1 /* 2 * Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved. 3 * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved 4 * Copyright 2005 Nokia. All rights reserved. 5 * 6 * Licensed under the OpenSSL license (the "License"). You may not use 7 * this file except in compliance with the License. You can obtain a copy 8 * in the file LICENSE in the source distribution or at 9 * https://www.openssl.org/source/license.html 10 */ 11 12 #include <stdio.h> 13 #include "ssl_local.h" 14 #include "e_os.h" 15 #include <openssl/objects.h> 16 #include <openssl/x509v3.h> 17 #include <openssl/rand.h> 18 #include <openssl/rand_drbg.h> 19 #include <openssl/ocsp.h> 20 #include <openssl/dh.h> 21 #include <openssl/engine.h> 22 #include <openssl/async.h> 23 #include <openssl/ct.h> 24 #include "internal/cryptlib.h" 25 #include "internal/refcount.h" 26 #include "internal/ktls.h" 27 28 const char SSL_version_str[] = OPENSSL_VERSION_TEXT; 29 30 static int ssl_undefined_function_1(SSL *ssl, SSL3_RECORD *r, size_t s, int t) 31 { 32 (void)r; 33 (void)s; 34 (void)t; 35 return ssl_undefined_function(ssl); 36 } 37 38 static int ssl_undefined_function_2(SSL *ssl, SSL3_RECORD *r, unsigned char *s, 39 int t) 40 { 41 (void)r; 42 (void)s; 43 (void)t; 44 return ssl_undefined_function(ssl); 45 } 46 47 static int ssl_undefined_function_3(SSL *ssl, unsigned char *r, 48 unsigned char *s, size_t t, size_t *u) 49 { 50 (void)r; 51 (void)s; 52 (void)t; 53 (void)u; 54 return ssl_undefined_function(ssl); 55 } 56 57 static int ssl_undefined_function_4(SSL *ssl, int r) 58 { 59 (void)r; 60 return ssl_undefined_function(ssl); 61 } 62 63 static size_t ssl_undefined_function_5(SSL *ssl, const char *r, size_t s, 64 unsigned char *t) 65 { 66 (void)r; 67 (void)s; 68 (void)t; 69 return ssl_undefined_function(ssl); 70 } 71 72 static int ssl_undefined_function_6(int r) 73 { 74 (void)r; 75 return ssl_undefined_function(NULL); 76 } 77 78 static int ssl_undefined_function_7(SSL *ssl, unsigned char *r, size_t s, 79 const char *t, size_t u, 80 const unsigned char *v, size_t w, int x) 81 { 82 (void)r; 83 (void)s; 84 (void)t; 85 (void)u; 86 (void)v; 87 (void)w; 88 (void)x; 89 return ssl_undefined_function(ssl); 90 } 91 92 SSL3_ENC_METHOD ssl3_undef_enc_method = { 93 ssl_undefined_function_1, 94 ssl_undefined_function_2, 95 ssl_undefined_function, 96 ssl_undefined_function_3, 97 ssl_undefined_function_4, 98 ssl_undefined_function_5, 99 NULL, /* client_finished_label */ 100 0, /* client_finished_label_len */ 101 NULL, /* server_finished_label */ 102 0, /* server_finished_label_len */ 103 ssl_undefined_function_6, 104 ssl_undefined_function_7, 105 }; 106 107 struct ssl_async_args { 108 SSL *s; 109 void *buf; 110 size_t num; 111 enum { READFUNC, WRITEFUNC, OTHERFUNC } type; 112 union { 113 int (*func_read) (SSL *, void *, size_t, size_t *); 114 int (*func_write) (SSL *, const void *, size_t, size_t *); 115 int (*func_other) (SSL *); 116 } f; 117 }; 118 119 static const struct { 120 uint8_t mtype; 121 uint8_t ord; 122 int nid; 123 } dane_mds[] = { 124 { 125 DANETLS_MATCHING_FULL, 0, NID_undef 126 }, 127 { 128 DANETLS_MATCHING_2256, 1, NID_sha256 129 }, 130 { 131 DANETLS_MATCHING_2512, 2, NID_sha512 132 }, 133 }; 134 135 static int dane_ctx_enable(struct dane_ctx_st *dctx) 136 { 137 const EVP_MD **mdevp; 138 uint8_t *mdord; 139 uint8_t mdmax = DANETLS_MATCHING_LAST; 140 int n = ((int)mdmax) + 1; /* int to handle PrivMatch(255) */ 141 size_t i; 142 143 if (dctx->mdevp != NULL) 144 return 1; 145 146 mdevp = OPENSSL_zalloc(n * sizeof(*mdevp)); 147 mdord = OPENSSL_zalloc(n * sizeof(*mdord)); 148 149 if (mdord == NULL || mdevp == NULL) { 150 OPENSSL_free(mdord); 151 OPENSSL_free(mdevp); 152 SSLerr(SSL_F_DANE_CTX_ENABLE, ERR_R_MALLOC_FAILURE); 153 return 0; 154 } 155 156 /* Install default entries */ 157 for (i = 0; i < OSSL_NELEM(dane_mds); ++i) { 158 const EVP_MD *md; 159 160 if (dane_mds[i].nid == NID_undef || 161 (md = EVP_get_digestbynid(dane_mds[i].nid)) == NULL) 162 continue; 163 mdevp[dane_mds[i].mtype] = md; 164 mdord[dane_mds[i].mtype] = dane_mds[i].ord; 165 } 166 167 dctx->mdevp = mdevp; 168 dctx->mdord = mdord; 169 dctx->mdmax = mdmax; 170 171 return 1; 172 } 173 174 static void dane_ctx_final(struct dane_ctx_st *dctx) 175 { 176 OPENSSL_free(dctx->mdevp); 177 dctx->mdevp = NULL; 178 179 OPENSSL_free(dctx->mdord); 180 dctx->mdord = NULL; 181 dctx->mdmax = 0; 182 } 183 184 static void tlsa_free(danetls_record *t) 185 { 186 if (t == NULL) 187 return; 188 OPENSSL_free(t->data); 189 EVP_PKEY_free(t->spki); 190 OPENSSL_free(t); 191 } 192 193 static void dane_final(SSL_DANE *dane) 194 { 195 sk_danetls_record_pop_free(dane->trecs, tlsa_free); 196 dane->trecs = NULL; 197 198 sk_X509_pop_free(dane->certs, X509_free); 199 dane->certs = NULL; 200 201 X509_free(dane->mcert); 202 dane->mcert = NULL; 203 dane->mtlsa = NULL; 204 dane->mdpth = -1; 205 dane->pdpth = -1; 206 } 207 208 /* 209 * dane_copy - Copy dane configuration, sans verification state. 210 */ 211 static int ssl_dane_dup(SSL *to, SSL *from) 212 { 213 int num; 214 int i; 215 216 if (!DANETLS_ENABLED(&from->dane)) 217 return 1; 218 219 num = sk_danetls_record_num(from->dane.trecs); 220 dane_final(&to->dane); 221 to->dane.flags = from->dane.flags; 222 to->dane.dctx = &to->ctx->dane; 223 to->dane.trecs = sk_danetls_record_new_reserve(NULL, num); 224 225 if (to->dane.trecs == NULL) { 226 SSLerr(SSL_F_SSL_DANE_DUP, ERR_R_MALLOC_FAILURE); 227 return 0; 228 } 229 230 for (i = 0; i < num; ++i) { 231 danetls_record *t = sk_danetls_record_value(from->dane.trecs, i); 232 233 if (SSL_dane_tlsa_add(to, t->usage, t->selector, t->mtype, 234 t->data, t->dlen) <= 0) 235 return 0; 236 } 237 return 1; 238 } 239 240 static int dane_mtype_set(struct dane_ctx_st *dctx, 241 const EVP_MD *md, uint8_t mtype, uint8_t ord) 242 { 243 int i; 244 245 if (mtype == DANETLS_MATCHING_FULL && md != NULL) { 246 SSLerr(SSL_F_DANE_MTYPE_SET, SSL_R_DANE_CANNOT_OVERRIDE_MTYPE_FULL); 247 return 0; 248 } 249 250 if (mtype > dctx->mdmax) { 251 const EVP_MD **mdevp; 252 uint8_t *mdord; 253 int n = ((int)mtype) + 1; 254 255 mdevp = OPENSSL_realloc(dctx->mdevp, n * sizeof(*mdevp)); 256 if (mdevp == NULL) { 257 SSLerr(SSL_F_DANE_MTYPE_SET, ERR_R_MALLOC_FAILURE); 258 return -1; 259 } 260 dctx->mdevp = mdevp; 261 262 mdord = OPENSSL_realloc(dctx->mdord, n * sizeof(*mdord)); 263 if (mdord == NULL) { 264 SSLerr(SSL_F_DANE_MTYPE_SET, ERR_R_MALLOC_FAILURE); 265 return -1; 266 } 267 dctx->mdord = mdord; 268 269 /* Zero-fill any gaps */ 270 for (i = dctx->mdmax + 1; i < mtype; ++i) { 271 mdevp[i] = NULL; 272 mdord[i] = 0; 273 } 274 275 dctx->mdmax = mtype; 276 } 277 278 dctx->mdevp[mtype] = md; 279 /* Coerce ordinal of disabled matching types to 0 */ 280 dctx->mdord[mtype] = (md == NULL) ? 0 : ord; 281 282 return 1; 283 } 284 285 static const EVP_MD *tlsa_md_get(SSL_DANE *dane, uint8_t mtype) 286 { 287 if (mtype > dane->dctx->mdmax) 288 return NULL; 289 return dane->dctx->mdevp[mtype]; 290 } 291 292 static int dane_tlsa_add(SSL_DANE *dane, 293 uint8_t usage, 294 uint8_t selector, 295 uint8_t mtype, unsigned const char *data, size_t dlen) 296 { 297 danetls_record *t; 298 const EVP_MD *md = NULL; 299 int ilen = (int)dlen; 300 int i; 301 int num; 302 303 if (dane->trecs == NULL) { 304 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_NOT_ENABLED); 305 return -1; 306 } 307 308 if (ilen < 0 || dlen != (size_t)ilen) { 309 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_DATA_LENGTH); 310 return 0; 311 } 312 313 if (usage > DANETLS_USAGE_LAST) { 314 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE_USAGE); 315 return 0; 316 } 317 318 if (selector > DANETLS_SELECTOR_LAST) { 319 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_SELECTOR); 320 return 0; 321 } 322 323 if (mtype != DANETLS_MATCHING_FULL) { 324 md = tlsa_md_get(dane, mtype); 325 if (md == NULL) { 326 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_MATCHING_TYPE); 327 return 0; 328 } 329 } 330 331 if (md != NULL && dlen != (size_t)EVP_MD_size(md)) { 332 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_DIGEST_LENGTH); 333 return 0; 334 } 335 if (!data) { 336 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_NULL_DATA); 337 return 0; 338 } 339 340 if ((t = OPENSSL_zalloc(sizeof(*t))) == NULL) { 341 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE); 342 return -1; 343 } 344 345 t->usage = usage; 346 t->selector = selector; 347 t->mtype = mtype; 348 t->data = OPENSSL_malloc(dlen); 349 if (t->data == NULL) { 350 tlsa_free(t); 351 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE); 352 return -1; 353 } 354 memcpy(t->data, data, dlen); 355 t->dlen = dlen; 356 357 /* Validate and cache full certificate or public key */ 358 if (mtype == DANETLS_MATCHING_FULL) { 359 const unsigned char *p = data; 360 X509 *cert = NULL; 361 EVP_PKEY *pkey = NULL; 362 363 switch (selector) { 364 case DANETLS_SELECTOR_CERT: 365 if (!d2i_X509(&cert, &p, ilen) || p < data || 366 dlen != (size_t)(p - data)) { 367 tlsa_free(t); 368 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE); 369 return 0; 370 } 371 if (X509_get0_pubkey(cert) == NULL) { 372 tlsa_free(t); 373 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE); 374 return 0; 375 } 376 377 if ((DANETLS_USAGE_BIT(usage) & DANETLS_TA_MASK) == 0) { 378 X509_free(cert); 379 break; 380 } 381 382 /* 383 * For usage DANE-TA(2), we support authentication via "2 0 0" TLSA 384 * records that contain full certificates of trust-anchors that are 385 * not present in the wire chain. For usage PKIX-TA(0), we augment 386 * the chain with untrusted Full(0) certificates from DNS, in case 387 * they are missing from the chain. 388 */ 389 if ((dane->certs == NULL && 390 (dane->certs = sk_X509_new_null()) == NULL) || 391 !sk_X509_push(dane->certs, cert)) { 392 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE); 393 X509_free(cert); 394 tlsa_free(t); 395 return -1; 396 } 397 break; 398 399 case DANETLS_SELECTOR_SPKI: 400 if (!d2i_PUBKEY(&pkey, &p, ilen) || p < data || 401 dlen != (size_t)(p - data)) { 402 tlsa_free(t); 403 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_PUBLIC_KEY); 404 return 0; 405 } 406 407 /* 408 * For usage DANE-TA(2), we support authentication via "2 1 0" TLSA 409 * records that contain full bare keys of trust-anchors that are 410 * not present in the wire chain. 411 */ 412 if (usage == DANETLS_USAGE_DANE_TA) 413 t->spki = pkey; 414 else 415 EVP_PKEY_free(pkey); 416 break; 417 } 418 } 419 420 /*- 421 * Find the right insertion point for the new record. 422 * 423 * See crypto/x509/x509_vfy.c. We sort DANE-EE(3) records first, so that 424 * they can be processed first, as they require no chain building, and no 425 * expiration or hostname checks. Because DANE-EE(3) is numerically 426 * largest, this is accomplished via descending sort by "usage". 427 * 428 * We also sort in descending order by matching ordinal to simplify 429 * the implementation of digest agility in the verification code. 430 * 431 * The choice of order for the selector is not significant, so we 432 * use the same descending order for consistency. 433 */ 434 num = sk_danetls_record_num(dane->trecs); 435 for (i = 0; i < num; ++i) { 436 danetls_record *rec = sk_danetls_record_value(dane->trecs, i); 437 438 if (rec->usage > usage) 439 continue; 440 if (rec->usage < usage) 441 break; 442 if (rec->selector > selector) 443 continue; 444 if (rec->selector < selector) 445 break; 446 if (dane->dctx->mdord[rec->mtype] > dane->dctx->mdord[mtype]) 447 continue; 448 break; 449 } 450 451 if (!sk_danetls_record_insert(dane->trecs, t, i)) { 452 tlsa_free(t); 453 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE); 454 return -1; 455 } 456 dane->umask |= DANETLS_USAGE_BIT(usage); 457 458 return 1; 459 } 460 461 /* 462 * Return 0 if there is only one version configured and it was disabled 463 * at configure time. Return 1 otherwise. 464 */ 465 static int ssl_check_allowed_versions(int min_version, int max_version) 466 { 467 int minisdtls = 0, maxisdtls = 0; 468 469 /* Figure out if we're doing DTLS versions or TLS versions */ 470 if (min_version == DTLS1_BAD_VER 471 || min_version >> 8 == DTLS1_VERSION_MAJOR) 472 minisdtls = 1; 473 if (max_version == DTLS1_BAD_VER 474 || max_version >> 8 == DTLS1_VERSION_MAJOR) 475 maxisdtls = 1; 476 /* A wildcard version of 0 could be DTLS or TLS. */ 477 if ((minisdtls && !maxisdtls && max_version != 0) 478 || (maxisdtls && !minisdtls && min_version != 0)) { 479 /* Mixing DTLS and TLS versions will lead to sadness; deny it. */ 480 return 0; 481 } 482 483 if (minisdtls || maxisdtls) { 484 /* Do DTLS version checks. */ 485 if (min_version == 0) 486 /* Ignore DTLS1_BAD_VER */ 487 min_version = DTLS1_VERSION; 488 if (max_version == 0) 489 max_version = DTLS1_2_VERSION; 490 #ifdef OPENSSL_NO_DTLS1_2 491 if (max_version == DTLS1_2_VERSION) 492 max_version = DTLS1_VERSION; 493 #endif 494 #ifdef OPENSSL_NO_DTLS1 495 if (min_version == DTLS1_VERSION) 496 min_version = DTLS1_2_VERSION; 497 #endif 498 /* Done massaging versions; do the check. */ 499 if (0 500 #ifdef OPENSSL_NO_DTLS1 501 || (DTLS_VERSION_GE(min_version, DTLS1_VERSION) 502 && DTLS_VERSION_GE(DTLS1_VERSION, max_version)) 503 #endif 504 #ifdef OPENSSL_NO_DTLS1_2 505 || (DTLS_VERSION_GE(min_version, DTLS1_2_VERSION) 506 && DTLS_VERSION_GE(DTLS1_2_VERSION, max_version)) 507 #endif 508 ) 509 return 0; 510 } else { 511 /* Regular TLS version checks. */ 512 if (min_version == 0) 513 min_version = SSL3_VERSION; 514 if (max_version == 0) 515 max_version = TLS1_3_VERSION; 516 #ifdef OPENSSL_NO_TLS1_3 517 if (max_version == TLS1_3_VERSION) 518 max_version = TLS1_2_VERSION; 519 #endif 520 #ifdef OPENSSL_NO_TLS1_2 521 if (max_version == TLS1_2_VERSION) 522 max_version = TLS1_1_VERSION; 523 #endif 524 #ifdef OPENSSL_NO_TLS1_1 525 if (max_version == TLS1_1_VERSION) 526 max_version = TLS1_VERSION; 527 #endif 528 #ifdef OPENSSL_NO_TLS1 529 if (max_version == TLS1_VERSION) 530 max_version = SSL3_VERSION; 531 #endif 532 #ifdef OPENSSL_NO_SSL3 533 if (min_version == SSL3_VERSION) 534 min_version = TLS1_VERSION; 535 #endif 536 #ifdef OPENSSL_NO_TLS1 537 if (min_version == TLS1_VERSION) 538 min_version = TLS1_1_VERSION; 539 #endif 540 #ifdef OPENSSL_NO_TLS1_1 541 if (min_version == TLS1_1_VERSION) 542 min_version = TLS1_2_VERSION; 543 #endif 544 #ifdef OPENSSL_NO_TLS1_2 545 if (min_version == TLS1_2_VERSION) 546 min_version = TLS1_3_VERSION; 547 #endif 548 /* Done massaging versions; do the check. */ 549 if (0 550 #ifdef OPENSSL_NO_SSL3 551 || (min_version <= SSL3_VERSION && SSL3_VERSION <= max_version) 552 #endif 553 #ifdef OPENSSL_NO_TLS1 554 || (min_version <= TLS1_VERSION && TLS1_VERSION <= max_version) 555 #endif 556 #ifdef OPENSSL_NO_TLS1_1 557 || (min_version <= TLS1_1_VERSION && TLS1_1_VERSION <= max_version) 558 #endif 559 #ifdef OPENSSL_NO_TLS1_2 560 || (min_version <= TLS1_2_VERSION && TLS1_2_VERSION <= max_version) 561 #endif 562 #ifdef OPENSSL_NO_TLS1_3 563 || (min_version <= TLS1_3_VERSION && TLS1_3_VERSION <= max_version) 564 #endif 565 ) 566 return 0; 567 } 568 return 1; 569 } 570 571 static void clear_ciphers(SSL *s) 572 { 573 /* clear the current cipher */ 574 ssl_clear_cipher_ctx(s); 575 ssl_clear_hash_ctx(&s->read_hash); 576 ssl_clear_hash_ctx(&s->write_hash); 577 } 578 579 int SSL_clear(SSL *s) 580 { 581 if (s->method == NULL) { 582 SSLerr(SSL_F_SSL_CLEAR, SSL_R_NO_METHOD_SPECIFIED); 583 return 0; 584 } 585 586 if (ssl_clear_bad_session(s)) { 587 SSL_SESSION_free(s->session); 588 s->session = NULL; 589 } 590 SSL_SESSION_free(s->psksession); 591 s->psksession = NULL; 592 OPENSSL_free(s->psksession_id); 593 s->psksession_id = NULL; 594 s->psksession_id_len = 0; 595 s->hello_retry_request = 0; 