4389 * \param dh the callback 4390 */ 4391 4392 #ifndef OPENSSL_NO_DH 4393 void SSL_CTX_set_tmp_dh_callback(SSL_CTX *ctx, 4394 DH *(*dh) (SSL *ssl, int is_export, 4395 int keylength)) 4396 { 4397 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_TMP_DH_CB, (void (*)(void))dh); 4398 } 4399 4400 void SSL_set_tmp_dh_callback(SSL *ssl, DH *(*dh) (SSL *ssl, int is_export, 4401 int keylength)) 4402 { 4403 SSL_callback_ctrl(ssl, SSL_CTRL_SET_TMP_DH_CB, (void (*)(void))dh); 4404 } 4405 #endif 4406 4407 #ifndef OPENSSL_NO_PSK 4408 int SSL_CTX_use_psk_identity_hint(SSL_CTX *ctx, const char *identity_hint) 4409 { 4410 if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) { 4411 SSLerr(SSL_F_SSL_CTX_USE_PSK_IDENTITY_HINT, SSL_R_DATA_LENGTH_TOO_LONG); 4412 return 0; 4413 } 4414 OPENSSL_free(ctx->cert->psk_identity_hint); 4415 if (identity_hint != NULL) { 4416 ctx->cert->psk_identity_hint = OPENSSL_strdup(identity_hint); 4417 if (ctx->cert->psk_identity_hint == NULL) 4418 return 0; 4419 } else 4420 ctx->cert->psk_identity_hint = NULL; 4421 return 1; 4422 } 4423 4424 int SSL_use_psk_identity_hint(SSL *s, const char *identity_hint) 4425 { 4426 if (s == NULL) 4427 return 0; 4428 4429 if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) { 4430 SSLerr(SSL_F_SSL_USE_PSK_IDENTITY_HINT, SSL_R_DATA_LENGTH_TOO_LONG); 4431 return 0; 4432 } 4433 OPENSSL_free(s->cert->psk_identity_hint); 4434 if (identity_hint != NULL) { 4435 s->cert->psk_identity_hint = OPENSSL_strdup(identity_hint); 4436 if (s->cert->psk_identity_hint == NULL) 4437 return 0; 4438 } else 4439 s->cert->psk_identity_hint = NULL; 4440 return 1; 4441 } 4442 4443 const char *SSL_get_psk_identity_hint(const SSL *s) 4444 { 4445 if (s == NULL || s->session == NULL) 4446 return NULL; 4447 return s->session->psk_identity_hint; 4448 } 4449 4450 const char *SSL_get_psk_identity(const SSL *s) 4451 { 4452 if (s == NULL || s->session == NULL) 4453 return NULL; 4454 return s->session->psk_identity; 4455 } 4456 4457 void SSL_set_psk_client_callback(SSL *s, SSL_psk_client_cb_func cb) 4458 { 4459 s->psk_client_callback = cb; 4460 } 4461 4462 void SSL_CTX_set_psk_client_callback(SSL_CTX *ctx, SSL_psk_client_cb_func cb) 4463 { 4464 ctx->psk_client_callback = cb; 4465 } 4466 4467 void SSL_set_psk_server_callback(SSL *s, SSL_psk_server_cb_func cb) 4468 { 4469 s->psk_server_callback = cb; 4470 } 4471 4472 void SSL_CTX_set_psk_server_callback(SSL_CTX *ctx, SSL_psk_server_cb_func cb) 4473 { 4474 ctx->psk_server_callback = cb; 4475 } 4476 #endif 4477 4478 void SSL_set_psk_find_session_callback(SSL *s, SSL_psk_find_session_cb_func cb) 4479 { 4480 s->psk_find_session_cb = cb; 4481 } 4482 4483 void SSL_CTX_set_psk_find_session_callback(SSL_CTX *ctx, 4484 SSL_psk_find_session_cb_func cb) 4485 { 4486 ctx->psk_find_session_cb = cb; 4487 } 4488 4489 void SSL_set_psk_use_session_callback(SSL *s, SSL_psk_use_session_cb_func cb) 4490 { 4491 s->psk_use_session_cb = cb; 4492 } 4493 4494 void SSL_CTX_set_psk_use_session_callback(SSL_CTX *ctx, 4495 SSL_psk_use_session_cb_func cb) 4496 { 4497 ctx->psk_use_session_cb = cb; 4498 } 4499 4500 void SSL_CTX_set_msg_callback(SSL_CTX *ctx, 4501 void (*cb) (int write_p, int version, 4502 int content_type, const void *buf, 4503 size_t len, SSL *ssl, void *arg)) 4504 { 4505 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_MSG_CALLBACK, (void (*)(void))cb); 4506 } 4507 4508 void SSL_set_msg_callback(SSL *ssl, 4509 void (*cb) (int write_p, int version, 4510 int content_type, const void *buf, 4511 size_t len, SSL *ssl, void *arg)) 4512 { 4513 SSL_callback_ctrl(ssl, SSL_CTRL_SET_MSG_CALLBACK, (void (*)(void))cb); 4514 } 4515 4516 void SSL_CTX_set_not_resumable_session_callback(SSL_CTX *ctx, 4517 int (*cb) (SSL *ssl, 4518 int 4519 is_forward_secure)) 4520 { 4521 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB, 4522 (void (*)(void))cb); 4523 } 4524 4525 void SSL_set_not_resumable_session_callback(SSL *ssl, 4526 int (*cb) (SSL *ssl, 4527 int is_forward_secure)) 4528 { 4529 SSL_callback_ctrl(ssl, SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB, 4530 (void (*)(void))cb); 4531 } 4532 4533 void SSL_CTX_set_record_padding_callback(SSL_CTX *ctx, 4534 size_t (*cb) (SSL *ssl, int type, 4535 size_t len, void *arg)) 4536 { 4537 ctx->record_padding_cb = cb; 4538 } 4539 4540 void SSL_CTX_set_record_padding_callback_arg(SSL_CTX *ctx, void *arg) 4541 { 4542 ctx->record_padding_arg = arg; 4543 } 4544 4545 void *SSL_CTX_get_record_padding_callback_arg(const SSL_CTX *ctx) 4546 { 4547 return ctx->record_padding_arg; 4548 } 4549 4550 int SSL_CTX_set_block_padding(SSL_CTX *ctx, size_t block_size) 4551 { 4552 /* block size of 0 or 1 is basically no padding */ 4553 if (block_size == 1) 4554 ctx->block_padding = 0; 4555 else if (block_size <= SSL3_RT_MAX_PLAIN_LENGTH) 4556 ctx->block_padding = block_size; 4557 else 4558 return 0; 4559 return 1; 4560 } 4561 4562 int SSL_set_record_padding_callback(SSL *ssl, 4563 size_t (*cb) (SSL *ssl, int type, 4564 size_t len, void *arg)) 4565 { 4566 BIO *b; 4567 4568 b = SSL_get_wbio(ssl); 4569 if (b == NULL || !BIO_get_ktls_send(b)) { 4570 ssl->record_padding_cb = cb; 4571 return 1; 4572 } 4573 return 0; 4574 } 4575 4576 void SSL_set_record_padding_callback_arg(SSL *ssl, void *arg) 4577 { 4578 ssl->record_padding_arg = arg; 4579 } 4580 4581 void *SSL_get_record_padding_callback_arg(const SSL *ssl) 4582 { 4583 return ssl->record_padding_arg; 4584 } 4585 4586 int SSL_set_block_padding(SSL *ssl, size_t block_size) 4587 { 4588 /* block size of 0 or 1 is basically no padding */ 4589 if (block_size == 1) 4590 ssl->block_padding = 0; 4591 else if (block_size <= SSL3_RT_MAX_PLAIN_LENGTH) 4592 ssl->block_padding = block_size; 4593 else 4594 return 0; 4595 return 1; 4596 } 4597 4598 int SSL_set_num_tickets(SSL *s, size_t num_tickets) 4599 { 4600 s->num_tickets = num_tickets; 4601 4602 return 1; 4603 } 4604 4605 size_t SSL_get_num_tickets(const SSL *s) 4606 { 4607 return s->num_tickets; 4608 } 4609 4610 int SSL_CTX_set_num_tickets(SSL_CTX *ctx, size_t num_tickets) 4611 { 4612 ctx->num_tickets = num_tickets; 4613 4614 return 1; 4615 } 4616 4617 size_t SSL_CTX_get_num_tickets(const SSL_CTX *ctx) 4618 { 4619 return ctx->num_tickets; 4620 } 4621 4622 /* 4623 * Allocates new EVP_MD_CTX and sets pointer to it into given pointer 4624 * variable, freeing EVP_MD_CTX previously stored in that variable, if any. 4625 * If EVP_MD pointer is passed, initializes ctx with this |md|. 4626 * Returns the newly allocated ctx; 4627 */ 4628 4629 EVP_MD_CTX *ssl_replace_hash(EVP_MD_CTX **hash, const EVP_MD *md) 4630 { 4631 ssl_clear_hash_ctx(hash); 4632 *hash = EVP_MD_CTX_new(); 4633 if (*hash == NULL || (md && EVP_DigestInit_ex(*hash, md, NULL) <= 0)) { 4634 EVP_MD_CTX_free(*hash); 4635 *hash = NULL; 4636 return NULL; 4637 } 4638 return *hash; 4639 } 4640 4641 void ssl_clear_hash_ctx(EVP_MD_CTX **hash) 4642 { 4643 4644 EVP_MD_CTX_free(*hash); 4645 *hash = NULL; 4646 } 4647 4648 /* Retrieve handshake hashes */ 4649 int ssl_handshake_hash(SSL *s, unsigned char *out, size_t outlen, 4650 size_t *hashlen) 4651 { 4652 EVP_MD_CTX *ctx = NULL; 4653 EVP_MD_CTX *hdgst = s->s3->handshake_dgst; 4654 int hashleni = EVP_MD_CTX_size(hdgst); 4655 int ret = 0; 4656 4657 if (hashleni < 0 || (size_t)hashleni > outlen) { 4658 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_HANDSHAKE_HASH, 4659 ERR_R_INTERNAL_ERROR); 4660 goto err; 4661 } 4662 4663 ctx = EVP_MD_CTX_new(); 4664 if (ctx == NULL) { 4665 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_HANDSHAKE_HASH, 4666 ERR_R_INTERNAL_ERROR); 4667 goto err; 4668 } 4669 4670 if (!EVP_MD_CTX_copy_ex(ctx, hdgst) 4671 || EVP_DigestFinal_ex(ctx, out, NULL) <= 0) { 4672 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_HANDSHAKE_HASH, 4673 ERR_R_INTERNAL_ERROR); 4674 goto err; 4675 } 4676 4677 *hashlen = hashleni; 4678 4679 ret = 1; 4680 err: 4681 EVP_MD_CTX_free(ctx); 4682 return ret; 4683 } 4684 4685 int SSL_session_reused(const SSL *s) 4686 { 4687 return s->hit; 4688 } 4689 4690 int SSL_is_server(const SSL *s) 4691 { 4692 return s->server; 4693 } 4694 4695 #if OPENSSL_API_COMPAT < 0x10100000L 4696 void SSL_set_debug(SSL *s, int debug) 4697 { 4698 /* Old function was do-nothing anyway... */ 4699 (void)s; 4700 (void)debug; 4701 } 4702 #endif 4703 4704 void SSL_set_security_level(SSL *s, int level) 4705 { 4706 s->cert->sec_level = level; 4707 } 4708 4709 int SSL_get_security_level(const SSL *s) 4710 { 4711 return s->cert->sec_level; 4712 } 4713 4714 void SSL_set_security_callback(SSL *s, 4715 int (*cb) (const SSL *s, const SSL_CTX *ctx, 4716 int op, int bits, int nid, 4717 void *other, void *ex)) 4718 { 4719 s->cert->sec_cb = cb; 4720 } 4721 4722 int (*SSL_get_security_callback(const SSL *s)) (const SSL *s, 4723 const SSL_CTX *ctx, int op, 4724 int bits, int nid, void *other, 4725 void *ex) { 4726 return s->cert->sec_cb; 4727 } 4728 4729 void SSL_set0_security_ex_data(SSL *s, void *ex) 4730 { 4731 s->cert->sec_ex = ex; 4732 } 4733 4734 void *SSL_get0_security_ex_data(const SSL *s) 4735 { 4736 return s->cert->sec_ex; 4737 } 4738 4739 void SSL_CTX_set_security_level(SSL_CTX *ctx, int level) 4740 { 4741 ctx->cert->sec_level = level; 4742 } 4743 4744 int SSL_CTX_get_security_level(const SSL_CTX *ctx) 4745 { 4746 return ctx->cert->sec_level; 4747 } 4748 4749 void SSL_CTX_set_security_callback(SSL_CTX *ctx, 4750 int (*cb) (const SSL *s, const SSL_CTX *ctx, 4751 int op, int bits, int nid, 4752 void *other, void *ex)) 4753 { 4754 ctx->cert->sec_cb = cb; 4755 } 4756 4757 int (*SSL_CTX_get_security_callback(const SSL_CTX *ctx)) (const SSL *s, 4758 const SSL_CTX *ctx, 4759 int op, int bits, 4760 int nid, 4761 void *other, 4762 void *ex) { 4763 return ctx->cert->sec_cb; 4764 } 4765 4766 void SSL_CTX_set0_security_ex_data(SSL_CTX *ctx, void *ex) 4767 { 4768 ctx->cert->sec_ex = ex; 4769 } 4770 4771 void *SSL_CTX_get0_security_ex_data(const SSL_CTX *ctx) 4772 { 4773 return ctx->cert->sec_ex; 4774 } 4775 4776 /* 4777 * Get/Set/Clear options in SSL_CTX or SSL, formerly macros, now functions that 4778 * can return unsigned long, instead of the generic long return value from the 4779 * control interface. 