596 s->sent_tickets = 0; 597 598 s->error = 0; 599 s->hit = 0; 600 s->shutdown = 0; 601 602 if (s->renegotiate) { 603 SSLerr(SSL_F_SSL_CLEAR, ERR_R_INTERNAL_ERROR); 604 return 0; 605 } 606 607 ossl_statem_clear(s); 608 609 s->version = s->method->version; 610 s->client_version = s->version; 611 s->rwstate = SSL_NOTHING; 612 613 BUF_MEM_free(s->init_buf); 614 s->init_buf = NULL; 615 clear_ciphers(s); 616 s->first_packet = 0; 617 618 s->key_update = SSL_KEY_UPDATE_NONE; 619 620 EVP_MD_CTX_free(s->pha_dgst); 621 s->pha_dgst = NULL; 622 623 /* Reset DANE verification result state */ 624 s->dane.mdpth = -1; 625 s->dane.pdpth = -1; 626 X509_free(s->dane.mcert); 627 s->dane.mcert = NULL; 628 s->dane.mtlsa = NULL; 629 630 /* Clear the verification result peername */ 631 X509_VERIFY_PARAM_move_peername(s->param, NULL); 632 633 /* Clear any shared connection state */ 634 OPENSSL_free(s->shared_sigalgs); 635 s->shared_sigalgs = NULL; 636 s->shared_sigalgslen = 0; 637 638 /* 639 * Check to see if we were changed into a different method, if so, revert 640 * back. 641 */ 642 if (s->method != s->ctx->method) { 643 s->method->ssl_free(s); 644 s->method = s->ctx->method; 645 if (!s->method->ssl_new(s)) 646 return 0; 647 } else { 648 if (!s->method->ssl_clear(s)) 649 return 0; 650 } 651 652 RECORD_LAYER_clear(&s->rlayer); 653 654 return 1; 655 } 656 657 /** Used to change an SSL_CTXs default SSL method type */ 658 int SSL_CTX_set_ssl_version(SSL_CTX *ctx, const SSL_METHOD *meth) 659 { 660 STACK_OF(SSL_CIPHER) *sk; 661 662 ctx->method = meth; 663 664 if (!SSL_CTX_set_ciphersuites(ctx, TLS_DEFAULT_CIPHERSUITES)) { 665 SSLerr(SSL_F_SSL_CTX_SET_SSL_VERSION, SSL_R_SSL_LIBRARY_HAS_NO_CIPHERS); 666 return 0; 667 } 668 sk = ssl_create_cipher_list(ctx->method, 669 ctx->tls13_ciphersuites, 670 &(ctx->cipher_list), 671 &(ctx->cipher_list_by_id), 672 SSL_DEFAULT_CIPHER_LIST, ctx->cert); 673 if ((sk == NULL) || (sk_SSL_CIPHER_num(sk) <= 0)) { 674 SSLerr(SSL_F_SSL_CTX_SET_SSL_VERSION, SSL_R_SSL_LIBRARY_HAS_NO_CIPHERS); 675 return 0; 676 } 677 return 1; 678 } 679 680 SSL *SSL_new(SSL_CTX *ctx) 681 { 682 SSL *s; 683 684 if (ctx == NULL) { 685 SSLerr(SSL_F_SSL_NEW, SSL_R_NULL_SSL_CTX); 686 return NULL; 687 } 688 if (ctx->method == NULL) { 689 SSLerr(SSL_F_SSL_NEW, SSL_R_SSL_CTX_HAS_NO_DEFAULT_SSL_VERSION); 690 return NULL; 691 } 692 693 s = OPENSSL_zalloc(sizeof(*s)); 694 if (s == NULL) 695 goto err; 696 697 s->references = 1; 698 s->lock = CRYPTO_THREAD_lock_new(); 699 if (s->lock == NULL) { 700 OPENSSL_free(s); 701 s = NULL; 702 goto err; 703 } 704 705 RECORD_LAYER_init(&s->rlayer, s); 706 707 s->options = ctx->options; 708 s->dane.flags = ctx->dane.flags; 709 s->min_proto_version = ctx->min_proto_version; 710 s->max_proto_version = ctx->max_proto_version; 711 s->mode = ctx->mode; 712 s->max_cert_list = ctx->max_cert_list; 713 s->max_early_data = ctx->max_early_data; 714 s->recv_max_early_data = ctx->recv_max_early_data; 715 s->num_tickets = ctx->num_tickets; 716 s->pha_enabled = ctx->pha_enabled; 717 718 /* Shallow copy of the ciphersuites stack */ 719 s->tls13_ciphersuites = sk_SSL_CIPHER_dup(ctx->tls13_ciphersuites); 720 if (s->tls13_ciphersuites == NULL) 721 goto err; 722 723 /* 724 * Earlier library versions used to copy the pointer to the CERT, not 725 * its contents; only when setting new parameters for the per-SSL 726 * copy, ssl_cert_new would be called (and the direct reference to 727 * the per-SSL_CTX settings would be lost, but those still were 728 * indirectly accessed for various purposes, and for that reason they 729 * used to be known as s->ctx->default_cert). Now we don't look at the 730 * SSL_CTX's CERT after having duplicated it once. 731 */ 732 s->cert = ssl_cert_dup(ctx->cert); 733 if (s->cert == NULL) 734 goto err; 735 736 RECORD_LAYER_set_read_ahead(&s->rlayer, ctx->read_ahead); 737 s->msg_callback = ctx->msg_callback; 738 s->msg_callback_arg = ctx->msg_callback_arg; 739 s->verify_mode = ctx->verify_mode; 740 s->not_resumable_session_cb = ctx->not_resumable_session_cb; 741 s->record_padding_cb = ctx->record_padding_cb; 742 s->record_padding_arg = ctx->record_padding_arg; 743 s->block_padding = ctx->block_padding; 744 s->sid_ctx_length = ctx->sid_ctx_length; 745 if (!ossl_assert(s->sid_ctx_length <= sizeof(s->sid_ctx))) 746 goto err; 747 memcpy(&s->sid_ctx, &ctx->sid_ctx, sizeof(s->sid_ctx)); 748 s->verify_callback = ctx->default_verify_callback; 749 s->generate_session_id = ctx->generate_session_id; 750 751 s->param = X509_VERIFY_PARAM_new(); 752 if (s->param == NULL) 753 goto err; 754 X509_VERIFY_PARAM_inherit(s->param, ctx->param); 755 s->quiet_shutdown = ctx->quiet_shutdown; 756 757 s->ext.max_fragment_len_mode = ctx->ext.max_fragment_len_mode; 758 s->max_send_fragment = ctx->max_send_fragment; 759 s->split_send_fragment = ctx->split_send_fragment; 760 s->max_pipelines = ctx->max_pipelines; 761 if (s->max_pipelines > 1) 762 RECORD_LAYER_set_read_ahead(&s->rlayer, 1); 763 if (ctx->default_read_buf_len > 0) 764 SSL_set_default_read_buffer_len(s, ctx->default_read_buf_len); 765 766 SSL_CTX_up_ref(ctx); 767 s->ctx = ctx; 768 s->ext.debug_cb = 0; 769 s->ext.debug_arg = NULL; 770 s->ext.ticket_expected = 0; 771 s->ext.status_type = ctx->ext.status_type; 772 s->ext.status_expected = 0; 773 s->ext.ocsp.ids = NULL; 774 s->ext.ocsp.exts = NULL; 775 s->ext.ocsp.resp = NULL; 776 s->ext.ocsp.resp_len = 0; 777 SSL_CTX_up_ref(ctx); 778 s->session_ctx = ctx; 779 #ifndef OPENSSL_NO_EC 780 if (ctx->ext.ecpointformats) { 781 s->ext.ecpointformats = 782 OPENSSL_memdup(ctx->ext.ecpointformats, 783 ctx->ext.ecpointformats_len); 784 if (!s->ext.ecpointformats) { 785 s->ext.ecpointformats_len = 0; 786 goto err; 787 } 788 s->ext.ecpointformats_len = 789 ctx->ext.ecpointformats_len; 790 } 791 if (ctx->ext.supportedgroups) { 792 s->ext.supportedgroups = 793 OPENSSL_memdup(ctx->ext.supportedgroups, 794 ctx->ext.supportedgroups_len 795 * sizeof(*ctx->ext.supportedgroups)); 796 if (!s->ext.supportedgroups) { 797 s->ext.supportedgroups_len = 0; 798 goto err; 799 } 800 s->ext.supportedgroups_len = ctx->ext.supportedgroups_len; 801 } 802 #endif 803 #ifndef OPENSSL_NO_NEXTPROTONEG 804 s->ext.npn = NULL; 805 #endif 806 807 if (s->ctx->ext.alpn) { 808 s->ext.alpn = OPENSSL_malloc(s->ctx->ext.alpn_len); 809 if (s->ext.alpn == NULL) { 810 s->ext.alpn_len = 0; 811 goto err; 812 } 813 memcpy(s->ext.alpn, s->ctx->ext.alpn, s->ctx->ext.alpn_len); 814 s->ext.alpn_len = s->ctx->ext.alpn_len; 815 } 816 817 s->verified_chain = NULL; 818 s->verify_result = X509_V_OK; 819 820 s->default_passwd_callback = ctx->default_passwd_callback; 821 s->default_passwd_callback_userdata = ctx->default_passwd_callback_userdata; 822 823 s->method = ctx->method; 824 825 s->key_update = SSL_KEY_UPDATE_NONE; 826 827 s->allow_early_data_cb = ctx->allow_early_data_cb; 828 s->allow_early_data_cb_data = ctx->allow_early_data_cb_data; 829 830 if (!s->method->ssl_new(s)) 831 goto err; 832 833 s->server = (ctx->method->ssl_accept == ssl_undefined_function) ? 0 : 1; 834 835 if (!SSL_clear(s)) 836 goto err; 837 838 if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL, s, &s->ex_data)) 839 goto err; 840 841 #ifndef OPENSSL_NO_PSK 842 s->psk_client_callback = ctx->psk_client_callback; 843 s->psk_server_callback = ctx->psk_server_callback; 844 #endif 845 s->psk_find_session_cb = ctx->psk_find_session_cb; 846 s->psk_use_session_cb = ctx->psk_use_session_cb; 847 848 s->job = NULL; 849 850 #ifndef OPENSSL_NO_CT 851 if (!SSL_set_ct_validation_callback(s, ctx->ct_validation_callback, 852 ctx->ct_validation_callback_arg)) 853 goto err; 854 #endif 855 856 return s; 857 err: 858 SSL_free(s); 859 SSLerr(SSL_F_SSL_NEW, ERR_R_MALLOC_FAILURE); 860 return NULL; 861 } 862 863 int SSL_is_dtls(const SSL *s) 864 { 865 return SSL_IS_DTLS(s) ? 1 : 0; 866 } 867 868 int SSL_up_ref(SSL *s) 869 { 870 int i; 871 872 if (CRYPTO_UP_REF(&s->references, &i, s->lock) <= 0) 873 return 0; 874 875 REF_PRINT_COUNT("SSL", s); 876 REF_ASSERT_ISNT(i < 2); 877 return ((i > 1) ? 1 : 0); 878 } 879 880 int SSL_CTX_set_session_id_context(SSL_CTX *ctx, const unsigned char *sid_ctx, 881 unsigned int sid_ctx_len) 882 { 883 if (sid_ctx_len > SSL_MAX_SID_CTX_LENGTH) { 884 SSLerr(SSL_F_SSL_CTX_SET_SESSION_ID_CONTEXT, 885 SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG); 886 return 0; 887 } 888 ctx->sid_ctx_length = sid_ctx_len; 889 memcpy(ctx->sid_ctx, sid_ctx, sid_ctx_len); 890 891 return 1; 892 } 893 894 int SSL_set_session_id_context(SSL *ssl, const unsigned char *sid_ctx, 895 unsigned int sid_ctx_len) 896 { 897 if (sid_ctx_len > SSL_MAX_SID_CTX_LENGTH) { 898 SSLerr(SSL_F_SSL_SET_SESSION_ID_CONTEXT, 899 SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG); 900 return 0; 901 } 902 ssl->sid_ctx_length = sid_ctx_len; 903 memcpy(ssl->sid_ctx, sid_ctx, sid_ctx_len); 904 905 return 1; 906 } 907 908 int SSL_CTX_set_generate_session_id(SSL_CTX *ctx, GEN_SESSION_CB cb) 909 { 910 CRYPTO_THREAD_write_lock(ctx->lock); 911 ctx->generate_session_id = cb; 912 CRYPTO_THREAD_unlock(ctx->lock); 913 return 1; 914 } 915 916 int SSL_set_generate_session_id(SSL *ssl, GEN_SESSION_CB cb) 917 { 918 CRYPTO_THREAD_write_lock(ssl->lock); 919 ssl->generate_session_id = cb; 920 CRYPTO_THREAD_unlock(ssl->lock); 921 return 1; 922 } 923 924 int SSL_has_matching_session_id(const SSL *ssl, const unsigned char *id, 925 unsigned int id_len) 926 { 927 /* 928 * A quick examination of SSL_SESSION_hash and SSL_SESSION_cmp shows how 929 * we can "construct" a session to give us the desired check - i.e. to 930 * find if there's a session in the hash table that would conflict with 931 * any new session built out of this id/id_len and the ssl_version in use 932 * by this SSL. 933 */ 934 SSL_SESSION r, *p; 935 936 if (id_len > sizeof(r.session_id)) 937 return 0; 938 939 r.ssl_version = ssl->version; 940 r.session_id_length = id_len; 941 memcpy(r.session_id, id, id_len); 942 943 CRYPTO_THREAD_read_lock(ssl->session_ctx->lock); 944 p = lh_SSL_SESSION_retrieve(ssl->session_ctx->sessions, &r); 945 CRYPTO_THREAD_unlock(ssl->session_ctx->lock); 946 return (p != NULL); 947 } 948 949 int SSL_CTX_set_purpose(SSL_CTX *s, int purpose) 950 { 951 return X509_VERIFY_PARAM_set_purpose(s->param, purpose); 952 } 953 954 int SSL_set_purpose(SSL *s, int purpose) 955 { 956 return X509_VERIFY_PARAM_set_purpose(s->param, purpose); 957 } 958 959 int SSL_CTX_set_trust(SSL_CTX *s, int trust) 960 { 961 return X509_VERIFY_PARAM_set_trust(s->param, trust); 962 } 963 964 int SSL_set_trust(SSL *s, int trust) 965 { 966 return X509_VERIFY_PARAM_set_trust(s->param, trust); 967 } 968 969 int SSL_set1_host(SSL *s, const char *hostname) 970 { 971 return X509_VERIFY_PARAM_set1_host(s->param, hostname, 0); 972 } 973 974 int SSL_add1_host(SSL *s, const char *hostname) 975 { 976 return X509_VERIFY_PARAM_add1_host(s->param, hostname, 0); 977 } 978 979 void SSL_set_hostflags(SSL *s, unsigned int flags) 980 { 981 X509_VERIFY_PARAM_set_hostflags(s->param, flags); 982 } 983 984 const char *SSL_get0_peername(SSL *s) 985 { 986 return X509_VERIFY_PARAM_get0_peername(s->param); 987 } 988 989 int SSL_CTX_dane_enable(SSL_CTX *ctx) 990 { 991 return dane_ctx_enable(&ctx->dane); 992 } 993 994 unsigned long SSL_CTX_dane_set_flags(SSL_CTX *ctx, unsigned long flags) 995 { 996 unsigned long orig = ctx->dane.flags; 997 998 ctx->dane.flags |= flags; 999 return orig; 1000 } 1001 1002 unsigned long SSL_CTX_dane_clear_flags(SSL_CTX *ctx, unsigned long flags) 1003 { 1004 unsigned long orig = ctx->dane.flags; 1005 1006 ctx->dane.flags &= ~flags; 1007 return orig; 1008 } 1009 1010 int SSL_dane_enable(SSL *s, const char *basedomain) 1011 { 1012 SSL_DANE *dane = &s->dane; 1013 1014 if (s->ctx->dane.mdmax == 0) { 1015 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_CONTEXT_NOT_DANE_ENABLED); 1016 return 0; 1017 } 1018 if (dane->trecs != NULL) { 1019 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_DANE_ALREADY_ENABLED); 1020 return 0; 1021 } 1022 1023 /* 1024 * Default SNI name. This rejects empty names, while set1_host below 1025 * accepts them and disables host name checks. To avoid side-effects with 1026 * invalid input, set the SNI name first. 1027 */ 1028 if (s->ext.hostname == NULL) { 1029 if (!SSL_set_tlsext_host_name(s, basedomain)) { 1030 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_ERROR_SETTING_TLSA_BASE_DOMAIN); 1031 return -1; 1032 } 1033 } 1034 1035 /* Primary RFC6125 reference identifier */ 1036 if (!X509_VERIFY_PARAM_set1_host(s->param, basedomain, 0)) { 1037 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_ERROR_SETTING_TLSA_BASE_DOMAIN); 1038 return -1; 1039 } 1040 1041 dane->mdpth = -1; 1042 dane->pdpth = -1; 1043 dane->dctx = &s->ctx->dane; 1044 dane->trecs = sk_danetls_record_new_null(); 1045 1046 if (dane->trecs == NULL) { 1047 SSLerr(SSL_F_SSL_DANE_ENABLE, ERR_R_MALLOC_FAILURE); 1048 return -1; 1049 } 1050 return 1; 1051 } 1052 1053 unsigned long SSL_dane_set_flags(SSL *ssl, unsigned long flags) 1054 { 1055 unsigned long orig = ssl->dane.flags; 1056 1057 ssl->dane.flags |= flags; 1058 return orig; 1059 } 1060 1061 unsigned long SSL_dane_clear_flags(SSL *ssl, unsigned long flags) 1062 { 1063 unsigned long orig = ssl->dane.flags; 1064 1065 ssl->dane.flags &= ~flags; 1066 return orig; 1067 } 1068 1069 int SSL_get0_dane_authority(SSL *s, X509 **mcert, EVP_PKEY **mspki) 1070 { 1071 SSL_DANE *dane = &s->dane; 1072 1073 if (!DANETLS_ENABLED(dane) || s->verify_result != X509_V_OK) 1074 return -1; 1075 if (dane->mtlsa) { 1076 if (mcert) 1077 *mcert = dane->mcert; 1078 if (mspki) 1079 *mspki = (dane->mcert == NULL) ? dane->mtlsa->spki : NULL; 1080 } 1081 return dane->mdpth; 1082 } 1083 1084 int SSL_get0_dane_tlsa(SSL *s, uint8_t *usage, uint8_t *selector, 1085 uint8_t *mtype, unsigned const char **data, size_t *dlen) 1086 { 1087 SSL_DANE *dane = &s->dane; 1088 1089 if (!DANETLS_ENABLED(dane) || s->verify_result != X509_V_OK) 1090 return -1; 1091 if (dane->mtlsa) { 1092 if (usage) 1093 *usage = dane->mtlsa->usage; 1094 if (selector) 1095 *selector = dane->mtlsa->selector; 1096 if (mtype) 1097 *mtype = dane->mtlsa->mtype; 1098 if (data) 1099 *data = dane->mtlsa->data; 1100 if (dlen) 1101 *dlen = dane->mtlsa->dlen; 1102 } 1103 return dane->mdpth; 1104 } 1105 1106 SSL_DANE *SSL_get0_dane(SSL *s) 1107 { 1108 return &s->dane; 1109 } 1110 1111 int SSL_dane_tlsa_add(SSL *s, uint8_t usage, uint8_t selector, 1112 uint8_t mtype, unsigned const char *data, size_t dlen) 1113 { 1114 return dane_tlsa_add(&s->dane, usage, selector, mtype, data, dlen); 1115 } 1116 1117 int SSL_CTX_dane_mtype_set(SSL_CTX *ctx, const EVP_MD *md, uint8_t mtype, 1118 uint8_t ord) 1119 { 1120 return dane_mtype_set(&ctx->dane, md, mtype, ord); 1121 } 1122 1123 int SSL_CTX_set1_param(SSL_CTX *ctx, X509_VERIFY_PARAM *vpm) 1124 { 1125 return X509_VERIFY_PARAM_set1(ctx->param, vpm); 1126 } 1127 1128 int SSL_set1_param(SSL *ssl, X509_VERIFY_PARAM *vpm) 1129 { 1130 return X509_VERIFY_PARAM_set1(ssl->param, vpm); 1131 } 1132 1133 X509_VERIFY_PARAM *SSL_CTX_get0_param(SSL_CTX *ctx) 1134 { 1135 return ctx->param; 1136 } 1137 1138 X509_VERIFY_PARAM *SSL_get0_param(SSL *ssl) 1139 { 1140 return ssl->param; 1141 } 1142 1143 void SSL_certs_clear(SSL *s) 1144 { 1145 ssl_cert_clear_certs(s->cert); 1146 } 1147 1148 void SSL_free(SSL *s) 1149 { 1150 int i; 1151 1152 if (s == NULL) 1153 return; 1154 CRYPTO_DOWN_REF(&s->references, &i, s->lock); 1155 REF_PRINT_COUNT("SSL", s); 1156 if (i > 0) 1157 return; 1158 REF_ASSERT_ISNT(i < 0); 1159 1160 X509_VERIFY_PARAM_free(s->param); 1161 dane_final(&s->dane); 1162 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL, s, &s->ex_data); 1163 1164 RECORD_LAYER_release(&s->rlayer); 1165 1166 /* Ignore return value */ 1167 ssl_free_wbio_buffer(s); 1168 1169 BIO_free_all(s->wbio); 1170 s->wbio = NULL; 1171 BIO_free_all(s->rbio); 1172 s->rbio = NULL; 1173 1174 BUF_MEM_free(s->init_buf); 1175 1176 /* add extra stuff */ 1177 sk_SSL_CIPHER_free(s->cipher_list); 1178 sk_SSL_CIPHER_free(s->cipher_list_by_id); 1179 sk_SSL_CIPHER_free(s->tls13_ciphersuites); 1180 sk_SSL_CIPHER_free(s->peer_ciphers); 1181 1182 /* Make the next call work :-) */ 1183 if (s->session != NULL) { 1184 ssl_clear_bad_session(s); 1185 SSL_SESSION_free(s->session); 1186 } 1187 SSL_SESSION_free(s->psksession); 1188 OPENSSL_free(s->psksession_id); 1189 1190 clear_ciphers(s); 1191 1192 ssl_cert_free(s->cert); 1193 OPENSSL_free(s->shared_sigalgs); 1194 /* Free up if allocated */ 1195 1196 OPENSSL_free(s->ext.hostname); 1197 SSL_CTX_free(s->session_ctx); 1198 #ifndef OPENSSL_NO_EC 1199 OPENSSL_free(s->ext.ecpointformats); 1200 OPENSSL_free(s->ext.peer_ecpointformats); 1201 OPENSSL_free(s->ext.supportedgroups); 1202 OPENSSL_free(s->ext.peer_supportedgroups); 1203 #endif /* OPENSSL_NO_EC */ 1204 sk_X509_EXTENSION_pop_free(s->ext.ocsp.exts, X509_EXTENSION_free); 1205 #ifndef OPENSSL_NO_OCSP 1206 sk_OCSP_RESPID_pop_free(s->ext.ocsp.ids, OCSP_RESPID_free); 1207 #endif 1208 #ifndef OPENSSL_NO_CT 1209 SCT_LIST_free(s->scts); 1210 OPENSSL_free(s->ext.scts); 1211 #endif 1212 OPENSSL_free(s->ext.ocsp.resp); 1213 OPENSSL_free(s->ext.alpn); 1214 OPENSSL_free(s->ext.tls13_cookie); 1215 if (s->clienthello != NULL) 1216 OPENSSL_free(s->clienthello->pre_proc_exts); 1217 OPENSSL_free(s->clienthello); 1218 OPENSSL_free(s->pha_context); 1219 EVP_MD_CTX_free(s->pha_dgst); 1220 1221 sk_X509_NAME_pop_free(s->ca_names, X509_NAME_free); 1222 sk_X509_NAME_pop_free(s->client_ca_names, X509_NAME_free); 1223 1224 sk_X509_pop_free(s->verified_chain, X509_free); 1225 1226 if (s->method != NULL) 1227 s->method->ssl_free(s); 1228 1229 SSL_CTX_free(s->ctx); 1230 1231 ASYNC_WAIT_CTX_free(s->waitctx); 1232 1233 #if !defined(OPENSSL_NO_NEXTPROTONEG) 1234 OPENSSL_free(s->ext.npn); 1235 #endif 1236 1237 #ifndef OPENSSL_NO_SRTP 1238 sk_SRTP_PROTECTION_PROFILE_free(s->srtp_profiles); 1239 #endif 1240 1241 CRYPTO_THREAD_lock_free(s->lock); 1242 1243 OPENSSL_free(s); 1244 } 1245 1246 void SSL_set0_rbio(SSL *s, BIO *rbio) 1247 { 1248 BIO_free_all(s->rbio); 1249 s->rbio = rbio; 1250 } 1251 1252 void SSL_set0_wbio(SSL *s, BIO *wbio) 1253 { 1254 /* 1255 * If the output buffering BIO is still in place, remove it 1256 */ 1257 if (s->bbio != NULL) 1258 s->wbio = BIO_pop(s->wbio); 1259 1260 BIO_free_all(s->wbio); 1261 s->wbio = wbio; 1262 1263 /* Re-attach |bbio| to the new |wbio|. */ 1264 if (s->bbio != NULL) 1265 s->wbio = BIO_push(s->bbio, s->wbio); 1266 } 1267 1268 void SSL_set_bio(SSL *s, BIO *rbio, BIO *wbio) 1269 { 1270 /* 1271 * For historical reasons, this function has many different cases in 1272 * ownership handling. 1273 */ 1274 1275 /* If nothing has changed, do nothing */ 1276 if (rbio == SSL_get_rbio(s) && wbio == SSL_get_wbio(s)) 1277 return; 1278 1279 /* 1280 * If the two arguments are equal then one fewer reference is granted by the 1281 * caller than we want to take 1282 */ 1283 if (rbio != NULL && rbio == wbio) 1284 BIO_up_ref(rbio); 1285 1286 /* 1287 * If only the wbio is changed only adopt one reference. 1288 */ 1289 if (rbio == SSL_get_rbio(s)) { 1290 SSL_set0_wbio(s, wbio); 1291 return; 1292 } 1293 /* 1294 * There is an asymmetry here for historical reasons. If only the rbio is 1295 * changed AND the rbio and wbio were originally different, then we only 1296 * adopt one reference. 1297 */ 1298 if (wbio == SSL_get_wbio(s) && SSL_get_rbio(s) != SSL_get_wbio(s)) { 1299 SSL_set0_rbio(s, rbio); 1300 return; 1301 } 1302 1303 /* Otherwise, adopt both references. */ 1304 SSL_set0_rbio(s, rbio); 1305 SSL_set0_wbio(s, wbio); 1306 } 1307 1308 BIO *SSL_get_rbio(const SSL *s) 1309 { 1310 return s->rbio; 1311 } 1312 1313 BIO *SSL_get_wbio(const SSL *s) 1314 { 1315 if (s->bbio != NULL) { 1316 /* 1317 * If |bbio| is active, the true caller-configured BIO is its 1318 * |next_bio|. 1319 */ 1320 return BIO_next(s->bbio); 1321 } 1322 return s->wbio; 1323 } 1324 1325 int SSL_get_fd(const SSL *s) 1326 { 1327 return SSL_get_rfd(s); 1328 } 1329 1330 int SSL_get_rfd(const SSL *s) 1331 { 1332 int ret = -1; 1333 BIO *b, *r; 1334 1335 b = SSL_get_rbio(s); 1336 r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR); 1337 if (r != NULL) 1338 BIO_get_fd(r, &ret); 1339 return ret; 1340 } 1341 1342 int SSL_get_wfd(const SSL *s) 1343 { 1344 int ret = -1; 1345 BIO *b, *r; 1346 1347 b = SSL_get_wbio(s); 1348 r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR); 1349 if (r != NULL) 1350 BIO_get_fd(r, &ret); 1351 return ret; 1352 } 1353 1354 #ifndef OPENSSL_NO_SOCK 1355 int SSL_set_fd(SSL *s, int fd) 1356 { 1357 int ret = 0; 1358 BIO *bio = NULL; 1359 1360 bio = BIO_new(BIO_s_socket()); 1361 1362 if (bio == NULL) { 1363 SSLerr(SSL_F_SSL_SET_FD, ERR_R_BUF_LIB); 1364 goto err; 1365 } 1366 BIO_set_fd(bio, fd, BIO_NOCLOSE); 1367 SSL_set_bio(s, bio, bio); 1368 #ifndef OPENSSL_NO_KTLS 1369 /* 1370 * The new socket is created successfully regardless of ktls_enable. 1371 * ktls_enable doesn't change any functionality of the socket, except 1372 * changing the setsockopt to enable the processing of ktls_start. 1373 * Thus, it is not a problem to call it for non-TLS sockets. 1374 */ 1375 ktls_enable(fd); 1376 #endif /* OPENSSL_NO_KTLS */ 1377 ret = 1; 1378 err: 1379 return ret; 1380 } 1381 1382 int SSL_set_wfd(SSL *s, int fd) 1383 { 1384 BIO *rbio = SSL_get_rbio(s); 1385 1386 if (rbio == NULL || BIO_method_type(rbio) != BIO_TYPE_SOCKET 1387 || (int)BIO_get_fd(rbio, NULL) != fd) { 1388 BIO *bio = BIO_new(BIO_s_socket()); 1389 1390 if (bio == NULL) { 1391 SSLerr(SSL_F_SSL_SET_WFD, ERR_R_BUF_LIB); 1392 return 0; 1393 } 1394 BIO_set_fd(bio, fd, BIO_NOCLOSE); 1395 SSL_set0_wbio(s, bio); 1396 #ifndef OPENSSL_NO_KTLS 1397 /* 1398 * The new socket is created successfully regardless of ktls_enable. 1399 * ktls_enable doesn't change any functionality of the socket, except 1400 * changing the setsockopt to enable the processing of ktls_start. 1401 * Thus, it is not a problem to call it for non-TLS sockets. 1402 */ 1403 ktls_enable(fd); 1404 #endif /* OPENSSL_NO_KTLS */ 1405 } else { 1406 BIO_up_ref(rbio); 1407 SSL_set0_wbio(s, rbio); 1408 } 1409 return 1; 1410 } 1411 1412 int SSL_set_rfd(SSL *s, int fd) 1413 { 1414 BIO *wbio = SSL_get_wbio(s); 1415 1416 if (wbio == NULL || BIO_method_type(wbio) != BIO_TYPE_SOCKET 1417 || ((int)BIO_get_fd(wbio, NULL) != fd)) { 1418 BIO *bio = BIO_new(BIO_s_socket()); 1419 1420 if (bio == NULL) { 1421 SSLerr(SSL_F_SSL_SET_RFD, ERR_R_BUF_LIB); 1422 return 0; 1423 } 1424 BIO_set_fd(bio, fd, BIO_NOCLOSE); 1425 SSL_set0_rbio(s, bio); 1426 } else { 1427 BIO_up_ref(wbio); 1428 SSL_set0_rbio(s, wbio); 1429 } 1430 1431 return 1; 1432 } 1433 #endif 1434 1435 /* return length of latest Finished message we sent, copy to 'buf' */ 1436 size_t SSL_get_finished(const SSL *s, void *buf, size_t count) 1437 { 1438 size_t ret = 0; 1439 1440 if (s->s3 != NULL) { 1441 ret = s->s3->tmp.finish_md_len; 1442 if (count > ret) 1443 count = ret; 1444 memcpy(buf, s->s3->tmp.finish_md, count); 1445 } 1446 return ret; 1447 } 1448 1449 /* return length of latest Finished message we expected, copy to 'buf' */ 1450 size_t SSL_get_peer_finished(const SSL *s, void *buf, size_t count) 1451 { 1452 size_t ret = 0; 1453 1454 if (s->s3 != NULL) { 1455 ret = s->s3->tmp.peer_finish_md_len; 1456 if (count > ret) 1457 count = ret; 1458 memcpy(buf, s->s3->tmp.peer_finish_md, count); 1459 } 1460 return ret; 1461 } 1462 1463 int SSL_get_verify_mode(const SSL *s) 1464 { 1465 return s->verify_mode; 1466 } 1467 1468 int SSL_get_verify_depth(const SSL *s) 1469 { 1470 return X509_VERIFY_PARAM_get_depth(s->param); 1471 } 1472 1473 int (*SSL_get_verify_callback(const SSL *s)) (int, X509_STORE_CTX *) { 1474 return s->verify_callback; 1475 } 1476 1477 int SSL_CTX_get_verify_mode(const SSL_CTX *ctx) 1478 { 1479 return ctx->verify_mode; 1480 } 1481 1482 int SSL_CTX_get_verify_depth(const SSL_CTX *ctx) 1483 { 1484 return X509_VERIFY_PARAM_get_depth(ctx->param); 1485 } 1486 1487 int (*SSL_CTX_get_verify_callback(const SSL_CTX *ctx)) (int, X509_STORE_CTX *) { 1488 return ctx->default_verify_callback; 1489 } 1490 1491 void SSL_set_verify(SSL *s, int mode, 1492 int (*callback) (int ok, X509_STORE_CTX *ctx)) 1493 { 1494 s->verify_mode = mode; 1495 if (callback != NULL) 1496 s->verify_callback = callback; 1497 } 1498 1499 void SSL_set_verify_depth(SSL *s, int depth) 1500 { 1501 X509_VERIFY_PARAM_set_depth(s->param, depth); 1502 } 1503 1504 void SSL_set_read_ahead(SSL *s, int yes) 1505 { 1506 RECORD_LAYER_set_read_ahead(&s->rlayer, yes); 1507 } 1508 1509 int SSL_get_read_ahead(const SSL *s) 1510 { 1511 return RECORD_LAYER_get_read_ahead(&s->rlayer); 1512 } 1513 1514 int SSL_pending(const SSL *s) 1515 { 1516 size_t pending = s->method->ssl_pending(s); 1517 1518 /* 1519 * SSL_pending cannot work properly if read-ahead is enabled 1520 * (SSL_[CTX_]ctrl(..., SSL_CTRL_SET_READ_AHEAD, 1, NULL)), and it is 1521 * impossible to fix since SSL_pending cannot report errors that may be 1522 * observed while scanning the new data. (Note that SSL_pending() is 1523 * often used as a boolean value, so we'd better not return -1.) 1524 * 1525 * SSL_pending also cannot work properly if the value >INT_MAX. In that case 1526 * we just return INT_MAX. 1527 */ 1528 return pending < INT_MAX ? (int)pending : INT_MAX; 1529 } 1530 1531 int SSL_has_pending(const SSL *s) 1532 { 1533 /* 1534 * Similar to SSL_pending() but returns a 1 to indicate that we have 1535 * unprocessed data available or 0 otherwise (as opposed to the number of 1536 * bytes available). Unlike SSL_pending() this will take into account 1537 * read_ahead data. A 1 return simply indicates that we have unprocessed 1538 * data. That data may not result in any application data, or we may fail 1539 * to parse the records for some reason. 1540 */ 1541 if (RECORD_LAYER_processed_read_pending(&s->rlayer)) 1542 return 1; 1543 1544 return RECORD_LAYER_read_pending(&s->rlayer); 1545 } 1546 1547 X509 *SSL_get_peer_certificate(const SSL *s) 1548 { 1549 X509 *r; 1550 1551 if ((s == NULL) || (s->session == NULL)) 1552 r = NULL; 1553 else 1554 r = s->session->peer; 1555 1556 if (r == NULL) 1557 return r; 1558 1559 X509_up_ref(r); 1560 1561 return r; 1562 } 1563 1564 STACK_OF(X509) *SSL_get_peer_cert_chain(const SSL *s) 1565 { 1566 STACK_OF(X509) *r; 1567 1568 if ((s == NULL) || (s->session == NULL)) 1569 r = NULL; 1570 else 1571 r = s->session->peer_chain; 1572 1573 /* 1574 * If we are a client, cert_chain includes the peer's own certificate; if 1575 * we are a server, it does not. 1576 */ 1577 1578 return r; 1579 } 1580 1581 /* 1582 * Now in theory, since the calling process own 't' it should be safe to 1583 * modify. We need to be able to read f without being hassled 1584 */ 1585 int SSL_copy_session_id(SSL *t, const SSL *f) 1586 { 1587 int i; 1588 /* Do we need to to SSL locking? */ 1589 if (!SSL_set_session(t, SSL_get_session(f))) { 1590 return 0; 1591 } 1592 1593 /* 1594 * what if we are setup for one protocol version but want to talk another 1595 */ 1596 if (t->method != f->method) { 1597 t->method->ssl_free(t); 1598 t->method = f->method; 1599 if (t->method->ssl_new(t) == 0) 1600 return 0; 1601 } 1602 1603 CRYPTO_UP_REF(&f->cert->references, &i, f->cert->lock); 1604 ssl_cert_free(t->cert); 1605 t->cert = f->cert; 1606 if (!SSL_set_session_id_context(t, f->sid_ctx, (int)f->sid_ctx_length)) { 1607 return 0; 1608 } 1609 1610 return 1; 1611 } 1612 1613 /* Fix this so it checks all the valid key/cert options */ 1614 int SSL_CTX_check_private_key(const SSL_CTX *ctx) 1615 { 1616 if ((ctx == NULL) || (ctx->cert->key->x509 == NULL)) { 1617 SSLerr(SSL_F_SSL_CTX_CHECK_PRIVATE_KEY, SSL_R_NO_CERTIFICATE_ASSIGNED); 1618 return 0; 1619 } 1620 if (ctx->cert->key->privatekey == NULL) { 1621 SSLerr(SSL_F_SSL_CTX_CHECK_PRIVATE_KEY, SSL_R_NO_PRIVATE_KEY_ASSIGNED); 1622 return 0; 1623 } 1624 return X509_check_private_key 1625 (ctx->cert->key->x509, ctx->cert->key->privatekey); 1626 } 1627 1628 /* Fix this function so that it takes an optional type parameter */ 1629 int SSL_check_private_key(const SSL *ssl) 1630 { 1631 if (ssl == NULL) { 1632 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, ERR_R_PASSED_NULL_PARAMETER); 1633 return 0; 1634 } 1635 if (ssl->cert->key->x509 == NULL) { 1636 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, SSL_R_NO_CERTIFICATE_ASSIGNED); 1637 return 0; 1638 } 1639 if (ssl->cert->key->privatekey == NULL) { 1640 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, SSL_R_NO_PRIVATE_KEY_ASSIGNED); 1641 return 0; 1642 } 1643 return X509_check_private_key(ssl->cert->key->x509, 1644 ssl->cert->key->privatekey); 1645 } 1646 1647 int SSL_waiting_for_async(SSL *s) 1648 { 1649 if (s->job) 1650 return 1; 1651 1652 return 0; 1653 } 1654 1655 int SSL_get_all_async_fds(SSL *s, OSSL_ASYNC_FD *fds, size_t *numfds) 1656 { 1657 ASYNC_WAIT_CTX *ctx = s->waitctx; 1658 1659 if (ctx == NULL) 1660 return 0; 1661 return ASYNC_WAIT_CTX_get_all_fds(ctx, fds, numfds); 1662 } 1663 1664 int SSL_get_changed_async_fds(SSL *s, OSSL_ASYNC_FD *addfd, size_t *numaddfds, 1665 OSSL_ASYNC_FD *delfd, size_t *numdelfds) 1666 { 1667 ASYNC_WAIT_CTX *ctx = s->waitctx; 1668 1669 if (ctx == NULL) 1670 return 0; 1671 return ASYNC_WAIT_CTX_get_changed_fds(ctx, addfd, numaddfds, delfd, 1672 numdelfds); 1673 } 1674 1675 int SSL_accept(SSL *s) 1676 { 1677 if (s->handshake_func == NULL) { 1678 /* Not properly initialized yet */ 1679 SSL_set_accept_state(s); 1680 } 1681 1682 return SSL_do_handshake(s); 1683 } 1684 1685 int SSL_connect(SSL *s) 1686 { 1687 if (s->handshake_func == NULL) { 1688 /* Not properly initialized yet */ 1689 SSL_set_connect_state(s); 1690 } 1691 1692 return SSL_do_handshake(s); 1693 } 1694 1695 long SSL_get_default_timeout(const SSL *s) 1696 { 1697 return s->method->get_timeout(); 1698 } 1699 1700 static int ssl_start_async_job(SSL *s, struct ssl_async_args *args, 1701 int (*func) (void *)) 1702 { 1703 int ret; 1704 if (s->waitctx == NULL) { 1705 s->waitctx = ASYNC_WAIT_CTX_new(); 1706 if (s->waitctx == NULL) 1707 return -1; 1708 } 1709 switch (ASYNC_start_job(&s->job, s->waitctx, &ret, func, args, 1710 sizeof(struct ssl_async_args))) { 1711 case ASYNC_ERR: 1712 s->rwstate = SSL_NOTHING; 1713 SSLerr(SSL_F_SSL_START_ASYNC_JOB, SSL_R_FAILED_TO_INIT_ASYNC); 1714 return -1; 1715 case ASYNC_PAUSE: 1716 s->rwstate = SSL_ASYNC_PAUSED; 1717 return -1; 1718 case ASYNC_NO_JOBS: 1719 s->rwstate = SSL_ASYNC_NO_JOBS; 1720 return -1; 1721 case ASYNC_FINISH: 1722 s->job = NULL; 1723 return ret; 1724 default: 1725 s->rwstate = SSL_NOTHING; 1726 SSLerr(SSL_F_SSL_START_ASYNC_JOB, ERR_R_INTERNAL_ERROR); 1727 /* Shouldn't happen */ 1728 return -1; 1729 } 1730 } 1731 1732 static int ssl_io_intern(void *vargs) 1733 { 1734 struct ssl_async_args *args; 1735 SSL *s; 1736 void *buf; 1737 size_t num; 1738 1739 args = (struct ssl_async_args *)vargs; 1740 s = args->s; 1741 buf = args->buf; 1742 num = args->num; 1743 switch (args->type) { 1744 case READFUNC: 1745 return args->f.func_read(s, buf, num, &s->asyncrw); 1746 case WRITEFUNC: 1747 return args->f.func_write(s, buf, num, &s->asyncrw); 1748 case OTHERFUNC: 1749 return args->f.func_other(s); 1750 } 1751 return -1; 1752 } 1753 1754 int ssl_read_internal(SSL *s, void *buf, size_t num, size_t *readbytes) 1755 { 1756 if (s->handshake_func == NULL) { 1757 SSLerr(SSL_F_SSL_READ_INTERNAL, SSL_R_UNINITIALIZED); 1758 return -1; 1759 } 1760 1761 if (s->shutdown & SSL_RECEIVED_SHUTDOWN) { 1762 s->rwstate = SSL_NOTHING; 1763 return 