4780 */ 4781 unsigned long SSL_CTX_get_options(const SSL_CTX *ctx) 4782 { 4783 return ctx->options; 4784 } 4785 4786 unsigned long SSL_get_options(const SSL *s) 4787 { 4788 return s->options; 4789 } 4790 4791 unsigned long SSL_CTX_set_options(SSL_CTX *ctx, unsigned long op) 4792 { 4793 return ctx->options |= op; 4794 } 4795 4796 unsigned long SSL_set_options(SSL *s, unsigned long op) 4797 { 4798 return s->options |= op; 4799 } 4800 4801 unsigned long SSL_CTX_clear_options(SSL_CTX *ctx, unsigned long op) 4802 { 4803 return ctx->options &= ~op; 4804 } 4805 4806 unsigned long SSL_clear_options(SSL *s, unsigned long op) 4807 { 4808 return s->options &= ~op; 4809 } 4810 4811 STACK_OF(X509) *SSL_get0_verified_chain(const SSL *s) 4812 { 4813 return s->verified_chain; 4814 } 4815 4816 IMPLEMENT_OBJ_BSEARCH_GLOBAL_CMP_FN(SSL_CIPHER, SSL_CIPHER, ssl_cipher_id); 4817 4818 #ifndef OPENSSL_NO_CT 4819 4820 /* 4821 * Moves SCTs from the |src| stack to the |dst| stack. 4822 * The source of each SCT will be set to |origin|. 4823 * If |dst| points to a NULL pointer, a new stack will be created and owned by 4824 * the caller. 4825 * Returns the number of SCTs moved, or a negative integer if an error occurs. 4826 */ 4827 static int ct_move_scts(STACK_OF(SCT) **dst, STACK_OF(SCT) *src, 4828 sct_source_t origin) 4829 { 4830 int scts_moved = 0; 4831 SCT *sct = NULL; 4832 4833 if (*dst == NULL) { 4834 *dst = sk_SCT_new_null(); 4835 if (*dst == NULL) { 4836 SSLerr(SSL_F_CT_MOVE_SCTS, ERR_R_MALLOC_FAILURE); 4837 goto err; 4838 } 4839 } 4840 4841 while ((sct = sk_SCT_pop(src)) != NULL) { 4842 if (SCT_set_source(sct, origin) != 1) 4843 goto err; 4844 4845 if (sk_SCT_push(*dst, sct) <= 0) 4846 goto err; 4847 scts_moved += 1; 4848 } 4849 4850 return scts_moved; 4851 err: 4852 if (sct != NULL) 4853 sk_SCT_push(src, sct); /* Put the SCT back */ 4854 return -1; 4855 } 4856 4857 /* 4858 * Look for data collected during ServerHello and parse if found. 4859 * Returns the number of SCTs extracted. 4860 */ 4861 static int ct_extract_tls_extension_scts(SSL *s) 4862 { 4863 int scts_extracted = 0; 4864 4865 if (s->ext.scts != NULL) { 4866 const unsigned char *p = s->ext.scts; 4867 STACK_OF(SCT) *scts = o2i_SCT_LIST(NULL, &p, s->ext.scts_len); 4868 4869 scts_extracted = ct_move_scts(&s->scts, scts, SCT_SOURCE_TLS_EXTENSION); 4870 4871 SCT_LIST_free(scts); 4872 } 4873 4874 return scts_extracted; 4875 } 4876 4877 /* 4878 * Checks for an OCSP response and then attempts to extract any SCTs found if it 4879 * contains an SCT X509 extension. They will be stored in |s->scts|. 4880 * Returns: 4881 * - The number of SCTs extracted, assuming an OCSP response exists. 4882 * - 0 if no OCSP response exists or it contains no SCTs. 4883 * - A negative integer if an error occurs. 4884 */ 4885 static int ct_extract_ocsp_response_scts(SSL *s) 4886 { 4887 # ifndef OPENSSL_NO_OCSP 4888 int scts_extracted = 0; 4889 const unsigned char *p; 4890 OCSP_BASICRESP *br = NULL; 4891 OCSP_RESPONSE *rsp = NULL; 4892 STACK_OF(SCT) *scts = NULL; 4893 int i; 4894 4895 if (s->ext.ocsp.resp == NULL || s->ext.ocsp.resp_len == 0) 4896 goto err; 4897 4898 p = s->ext.ocsp.resp; 4899 rsp = d2i_OCSP_RESPONSE(NULL, &p, (int)s->ext.ocsp.resp_len); 4900 if (rsp == NULL) 4901 goto err; 4902 4903 br = OCSP_response_get1_basic(rsp); 4904 if (br == NULL) 4905 goto err; 4906 4907 for (i = 0; i < OCSP_resp_count(br); ++i) { 4908 OCSP_SINGLERESP *single = OCSP_resp_get0(br, i); 4909 4910 if (single == NULL) 4911 continue; 4912 4913 scts = 4914 OCSP_SINGLERESP_get1_ext_d2i(single, NID_ct_cert_scts, NULL, NULL); 4915 scts_extracted = 4916 ct_move_scts(&s->scts, scts, SCT_SOURCE_OCSP_STAPLED_RESPONSE); 4917 if (scts_extracted < 0) 4918 goto err; 4919 } 4920 err: 4921 SCT_LIST_free(scts); 4922 OCSP_BASICRESP_free(br); 4923 OCSP_RESPONSE_free(rsp); 4924 return scts_extracted; 4925 # else 4926 /* Behave as if no OCSP response exists */ 4927 return 0; 4928 # endif 4929 } 4930 4931 /* 4932 * Attempts to extract SCTs from the peer certificate. 4933 * Return the number of SCTs extracted, or a negative integer if an error 4934 * occurs. 4935 */ 4936 static int ct_extract_x509v3_extension_scts(SSL *s) 4937 { 4938 int scts_extracted = 0; 4939 X509 *cert = s->session != NULL ? s->session->peer : NULL; 4940 4941 if (cert != NULL) { 4942 STACK_OF(SCT) *scts = 4943 X509_get_ext_d2i(cert, NID_ct_precert_scts, NULL, NULL); 4944 4945 scts_extracted = 4946 ct_move_scts(&s->scts, scts, SCT_SOURCE_X509V3_EXTENSION); 4947 4948 SCT_LIST_free(scts); 4949 } 4950 4951 return scts_extracted; 4952 } 4953 4954 /* 4955 * Attempts to find all received SCTs by checking TLS extensions, the OCSP 4956 * response (if it exists) and X509v3 extensions in the certificate. 4957 * Returns NULL if an error occurs. 