0; 1764 } 1765 1766 if (s->early_data_state == SSL_EARLY_DATA_CONNECT_RETRY 1767 || s->early_data_state == SSL_EARLY_DATA_ACCEPT_RETRY) { 1768 SSLerr(SSL_F_SSL_READ_INTERNAL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 1769 return 0; 1770 } 1771 /* 1772 * If we are a client and haven't received the ServerHello etc then we 1773 * better do that 1774 */ 1775 ossl_statem_check_finish_init(s, 0); 1776 1777 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) { 1778 struct ssl_async_args args; 1779 int ret; 1780 1781 args.s = s; 1782 args.buf = buf; 1783 args.num = num; 1784 args.type = READFUNC; 1785 args.f.func_read = s->method->ssl_read; 1786 1787 ret = ssl_start_async_job(s, &args, ssl_io_intern); 1788 *readbytes = s->asyncrw; 1789 return ret; 1790 } else { 1791 return s->method->ssl_read(s, buf, num, readbytes); 1792 } 1793 } 1794 1795 int SSL_read(SSL *s, void *buf, int num) 1796 { 1797 int ret; 1798 size_t readbytes; 1799 1800 if (num < 0) { 1801 SSLerr(SSL_F_SSL_READ, SSL_R_BAD_LENGTH); 1802 return -1; 1803 } 1804 1805 ret = ssl_read_internal(s, buf, (size_t)num, &readbytes); 1806 1807 /* 1808 * The cast is safe here because ret should be <= INT_MAX because num is 1809 * <= INT_MAX 1810 */ 1811 if (ret > 0) 1812 ret = (int)readbytes; 1813 1814 return ret; 1815 } 1816 1817 int SSL_read_ex(SSL *s, void *buf, size_t num, size_t *readbytes) 1818 { 1819 int ret = ssl_read_internal(s, buf, num, readbytes); 1820 1821 if (ret < 0) 1822 ret = 0; 1823 return ret; 1824 } 1825 1826 int SSL_read_early_data(SSL *s, void *buf, size_t num, size_t *readbytes) 1827 { 1828 int ret; 1829 1830 if (!s->server) { 1831 SSLerr(SSL_F_SSL_READ_EARLY_DATA, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 1832 return SSL_READ_EARLY_DATA_ERROR; 1833 } 1834 1835 switch (s->early_data_state) { 1836 case SSL_EARLY_DATA_NONE: 1837 if (!SSL_in_before(s)) { 1838 SSLerr(SSL_F_SSL_READ_EARLY_DATA, 1839 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 1840 return SSL_READ_EARLY_DATA_ERROR; 1841 } 1842 /* fall through */ 1843 1844 case SSL_EARLY_DATA_ACCEPT_RETRY: 1845 s->early_data_state = SSL_EARLY_DATA_ACCEPTING; 1846 ret = SSL_accept(s); 1847 if (ret <= 0) { 1848 /* NBIO or error */ 1849 s->early_data_state = SSL_EARLY_DATA_ACCEPT_RETRY; 1850 return SSL_READ_EARLY_DATA_ERROR; 1851 } 1852 /* fall through */ 1853 1854 case SSL_EARLY_DATA_READ_RETRY: 1855 if (s->ext.early_data == SSL_EARLY_DATA_ACCEPTED) { 1856 s->early_data_state = SSL_EARLY_DATA_READING; 1857 ret = SSL_read_ex(s, buf, num, readbytes); 1858 /* 1859 * State machine will update early_data_state to 1860 * SSL_EARLY_DATA_FINISHED_READING if we get an EndOfEarlyData 1861 * message 1862 */ 1863 if (ret > 0 || (ret <= 0 && s->early_data_state 1864 != SSL_EARLY_DATA_FINISHED_READING)) { 1865 s->early_data_state = SSL_EARLY_DATA_READ_RETRY; 1866 return ret > 0 ? SSL_READ_EARLY_DATA_SUCCESS 1867 : SSL_READ_EARLY_DATA_ERROR; 1868 } 1869 } else { 1870 s->early_data_state = SSL_EARLY_DATA_FINISHED_READING; 1871 } 1872 *readbytes = 0; 1873 return SSL_READ_EARLY_DATA_FINISH; 1874 1875 default: 1876 SSLerr(SSL_F_SSL_READ_EARLY_DATA, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 1877 return SSL_READ_EARLY_DATA_ERROR; 1878 } 1879 } 1880 1881 int SSL_get_early_data_status(const SSL *s) 1882 { 1883 return s->ext.early_data; 1884 } 1885 1886 static int ssl_peek_internal(SSL *s, void *buf, size_t num, size_t *readbytes) 1887 { 1888 if (s->handshake_func == NULL) { 1889 SSLerr(SSL_F_SSL_PEEK_INTERNAL, SSL_R_UNINITIALIZED); 1890 return -1; 1891 } 1892 1893 if (s->shutdown & SSL_RECEIVED_SHUTDOWN) { 1894 return 0; 1895 } 1896 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) { 1897 struct ssl_async_args args; 1898 int ret; 1899 1900 args.s = s; 1901 args.buf = buf; 1902 args.num = num; 1903 args.type = READFUNC; 1904 args.f.func_read = s->method->ssl_peek; 1905 1906 ret = ssl_start_async_job(s, &args, ssl_io_intern); 1907 *readbytes = s->asyncrw; 1908 return ret; 1909 } else { 1910 return s->method->ssl_peek(s, buf, num, readbytes); 1911 } 1912 } 1913 1914 int SSL_peek(SSL *s, void *buf, int num) 1915 { 1916 int ret; 1917 size_t readbytes; 1918 1919 if (num < 0) { 1920 SSLerr(SSL_F_SSL_PEEK, SSL_R_BAD_LENGTH); 1921 return -1; 1922 } 1923 1924 ret = ssl_peek_internal(s, buf, (size_t)num, &readbytes); 1925 1926 /* 1927 * The cast is safe here because ret should be <= INT_MAX because num is 1928 * <= INT_MAX 1929 */ 1930 if (ret > 0) 1931 ret = (int)readbytes; 1932 1933 return ret; 1934 } 1935 1936 1937 int SSL_peek_ex(SSL *s, void *buf, size_t num, size_t *readbytes) 1938 { 1939 int ret = ssl_peek_internal(s, buf, num, readbytes); 1940 1941 if (ret < 0) 1942 ret = 0; 1943 return ret; 1944 } 1945 1946 int ssl_write_internal(SSL *s, const void *buf, size_t num, size_t *written) 1947 { 1948 if (s->handshake_func == NULL) { 1949 SSLerr(SSL_F_SSL_WRITE_INTERNAL, SSL_R_UNINITIALIZED); 1950 return -1; 1951 } 1952 1953 if (s->shutdown & SSL_SENT_SHUTDOWN) { 1954 s->rwstate = SSL_NOTHING; 1955 SSLerr(SSL_F_SSL_WRITE_INTERNAL, SSL_R_PROTOCOL_IS_SHUTDOWN); 1956 return -1; 1957 } 1958 1959 if (s->early_data_state == SSL_EARLY_DATA_CONNECT_RETRY 1960 || s->early_data_state == SSL_EARLY_DATA_ACCEPT_RETRY 1961 || s->early_data_state == SSL_EARLY_DATA_READ_RETRY) { 1962 SSLerr(SSL_F_SSL_WRITE_INTERNAL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 1963 return 0; 1964 } 1965 /* If we are a client and haven't sent the Finished we better do that */ 1966 ossl_statem_check_finish_init(s, 1); 1967 1968 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) { 1969 int ret; 1970 struct ssl_async_args args; 1971 1972 args.s = s; 1973 args.buf = (void *)buf; 1974 args.num = num; 1975 args.type = WRITEFUNC; 1976 args.f.func_write = s->method->ssl_write; 1977 1978 ret = ssl_start_async_job(s, &args, ssl_io_intern); 1979 *written = s->asyncrw; 1980 return ret; 1981 } else { 1982 return s->method->ssl_write(s, buf, num, written); 1983 } 1984 } 1985 1986 ossl_ssize_t SSL_sendfile(SSL *s, int fd, off_t offset, size_t size, int flags) 1987 { 1988 ossl_ssize_t ret; 1989 1990 if (s->handshake_func == NULL) { 1991 SSLerr(SSL_F_SSL_SENDFILE, SSL_R_UNINITIALIZED); 1992 return -1; 1993 } 1994 1995 if (s->shutdown & SSL_SENT_SHUTDOWN) { 1996 s->rwstate = SSL_NOTHING; 1997 SSLerr(SSL_F_SSL_SENDFILE, SSL_R_PROTOCOL_IS_SHUTDOWN); 1998 return -1; 1999 } 2000 2001 if (!BIO_get_ktls_send(s->wbio)) { 2002 SSLerr(SSL_F_SSL_SENDFILE, SSL_R_UNINITIALIZED); 2003 return -1; 2004 } 2005 2006 /* If we have an alert to send, lets send it */ 2007 if (s->s3->alert_dispatch) { 2008 ret = (ossl_ssize_t)s->method->ssl_dispatch_alert(s); 2009 if (ret <= 0) { 2010 /* SSLfatal() already called if appropriate */ 2011 return ret; 2012 } 2013 /* if it went, fall through and send more stuff */ 2014 } 2015 2016 s->rwstate = SSL_WRITING; 2017 if (BIO_flush(s->wbio) <= 0) { 2018 if (!BIO_should_retry(s->wbio)) { 2019 s->rwstate = SSL_NOTHING; 2020 } else { 2021 #ifdef EAGAIN 2022 set_sys_error(EAGAIN); 2023 #endif 2024 } 2025 return -1; 2026 } 2027 2028 #ifdef OPENSSL_NO_KTLS 2029 ERR_raise_data(ERR_LIB_SYS, ERR_R_INTERNAL_ERROR, "calling sendfile()"); 2030 return -1; 2031 #else 2032 ret = ktls_sendfile(SSL_get_wfd(s), fd, offset, size, flags); 2033 if (ret < 0) { 2034 #if defined(EAGAIN) && defined(EINTR) && defined(EBUSY) 2035 if ((get_last_sys_error() == EAGAIN) || 2036 (get_last_sys_error() == EINTR) || 2037 (get_last_sys_error() == EBUSY)) 2038 BIO_set_retry_write(s->wbio); 2039 else 2040 #endif 2041 SSLerr(SSL_F_SSL_SENDFILE, SSL_R_UNINITIALIZED); 2042 return ret; 2043 } 2044 s->rwstate = SSL_NOTHING; 2045 return ret; 2046 #endif 2047 } 2048 2049 int SSL_write(SSL *s, const void *buf, int num) 2050 { 2051 int ret; 2052 size_t written; 2053 2054 if (num < 0) { 2055 SSLerr(SSL_F_SSL_WRITE, SSL_R_BAD_LENGTH); 2056 return -1; 2057 } 2058 2059 ret = ssl_write_internal(s, buf, (size_t)num, &written); 2060 2061 /* 2062 * The cast is safe here because ret should be <= INT_MAX because num is 2063 * <= INT_MAX 2064 */ 2065 if (ret > 0) 2066 ret = (int)written; 2067 2068 return ret; 2069 } 2070 2071 int SSL_write_ex(SSL *s, const void *buf, size_t num, size_t *written) 2072 { 2073 int ret = ssl_write_internal(s, buf, num, written); 2074 2075 if (ret < 0) 2076 ret = 0; 2077 return ret; 2078 } 2079 2080 int SSL_write_early_data(SSL *s, const void *buf, size_t num, size_t *written) 2081 { 2082 int ret, early_data_state; 2083 size_t writtmp; 2084 uint32_t partialwrite; 2085 2086 switch (s->early_data_state) { 2087 case SSL_EARLY_DATA_NONE: 2088 if (s->server 2089 || !SSL_in_before(s) 2090 || ((s->session == NULL || s->session->ext.max_early_data == 0) 2091 && (s->psk_use_session_cb == NULL))) { 2092 SSLerr(SSL_F_SSL_WRITE_EARLY_DATA, 2093 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 2094 return 0; 2095 } 2096 /* fall through */ 2097 2098 case SSL_EARLY_DATA_CONNECT_RETRY: 2099 s->early_data_state = SSL_EARLY_DATA_CONNECTING; 2100 ret = SSL_connect(s); 2101 if (ret <= 0) { 2102 /* NBIO or error */ 2103 s->early_data_state = SSL_EARLY_DATA_CONNECT_RETRY; 2104 return 0; 2105 } 2106 /* fall through */ 2107 2108 case SSL_EARLY_DATA_WRITE_RETRY: 2109 s->early_data_state = SSL_EARLY_DATA_WRITING; 2110 /* 2111 * We disable partial write for early data because we don't keep track 2112 * of how many bytes we've written between the SSL_write_ex() call and 2113 * the flush if the flush needs to be retried) 2114 */ 2115 partialwrite = s->mode & SSL_MODE_ENABLE_PARTIAL_WRITE; 2116 s->mode &= ~SSL_MODE_ENABLE_PARTIAL_WRITE; 2117 ret = SSL_write_ex(s, buf, num, &writtmp); 2118 s->mode |= partialwrite; 2119 if (!ret) { 2120 s->early_data_state = SSL_EARLY_DATA_WRITE_RETRY; 2121 return ret; 2122 } 2123 s->early_data_state = SSL_EARLY_DATA_WRITE_FLUSH; 2124 /* fall through */ 2125 2126 case SSL_EARLY_DATA_WRITE_FLUSH: 2127 /* The buffering BIO is still in place so we need to flush it */ 2128 if (statem_flush(s) != 1) 2129 return 0; 2130 *written = num; 2131 s->early_data_state = SSL_EARLY_DATA_WRITE_RETRY; 2132 return 1; 2133 2134 case SSL_EARLY_DATA_FINISHED_READING: 2135 case SSL_EARLY_DATA_READ_RETRY: 2136 early_data_state = s->early_data_state; 2137 /* We are a server writing to an unauthenticated client */ 2138 s->early_data_state = SSL_EARLY_DATA_UNAUTH_WRITING; 2139 ret = SSL_write_ex(s, buf, num, written); 2140 /* The buffering BIO is still in place */ 2141 if (ret) 2142 (void)BIO_flush(s->wbio); 2143 s->early_data_state = early_data_state; 2144 return ret; 2145 2146 default: 2147 SSLerr(SSL_F_SSL_WRITE_EARLY_DATA, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 2148 return 0; 2149 } 2150 } 2151 2152 int SSL_shutdown(SSL *s) 2153 { 2154 /* 2155 * Note that this function behaves differently from what one might 2156 * expect. Return values are 0 for no success (yet), 1 for success; but 2157 * calling it once is usually not enough, even if blocking I/O is used 2158 * (see ssl3_shutdown). 2159 */ 2160 2161 if (s->handshake_func == NULL) { 2162 SSLerr(SSL_F_SSL_SHUTDOWN, SSL_R_UNINITIALIZED); 2163 return -1; 2164 } 2165 2166 if (!SSL_in_init(s)) { 2167 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) { 2168 struct ssl_async_args args; 2169 2170 args.s = s; 2171 args.type = OTHERFUNC; 2172 args.f.func_other = s->method->ssl_shutdown; 2173 2174 return ssl_start_async_job(s, &args, ssl_io_intern); 2175 } else { 2176 return s->method->ssl_shutdown(s); 2177 } 2178 } else { 2179 SSLerr(SSL_F_SSL_SHUTDOWN, SSL_R_SHUTDOWN_WHILE_IN_INIT); 2180 return -1; 2181 } 2182 } 2183 2184 int SSL_key_update(SSL *s, int updatetype) 2185 { 2186 /* 2187 * TODO(TLS1.3): How will applications know whether TLSv1.3 has been 2188 * negotiated, and that it is appropriate to call SSL_key_update() instead 2189 * of SSL_renegotiate(). 2190 */ 2191 if (!SSL_IS_TLS13(s)) { 2192 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_WRONG_SSL_VERSION); 2193 return 0; 2194 } 2195 2196 if (updatetype != SSL_KEY_UPDATE_NOT_REQUESTED 2197 && updatetype != SSL_KEY_UPDATE_REQUESTED) { 2198 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_INVALID_KEY_UPDATE_TYPE); 2199 return 0; 2200 } 2201 2202 if (!SSL_is_init_finished(s)) { 2203 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_STILL_IN_INIT); 2204 return 0; 2205 } 2206 2207 ossl_statem_set_in_init(s, 1); 2208 s->key_update = updatetype; 2209 return 1; 2210 } 2211 2212 int SSL_get_key_update_type(const SSL *s) 2213 { 2214 return s->key_update; 2215 } 2216 2217 int SSL_renegotiate(SSL *s) 2218 { 2219 if (SSL_IS_TLS13(s)) { 2220 SSLerr(SSL_F_SSL_RENEGOTIATE, SSL_R_WRONG_SSL_VERSION); 2221 return 0; 2222 } 2223 2224 if ((s->options & SSL_OP_NO_RENEGOTIATION)) { 2225 SSLerr(SSL_F_SSL_RENEGOTIATE, SSL_R_NO_RENEGOTIATION); 2226 return 0; 2227 } 2228 2229 s->renegotiate = 1; 2230 s->new_session = 1; 2231 2232 return s->method->ssl_renegotiate(s); 2233 } 2234 2235 int SSL_renegotiate_abbreviated(SSL *s) 2236 { 2237 if (SSL_IS_TLS13(s)) { 2238 SSLerr(SSL_F_SSL_RENEGOTIATE_ABBREVIATED, SSL_R_WRONG_SSL_VERSION); 2239 return 0; 2240 } 2241 2242 if ((s->options & SSL_OP_NO_RENEGOTIATION)) { 2243 SSLerr(SSL_F_SSL_RENEGOTIATE_ABBREVIATED, SSL_R_NO_RENEGOTIATION); 2244 return 0; 2245 } 2246 2247 s->renegotiate = 1; 2248 s->new_session = 0; 2249 2250 return s->method->ssl_renegotiate(s); 2251 } 2252 2253 int SSL_renegotiate_pending(const SSL *s) 2254 { 2255 /* 2256 * becomes true when negotiation is requested; false again once a 2257 * handshake has finished 2258 */ 2259 return (s->renegotiate != 0); 2260 } 2261 2262 long SSL_ctrl(SSL *s, int cmd, long larg, void *parg) 2263 { 2264 long l; 2265 2266 switch (cmd) { 2267 case SSL_CTRL_GET_READ_AHEAD: 2268 return RECORD_LAYER_get_read_ahead(&s->rlayer); 2269 case SSL_CTRL_SET_READ_AHEAD: 2270 l = RECORD_LAYER_get_read_ahead(&s->rlayer); 2271 RECORD_LAYER_set_read_ahead(&s->rlayer, larg); 2272 return l; 2273 2274 case SSL_CTRL_SET_MSG_CALLBACK_ARG: 2275 s->msg_callback_arg = parg; 2276 return 1; 2277 2278 case SSL_CTRL_MODE: 2279 return (s->mode |= larg); 2280 case SSL_CTRL_CLEAR_MODE: 2281 return (s->mode &= ~larg); 2282 case SSL_CTRL_GET_MAX_CERT_LIST: 2283 return (long)s->max_cert_list; 2284 case SSL_CTRL_SET_MAX_CERT_LIST: 2285 if (larg < 0) 2286 return 0; 2287 l = (long)s->max_cert_list; 2288 s->max_cert_list = (size_t)larg; 2289 return l; 2290 case SSL_CTRL_SET_MAX_SEND_FRAGMENT: 2291 if (larg < 512 || larg > SSL3_RT_MAX_PLAIN_LENGTH) 2292 return 0; 2293 #ifndef OPENSSL_NO_KTLS 2294 if (s->wbio != NULL && BIO_get_ktls_send(s->wbio)) 2295 return 0; 2296 #endif /* OPENSSL_NO_KTLS */ 2297 s->max_send_fragment = larg; 2298 if (s->max_send_fragment < s->split_send_fragment) 2299 s->split_send_fragment = s->max_send_fragment; 2300 return 1; 2301 case SSL_CTRL_SET_SPLIT_SEND_FRAGMENT: 2302 if ((size_t)larg > s->max_send_fragment || larg == 0) 2303 return 0; 2304 s->split_send_fragment = larg; 2305 return 1; 2306 case SSL_CTRL_SET_MAX_PIPELINES: 2307 if (larg < 1 || larg > SSL_MAX_PIPELINES) 2308 return 0; 2309 s->max_pipelines = larg; 2310 if (larg > 1) 2311 RECORD_LAYER_set_read_ahead(&s->rlayer, 1); 2312 return 1; 2313 case SSL_CTRL_GET_RI_SUPPORT: 2314 if (s->s3) 2315 return s->s3->send_connection_binding; 2316 else 2317 return 0; 2318 case SSL_CTRL_CERT_FLAGS: 2319 return (s->cert->cert_flags |= larg); 2320 case SSL_CTRL_CLEAR_CERT_FLAGS: 2321 return (s->cert->cert_flags &= ~larg); 2322 2323 case SSL_CTRL_GET_RAW_CIPHERLIST: 2324 if (parg) { 2325 if (s->s3->tmp.ciphers_raw == NULL) 2326 return 0; 2327 *(unsigned char **)parg = s->s3->tmp.ciphers_raw; 2328 return (int)s->s3->tmp.ciphers_rawlen; 2329 } else { 2330 return TLS_CIPHER_LEN; 2331 } 2332 case SSL_CTRL_GET_EXTMS_SUPPORT: 2333 if (!s->session || SSL_in_init(s) || ossl_statem_get_in_handshake(s)) 2334 return -1; 2335 if (s->session->flags & SSL_SESS_FLAG_EXTMS) 2336 return 1; 2337 else 2338 return 0; 2339 case SSL_CTRL_SET_MIN_PROTO_VERSION: 2340 return ssl_check_allowed_versions(larg, s->max_proto_version) 2341 && ssl_set_version_bound(s->ctx->method->version, (int)larg, 2342 &s->min_proto_version); 2343 case SSL_CTRL_GET_MIN_PROTO_VERSION: 2344 return s->min_proto_version; 2345 case SSL_CTRL_SET_MAX_PROTO_VERSION: 2346 return ssl_check_allowed_versions(s->min_proto_version, larg) 2347 && ssl_set_version_bound(s->ctx->method->version, (int)larg, 2348 &s->max_proto_version); 2349 case SSL_CTRL_GET_MAX_PROTO_VERSION: 2350 return s->max_proto_version; 2351 default: 2352 return s->method->ssl_ctrl(s, cmd, larg, parg); 2353 } 2354 } 2355 2356 long SSL_callback_ctrl(SSL *s, int cmd, void (*fp) (void)) 2357 { 2358 switch (cmd) { 2359 case SSL_CTRL_SET_MSG_CALLBACK: 2360 s->msg_callback = (void (*) 2361 (int write_p, int version, int content_type, 2362 const void *buf, size_t len, SSL *ssl, 2363 void *arg))(fp); 2364 return 1; 2365 2366 default: 2367 return s->method->ssl_callback_ctrl(s, cmd, fp); 2368 } 2369 } 2370 2371 LHASH_OF(SSL_SESSION) *SSL_CTX_sessions(SSL_CTX *ctx) 2372 { 2373 return ctx->sessions; 2374 } 2375 2376 long SSL_CTX_ctrl(SSL_CTX *ctx, int cmd, long larg, void *parg) 2377 { 2378 long l; 2379 /* For some cases with ctx == NULL perform syntax checks */ 2380 if (ctx == NULL) { 2381 switch (cmd) { 2382 #ifndef OPENSSL_NO_EC 2383 case SSL_CTRL_SET_GROUPS_LIST: 2384 return tls1_set_groups_list(NULL, NULL, parg); 2385 #endif 2386 case SSL_CTRL_SET_SIGALGS_LIST: 2387 case SSL_CTRL_SET_CLIENT_SIGALGS_LIST: 2388 return tls1_set_sigalgs_list(NULL, parg, 0); 2389 default: 2390 return 0; 2391 } 2392 } 2393 2394 switch (cmd) { 2395 case SSL_CTRL_GET_READ_AHEAD: 2396 return ctx->read_ahead; 2397 case SSL_CTRL_SET_READ_AHEAD: 2398 l = ctx->read_ahead; 2399 ctx->read_ahead = larg; 2400 return l; 2401 2402 case SSL_CTRL_SET_MSG_CALLBACK_ARG: 2403 ctx->msg_callback_arg = parg; 2404 return 1; 2405 2406 case SSL_CTRL_GET_MAX_CERT_LIST: 2407 return (long)ctx->max_cert_list; 2408 case SSL_CTRL_SET_MAX_CERT_LIST: 2409 if (larg < 0) 2410 return 0; 2411 l = (long)ctx->max_cert_list; 2412 ctx->max_cert_list = (size_t)larg; 2413 return l; 2414 2415 case SSL_CTRL_SET_SESS_CACHE_SIZE: 2416 if (larg < 0) 2417 return 0; 2418 l = (long)ctx->session_cache_size; 2419 ctx->session_cache_size = (size_t)larg; 2420 return l; 2421 case SSL_CTRL_GET_SESS_CACHE_SIZE: 2422 return (long)ctx->session_cache_size; 2423 case SSL_CTRL_SET_SESS_CACHE_MODE: 2424 l = ctx->session_cache_mode; 2425 ctx->session_cache_mode = larg; 2426 return l; 2427 case SSL_CTRL_GET_SESS_CACHE_MODE: 2428 return ctx->session_cache_mode; 2429 2430 case SSL_CTRL_SESS_NUMBER: 2431 return lh_SSL_SESSION_num_items(ctx->sessions); 2432 case SSL_CTRL_SESS_CONNECT: 2433 return tsan_load(&ctx->stats.sess_connect); 2434 case SSL_CTRL_SESS_CONNECT_GOOD: 2435 return tsan_load(&ctx->stats.sess_connect_good); 2436 case SSL_CTRL_SESS_CONNECT_RENEGOTIATE: 2437 return tsan_load(&ctx->stats.sess_connect_renegotiate); 2438 case SSL_CTRL_SESS_ACCEPT: 2439 return tsan_load(&ctx->stats.sess_accept); 2440 case SSL_CTRL_SESS_ACCEPT_GOOD: 2441 return tsan_load(&ctx->stats.sess_accept_good); 2442 case SSL_CTRL_SESS_ACCEPT_RENEGOTIATE: 2443 return tsan_load(&ctx->stats.sess_accept_renegotiate); 2444 case SSL_CTRL_SESS_HIT: 2445 return tsan_load(&ctx->stats.sess_hit); 2446 case SSL_CTRL_SESS_CB_HIT: 2447 return tsan_load(&ctx->stats.sess_cb_hit); 2448 case SSL_CTRL_SESS_MISSES: 2449 return tsan_load(&ctx->stats.sess_miss); 2450 case SSL_CTRL_SESS_TIMEOUTS: 2451 return tsan_load(&ctx->stats.sess_timeout); 2452 case SSL_CTRL_SESS_CACHE_FULL: 2453 return tsan_load(&ctx->stats.sess_cache_full); 2454 case SSL_CTRL_MODE: 2455 return (ctx->mode |= larg); 2456 case SSL_CTRL_CLEAR_MODE: 2457 return (ctx->mode &= ~larg); 2458 case SSL_CTRL_SET_MAX_SEND_FRAGMENT: 2459 if (larg < 512 || larg > SSL3_RT_MAX_PLAIN_LENGTH) 2460 return 0; 2461 ctx->max_send_fragment = larg; 2462 if (ctx->max_send_fragment < ctx->split_send_fragment) 2463 ctx->split_send_fragment = ctx->max_send_fragment; 2464 return 1; 2465 case SSL_CTRL_SET_SPLIT_SEND_FRAGMENT: 2466 if ((size_t)larg > ctx->max_send_fragment || larg == 0) 2467 return 0; 2468 ctx->split_send_fragment = larg; 2469 return 1; 2470 case SSL_CTRL_SET_MAX_PIPELINES: 2471 if (larg < 1 || larg > SSL_MAX_PIPELINES) 2472 return 0; 2473 ctx->max_pipelines = larg; 2474 return 1; 2475 case SSL_CTRL_CERT_FLAGS: 2476 return (ctx->cert->cert_flags |= larg); 2477 case SSL_CTRL_CLEAR_CERT_FLAGS: 2478 return (ctx->cert->cert_flags &= ~larg); 2479 case SSL_CTRL_SET_MIN_PROTO_VERSION: 2480 return ssl_check_allowed_versions(larg, ctx->max_proto_version) 2481 && ssl_set_version_bound(ctx->method->version, (int)larg, 2482 &ctx->min_proto_version); 2483 case SSL_CTRL_GET_MIN_PROTO_VERSION: 2484 return ctx->min_proto_version; 2485 case SSL_CTRL_SET_MAX_PROTO_VERSION: 2486 return ssl_check_allowed_versions(ctx->min_proto_version, larg) 2487 && ssl_set_version_bound(ctx->method->version, (int)larg, 2488 &ctx->max_proto_version); 2489 case SSL_CTRL_GET_MAX_PROTO_VERSION: 2490 return ctx->max_proto_version; 2491 default: 2492 return ctx->method->ssl_ctx_ctrl(ctx, cmd, larg, parg); 2493 } 2494 } 2495 2496 long SSL_CTX_callback_ctrl(SSL_CTX *ctx, int cmd, void (*fp) (void)) 2497 { 2498 switch (cmd) { 2499 case SSL_CTRL_SET_MSG_CALLBACK: 2500 ctx->msg_callback = (void (*) 2501 (int write_p, int version, int content_type, 2502 const void *buf, size_t len, SSL *ssl, 2503 void *arg))(fp); 2504 return 1; 2505 2506 default: 2507 return ctx->method->ssl_ctx_callback_ctrl(ctx, cmd, fp); 2508 } 2509 } 2510 2511 int ssl_cipher_id_cmp(const SSL_CIPHER *a, const SSL_CIPHER *b) 2512 { 2513 if (a->id > b->id) 2514 return 1; 2515 if (a->id < b->id) 2516 return -1; 2517 return 0; 2518 } 2519 2520 int ssl_cipher_ptr_id_cmp(const SSL_CIPHER *const *ap, 2521 const SSL_CIPHER *const *bp) 2522 { 2523 if ((*ap)->id > (*bp)->id) 2524 return 1; 2525 if ((*ap)->id < (*bp)->id) 2526 return -1; 2527 return 0; 2528 } 2529 2530 /** return a STACK of the ciphers available for the SSL and in order of 2531 * preference */ 2532 STACK_OF(SSL_CIPHER) *SSL_get_ciphers(const SSL *s) 2533 { 2534 if (s != NULL) { 2535 if (s->cipher_list != NULL) { 2536 return s->cipher_list; 2537 } else if ((s->ctx != NULL) && (s->ctx->cipher_list != NULL)) { 2538 return s->ctx->cipher_list; 2539 } 2540 } 2541 return NULL; 2542 } 2543 2544 STACK_OF(SSL_CIPHER) *SSL_get_client_ciphers(const SSL *s) 2545 { 2546 if ((s == NULL) || !s->server) 2547 return NULL; 2548 return s->peer_ciphers; 2549 } 2550 2551 STACK_OF(SSL_CIPHER) *SSL_get1_supported_ciphers(SSL *s) 2552 { 2553 STACK_OF(SSL_CIPHER) *sk = NULL, *ciphers; 2554 int i; 2555 2556 ciphers = SSL_get_ciphers(s); 2557 if (!ciphers) 2558 return NULL; 2559 if (!ssl_set_client_disabled(s)) 2560 return NULL; 2561 for (i = 0; i < sk_SSL_CIPHER_num(ciphers); i++) { 2562 const SSL_CIPHER *c = sk_SSL_CIPHER_value(ciphers, i); 2563 if (!ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0)) { 2564 if (!sk) 2565 sk = sk_SSL_CIPHER_new_null(); 2566 if (!sk) 2567 return NULL; 2568 if (!sk_SSL_CIPHER_push(sk, c)) { 2569 sk_SSL_CIPHER_free(sk); 2570 return NULL; 2571 } 2572 } 2573 } 2574 return sk; 2575 } 2576 2577 /** return a STACK of the ciphers available for the SSL and in order of 2578 * algorithm id */ 2579 STACK_OF(SSL_CIPHER) *ssl_get_ciphers_by_id(SSL *s) 2580 { 2581 if (s != NULL) { 2582 if (s->cipher_list_by_id != NULL) { 2583 return s->cipher_list_by_id; 2584 } else if ((s->ctx != NULL) && (s->ctx->cipher_list_by_id != NULL)) { 2585 return s->ctx->cipher_list_by_id; 2586 } 2587 } 2588 return NULL; 2589 } 2590 2591 /** The old interface to get the same thing as SSL_get_ciphers() */ 2592 const char *SSL_get_cipher_list(const SSL *s, int n) 2593 { 2594 const SSL_CIPHER *c; 2595 STACK_OF(SSL_CIPHER) *sk; 2596 2597 if (s == NULL) 2598 return NULL; 2599 sk = SSL_get_ciphers(s); 2600 if ((sk == NULL) || (sk_SSL_CIPHER_num(sk) <= n)) 2601 return NULL; 2602 c = sk_SSL_CIPHER_value(sk, n); 2603 if (c == NULL) 2604 return NULL; 2605 return c->name; 2606 } 2607 2608 /** return a STACK of the ciphers available for the SSL_CTX and in order of 2609 * preference */ 2610 STACK_OF(SSL_CIPHER) *SSL_CTX_get_ciphers(const SSL_CTX *ctx) 2611 { 2612 if (ctx != NULL) 2613 return ctx->cipher_list; 2614 return NULL; 2615 } 2616 2617 /* 2618 * Distinguish between ciphers controlled by set_ciphersuite() and 2619 * set_cipher_list() when counting. 2620 */ 2621 static int cipher_list_tls12_num(STACK_OF(SSL_CIPHER) *sk) 2622 { 2623 int i, num = 0; 2624 const SSL_CIPHER *c; 2625 2626 if (sk == NULL) 2627 return 0; 2628 for (i = 0; i < sk_SSL_CIPHER_num(sk); ++i) { 2629 c = sk_SSL_CIPHER_value(sk, i); 2630 if (c->min_tls >= TLS1_3_VERSION) 2631 continue; 2632 num++; 2633 } 2634 return num; 2635 } 2636 2637 /** specify the ciphers to be used by default by the SSL_CTX */ 2638 int SSL_CTX_set_cipher_list(SSL_CTX *ctx, const char *str) 2639 { 2640 STACK_OF(SSL_CIPHER) *sk; 2641 2642 sk = ssl_create_cipher_list(ctx->method, ctx->tls13_ciphersuites, 2643 &ctx->cipher_list, &ctx->cipher_list_by_id, str, 2644 ctx->cert); 2645 /* 2646 * ssl_create_cipher_list may return an empty stack if it was unable to 2647 * find a cipher matching the given rule string (for example if the rule 2648 * string specifies a cipher which has been disabled). This is not an 2649 * error as far as ssl_create_cipher_list is concerned, and hence 2650 * ctx->cipher_list and ctx->cipher_list_by_id has been updated. 2651 */ 2652 if (sk == NULL) 2653 return 0; 2654 else if (cipher_list_tls12_num(sk) == 0) { 2655 SSLerr(SSL_F_SSL_CTX_SET_CIPHER_LIST, SSL_R_NO_CIPHER_MATCH); 2656 return 0; 2657 } 2658 return 1; 2659 } 2660 2661 /** specify the ciphers to be used by the SSL */ 2662 int SSL_set_cipher_list(SSL *s, const char *str) 2663 { 2664 STACK_OF(SSL_CIPHER) *sk; 2665 2666 sk = ssl_create_cipher_list(s->ctx->method, s->tls13_ciphersuites, 2667 &s->cipher_list, &s->cipher_list_by_id, str, 2668 s->cert); 2669 /* see comment in SSL_CTX_set_cipher_list */ 2670 if (sk == NULL) 2671 return 0; 2672 else if (cipher_list_tls12_num(sk) == 0) { 2673 SSLerr(SSL_F_SSL_SET_CIPHER_LIST, SSL_R_NO_CIPHER_MATCH); 2674 return 0; 2675 } 2676 return 1; 2677 } 2678 2679 char *SSL_get_shared_ciphers(const SSL *s, char *buf, int size) 2680 { 2681 char *p; 2682 STACK_OF(SSL_CIPHER) *clntsk, *srvrsk; 2683 const SSL_CIPHER *c; 2684 int i; 2685 2686 if (!s->server 2687 || s->peer_ciphers == NULL 2688 || size < 2) 2689 return NULL; 2690 2691 p = buf; 2692 clntsk = s->peer_ciphers; 2693 srvrsk = SSL_get_ciphers(s); 2694 if (clntsk == NULL || srvrsk == NULL) 2695 return NULL; 2696 2697 if (sk_SSL_CIPHER_num(clntsk) == 0 || sk_SSL_CIPHER_num(srvrsk) == 0) 2698 return NULL; 2699 2700 for (i = 0; i < sk_SSL_CIPHER_num(clntsk); i++) { 2701 int n; 2702 2703 c = sk_SSL_CIPHER_value(clntsk, i); 2704 if (sk_SSL_CIPHER_find(srvrsk, c) < 0) 2705 continue; 2706 2707 n = strlen(c->name); 2708 if (n + 1 > size) { 2709 if (p != buf) 2710 --p; 2711 *p = '\0'; 2712 return buf; 2713 } 2714 strcpy(p, c->name); 2715 p += n; 2716 *(p++) = ':'; 2717 size -= n + 1; 2718 } 2719 p[-1] = '\0'; 2720 return buf; 2721 } 2722 2723 /** 2724 * Return the requested servername (SNI) value. Note that the behaviour varies 2725 * depending on: 2726 * - whether this is called by the client or the server, 2727 * - if we are before or during/after the handshake, 2728 * - if a resumption or normal handshake is being attempted/has occurred 2729 * - whether we have negotiated TLSv1.2 (or below) or TLSv1.3 2730 * 2731 * Note that only the host_name type is defined (RFC 3546). 2732 */ 2733 const char *SSL_get_servername(const SSL *s, const int type) 2734 { 2735 /* 2736 * If we don't know if we are the client or the server yet then we assume 2737 * client. 2738 */ 2739 int server = s->handshake_func == NULL ? 0 : s->server; 2740 if (type != TLSEXT_NAMETYPE_host_name) 2741 return NULL; 2742 2743 if (server) { 2744 /** 2745 * Server side 2746 * In TLSv1.3 on the server SNI is not associated with the session 2747 * but in TLSv1.2 or below it is. 2748 * 2749 * Before the handshake: 2750 * - return NULL 2751 * 2752 * During/after the handshake (TLSv1.2 or below resumption occurred): 2753 * - If a servername was accepted by the server in the original 2754 * handshake then it will return that servername, or NULL otherwise. 2755 * 2756 * During/after the handshake (TLSv1.2 or below resumption did not occur): 2757 * - The function will return the servername requested by the client in 2758 * this handshake or NULL if none was requested. 2759 */ 2760 if (s->hit && !SSL_IS_TLS13(s)) 2761 return s->session->ext.hostname; 2762 } else { 2763 /** 2764 * Client side 2765 * 2766 * Before the handshake: 2767 * - If a servername has been set via a call to 2768 * SSL_set_tlsext_host_name() then it will return that servername 2769 * - If one has not been set, but a TLSv1.2 resumption is being 2770 * attempted and the session from the original handshake had a 2771 * servername accepted by the server then it will return that 2772 * servername 2773 * - Otherwise it returns NULL 2774 * 2775 * During/after the handshake (TLSv1.2 or below resumption occurred): 2776 * - If the session from the original handshake had a servername accepted 2777 * by the server then it will return that servername. 2778 * - Otherwise it returns the servername set via 2779 * SSL_set_tlsext_host_name() (or NULL if it was not called). 2780 * 2781 * During/after the handshake (TLSv1.2 or below resumption did not occur): 2782 * - It will return the servername set via SSL_set_tlsext_host_name() 2783 * (or NULL if it was not called). 2784 */ 2785 if (SSL_in_before(s)) { 2786 if (s->ext.hostname == NULL 2787 && s->session != NULL 2788 && s->session->ssl_version != TLS1_3_VERSION) 2789 return s->session->ext.hostname; 2790 } else { 2791 if (!SSL_IS_TLS13(s) && s->hit && s->session->ext.hostname != NULL) 2792 return s->session->ext.hostname; 2793 } 2794 } 2795 2796 return s->ext.hostname; 2797 } 2798 2799 int SSL_get_servername_type(const SSL *s) 2800 { 2801 if (SSL_get_servername(s, TLSEXT_NAMETYPE_host_name) != NULL) 2802 return TLSEXT_NAMETYPE_host_name; 2803 return -1; 2804 } 2805 2806 /* 2807 * SSL_select_next_proto implements the standard protocol selection. It is 2808 * expected that this function is called from the callback set by 2809 * SSL_CTX_set_next_proto_select_cb. The protocol data is assumed to be a 2810 * vector of 8-bit, length prefixed byte strings. The length byte itself is 2811 * not included in the length. A byte string of length 0 is invalid. No byte 2812 * string may be truncated. The current, but experimental algorithm for 2813 * selecting the protocol is: 1) If the server doesn't support NPN then this 2814 * is indicated to the callback. In this case, the client application has to 2815 * abort the connection or have a default application level protocol. 2) If 2816 * the server supports NPN, but advertises an empty list then the client 2817 * selects the first protocol in its list, but indicates via the API that this 2818 * fallback case was enacted. 3) Otherwise, the client finds the first 2819 * protocol in the server's list that it supports and selects this protocol. 2820 * This is because it's assumed that the server has better information about 2821 * which protocol a client should use. 4) If the client doesn't support any 2822 * of the server's advertised protocols, then this is treated the same as 2823 * case 2. It returns either OPENSSL_NPN_NEGOTIATED if a common protocol was 2824 * found, or OPENSSL_NPN_NO_OVERLAP if the fallback case was reached. 