4958 */ 4959 const STACK_OF(SCT) *SSL_get0_peer_scts(SSL *s) 4960 { 4961 if (!s->scts_parsed) { 4962 if (ct_extract_tls_extension_scts(s) < 0 || 4963 ct_extract_ocsp_response_scts(s) < 0 || 4964 ct_extract_x509v3_extension_scts(s) < 0) 4965 goto err; 4966 4967 s->scts_parsed = 1; 4968 } 4969 return s->scts; 4970 err: 4971 return NULL; 4972 } 4973 4974 static int ct_permissive(const CT_POLICY_EVAL_CTX * ctx, 4975 const STACK_OF(SCT) *scts, void *unused_arg) 4976 { 4977 return 1; 4978 } 4979 4980 static int ct_strict(const CT_POLICY_EVAL_CTX * ctx, 4981 const STACK_OF(SCT) *scts, void *unused_arg) 4982 { 4983 int count = scts != NULL ? sk_SCT_num(scts) : 0; 4984 int i; 4985 4986 for (i = 0; i < count; ++i) { 4987 SCT *sct = sk_SCT_value(scts, i); 4988 int status = SCT_get_validation_status(sct); 4989 4990 if (status == SCT_VALIDATION_STATUS_VALID) 4991 return 1; 4992 } 4993 SSLerr(SSL_F_CT_STRICT, SSL_R_NO_VALID_SCTS); 4994 return 0; 4995 } 4996 4997 int SSL_set_ct_validation_callback(SSL *s, ssl_ct_validation_cb callback, 4998 void *arg) 4999 { 5000 /* 5001 * Since code exists that uses the custom extension handler for CT, look 5002 * for this and throw an error if they have already registered to use CT. 5003 */ 5004 if (callback != NULL && SSL_CTX_has_client_custom_ext(s->ctx, 5005 TLSEXT_TYPE_signed_certificate_timestamp)) 5006 { 5007 SSLerr(SSL_F_SSL_SET_CT_VALIDATION_CALLBACK, 5008 SSL_R_CUSTOM_EXT_HANDLER_ALREADY_INSTALLED); 5009 return 0; 5010 } 5011 5012 if (callback != NULL) { 5013 /* 5014 * If we are validating CT, then we MUST accept SCTs served via OCSP 5015 */ 5016 if (!SSL_set_tlsext_status_type(s, TLSEXT_STATUSTYPE_ocsp)) 5017 return 0; 5018 } 5019 5020 s->ct_validation_callback = callback; 5021 s->ct_validation_callback_arg = arg; 5022 5023 return 1; 5024 } 5025 5026 int SSL_CTX_set_ct_validation_callback(SSL_CTX *ctx, 5027 ssl_ct_validation_cb callback, void *arg) 5028 { 5029 /* 5030 * Since code exists that uses the custom extension handler for CT, look for 5031 * this and throw an error if they have already registered to use CT. 5032 */ 5033 if (callback != NULL && SSL_CTX_has_client_custom_ext(ctx, 5034 TLSEXT_TYPE_signed_certificate_timestamp)) 5035 { 5036 SSLerr(SSL_F_SSL_CTX_SET_CT_VALIDATION_CALLBACK, 5037 SSL_R_CUSTOM_EXT_HANDLER_ALREADY_INSTALLED); 5038 return 0; 5039 } 5040 5041 ctx->ct_validation_callback = callback; 5042 ctx->ct_validation_callback_arg = arg; 5043 return 1; 5044 } 5045 5046 int SSL_ct_is_enabled(const SSL *s) 5047 { 5048 return s->ct_validation_callback != NULL; 5049 } 5050 5051 int SSL_CTX_ct_is_enabled(const SSL_CTX *ctx) 5052 { 5053 return ctx->ct_validation_callback != NULL; 5054 } 5055 5056 int ssl_validate_ct(SSL *s) 5057 { 5058 int ret = 0; 5059 X509 *cert = s->session != NULL ? s->session->peer : NULL; 5060 X509 *issuer; 5061 SSL_DANE *dane = &s->dane; 5062 CT_POLICY_EVAL_CTX *ctx = NULL; 5063 const STACK_OF(SCT) *scts; 5064 5065 /* 5066 * If no callback is set, the peer is anonymous, or its chain is invalid, 5067 * skip SCT validation - just return success. Applications that continue 5068 * handshakes without certificates, with unverified chains, or pinned leaf 5069 * certificates are outside the scope of the WebPKI and CT. 5070 * 5071 * The above exclusions notwithstanding the vast majority of peers will 5072 * have rather ordinary certificate chains validated by typical 5073 * applications that perform certificate verification and therefore will 5074 * process SCTs when enabled. 5075 */ 5076 if (s->ct_validation_callback == NULL || cert == NULL || 5077 s->verify_result != X509_V_OK || 5078 s->verified_chain == NULL || sk_X509_num(s->verified_chain) <= 1) 5079 return 1; 5080 5081 /* 5082 * CT not applicable for chains validated via DANE-TA(2) or DANE-EE(3) 5083 * trust-anchors. See https://tools.ietf.org/html/rfc7671#section-4.2 5084 */ 5085 if (DANETLS_ENABLED(dane) && dane->mtlsa != NULL) { 5086 switch (dane->mtlsa->usage) { 5087 case DANETLS_USAGE_DANE_TA: 5088 case DANETLS_USAGE_DANE_EE: 5089 return 1; 5090 } 5091 } 5092 5093 ctx = CT_POLICY_EVAL_CTX_new(); 5094 if (ctx == NULL) { 5095 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_VALIDATE_CT, 5096 ERR_R_MALLOC_FAILURE); 5097 goto end; 5098 } 5099 5100 issuer = sk_X509_value(s->verified_chain, 1); 5101 CT_POLICY_EVAL_CTX_set1_cert(ctx, cert); 5102 CT_POLICY_EVAL_CTX_set1_issuer(ctx, issuer); 5103 CT_POLICY_EVAL_CTX_set_shared_CTLOG_STORE(ctx, s->ctx->ctlog_store); 5104 CT_POLICY_EVAL_CTX_set_time( 5105 ctx, (uint64_t)SSL_SESSION_get_time(SSL_get0_session(s)) * 1000); 5106 5107 scts = SSL_get0_peer_scts(s); 5108 5109 /* 5110 * This function returns success (> 0) only when all the SCTs are valid, 0 5111 * when some are invalid, and < 0 on various internal errors (out of 5112 * memory, etc.). Having some, or even all, invalid SCTs is not sufficient 5113 * reason to abort the handshake, that decision is up to the callback. 5114 * Therefore, we error out only in the unexpected case that the return 5115 * value is negative. 5116 * 5117 * XXX: One might well argue that the return value of this function is an 5118 * unfortunate design choice. Its job is only to determine the validation 5119 * status of each of the provided SCTs. So long as it correctly separates 5120 * the wheat from the chaff it should return success. Failure in this case 5121 * ought to correspond to an inability to carry out its duties. 5122 */ 5123 if (SCT_LIST_validate(scts, ctx) < 0) { 5124 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_SSL_VALIDATE_CT, 5125 SSL_R_SCT_VERIFICATION_FAILED); 5126 goto end; 5127 } 5128 5129 ret = s->ct_validation_callback(ctx, scts, s->ct_validation_callback_arg); 5130 if (ret < 0) 5131 ret = 0; /* This function returns 0 on failure */ 5132 if (!ret) 5133 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_SSL_VALIDATE_CT, 5134 SSL_R_CALLBACK_FAILED); 5135 5136 end: 5137 CT_POLICY_EVAL_CTX_free(ctx); 5138 /* 5139 * With SSL_VERIFY_NONE the session may be cached and re-used despite a 5140 * failure return code here. Also the application may wish the complete 5141 * the handshake, and then disconnect cleanly at a higher layer, after 5142 * checking the verification status of the completed connection. 5143 * 5144 * We therefore force a certificate verification failure which will be 5145 * visible via SSL_get_verify_result() and cached as part of any resumed 5146 * session. 5147 * 5148 * Note: the permissive callback is for information gathering only, always 5149 * returns success, and does not affect verification status. Only the 5150 * strict callback or a custom application-specified callback can trigger 5151 * connection failure or record a verification error. 5152 */ 5153 if (ret <= 0) 5154 s->verify_result = X509_V_ERR_NO_VALID_SCTS; 5155 return ret; 5156 } 5157 5158 int SSL_CTX_enable_ct(SSL_CTX *ctx, int validation_mode) 5159 { 5160 switch (validation_mode) { 5161 default: 5162 SSLerr(SSL_F_SSL_CTX_ENABLE_CT, SSL_R_INVALID_CT_VALIDATION_TYPE); 5163 return 0; 5164 case SSL_CT_VALIDATION_PERMISSIVE: 5165 return SSL_CTX_set_ct_validation_callback(ctx, ct_permissive, NULL); 5166 case SSL_CT_VALIDATION_STRICT: 5167 return SSL_CTX_set_ct_validation_callback(ctx, ct_strict, NULL); 5168 } 5169 } 5170 5171 int SSL_enable_ct(SSL *s, int validation_mode) 5172 { 5173 switch (validation_mode) { 5174 default: 5175 SSLerr(SSL_F_SSL_ENABLE_CT, SSL_R_INVALID_CT_VALIDATION_TYPE); 5176 return 0; 5177 case SSL_CT_VALIDATION_PERMISSIVE: 5178 return SSL_set_ct_validation_callback(s, ct_permissive, NULL); 5179 case SSL_CT_VALIDATION_STRICT: 5180 return SSL_set_ct_validation_callback(s, ct_strict, NULL); 5181 } 5182 } 5183 5184 int SSL_CTX_set_default_ctlog_list_file(SSL_CTX *ctx) 5185 { 5186 return CTLOG_STORE_load_default_file(ctx->ctlog_store); 5187 } 5188 5189 int SSL_CTX_set_ctlog_list_file(SSL_CTX *ctx, const char *path) 5190 { 5191 return CTLOG_STORE_load_file(ctx->ctlog_store, path); 5192 } 5193 5194 void SSL_CTX_set0_ctlog_store(SSL_CTX *ctx, CTLOG_STORE * logs) 5195 { 5196 CTLOG_STORE_free(ctx->ctlog_store); 5197 ctx->ctlog_store = logs; 5198 } 5199 5200 const CTLOG_STORE *SSL_CTX_get0_ctlog_store(const SSL_CTX *ctx) 5201 { 5202 return ctx->ctlog_store; 5203 } 5204 5205 #endif /* OPENSSL_NO_CT */ 5206 5207 void SSL_CTX_set_client_hello_cb(SSL_CTX *c, SSL_client_hello_cb_fn cb, 5208 void *arg) 5209 { 5210 c->client_hello_cb = cb; 5211 c->client_hello_cb_arg = arg; 5212 } 5213 5214 int SSL_client_hello_isv2(SSL *s) 5215 { 5216 if (s->clienthello == NULL) 5217 return 0; 5218 return s->clienthello->isv2; 5219 } 5220 5221 unsigned int SSL_client_hello_get0_legacy_version(SSL *s) 5222 { 5223 if (s->clienthello == NULL) 5224 return 0; 5225 return s->clienthello->legacy_version; 5226 } 5227 5228 size_t SSL_client_hello_get0_random(SSL *s, const unsigned char **out) 5229 { 5230 if (s->clienthello == NULL) 5231 return 0; 5232 if (out != NULL) 5233 *out = s->clienthello->random; 5234 return SSL3_RANDOM_SIZE; 5235 } 5236 5237 size_t SSL_client_hello_get0_session_id(SSL *s, const unsigned char **out) 5238 { 5239 if (s->clienthello == NULL) 5240 return 0; 5241 if (out != NULL) 5242 *out = s->clienthello->session_id; 5243 return s->clienthello->session_id_len; 5244 } 5245 5246 size_t SSL_client_hello_get0_ciphers(SSL *s, const unsigned char **out) 5247 { 5248 if (s->clienthello == NULL) 5249 return 0; 5250 if (out != NULL) 5251 *out = PACKET_data(&s->clienthello->ciphersuites); 5252 return PACKET_remaining(&s->clienthello->ciphersuites); 5253 } 5254 5255 size_t SSL_client_hello_get0_compression_methods(SSL *s, const unsigned char **out) 5256 { 5257 if (s->clienthello == NULL) 5258 return 0; 5259 if (out != NULL) 5260 *out = s->clienthello->compressions; 5261 return s->clienthello->compressions_len; 5262 } 5263 5264 int SSL_client_hello_get1_extensions_present(SSL *s, int **out, size_t *outlen) 5265 { 5266 RAW_EXTENSION *ext; 5267 int *present; 5268 size_t num = 0, i; 5269 5270 if (s->clienthello == NULL || out == NULL || outlen == NULL) 5271 return 0; 5272 for (i = 