2825 */ 2826 int SSL_select_next_proto(unsigned char **out, unsigned char *outlen, 2827 const unsigned char *server, 2828 unsigned int server_len, 2829 const unsigned char *client, unsigned int client_len) 2830 { 2831 unsigned int i, j; 2832 const unsigned char *result; 2833 int status = OPENSSL_NPN_UNSUPPORTED; 2834 2835 /* 2836 * For each protocol in server preference order, see if we support it. 2837 */ 2838 for (i = 0; i < server_len;) { 2839 for (j = 0; j < client_len;) { 2840 if (server[i] == client[j] && 2841 memcmp(&server[i + 1], &client[j + 1], server[i]) == 0) { 2842 /* We found a match */ 2843 result = &server[i]; 2844 status = OPENSSL_NPN_NEGOTIATED; 2845 goto found; 2846 } 2847 j += client[j]; 2848 j++; 2849 } 2850 i += server[i]; 2851 i++; 2852 } 2853 2854 /* There's no overlap between our protocols and the server's list. */ 2855 result = client; 2856 status = OPENSSL_NPN_NO_OVERLAP; 2857 2858 found: 2859 *out = (unsigned char *)result + 1; 2860 *outlen = result[0]; 2861 return status; 2862 } 2863 2864 #ifndef OPENSSL_NO_NEXTPROTONEG 2865 /* 2866 * SSL_get0_next_proto_negotiated sets *data and *len to point to the 2867 * client's requested protocol for this connection and returns 0. If the 2868 * client didn't request any protocol, then *data is set to NULL. Note that 2869 * the client can request any protocol it chooses. The value returned from 2870 * this function need not be a member of the list of supported protocols 2871 * provided by the callback. 2872 */ 2873 void SSL_get0_next_proto_negotiated(const SSL *s, const unsigned char **data, 2874 unsigned *len) 2875 { 2876 *data = s->ext.npn; 2877 if (!*data) { 2878 *len = 0; 2879 } else { 2880 *len = (unsigned int)s->ext.npn_len; 2881 } 2882 } 2883 2884 /* 2885 * SSL_CTX_set_npn_advertised_cb sets a callback that is called when 2886 * a TLS server needs a list of supported protocols for Next Protocol 2887 * Negotiation. The returned list must be in wire format. The list is 2888 * returned by setting |out| to point to it and |outlen| to its length. This 2889 * memory will not be modified, but one should assume that the SSL* keeps a 2890 * reference to it. The callback should return SSL_TLSEXT_ERR_OK if it 2891 * wishes to advertise. Otherwise, no such extension will be included in the 2892 * ServerHello. 2893 */ 2894 void SSL_CTX_set_npn_advertised_cb(SSL_CTX *ctx, 2895 SSL_CTX_npn_advertised_cb_func cb, 2896 void *arg) 2897 { 2898 ctx->ext.npn_advertised_cb = cb; 2899 ctx->ext.npn_advertised_cb_arg = arg; 2900 } 2901 2902 /* 2903 * SSL_CTX_set_next_proto_select_cb sets a callback that is called when a 2904 * client needs to select a protocol from the server's provided list. |out| 2905 * must be set to point to the selected protocol (which may be within |in|). 2906 * The length of the protocol name must be written into |outlen|. The 2907 * server's advertised protocols are provided in |in| and |inlen|. The 2908 * callback can assume that |in| is syntactically valid. The client must 2909 * select a protocol. It is fatal to the connection if this callback returns 2910 * a value other than SSL_TLSEXT_ERR_OK. 2911 */ 2912 void SSL_CTX_set_npn_select_cb(SSL_CTX *ctx, 2913 SSL_CTX_npn_select_cb_func cb, 2914 void *arg) 2915 { 2916 ctx->ext.npn_select_cb = cb; 2917 ctx->ext.npn_select_cb_arg = arg; 2918 } 2919 #endif 2920 2921 /* 2922 * SSL_CTX_set_alpn_protos sets the ALPN protocol list on |ctx| to |protos|. 2923 * |protos| must be in wire-format (i.e. a series of non-empty, 8-bit 2924 * length-prefixed strings). Returns 0 on success. 2925 */ 2926 int SSL_CTX_set_alpn_protos(SSL_CTX *ctx, const unsigned char *protos, 2927 unsigned int protos_len) 2928 { 2929 OPENSSL_free(ctx->ext.alpn); 2930 ctx->ext.alpn = OPENSSL_memdup(protos, protos_len); 2931 if (ctx->ext.alpn == NULL) { 2932 ctx->ext.alpn_len = 0; 2933 SSLerr(SSL_F_SSL_CTX_SET_ALPN_PROTOS, ERR_R_MALLOC_FAILURE); 2934 return 1; 2935 } 2936 ctx->ext.alpn_len = protos_len; 2937 2938 return 0; 2939 } 2940 2941 /* 2942 * SSL_set_alpn_protos sets the ALPN protocol list on |ssl| to |protos|. 2943 * |protos| must be in wire-format (i.e. a series of non-empty, 8-bit 2944 * length-prefixed strings). Returns 0 on success. 2945 */ 2946 int SSL_set_alpn_protos(SSL *ssl, const unsigned char *protos, 2947 unsigned int protos_len) 2948 { 2949 OPENSSL_free(ssl->ext.alpn); 2950 ssl->ext.alpn = OPENSSL_memdup(protos, protos_len); 2951 if (ssl->ext.alpn == NULL) { 2952 ssl->ext.alpn_len = 0; 2953 SSLerr(SSL_F_SSL_SET_ALPN_PROTOS, ERR_R_MALLOC_FAILURE); 2954 return 1; 2955 } 2956 ssl->ext.alpn_len = protos_len; 2957 2958 return 0; 2959 } 2960 2961 /* 2962 * SSL_CTX_set_alpn_select_cb sets a callback function on |ctx| that is 2963 * called during ClientHello processing in order to select an ALPN protocol 2964 * from the client's list of offered protocols. 2965 */ 2966 void SSL_CTX_set_alpn_select_cb(SSL_CTX *ctx, 2967 SSL_CTX_alpn_select_cb_func cb, 2968 void *arg) 2969 { 2970 ctx->ext.alpn_select_cb = cb; 2971 ctx->ext.alpn_select_cb_arg = arg; 2972 } 2973 2974 /* 2975 * SSL_get0_alpn_selected gets the selected ALPN protocol (if any) from |ssl|. 2976 * On return it sets |*data| to point to |*len| bytes of protocol name 2977 * (not including the leading length-prefix byte). If the server didn't 2978 * respond with a negotiated protocol then |*len| will be zero. 2979 */ 2980 void SSL_get0_alpn_selected(const SSL *ssl, const unsigned char **data, 2981 unsigned int *len) 2982 { 2983 *data = NULL; 2984 if (ssl->s3) 2985 *data = ssl->s3->alpn_selected; 2986 if (*data == NULL) 2987 *len = 0; 2988 else 2989 *len = (unsigned int)ssl->s3->alpn_selected_len; 2990 } 2991 2992 int SSL_export_keying_material(SSL *s, unsigned char *out, size_t olen, 2993 const char *label, size_t llen, 2994 const unsigned char *context, size_t contextlen, 2995 int use_context) 2996 { 2997 if (s->session == NULL 2998 || (s->version < TLS1_VERSION && s->version != DTLS1_BAD_VER)) 2999 return -1; 3000 3001 return s->method->ssl3_enc->export_keying_material(s, out, olen, label, 3002 llen, context, 3003 contextlen, use_context); 3004 } 3005 3006 int SSL_export_keying_material_early(SSL *s, unsigned char *out, size_t olen, 3007 const char *label, size_t llen, 3008 const unsigned char *context, 3009 size_t contextlen) 3010 { 3011 if (s->version != TLS1_3_VERSION) 3012 return 0; 3013 3014 return tls13_export_keying_material_early(s, out, olen, label, llen, 3015 context, contextlen); 3016 } 3017 3018 static unsigned long ssl_session_hash(const SSL_SESSION *a) 3019 { 3020 const unsigned char *session_id = a->session_id; 3021 unsigned long l; 3022 unsigned char tmp_storage[4]; 3023 3024 if (a->session_id_length < sizeof(tmp_storage)) { 3025 memset(tmp_storage, 0, sizeof(tmp_storage)); 3026 memcpy(tmp_storage, a->session_id, a->session_id_length); 3027 session_id = tmp_storage; 3028 } 3029 3030 l = (unsigned long) 3031 ((unsigned long)session_id[0]) | 3032 ((unsigned long)session_id[1] << 8L) | 3033 ((unsigned long)session_id[2] << 16L) | 3034 ((unsigned long)session_id[3] << 24L); 3035 return l; 3036 } 3037 3038 /* 3039 * NB: If this function (or indeed the hash function which uses a sort of 3040 * coarser function than this one) is changed, ensure 3041 * SSL_CTX_has_matching_session_id() is checked accordingly. It relies on 3042 * being able to construct an SSL_SESSION that will collide with any existing 3043 * session with a matching session ID. 3044 */ 3045 static int ssl_session_cmp(const SSL_SESSION *a, const SSL_SESSION *b) 3046 { 3047 if (a->ssl_version != b->ssl_version) 3048 return 1; 3049 if (a->session_id_length != b->session_id_length) 3050 return 1; 3051 return memcmp(a->session_id, b->session_id, a->session_id_length); 3052 } 3053 3054 /* 3055 * These wrapper functions should remain rather than redeclaring 3056 * SSL_SESSION_hash and SSL_SESSION_cmp for void* types and casting each 3057 * variable. The reason is that the functions aren't static, they're exposed 3058 * via ssl.h. 3059 */ 3060 3061 SSL_CTX *SSL_CTX_new(const SSL_METHOD *meth) 3062 { 3063 SSL_CTX *ret = NULL; 3064 3065 if (meth == NULL) { 3066 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_NULL_SSL_METHOD_PASSED); 3067 return NULL; 3068 } 3069 3070 if (!OPENSSL_init_ssl(OPENSSL_INIT_LOAD_SSL_STRINGS, NULL)) 3071 return NULL; 3072 3073 if (SSL_get_ex_data_X509_STORE_CTX_idx() < 0) { 3074 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_X509_VERIFICATION_SETUP_PROBLEMS); 3075 goto err; 3076 } 3077 ret = OPENSSL_zalloc(sizeof(*ret)); 3078 if (ret == NULL) 3079 goto err; 3080 3081 ret->method = meth; 3082 ret->min_proto_version = 0; 3083 ret->max_proto_version = 0; 3084 ret->mode = SSL_MODE_AUTO_RETRY; 3085 ret->session_cache_mode = SSL_SESS_CACHE_SERVER; 3086 ret->session_cache_size = SSL_SESSION_CACHE_MAX_SIZE_DEFAULT; 3087 /* We take the system default. */ 3088 ret->session_timeout = meth->get_timeout(); 3089 ret->references = 1; 3090 ret->lock = CRYPTO_THREAD_lock_new(); 3091 if (ret->lock == NULL) { 3092 SSLerr(SSL_F_SSL_CTX_NEW, ERR_R_MALLOC_FAILURE); 3093 OPENSSL_free(ret); 3094 return NULL; 3095 } 3096 ret->max_cert_list = SSL_MAX_CERT_LIST_DEFAULT; 3097 ret->verify_mode = SSL_VERIFY_NONE; 3098 if ((ret->cert = ssl_cert_new()) == NULL) 3099 goto err; 3100 3101 ret->sessions = lh_SSL_SESSION_new(ssl_session_hash, ssl_session_cmp); 3102 if (ret->sessions == NULL) 3103 goto err; 3104 ret->cert_store = X509_STORE_new(); 3105 if (ret->cert_store == NULL) 3106 goto err; 3107 #ifndef OPENSSL_NO_CT 3108 ret->ctlog_store = CTLOG_STORE_new(); 3109 if (ret->ctlog_store == NULL) 3110 goto err; 3111 #endif 3112 3113 if (!SSL_CTX_set_ciphersuites(ret, TLS_DEFAULT_CIPHERSUITES)) 3114 goto err; 3115 3116 if (!ssl_create_cipher_list(ret->method, 3117 ret->tls13_ciphersuites, 3118 &ret->cipher_list, &ret->cipher_list_by_id, 3119 SSL_DEFAULT_CIPHER_LIST, ret->cert) 3120 || sk_SSL_CIPHER_num(ret->cipher_list) <= 0) { 3121 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_LIBRARY_HAS_NO_CIPHERS); 3122 goto err2; 3123 } 3124 3125 ret->param = X509_VERIFY_PARAM_new(); 3126 if (ret->param == NULL) 3127 goto err; 3128 3129 if ((ret->md5 = EVP_get_digestbyname("ssl3-md5")) == NULL) { 3130 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_UNABLE_TO_LOAD_SSL3_MD5_ROUTINES); 3131 goto err2; 3132 } 3133 if ((ret->sha1 = EVP_get_digestbyname("ssl3-sha1")) == NULL) { 3134 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_UNABLE_TO_LOAD_SSL3_SHA1_ROUTINES); 3135 goto err2; 3136 } 3137 3138 if ((ret->ca_names = sk_X509_NAME_new_null()) == NULL) 3139 goto err; 3140 3141 if ((ret->client_ca_names = sk_X509_NAME_new_null()) == NULL) 3142 goto err; 3143 3144 if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL_CTX, ret, &ret->ex_data)) 3145 goto err; 3146 3147 if ((ret->ext.secure = OPENSSL_secure_zalloc(sizeof(*ret->ext.secure))) == NULL) 3148 goto err; 3149 3150 /* No compression for DTLS */ 3151 if (!(meth->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS)) 3152 ret->comp_methods = SSL_COMP_get_compression_methods(); 3153 3154 ret->max_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH; 3155 ret->split_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH; 3156 3157 /* Setup RFC5077 ticket keys */ 3158 if ((RAND_bytes(ret->ext.tick_key_name, 3159 sizeof(ret->ext.tick_key_name)) <= 0) 3160 || (RAND_priv_bytes(ret->ext.secure->tick_hmac_key, 3161 sizeof(ret->ext.secure->tick_hmac_key)) <= 0) 3162 || (RAND_priv_bytes(ret->ext.secure->tick_aes_key, 3163 sizeof(ret->ext.secure->tick_aes_key)) <= 0)) 3164 ret->options |= SSL_OP_NO_TICKET; 3165 3166 if (RAND_priv_bytes(ret->ext.cookie_hmac_key, 3167 sizeof(ret->ext.cookie_hmac_key)) <= 0) 3168 goto err; 3169 3170 #ifndef OPENSSL_NO_SRP 3171 if (!SSL_CTX_SRP_CTX_init(ret)) 3172 goto err; 3173 #endif 3174 #ifndef OPENSSL_NO_ENGINE 3175 # ifdef OPENSSL_SSL_CLIENT_ENGINE_AUTO 3176 # define eng_strx(x) #x 3177 # define eng_str(x) eng_strx(x) 3178 /* Use specific client engine automatically... ignore errors */ 3179 { 3180 ENGINE *eng; 3181 eng = ENGINE_by_id(eng_str(OPENSSL_SSL_CLIENT_ENGINE_AUTO)); 3182 if (!eng) { 3183 ERR_clear_error(); 3184 ENGINE_load_builtin_engines(); 3185 eng = ENGINE_by_id(eng_str(OPENSSL_SSL_CLIENT_ENGINE_AUTO)); 3186 } 3187 if (!eng || !SSL_CTX_set_client_cert_engine(ret, eng)) 3188 ERR_clear_error(); 3189 } 3190 # endif 3191 #endif 3192 /* 3193 * Default is to connect to non-RI servers. When RI is more widely 3194 * deployed might change this. 3195 */ 3196 ret->options |= SSL_OP_LEGACY_SERVER_CONNECT; 3197 /* 3198 * Disable compression by default to prevent CRIME. Applications can 3199 * re-enable compression by configuring 3200 * SSL_CTX_clear_options(ctx, SSL_OP_NO_COMPRESSION); 3201 * or by using the SSL_CONF library. Similarly we also enable TLSv1.3 3202 * middlebox compatibility by default. This may be disabled by default in 3203 * a later OpenSSL version. 3204 */ 3205 ret->options |= SSL_OP_NO_COMPRESSION | SSL_OP_ENABLE_MIDDLEBOX_COMPAT; 3206 3207 ret->ext.status_type = TLSEXT_STATUSTYPE_nothing; 3208 3209 /* 3210 * We cannot usefully set a default max_early_data here (which gets 3211 * propagated in SSL_new(), for the following reason: setting the 3212 * SSL field causes tls_construct_stoc_early_data() to tell the 3213 * client that early data will be accepted when constructing a TLS 1.3 3214 * session ticket, and the client will accordingly send us early data 3215 * when using that ticket (if the client has early data to send). 3216 * However, in order for the early data to actually be consumed by 3217 * the application, the application must also have calls to 3218 * SSL_read_early_data(); otherwise we'll just skip past the early data 3219 * and ignore it. So, since the application must add calls to 3220 * SSL_read_early_data(), we also require them to add 3221 * calls to SSL_CTX_set_max_early_data() in order to use early data, 3222 * eliminating the bandwidth-wasting early data in the case described 3223 * above. 3224 */ 3225 ret->max_early_data = 0; 3226 3227 /* 3228 * Default recv_max_early_data is a fully loaded single record. Could be 3229 * split across multiple records in practice. We set this differently to 3230 * max_early_data so that, in the default case, we do not advertise any 3231 * support for early_data, but if a client were to send us some (e.g. 3232 * because of an old, stale ticket) then we will tolerate it and skip over 3233 * it. 3234 */ 3235 ret->recv_max_early_data = SSL3_RT_MAX_PLAIN_LENGTH; 3236 3237 /* By default we send two session tickets automatically in TLSv1.3 */ 3238 ret->num_tickets = 2; 3239 3240 ssl_ctx_system_config(ret); 3241 3242 return ret; 3243 err: 3244 SSLerr(SSL_F_SSL_CTX_NEW, ERR_R_MALLOC_FAILURE); 3245 err2: 3246 SSL_CTX_free(ret); 3247 return NULL; 3248 } 3249 3250 int SSL_CTX_up_ref(SSL_CTX *ctx) 3251 { 3252 int i; 3253 3254 if (CRYPTO_UP_REF(&ctx->references, &i, ctx->lock) <= 0) 3255 return 0; 3256 3257 REF_PRINT_COUNT("SSL_CTX", ctx); 3258 REF_ASSERT_ISNT(i < 2); 3259 return ((i > 1) ? 1 : 0); 3260 } 3261 3262 void SSL_CTX_free(SSL_CTX *a) 3263 { 3264 int i; 3265 3266 if (a == NULL) 3267 return; 3268 3269 CRYPTO_DOWN_REF(&a->references, &i, a->lock); 3270 REF_PRINT_COUNT("SSL_CTX", a); 3271 if (i > 0) 3272 return; 3273 REF_ASSERT_ISNT(i < 0); 3274 3275 X509_VERIFY_PARAM_free(a->param); 3276 dane_ctx_final(&a->dane); 3277 3278 /* 3279 * Free internal session cache. However: the remove_cb() may reference 3280 * the ex_data of SSL_CTX, thus the ex_data store can only be removed 3281 * after the sessions were flushed. 3282 * As the ex_data handling routines might also touch the session cache, 3283 * the most secure solution seems to be: empty (flush) the cache, then 3284 * free ex_data, then finally free the cache. 3285 * (See ticket [openssl.org #212].) 3286 */ 3287 if (a->sessions != NULL) 3288 SSL_CTX_flush_sessions(a, 0); 3289 3290 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL_CTX, a, &a->ex_data); 3291 lh_SSL_SESSION_free(a->sessions); 3292 X509_STORE_free(a->cert_store); 3293 #ifndef OPENSSL_NO_CT 3294 CTLOG_STORE_free(a->ctlog_store); 3295 #endif 3296 sk_SSL_CIPHER_free(a->cipher_list); 3297 sk_SSL_CIPHER_free(a->cipher_list_by_id); 3298 sk_SSL_CIPHER_free(a->tls13_ciphersuites); 3299 ssl_cert_free(a->cert); 3300 sk_X509_NAME_pop_free(a->ca_names, X509_NAME_free); 3301 sk_X509_NAME_pop_free(a->client_ca_names, X509_NAME_free); 3302 sk_X509_pop_free(a->extra_certs, X509_free); 3303 a->comp_methods = NULL; 3304 #ifndef OPENSSL_NO_SRTP 3305 sk_SRTP_PROTECTION_PROFILE_free(a->srtp_profiles); 3306 #endif 3307 #ifndef OPENSSL_NO_SRP 3308 SSL_CTX_SRP_CTX_free(a); 3309 #endif 3310 #ifndef OPENSSL_NO_ENGINE 3311 ENGINE_finish(a->client_cert_engine); 3312 #endif 3313 3314 #ifndef OPENSSL_NO_EC 3315 OPENSSL_free(a->ext.ecpointformats); 3316 OPENSSL_free(a->ext.supportedgroups); 3317 #endif 3318 OPENSSL_free(a->ext.alpn); 3319 OPENSSL_secure_free(a->ext.secure); 3320 3321 CRYPTO_THREAD_lock_free(a->lock); 3322 3323 OPENSSL_free(a); 3324 } 3325 3326 void SSL_CTX_set_default_passwd_cb(SSL_CTX *ctx, pem_password_cb *cb) 3327 { 3328 ctx->default_passwd_callback = cb; 3329 } 3330 3331 void SSL_CTX_set_default_passwd_cb_userdata(SSL_CTX *ctx, void *u) 3332 { 3333 ctx->default_passwd_callback_userdata = u; 3334 } 3335 3336 pem_password_cb *SSL_CTX_get_default_passwd_cb(SSL_CTX *ctx) 3337 { 3338 return ctx->default_passwd_callback; 3339 } 3340 3341 void *SSL_CTX_get_default_passwd_cb_userdata(SSL_CTX *ctx) 3342 { 3343 return ctx->default_passwd_callback_userdata; 3344 } 3345 3346 void SSL_set_default_passwd_cb(SSL *s, pem_password_cb *cb) 3347 { 3348 s->default_passwd_callback = cb; 3349 } 3350 3351 void SSL_set_default_passwd_cb_userdata(SSL *s, void *u) 3352 { 3353 s->default_passwd_callback_userdata = u; 3354 } 3355 3356 pem_password_cb *SSL_get_default_passwd_cb(SSL *s) 3357 { 3358 return s->default_passwd_callback; 3359 } 3360 3361 void *SSL_get_default_passwd_cb_userdata(SSL *s) 3362 { 3363 return s->default_passwd_callback_userdata; 3364 } 3365 3366 void SSL_CTX_set_cert_verify_callback(SSL_CTX *ctx, 3367 int (*cb) (X509_STORE_CTX *, void *), 3368 void *arg) 3369 { 3370 ctx->app_verify_callback = cb; 3371 ctx->app_verify_arg = arg; 3372 } 3373 3374 void SSL_CTX_set_verify(SSL_CTX *ctx, int mode, 3375 int (*cb) (int, X509_STORE_CTX *)) 3376 { 3377 ctx->verify_mode = mode; 3378 ctx->default_verify_callback = cb; 3379 } 3380 3381 void SSL_CTX_set_verify_depth(SSL_CTX *ctx, int depth) 3382 { 3383 X509_VERIFY_PARAM_set_depth(ctx->param, depth); 3384 } 3385 3386 void SSL_CTX_set_cert_cb(SSL_CTX *c, int (*cb) (SSL *ssl, void *arg), void *arg) 3387 { 3388 ssl_cert_set_cert_cb(c->cert, cb, arg); 3389 } 3390 3391 void SSL_set_cert_cb(SSL *s, int (*cb) (SSL *ssl, void *arg), void *arg) 3392 { 3393 ssl_cert_set_cert_cb(s->cert, cb, arg); 3394 } 3395 3396 void ssl_set_masks(SSL *s) 3397 { 3398 CERT *c = s->cert; 3399 uint32_t *pvalid = s->s3->tmp.valid_flags; 3400 int rsa_enc, rsa_sign, dh_tmp, dsa_sign; 3401 unsigned long mask_k, mask_a; 3402 #ifndef OPENSSL_NO_EC 3403 int have_ecc_cert, ecdsa_ok; 3404 #endif 3405 if (c == NULL) 3406 return; 3407 3408 #ifndef OPENSSL_NO_DH 3409 dh_tmp = (c->dh_tmp != NULL || c->dh_tmp_cb != NULL || c->dh_tmp_auto); 3410 #else 3411 dh_tmp = 0; 3412 #endif 3413 3414 rsa_enc = pvalid[SSL_PKEY_RSA] & CERT_PKEY_VALID; 3415 rsa_sign = pvalid[SSL_PKEY_RSA] & CERT_PKEY_VALID; 3416 dsa_sign = pvalid[SSL_PKEY_DSA_SIGN] & CERT_PKEY_VALID; 3417 #ifndef OPENSSL_NO_EC 3418 have_ecc_cert = pvalid[SSL_PKEY_ECC] & CERT_PKEY_VALID; 3419 #endif 3420 mask_k = 0; 3421 mask_a = 0; 3422 3423 #ifdef CIPHER_DEBUG 3424 fprintf(stderr, "dht=%d re=%d rs=%d ds=%d\n", 3425 dh_tmp, rsa_enc, rsa_sign, dsa_sign); 3426 #endif 3427 3428 #ifndef OPENSSL_NO_GOST 3429 if (ssl_has_cert(s, SSL_PKEY_GOST12_512)) { 3430 mask_k |= SSL_kGOST; 3431 mask_a |= SSL_aGOST12; 3432 } 3433 if (ssl_has_cert(s, SSL_PKEY_GOST12_256)) { 3434 mask_k |= SSL_kGOST; 3435 mask_a |= SSL_aGOST12; 3436 } 3437 if (ssl_has_cert(s, SSL_PKEY_GOST01)) { 3438 mask_k |= SSL_kGOST; 3439 mask_a |= SSL_aGOST01; 3440 } 3441 #endif 3442 3443 if (rsa_enc) 3444 mask_k |= SSL_kRSA; 3445 3446 if (dh_tmp) 3447 mask_k |= SSL_kDHE; 3448 3449 /* 3450 * If we only have an RSA-PSS certificate allow RSA authentication 3451 * if TLS 1.2 and peer supports it. 3452 */ 3453 3454 if (rsa_enc || rsa_sign || (ssl_has_cert(s, SSL_PKEY_RSA_PSS_SIGN) 3455 && pvalid[SSL_PKEY_RSA_PSS_SIGN] & CERT_PKEY_EXPLICIT_SIGN 3456 && TLS1_get_version(s) == TLS1_2_VERSION)) 3457 mask_a |= SSL_aRSA; 3458 3459 if (dsa_sign) { 3460 mask_a |= SSL_aDSS; 3461 } 3462 3463 mask_a |= SSL_aNULL; 3464 3465 /* 3466 * An ECC certificate may be usable for ECDH and/or ECDSA cipher suites 3467 * depending on the key usage extension. 3468 */ 3469 #ifndef OPENSSL_NO_EC 3470 if (have_ecc_cert) { 3471 uint32_t ex_kusage; 3472 ex_kusage = X509_get_key_usage(c->pkeys[SSL_PKEY_ECC].x509); 3473 ecdsa_ok = ex_kusage & X509v3_KU_DIGITAL_SIGNATURE; 3474 if (!(pvalid[SSL_PKEY_ECC] & CERT_PKEY_SIGN)) 3475 ecdsa_ok = 0; 3476 if (ecdsa_ok) 3477 mask_a |= SSL_aECDSA; 3478 } 3479 /* Allow Ed25519 for TLS 1.2 if peer supports it */ 3480 if (!(mask_a & SSL_aECDSA) && ssl_has_cert(s, SSL_PKEY_ED25519) 3481 && pvalid[SSL_PKEY_ED25519] & CERT_PKEY_EXPLICIT_SIGN 3482 && TLS1_get_version(s) == TLS1_2_VERSION) 3483 mask_a |= SSL_aECDSA; 3484 3485 /* Allow Ed448 for TLS 1.2 if peer supports it */ 3486 if (!(mask_a & SSL_aECDSA) && ssl_has_cert(s, SSL_PKEY_ED448) 3487 && pvalid[SSL_PKEY_ED448] & CERT_PKEY_EXPLICIT_SIGN 3488 && TLS1_get_version(s) == TLS1_2_VERSION) 3489 mask_a |= SSL_aECDSA; 3490 #endif 3491 3492 #ifndef OPENSSL_NO_EC 3493 mask_k |= SSL_kECDHE; 3494 #endif 3495 3496 #ifndef OPENSSL_NO_PSK 3497 mask_k |= SSL_kPSK; 3498 mask_a |= SSL_aPSK; 3499 if (mask_k & SSL_kRSA) 3500 mask_k |= SSL_kRSAPSK; 3501 if (mask_k & SSL_kDHE) 3502 mask_k |= SSL_kDHEPSK; 3503 if (mask_k & SSL_kECDHE) 3504 mask_k |= SSL_kECDHEPSK; 3505 #endif 3506 3507 s->s3->tmp.mask_k = mask_k; 3508 s->s3->tmp.mask_a = mask_a; 3509 } 3510 3511 #ifndef OPENSSL_NO_EC 3512 3513 int ssl_check_srvr_ecc_cert_and_alg(X509 *x, SSL *s) 3514 { 3515 if (s->s3->tmp.new_cipher->algorithm_auth & SSL_aECDSA) { 3516 /* key usage, if present, must allow signing */ 3517 if (!(X509_get_key_usage(x) & X509v3_KU_DIGITAL_SIGNATURE)) { 3518 SSLerr(SSL_F_SSL_CHECK_SRVR_ECC_CERT_AND_ALG, 3519 SSL_R_ECC_CERT_NOT_FOR_SIGNING); 3520 return 0; 3521 } 3522 } 3523 return 1; /* all checks are ok */ 3524 } 3525 3526 #endif 3527 3528 int ssl_get_server_cert_serverinfo(SSL *s, const unsigned char **serverinfo, 3529 size_t *serverinfo_length) 3530 { 3531 CERT_PKEY *cpk = s->s3->tmp.cert; 3532 *serverinfo_length = 0; 3533 3534 if (cpk == NULL || cpk->serverinfo == NULL) 3535 return 0; 3536 3537 *serverinfo = cpk->serverinfo; 3538 *serverinfo_length = cpk->serverinfo_length; 3539 return 1; 3540 } 3541 3542 void ssl_update_cache(SSL *s, int mode) 3543 { 3544 int i; 3545 3546 /* 3547 * If the session_id_length is 0, we are not supposed to cache it, and it 3548 * would be rather hard to do anyway :-) 3549 */ 3550 if (s->session->session_id_length == 0) 3551 return; 3552 3553 /* 3554 * If sid_ctx_length is 0 there is no specific application context 3555 * associated with this session, so when we try to resume it and 3556 * SSL_VERIFY_PEER is requested to verify the client identity, we have no 3557 * indication that this is actually a session for the proper application 3558 * context, and the *handshake* will fail, not just the resumption attempt. 3559 * Do not cache (on the server) these sessions that are not resumable 3560 * (clients can set SSL_VERIFY_PEER without needing a sid_ctx set). 3561 */ 3562 if (s->server && s->session->sid_ctx_length == 0 3563 && (s->verify_mode & SSL_VERIFY_PEER) != 0) 3564 return; 3565 3566 i = s->session_ctx->session_cache_mode; 3567 if ((i & mode) != 0 3568 && (!s->hit || SSL_IS_TLS13(s))) { 3569 /* 3570 * Add the session to the internal cache. In server side TLSv1.3 we 3571 * normally don't do this because by default it's a full stateless ticket 3572 * with only a dummy session id so there is no reason to cache it, 3573 * unless: 3574 * - we are doing early_data, in which case we cache so that we can 3575 * detect replays 3576 * - the application has set a remove_session_cb so needs to know about 3577 * session timeout events 3578 * - SSL_OP_NO_TICKET is set in which case it is a stateful ticket 3579 */ 3580 if ((i & SSL_SESS_CACHE_NO_INTERNAL_STORE) == 0 3581 && (!SSL_IS_TLS13(s) 3582 || !s->server 3583 || (s->max_early_data > 0 3584 && (s->options & SSL_OP_NO_ANTI_REPLAY) == 0) 3585 || s->session_ctx->remove_session_cb != NULL 3586 || (s->options & SSL_OP_NO_TICKET) != 0)) 3587 SSL_CTX_add_session(s->session_ctx, s->session); 3588 3589 /* 3590 * Add the session to the external cache. We do this even in server side 3591 * TLSv1.3 without early data because some applications just want to 3592 * know about the creation of a session and aren't doing a full cache. 3593 */ 3594 if (s->session_ctx->new_session_cb != NULL) { 3595 SSL_SESSION_up_ref(s->session); 3596 if (!s->session_ctx->new_session_cb(s, s->session)) 3597 SSL_SESSION_free(s->session); 3598 } 3599 } 3600 3601 /* auto flush every 255 connections */ 3602 if ((!(i & SSL_SESS_CACHE_NO_AUTO_CLEAR)) && ((i & mode) == mode)) { 3603 TSAN_QUALIFIER int *stat; 3604 if (mode & SSL_SESS_CACHE_CLIENT) 3605 stat = &s->session_ctx->stats.sess_connect_good; 3606 else 3607 stat = &s->session_ctx->stats.sess_accept_good; 3608 if ((tsan_load(stat) & 0xff) == 0xff) 3609 SSL_CTX_flush_sessions(s->session_ctx, (unsigned long)time(NULL)); 3610 } 3611 } 3612 3613 const SSL_METHOD *SSL_CTX_get_ssl_method(const SSL_CTX *ctx) 3614 { 3615 return ctx->method; 3616 } 3617 3618 const SSL_METHOD *SSL_get_ssl_method(const SSL *s) 3619 { 3620 return s->method; 3621 } 3622 3623 int SSL_set_ssl_method(SSL *s, const SSL_METHOD *meth) 3624 { 3625 int ret = 1; 3626 3627 if (s->method != meth) { 3628 const SSL_METHOD *sm = s->method; 3629 int (*hf) (SSL *) = s->handshake_func; 3630 3631 if (sm->version == meth->version) 3632 s->method = meth; 3633 else { 3634 sm->ssl_free(s); 3635 s->method = meth; 3636 ret = s->method->ssl_new(s); 3637 } 3638 3639 if (hf == sm->ssl_connect) 3640 s->handshake_func = meth->ssl_connect; 3641 else if (hf == sm->ssl_accept) 3642 s->handshake_func = meth->ssl_accept; 3643 } 3644 return ret; 3645 } 3646 3647 int SSL_get_error(const SSL *s, int i) 3648 { 3649 int reason; 3650 unsigned long l; 3651 BIO *bio; 3652 3653 if (i > 0) 3654 return SSL_ERROR_NONE; 3655 3656 /* 3657 * Make things return SSL_ERROR_SYSCALL when doing SSL_do_handshake etc, 3658 * where we do encode the error 3659 */ 3660 if ((l = ERR_peek_error()) != 0) { 3661 if (ERR_GET_LIB(l) == ERR_LIB_SYS) 3662 return SSL_ERROR_SYSCALL; 3663 else 3664 return SSL_ERROR_SSL; 3665 } 3666 3667 if (SSL_want_read(s)) { 3668 bio = SSL_get_rbio(s); 3669 if (BIO_should_read(bio)) 3670 return SSL_ERROR_WANT_READ; 3671 else if (BIO_should_write(bio)) 3672 /* 3673 * This one doesn't make too much sense ... We never try to write 3674 * to the rbio, and an application program where rbio and wbio 3675 * are separate couldn't even know what it should wait for. 3676 * However if we ever set s->rwstate incorrectly (so that we have 3677 * SSL_want_read(s) instead of SSL_want_write(s)) and rbio and 3678 * wbio *are* the same, this test works around that bug; so it 3679 * might be safer to keep it. 3680 */ 3681 return SSL_ERROR_WANT_WRITE; 3682 else if (BIO_should_io_special(bio)) { 3683 reason = BIO_get_retry_reason(bio); 3684 if (reason == BIO_RR_CONNECT) 3685 return SSL_ERROR_WANT_CONNECT; 3686 else if (reason == BIO_RR_ACCEPT) 3687 return SSL_ERROR_WANT_ACCEPT; 3688 else 3689 return SSL_ERROR_SYSCALL; /* unknown */ 3690 } 3691 } 3692 3693 if (SSL_want_write(s)) { 3694 /* Access wbio directly - in order to use the buffered bio if present */ 3695 bio = s->wbio; 3696 if (BIO_should_write(bio)) 3697 return SSL_ERROR_WANT_WRITE; 3698 else if (BIO_should_read(bio)) 3699 /* 3700 * See above (SSL_want_read(s) with BIO_should_write(bio)) 3701 */ 3702 return SSL_ERROR_WANT_READ; 3703 else if (BIO_should_io_special(bio)) { 3704 reason = BIO_get_retry_reason(bio); 3705 if (reason == BIO_RR_CONNECT) 3706 return SSL_ERROR_WANT_CONNECT; 3707 else if (reason == BIO_RR_ACCEPT) 3708 return SSL_ERROR_WANT_ACCEPT; 3709 else 3710 return SSL_ERROR_SYSCALL; 3711 } 3712 } 3713 if (SSL_want_x509_lookup(s)) 3714 return SSL_ERROR_WANT_X509_LOOKUP; 3715 if (SSL_want_async(s)) 3716 return SSL_ERROR_WANT_ASYNC; 3717 if (SSL_want_async_job(s)) 3718 return SSL_ERROR_WANT_ASYNC_JOB; 3719 if (SSL_want_client_hello_cb(s)) 3720 return SSL_ERROR_WANT_CLIENT_HELLO_CB; 3721 3722 if ((s->shutdown & SSL_RECEIVED_SHUTDOWN) && 3723 (s->s3->warn_alert == SSL_AD_CLOSE_NOTIFY)) 3724 return SSL_ERROR_ZERO_RETURN; 3725 3726 return SSL_ERROR_SYSCALL; 3727 } 3728 3729 static int ssl_do_handshake_intern(void *vargs) 3730 { 3731 struct ssl_async_args *args; 3732 SSL *s; 3733 3734 args = (struct ssl_async_args *)vargs; 3735 s = args->s; 3736 3737 return s->handshake_func(s); 3738 } 3739 3740 int SSL_do_handshake(SSL *s) 3741 { 3742 int ret = 1; 3743 3744 if (s->handshake_func == NULL) { 3745 SSLerr(SSL_F_SSL_DO_HANDSHAKE, SSL_R_CONNECTION_TYPE_NOT_SET); 3746 return -1; 3747 } 3748 3749 ossl_statem_check_finish_init(s, -1); 3750 3751 s->method->ssl_renegotiate_check(s, 0); 3752 3753 if (SSL_in_init(s) || SSL_in_before(s)) { 3754 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) { 3755 struct ssl_async_args args; 3756 3757 args.s = s; 3758 3759 ret = ssl_start_async_job(s, &args, ssl_do_handshake_intern); 3760 } else { 3761 ret = s->handshake_func(s); 3762 } 3763 } 3764 return ret; 3765 } 3766 3767 void SSL_set_accept_state(SSL *s) 3768 { 3769 s->server = 1; 3770 s->shutdown = 0; 3771 ossl_statem_clear(s); 3772 s->handshake_func = s->method->ssl_accept; 3773 clear_ciphers(s); 3774 } 3775 3776 void SSL_set_connect_state(SSL *s) 3777 { 3778 s->server = 0; 3779 s->shutdown = 0; 3780 ossl_statem_clear(s); 3781 s->handshake_func = s->method->ssl_connect; 3782 clear_ciphers(s); 3783 } 3784 3785 int ssl_undefined_function(SSL *s) 3786 { 3787 SSLerr(SSL_F_SSL_UNDEFINED_FUNCTION, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 3788 return 0; 3789 } 3790 3791 int ssl_undefined_void_function(void) 3792 { 3793 SSLerr(SSL_F_SSL_UNDEFINED_VOID_FUNCTION, 3794 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 3795 return 0; 3796 } 3797 3798 int ssl_undefined_const_function(const SSL *s) 3799 { 3800 return 0; 3801 } 3802 3803 const SSL_METHOD *ssl_bad_method(int ver) 3804 { 3805 SSLerr(SSL_F_SSL_BAD_METHOD, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 3806 return NULL; 3807 } 3808 3809 const char *ssl_protocol_to_string(int version) 3810 { 3811 switch(version) 3812 { 3813 case TLS1_3_VERSION: 3814 return "TLSv1.3"; 3815 3816 case TLS1_2_VERSION: 3817 return "TLSv1.2"; 3818 3819 case TLS1_1_VERSION: 3820 return "TLSv1.1"; 3821 3822 case TLS1_VERSION: 3823 return "TLSv1"; 3824 3825 case SSL3_VERSION: 3826 return "SSLv3"; 3827 3828 case DTLS1_BAD_VER: 3829 return "DTLSv0.9"; 3830 3831 case DTLS1_VERSION: 