0; i < s->clienthello->pre_proc_exts_len; i++) { 5273 ext = s->clienthello->pre_proc_exts + i; 5274 if (ext->present) 5275 num++; 5276 } 5277 if (num == 0) { 5278 *out = NULL; 5279 *outlen = 0; 5280 return 1; 5281 } 5282 if ((present = OPENSSL_malloc(sizeof(*present) * num)) == NULL) { 5283 SSLerr(SSL_F_SSL_CLIENT_HELLO_GET1_EXTENSIONS_PRESENT, 5284 ERR_R_MALLOC_FAILURE); 5285 return 0; 5286 } 5287 for (i = 0; i < s->clienthello->pre_proc_exts_len; i++) { 5288 ext = s->clienthello->pre_proc_exts + i; 5289 if (ext->present) { 5290 if (ext->received_order >= num) 5291 goto err; 5292 present[ext->received_order] = ext->type; 5293 } 5294 } 5295 *out = present; 5296 *outlen = num; 5297 return 1; 5298 err: 5299 OPENSSL_free(present); 5300 return 0; 5301 } 5302 5303 int SSL_client_hello_get0_ext(SSL *s, unsigned int type, const unsigned char **out, 5304 size_t *outlen) 5305 { 5306 size_t i; 5307 RAW_EXTENSION *r; 5308 5309 if (s->clienthello == NULL) 5310 return 0; 5311 for (i = 0; i < s->clienthello->pre_proc_exts_len; ++i) { 5312 r = s->clienthello->pre_proc_exts + i; 5313 if (r->present && r->type == type) { 5314 if (out != NULL) 5315 *out = PACKET_data(&r->data); 5316 if (outlen != NULL) 5317 *outlen = PACKET_remaining(&r->data); 5318 return 1; 5319 } 5320 } 5321 return 0; 5322 } 5323 5324 int SSL_free_buffers(SSL *ssl) 5325 { 5326 RECORD_LAYER *rl = &ssl->rlayer; 5327 5328 if (RECORD_LAYER_read_pending(rl) || RECORD_LAYER_write_pending(rl)) 5329 return 0; 5330 5331 RECORD_LAYER_release(rl); 5332 return 1; 5333 } 5334 5335 int SSL_alloc_buffers(SSL *ssl) 5336 { 5337 return ssl3_setup_buffers(ssl); 5338 } 5339 5340 void SSL_CTX_set_keylog_callback(SSL_CTX *ctx, SSL_CTX_keylog_cb_func cb) 5341 { 5342 ctx->keylog_callback = cb; 5343 } 5344 5345 SSL_CTX_keylog_cb_func SSL_CTX_get_keylog_callback(const SSL_CTX *ctx) 5346 { 5347 return ctx->keylog_callback; 5348 } 5349 5350 static int nss_keylog_int(const char *prefix, 5351 SSL *ssl, 5352 const uint8_t *parameter_1, 5353 size_t parameter_1_len, 5354 const uint8_t *parameter_2, 5355 size_t parameter_2_len) 5356 { 5357 char *out = NULL; 5358 char *cursor = NULL; 5359 size_t out_len = 0; 5360 size_t i; 5361 size_t prefix_len; 5362 5363 if (ssl->ctx->keylog_callback == NULL) 5364 return 1; 5365 5366 /* 5367 * Our output buffer will contain the following strings, rendered with 5368 * space characters in between, terminated by a NULL character: first the 5369 * prefix, then the first parameter, then the second parameter. The 5370 * meaning of each parameter depends on the specific key material being 5371 * logged. Note that the first and second parameters are encoded in 5372 * hexadecimal, so we need a buffer that is twice their lengths. 5373 */ 5374 prefix_len = strlen(prefix); 5375 out_len = prefix_len + (2 * parameter_1_len) + (2 * parameter_2_len) + 3; 5376 if ((out = cursor = OPENSSL_malloc(out_len)) == NULL) { 5377 SSLfatal(ssl, SSL_AD_INTERNAL_ERROR, SSL_F_NSS_KEYLOG_INT, 5378 ERR_R_MALLOC_FAILURE); 5379 return 0; 5380 } 5381 5382 strcpy(cursor, prefix); 5383 cursor += prefix_len; 5384 *cursor++ = ' '; 5385 5386 for (i = 0; i < parameter_1_len; i++) { 5387 sprintf(cursor, "%02x", parameter_1[i]); 5388 cursor += 2; 5389 } 5390 *cursor++ = ' '; 5391 5392 for (i = 0; i < parameter_2_len; i++) { 5393 sprintf(cursor, "%02x", parameter_2[i]); 5394 cursor += 2; 5395 } 5396 *cursor = '\0'; 5397 5398 ssl->ctx->keylog_callback(ssl, (const char *)out); 5399 OPENSSL_clear_free(out, out_len); 5400 return 1; 5401 5402 } 5403 5404 int ssl_log_rsa_client_key_exchange(SSL *ssl, 5405 const uint8_t *encrypted_premaster, 5406 size_t encrypted_premaster_len, 5407 const uint8_t *premaster, 5408 size_t premaster_len) 5409 { 5410 if (encrypted_premaster_len < 8) { 5411 SSLfatal(ssl, SSL_AD_INTERNAL_ERROR, 5412 SSL_F_SSL_LOG_RSA_CLIENT_KEY_EXCHANGE, ERR_R_INTERNAL_ERROR); 5413 return 0; 5414 } 5415 5416 /* We only want the first 8 bytes of the encrypted premaster as a tag. */ 5417 return nss_keylog_int("RSA", 5418 ssl, 5419 encrypted_premaster, 5420 8, 5421 premaster, 5422 premaster_len); 5423 } 5424 5425 int ssl_log_secret(SSL *ssl, 5426 const char *label, 5427 const uint8_t *secret, 5428 size_t secret_len) 5429 { 5430 return nss_keylog_int(label, 5431 ssl, 5432 ssl->s3->client_random, 5433 SSL3_RANDOM_SIZE, 5434 secret, 5435 secret_len); 5436 } 5437 5438 #define SSLV2_CIPHER_LEN 3 5439 5440 int ssl_cache_cipherlist(SSL *s, PACKET *cipher_suites, int sslv2format) 5441 { 5442 int n; 5443 5444 n = sslv2format ? SSLV2_CIPHER_LEN : TLS_CIPHER_LEN; 5445 5446 if (PACKET_remaining(cipher_suites) == 0) { 5447 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_SSL_CACHE_CIPHERLIST, 5448 SSL_R_NO_CIPHERS_SPECIFIED); 5449 return 0; 5450 } 5451 5452 if (PACKET_remaining(cipher_suites) % n != 0) { 5453 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_SSL_CACHE_CIPHERLIST, 5454 SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST); 5455 return 0; 5456 } 5457 5458 OPENSSL_free(s->s3->tmp.ciphers_raw); 5459 s->s3->tmp.ciphers_raw = NULL; 5460 s->s3->tmp.ciphers_rawlen = 0; 5461 5462 if (sslv2format) { 5463 size_t numciphers = PACKET_remaining(cipher_suites) / n; 5464 PACKET sslv2ciphers = *cipher_suites; 5465 unsigned int leadbyte; 5466 unsigned char *raw; 5467 5468 /* 5469 * We store the raw ciphers list in SSLv3+ format so we need to do some 5470 * preprocessing to convert the list first. If there are any SSLv2 only 5471 * ciphersuites with a non-zero leading byte then we are going to 5472 * slightly over allocate because we won't store those. But that isn't a 5473 * problem. 5474 */ 5475 raw = OPENSSL_malloc(numciphers * TLS_CIPHER_LEN); 5476 s->s3->tmp.ciphers_raw = raw; 5477 if (raw == NULL) { 5478 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_CACHE_CIPHERLIST, 5479 ERR_R_MALLOC_FAILURE); 5480 return 0; 5481 } 5482 for (s->s3->tmp.ciphers_rawlen = 0; 5483 PACKET_remaining(&sslv2ciphers) > 0; 5484 raw += TLS_CIPHER_LEN) { 5485 if (!PACKET_get_1(&sslv2ciphers, &leadbyte) 5486 || (leadbyte == 0 5487 && !PACKET_copy_bytes(&sslv2ciphers, raw, 5488 TLS_CIPHER_LEN)) 5489 || (leadbyte != 0 5490 && !PACKET_forward(&sslv2ciphers, TLS_CIPHER_LEN))) { 5491 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_SSL_CACHE_CIPHERLIST, 5492 SSL_R_BAD_PACKET); 5493 OPENSSL_free(s->s3->tmp.ciphers_raw); 5494 s->s3->tmp.ciphers_raw = NULL; 5495 s->s3->tmp.ciphers_rawlen = 0; 5496 return 0; 5497 } 5498 if (leadbyte == 0) 5499 s->s3->tmp.ciphers_rawlen += TLS_CIPHER_LEN; 5500 } 5501 } else if (!PACKET_memdup(cipher_suites, &s->s3->tmp.ciphers_raw, 5502 &s->s3->tmp.ciphers_rawlen)) { 5503 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_CACHE_CIPHERLIST, 5504 ERR_R_INTERNAL_ERROR); 5505 return 0; 5506 } 5507 return 1; 5508 } 5509 5510 int SSL_bytes_to_cipher_list(SSL *s, const unsigned char *bytes, size_t len, 5511 int isv2format, STACK_OF(SSL_CIPHER) **sk, 5512 STACK_OF(SSL_CIPHER) **scsvs) 5513 { 5514 PACKET pkt; 5515 5516 if (!PACKET_buf_init(&pkt, bytes, len)) 5517 return 0; 5518 return bytes_to_cipher_list(s, &pkt, sk, scsvs, isv2format, 0); 5519 } 5520 5521 int bytes_to_cipher_list(SSL *s, PACKET *cipher_suites, 5522 STACK_OF(SSL_CIPHER) **skp, 5523 STACK_OF(SSL_CIPHER) **scsvs_out, 5524 int sslv2format, int fatal) 5525 { 5526 const SSL_CIPHER *c; 5527 STACK_OF(SSL_CIPHER) *sk = NULL; 5528 STACK_OF(SSL_CIPHER) *scsvs = NULL; 5529 int n; 5530 /* 3 = SSLV2_CIPHER_LEN > TLS_CIPHER_LEN = 2. */ 5531 unsigned char cipher[SSLV2_CIPHER_LEN]; 5532 5533 n = sslv2format ? SSLV2_CIPHER_LEN : TLS_CIPHER_LEN; 5534 5535 if (PACKET_remaining(cipher_suites) == 0) { 5536 if (fatal) 5537 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_BYTES_TO_CIPHER_LIST, 5538 SSL_R_NO_CIPHERS_SPECIFIED); 5539 else 5540 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, SSL_R_NO_CIPHERS_SPECIFIED); 5541 return 0; 5542 } 5543 5544 if (PACKET_remaining(cipher_suites) % n != 0) { 5545 if (fatal) 5546 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_BYTES_TO_CIPHER_LIST, 5547 SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST); 5548 else 5549 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, 5550 SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST); 5551 return 0; 5552 } 5553 5554 sk = sk_SSL_CIPHER_new_null(); 5555 scsvs = sk_SSL_CIPHER_new_null(); 5556 if (sk == NULL || scsvs == NULL) { 5557 if (fatal) 5558 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_BYTES_TO_CIPHER_LIST, 5559 ERR_R_MALLOC_FAILURE); 5560 else 5561 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, ERR_R_MALLOC_FAILURE); 5562 goto err; 5563 } 5564 5565 while (PACKET_copy_bytes(cipher_suites, cipher, n)) { 5566 /* 5567 * SSLv3 ciphers wrapped in an SSLv2-compatible ClientHello have the 5568 * first byte set to zero, while true SSLv2 ciphers have a non-zero 5569 * first byte. We don't support any true SSLv2 ciphers, so skip them. 5570 */ 5571 if (sslv2format && cipher[0] != '\0') 5572 continue; 5573 5574 /* For SSLv2-compat, ignore leading 0-byte. */ 5575 c = ssl_get_cipher_by_char(s, sslv2format ? &cipher[1] : cipher, 1); 5576 if (c != NULL) { 5577 if ((c->valid && !sk_SSL_CIPHER_push(sk, c)) || 5578 (!c->valid && !sk_SSL_CIPHER_push(scsvs, c))) { 5579 if (fatal) 5580 SSLfatal(s, SSL_AD_INTERNAL_ERROR, 5581 SSL_F_BYTES_TO_CIPHER_LIST, ERR_R_MALLOC_FAILURE); 5582 else 5583 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, ERR_R_MALLOC_FAILURE); 5584 goto err; 5585 } 5586 } 5587 } 5588 if (PACKET_remaining(cipher_suites) > 0) { 5589 if (fatal) 5590 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_BYTES_TO_CIPHER_LIST, 5591 SSL_R_BAD_LENGTH); 5592 else 5593 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, SSL_R_BAD_LENGTH); 5594 goto err; 5595 } 5596 5597 if (skp != NULL) 5598 *skp = sk; 5599 else 5600 sk_SSL_CIPHER_free(sk); 5601 if (scsvs_out != NULL) 5602 *scsvs_out = scsvs; 5603 else 5604 sk_SSL_CIPHER_free(scsvs); 5605 return 1; 5606 err: 5607 sk_SSL_CIPHER_free(sk); 5608 sk_SSL_CIPHER_free(scsvs); 5609 return 0; 5610 } 5611 5612 int SSL_CTX_set_max_early_data(SSL_CTX *ctx, uint32_t max_early_data) 5613 { 5614 ctx->max_early_data = max_early_data; 5615 5616 return 1; 5617 } 5618 5619 uint32_t SSL_CTX_get_max_early_data(const SSL_CTX *ctx) 5620 { 5621 return ctx->max_early_data; 5622 } 5623 5624 int SSL_set_max_early_data(SSL *s, uint32_t max_early_data) 5625 { 5626 s->max_early_data = max_early_data; 5627 5628 return 1; 5629 } 5630 5631 uint32_t SSL_get_max_early_data(const SSL *s) 5632 { 5633 return s->max_early_data; 5634 } 5635 5636 int SSL_CTX_set_recv_max_early_data(SSL_CTX *ctx, uint32_t recv_max_early_data) 5637 { 5638 ctx->recv_max_early_data = recv_max_early_data; 5639 5640 return 1; 5641 } 5642 5643 uint32_t SSL_CTX_get_recv_max_early_data(const SSL_CTX *ctx) 5644 { 5645 return ctx->recv_max_early_data; 5646 } 5647 5648 int SSL_set_recv_max_early_data(SSL *s, uint32_t recv_max_early_data) 5649 { 5650 s->recv_max_early_data = recv_max_early_data; 5651 5652 return 1; 5653 } 5654 5655 uint32_t SSL_get_recv_max_early_data(const SSL *s) 5656 { 5657 return s->recv_max_early_data; 5658 } 5659 5660 __owur unsigned int ssl_get_max_send_fragment(const SSL *ssl) 5661 { 5662 /* Return any active Max Fragment Len extension */ 5663 if (ssl->session != NULL && USE_MAX_FRAGMENT_LENGTH_EXT(ssl->session)) 5664 return GET_MAX_FRAGMENT_LENGTH(ssl->session); 5665 5666 /* return current SSL connection setting */ 5667 return ssl->max_send_fragment; 5668 } 5669 5670 __owur unsigned int ssl_get_split_send_fragment(const SSL *ssl) 5671 { 5672 /* Return a value regarding an active Max Fragment Len extension */ 5673 if (ssl->session != NULL && USE_MAX_FRAGMENT_LENGTH_EXT(ssl->session) 5674 && ssl->split_send_fragment > GET_MAX_FRAGMENT_LENGTH(ssl->session)) 5675 return GET_MAX_FRAGMENT_LENGTH(ssl->session); 5676 5677 /* else limit |split_send_fragment| to current |max_send_fragment| */ 5678 if (ssl->split_send_fragment > ssl->max_send_fragment) 5679 return ssl->max_send_fragment; 5680 5681 /* return current SSL connection setting */ 5682 return ssl->split_send_fragment; 5683 } 5684 5685 int SSL_stateless(SSL *s) 5686 { 5687 int ret; 5688 5689 /* Ensure there is no state left over from a previous invocation */ 5690 if (!SSL_clear(s)) 5691 return 0; 5692 5693 ERR_clear_error(); 5694 5695 s->s3->flags |= TLS1_FLAGS_STATELESS; 5696 ret = SSL_accept(s); 5697 s->s3->flags &= ~TLS1_FLAGS_STATELESS; 5698 5699 if (ret > 0 && s->ext.cookieok) 5700 return 1; 5701 5702 if (s->hello_retry_request == SSL_HRR_PENDING && !ossl_statem_in_error(s)) 5703 return 0; 5704 5705 return -1; 5706 } 5707 5708 void SSL_CTX_set_post_handshake_auth(SSL_CTX *ctx, int val) 5709 { 5710 ctx->pha_enabled = val; 5711 } 5712 5713 void SSL_set_post_handshake_auth(SSL *ssl, int val) 5714 { 5715 ssl->pha_enabled = val; 5716 } 5717 5718 int SSL_verify_client_post_handshake(SSL *ssl) 5719 { 5720 if (!SSL_IS_TLS13(ssl)) { 5721 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_WRONG_SSL_VERSION); 5722 return 0; 5723 } 5724 if (!ssl->server) { 5725 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_NOT_SERVER); 5726 return 0; 5727 } 5728 5729 if (!SSL_is_init_finished(ssl)) { 5730 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_STILL_IN_INIT); 5731 return 0; 5732 } 5733 5734 switch (ssl->post_handshake_auth) { 5735 case SSL_PHA_NONE: 5736 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_EXTENSION_NOT_RECEIVED); 5737 return 0; 5738 default: 5739 case SSL_PHA_EXT_SENT: 5740 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, ERR_R_INTERNAL_ERROR); 5741 return 0; 5742 case SSL_PHA_EXT_RECEIVED: 5743 break; 5744 case SSL_PHA_REQUEST_PENDING: 5745 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_REQUEST_PENDING); 5746 return 0; 5747 case SSL_PHA_REQUESTED: 5748 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_REQUEST_SENT); 5749 return 0; 5750 } 5751 5752 ssl->post_handshake_auth = SSL_PHA_REQUEST_PENDING; 5753 5754 /* checks verify_mode and algorithm_auth */ 5755 if (!send_certificate_request(ssl)) { 5756 ssl->post_handshake_auth = SSL_PHA_EXT_RECEIVED; /* restore on error */ 5757 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_INVALID_CONFIG); 5758 return 0; 5759 } 5760 5761 ossl_statem_set_in_init(ssl, 1); 5762 return 1; 5763 } 5764 5765 int SSL_CTX_set_session_ticket_cb(SSL_CTX *ctx, 5766 SSL_CTX_generate_session_ticket_fn gen_cb, 5767 SSL_CTX_decrypt_session_ticket_fn dec_cb, 5768 void *arg) 5769 { 5770 ctx->generate_ticket_cb = gen_cb; 5771 ctx->decrypt_ticket_cb = dec_cb; 5772 ctx->ticket_cb_data = arg; 5773 return 1; 5774 } 5775 5776 void SSL_CTX_set_allow_early_data_cb(SSL_CTX *ctx, 5777 SSL_allow_early_data_cb_fn cb, 5778 void *arg) 5779 { 5780 ctx->allow_early_data_cb = cb; 5781 ctx->allow_early_data_cb_data = arg; 5782 } 5783 5784 void SSL_set_allow_early_data_cb(SSL *s, 5785 SSL_allow_early_data_cb_fn cb, 5786 void *arg) 5787 { 5788 s->allow_early_data_cb = cb; 5789 s->allow_early_data_cb_data = arg; 5790 } 5791