3832 return "DTLSv1"; 3833 3834 case DTLS1_2_VERSION: 3835 return "DTLSv1.2"; 3836 3837 default: 3838 return "unknown"; 3839 } 3840 } 3841 3842 const char *SSL_get_version(const SSL *s) 3843 { 3844 return ssl_protocol_to_string(s->version); 3845 } 3846 3847 static int dup_ca_names(STACK_OF(X509_NAME) **dst, STACK_OF(X509_NAME) *src) 3848 { 3849 STACK_OF(X509_NAME) *sk; 3850 X509_NAME *xn; 3851 int i; 3852 3853 if (src == NULL) { 3854 *dst = NULL; 3855 return 1; 3856 } 3857 3858 if ((sk = sk_X509_NAME_new_null()) == NULL) 3859 return 0; 3860 for (i = 0; i < sk_X509_NAME_num(src); i++) { 3861 xn = X509_NAME_dup(sk_X509_NAME_value(src, i)); 3862 if (xn == NULL) { 3863 sk_X509_NAME_pop_free(sk, X509_NAME_free); 3864 return 0; 3865 } 3866 if (sk_X509_NAME_insert(sk, xn, i) == 0) { 3867 X509_NAME_free(xn); 3868 sk_X509_NAME_pop_free(sk, X509_NAME_free); 3869 return 0; 3870 } 3871 } 3872 *dst = sk; 3873 3874 return 1; 3875 } 3876 3877 SSL *SSL_dup(SSL *s) 3878 { 3879 SSL *ret; 3880 int i; 3881 3882 /* If we're not quiescent, just up_ref! */ 3883 if (!SSL_in_init(s) || !SSL_in_before(s)) { 3884 CRYPTO_UP_REF(&s->references, &i, s->lock); 3885 return s; 3886 } 3887 3888 /* 3889 * Otherwise, copy configuration state, and session if set. 3890 */ 3891 if ((ret = SSL_new(SSL_get_SSL_CTX(s))) == NULL) 3892 return NULL; 3893 3894 if (s->session != NULL) { 3895 /* 3896 * Arranges to share the same session via up_ref. This "copies" 3897 * session-id, SSL_METHOD, sid_ctx, and 'cert' 3898 */ 3899 if (!SSL_copy_session_id(ret, s)) 3900 goto err; 3901 } else { 3902 /* 3903 * No session has been established yet, so we have to expect that 3904 * s->cert or ret->cert will be changed later -- they should not both 3905 * point to the same object, and thus we can't use 3906 * SSL_copy_session_id. 3907 */ 3908 if (!SSL_set_ssl_method(ret, s->method)) 3909 goto err; 3910 3911 if (s->cert != NULL) { 3912 ssl_cert_free(ret->cert); 3913 ret->cert = ssl_cert_dup(s->cert); 3914 if (ret->cert == NULL) 3915 goto err; 3916 } 3917 3918 if (!SSL_set_session_id_context(ret, s->sid_ctx, 3919 (int)s->sid_ctx_length)) 3920 goto err; 3921 } 3922 3923 if (!ssl_dane_dup(ret, s)) 3924 goto err; 3925 ret->version = s->version; 3926 ret->options = s->options; 3927 ret->min_proto_version = s->min_proto_version; 3928 ret->max_proto_version = s->max_proto_version; 3929 ret->mode = s->mode; 3930 SSL_set_max_cert_list(ret, SSL_get_max_cert_list(s)); 3931 SSL_set_read_ahead(ret, SSL_get_read_ahead(s)); 3932 ret->msg_callback = s->msg_callback; 3933 ret->msg_callback_arg = s->msg_callback_arg; 3934 SSL_set_verify(ret, SSL_get_verify_mode(s), SSL_get_verify_callback(s)); 3935 SSL_set_verify_depth(ret, SSL_get_verify_depth(s)); 3936 ret->generate_session_id = s->generate_session_id; 3937 3938 SSL_set_info_callback(ret, SSL_get_info_callback(s)); 3939 3940 /* copy app data, a little dangerous perhaps */ 3941 if (!CRYPTO_dup_ex_data(CRYPTO_EX_INDEX_SSL, &ret->ex_data, &s->ex_data)) 3942 goto err; 3943 3944 ret->server = s->server; 3945 if (s->handshake_func) { 3946 if (s->server) 3947 SSL_set_accept_state(ret); 3948 else 3949 SSL_set_connect_state(ret); 3950 } 3951 ret->shutdown = s->shutdown; 3952 ret->hit = s->hit; 3953 3954 ret->default_passwd_callback = s->default_passwd_callback; 3955 ret->default_passwd_callback_userdata = s->default_passwd_callback_userdata; 3956 3957 X509_VERIFY_PARAM_inherit(ret->param, s->param); 3958 3959 /* dup the cipher_list and cipher_list_by_id stacks */ 3960 if (s->cipher_list != NULL) { 3961 if ((ret->cipher_list = sk_SSL_CIPHER_dup(s->cipher_list)) == NULL) 3962 goto err; 3963 } 3964 if (s->cipher_list_by_id != NULL) 3965 if ((ret->cipher_list_by_id = sk_SSL_CIPHER_dup(s->cipher_list_by_id)) 3966 == NULL) 3967 goto err; 3968 3969 /* Dup the client_CA list */ 3970 if (!dup_ca_names(&ret->ca_names, s->ca_names) 3971 || !dup_ca_names(&ret->client_ca_names, s->client_ca_names)) 3972 goto err; 3973 3974 return ret; 3975 3976 err: 3977 SSL_free(ret); 3978 return NULL; 3979 } 3980 3981 void ssl_clear_cipher_ctx(SSL *s) 3982 { 3983 if (s->enc_read_ctx != NULL) { 3984 EVP_CIPHER_CTX_free(s->enc_read_ctx); 3985 s->enc_read_ctx = NULL; 3986 } 3987 if (s->enc_write_ctx != NULL) { 3988 EVP_CIPHER_CTX_free(s->enc_write_ctx); 3989 s->enc_write_ctx = NULL; 3990 } 3991 #ifndef OPENSSL_NO_COMP 3992 COMP_CTX_free(s->expand); 3993 s->expand = NULL; 3994 COMP_CTX_free(s->compress); 3995 s->compress = NULL; 3996 #endif 3997 } 3998 3999 X509 *SSL_get_certificate(const SSL *s) 4000 { 4001 if (s->cert != NULL) 4002 return s->cert->key->x509; 4003 else 4004 return NULL; 4005 } 4006 4007 EVP_PKEY *SSL_get_privatekey(const SSL *s) 4008 { 4009 if (s->cert != NULL) 4010 return s->cert->key->privatekey; 4011 else 4012 return NULL; 4013 } 4014 4015 X509 *SSL_CTX_get0_certificate(const SSL_CTX *ctx) 4016 { 4017 if (ctx->cert != NULL) 4018 return ctx->cert->key->x509; 4019 else 4020 return NULL; 4021 } 4022 4023 EVP_PKEY *SSL_CTX_get0_privatekey(const SSL_CTX *ctx) 4024 { 4025 if (ctx->cert != NULL) 4026 return ctx->cert->key->privatekey; 4027 else 4028 return NULL; 4029 } 4030 4031 const SSL_CIPHER *SSL_get_current_cipher(const SSL *s) 4032 { 4033 if ((s->session != NULL) && (s->session->cipher != NULL)) 4034 return s->session->cipher; 4035 return NULL; 4036 } 4037 4038 const SSL_CIPHER *SSL_get_pending_cipher(const SSL *s) 4039 { 4040 return s->s3->tmp.new_cipher; 4041 } 4042 4043 const COMP_METHOD *SSL_get_current_compression(const SSL *s) 4044 { 4045 #ifndef OPENSSL_NO_COMP 4046 return s->compress ? COMP_CTX_get_method(s->compress) : NULL; 4047 #else 4048 return NULL; 4049 #endif 4050 } 4051 4052 const COMP_METHOD *SSL_get_current_expansion(const SSL *s) 4053 { 4054 #ifndef OPENSSL_NO_COMP 4055 return s->expand ? COMP_CTX_get_method(s->expand) : NULL; 4056 #else 4057 return NULL; 4058 #endif 4059 } 4060 4061 int ssl_init_wbio_buffer(SSL *s) 4062 { 4063 BIO *bbio; 4064 4065 if (s->bbio != NULL) { 4066 /* Already buffered. */ 4067 return 1; 4068 } 4069 4070 bbio = BIO_new(BIO_f_buffer()); 4071 if (bbio == NULL || !BIO_set_read_buffer_size(bbio, 1)) { 4072 BIO_free(bbio); 4073 SSLerr(SSL_F_SSL_INIT_WBIO_BUFFER, ERR_R_BUF_LIB); 4074 return 0; 4075 } 4076 s->bbio = bbio; 4077 s->wbio = BIO_push(bbio, s->wbio); 4078 4079 return 1; 4080 } 4081 4082 int ssl_free_wbio_buffer(SSL *s) 4083 { 4084 /* callers ensure s is never null */ 4085 if (s->bbio == NULL) 4086 return 1; 4087 4088 s->wbio = BIO_pop(s->wbio); 4089 BIO_free(s->bbio); 4090 s->bbio = NULL; 4091 4092 return 1; 4093 } 4094 4095 void SSL_CTX_set_quiet_shutdown(SSL_CTX *ctx, int mode) 4096 { 4097 ctx->quiet_shutdown = mode; 4098 } 4099 4100 int SSL_CTX_get_quiet_shutdown(const SSL_CTX *ctx) 4101 { 4102 return ctx->quiet_shutdown; 4103 } 4104 4105 void SSL_set_quiet_shutdown(SSL *s, int mode) 4106 { 4107 s->quiet_shutdown = mode; 4108 } 4109 4110 int SSL_get_quiet_shutdown(const SSL *s) 4111 { 4112 return s->quiet_shutdown; 4113 } 4114 4115 void SSL_set_shutdown(SSL *s, int mode) 4116 { 4117 s->shutdown = mode; 4118 } 4119 4120 int SSL_get_shutdown(const SSL *s) 4121 { 4122 return s->shutdown; 4123 } 4124 4125 int SSL_version(const SSL *s) 4126 { 4127 return s->version; 4128 } 4129 4130 int SSL_client_version(const SSL *s) 4131 { 4132 return s->client_version; 4133 } 4134 4135 SSL_CTX *SSL_get_SSL_CTX(const SSL *ssl) 4136 { 4137 return ssl->ctx; 4138 } 4139 4140 SSL_CTX *SSL_set_SSL_CTX(SSL *ssl, SSL_CTX *ctx) 4141 { 4142 CERT *new_cert; 4143 if (ssl->ctx == ctx) 4144 return ssl->ctx; 4145 if (ctx == NULL) 4146 ctx = ssl->session_ctx; 4147 new_cert = ssl_cert_dup(ctx->cert); 4148 if (new_cert == NULL) { 4149 return NULL; 4150 } 4151 4152 if (!custom_exts_copy_flags(&new_cert->custext, &ssl->cert->custext)) { 4153 ssl_cert_free(new_cert); 4154 return NULL; 4155 } 4156 4157 ssl_cert_free(ssl->cert); 4158 ssl->cert = new_cert; 4159 4160 /* 4161 * Program invariant: |sid_ctx| has fixed size (SSL_MAX_SID_CTX_LENGTH), 4162 * so setter APIs must prevent invalid lengths from entering the system. 4163 */ 4164 if (!ossl_assert(ssl->sid_ctx_length <= sizeof(ssl->sid_ctx))) 4165 return NULL; 4166 4167 /* 4168 * If the session ID context matches that of the parent SSL_CTX, 4169 * inherit it from the new SSL_CTX as well. If however the context does 4170 * not match (i.e., it was set per-ssl with SSL_set_session_id_context), 4171 * leave it unchanged. 4172 */ 4173 if ((ssl->ctx != NULL) && 4174 (ssl->sid_ctx_length == ssl->ctx->sid_ctx_length) && 4175 (memcmp(ssl->sid_ctx, ssl->ctx->sid_ctx, ssl->sid_ctx_length) == 0)) { 4176 ssl->sid_ctx_length = ctx->sid_ctx_length; 4177 memcpy(&ssl->sid_ctx, &ctx->sid_ctx, sizeof(ssl->sid_ctx)); 4178 } 4179 4180 SSL_CTX_up_ref(ctx); 4181 SSL_CTX_free(ssl->ctx); /* decrement reference count */ 4182 ssl->ctx = ctx; 4183 4184 return ssl->ctx; 4185 } 4186 4187 int SSL_CTX_set_default_verify_paths(SSL_CTX *ctx) 4188 { 4189 return X509_STORE_set_default_paths(ctx->cert_store); 4190 } 4191 4192 int SSL_CTX_set_default_verify_dir(SSL_CTX *ctx) 4193 { 4194 X509_LOOKUP *lookup; 4195 4196 lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_hash_dir()); 4197 if (lookup == NULL) 4198 return 0; 4199 X509_LOOKUP_add_dir(lookup, NULL, X509_FILETYPE_DEFAULT); 4200 4201 /* Clear any errors if the default directory does not exist */ 4202 ERR_clear_error(); 4203 4204 return 1; 4205 } 4206 4207 int SSL_CTX_set_default_verify_file(SSL_CTX *ctx) 4208 { 4209 X509_LOOKUP *lookup; 4210 4211 lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_file()); 4212 if (lookup == NULL) 4213 return 0; 4214 4215 X509_LOOKUP_load_file(lookup, NULL, X509_FILETYPE_DEFAULT); 4216 4217 /* Clear any errors if the default file does not exist */ 4218 ERR_clear_error(); 4219 4220 return 1; 4221 } 4222 4223 int SSL_CTX_load_verify_locations(SSL_CTX *ctx, const char *CAfile, 4224 const char *CApath) 4225 { 4226 return X509_STORE_load_locations(ctx->cert_store, CAfile, CApath); 4227 } 4228 4229 void SSL_set_info_callback(SSL *ssl, 4230 void (*cb) (const SSL *ssl, int type, int val)) 4231 { 4232 ssl->info_callback = cb; 4233 } 4234 4235 /* 4236 * One compiler (Diab DCC) doesn't like argument names in returned function 4237 * pointer. 4238 */ 4239 void (*SSL_get_info_callback(const SSL *ssl)) (const SSL * /* ssl */ , 4240 int /* type */ , 4241 int /* val */ ) { 4242 return ssl->info_callback; 4243 } 4244 4245 void SSL_set_verify_result(SSL *ssl, long arg) 4246 { 4247 ssl->verify_result = arg; 4248 } 4249 4250 long SSL_get_verify_result(const SSL *ssl) 4251 { 4252 return ssl->verify_result; 4253 } 4254 4255 size_t SSL_get_client_random(const SSL *ssl, unsigned char *out, size_t outlen) 4256 { 4257 if (outlen == 0) 4258 return sizeof(ssl->s3->client_random); 4259 if (outlen > sizeof(ssl->s3->client_random)) 4260 outlen = sizeof(ssl->s3->client_random); 4261 memcpy(out, ssl->s3->client_random, outlen); 4262 return outlen; 4263 } 4264 4265 size_t SSL_get_server_random(const SSL *ssl, unsigned char *out, size_t outlen) 4266 { 4267 if (outlen == 0) 4268 return sizeof(ssl->s3->server_random); 4269 if (outlen > sizeof(ssl->s3->server_random)) 4270 outlen = sizeof(ssl->s3->server_random); 4271 memcpy(out, ssl->s3->server_random, outlen); 4272 return outlen; 4273 } 4274 4275 size_t SSL_SESSION_get_master_key(const SSL_SESSION *session, 4276 unsigned char *out, size_t outlen) 4277 { 4278 if (outlen == 0) 4279 return session->master_key_length; 4280 if (outlen > session->master_key_length) 4281 outlen = session->master_key_length; 4282 memcpy(out, session->master_key, outlen); 4283 return outlen; 4284 } 4285 4286 int SSL_SESSION_set1_master_key(SSL_SESSION *sess, const unsigned char *in, 4287 size_t len) 4288 { 4289 if (len > sizeof(sess->master_key)) 4290 return 0; 4291 4292 memcpy(sess->master_key, in, len); 4293 sess->master_key_length = len; 4294 return 1; 4295 } 4296 4297 4298 int SSL_set_ex_data(SSL *s, int idx, void *arg) 4299 { 4300 return CRYPTO_set_ex_data(&s->ex_data, idx, arg); 4301 } 4302 4303 void *SSL_get_ex_data(const SSL *s, int idx) 4304 { 4305 return CRYPTO_get_ex_data(&s->ex_data, idx); 4306 } 4307 4308 int SSL_CTX_set_ex_data(SSL_CTX *s, int idx, void *arg) 4309 { 4310 return CRYPTO_set_ex_data(&s->ex_data, idx, arg); 4311 } 4312 4313 void *SSL_CTX_get_ex_data(const SSL_CTX *s, int idx) 4314 { 4315 return CRYPTO_get_ex_data(&s->ex_data, idx); 4316 } 4317 4318 X509_STORE *SSL_CTX_get_cert_store(const SSL_CTX *ctx) 4319 { 4320 return ctx->cert_store; 4321 } 4322 4323 void SSL_CTX_set_cert_store(SSL_CTX *ctx, X509_STORE *store) 4324 { 4325 X509_STORE_free(ctx->cert_store); 4326 ctx->cert_store = store; 4327 } 4328 4329 void SSL_CTX_set1_cert_store(SSL_CTX *ctx, X509_STORE *store) 4330 { 4331 if (store != NULL) 4332 X509_STORE_up_ref(store); 4333 SSL_CTX_set_cert_store(ctx, store); 4334 } 4335 4336 int SSL_want(const SSL *s) 4337 { 4338 return s->rwstate; 4339 } 4340 4341 /** 4342 * \brief Set the callback for generating temporary DH keys. 4343 * \param ctx the SSL context. 4344 * \param dh the callback 4345 */ 4346 4347 #ifndef OPENSSL_NO_DH 4348 void SSL_CTX_set_tmp_dh_callback(SSL_CTX *ctx, 4349 DH *(*dh) (SSL *ssl, int is_export, 4350 int keylength)) 4351 { 4352 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_TMP_DH_CB, (void (*)(void))dh); 4353 } 4354 4355 void SSL_set_tmp_dh_callback(SSL *ssl, DH *(*dh) (SSL *ssl, int is_export, 4356 int keylength)) 4357 { 4358 SSL_callback_ctrl(ssl, SSL_CTRL_SET_TMP_DH_CB, (void (*)(void))dh); 4359 } 4360 #endif 4361 4362 #ifndef OPENSSL_NO_PSK 4363 int SSL_CTX_use_psk_identity_hint(SSL_CTX *ctx, const char *identity_hint) 4364 { 4365 if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) { 4366 SSLerr(SSL_F_SSL_CTX_USE_PSK_IDENTITY_HINT, SSL_R_DATA_LENGTH_TOO_LONG); 4367 return 0; 4368 } 4369 OPENSSL_free(ctx->cert->psk_identity_hint); 4370 if (identity_hint != NULL) { 4371 ctx->cert->psk_identity_hint = OPENSSL_strdup(identity_hint); 4372 if (ctx->cert->psk_identity_hint == NULL) 4373 return 0; 4374 } else 4375 ctx->cert->psk_identity_hint = NULL; 4376 return 1; 4377 } 4378 4379 int SSL_use_psk_identity_hint(SSL *s, const char *identity_hint) 4380 { 4381 if (s == NULL) 4382 return 0; 4383 4384 if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) { 4385 SSLerr(SSL_F_SSL_USE_PSK_IDENTITY_HINT, SSL_R_DATA_LENGTH_TOO_LONG); 4386 return 0; 4387 } 4388 OPENSSL_free(s->cert->psk_identity_hint); 4389 if (identity_hint != NULL) { 4390 s->cert->psk_identity_hint = OPENSSL_strdup(identity_hint); 4391 if (s->cert->psk_identity_hint == NULL) 4392 return 0; 4393 } else 4394 s->cert->psk_identity_hint = NULL; 4395 return 1; 4396 } 4397 4398 const char *SSL_get_psk_identity_hint(const SSL *s) 4399 { 4400 if (s == NULL || s->session == NULL) 4401 return NULL; 4402 return s->session->psk_identity_hint; 4403 } 4404 4405 const char *SSL_get_psk_identity(const SSL *s) 4406 { 4407 if (s == NULL || s->session == NULL) 4408 return NULL; 4409 return s->session->psk_identity; 4410 } 4411 4412 void SSL_set_psk_client_callback(SSL *s, SSL_psk_client_cb_func cb) 4413 { 4414 s->psk_client_callback = cb; 4415 } 4416 4417 void SSL_CTX_set_psk_client_callback(SSL_CTX *ctx, SSL_psk_client_cb_func cb) 4418 { 4419 ctx->psk_client_callback = cb; 4420 } 4421 4422 void SSL_set_psk_server_callback(SSL *s, SSL_psk_server_cb_func cb) 4423 { 4424 s->psk_server_callback = cb; 4425 } 4426 4427 void SSL_CTX_set_psk_server_callback(SSL_CTX *ctx, SSL_psk_server_cb_func cb) 4428 { 4429 ctx->psk_server_callback = cb; 4430 } 4431 #endif 4432 4433 void SSL_set_psk_find_session_callback(SSL *s, SSL_psk_find_session_cb_func cb) 4434 { 4435 s->psk_find_session_cb = cb; 4436 } 4437 4438 void SSL_CTX_set_psk_find_session_callback(SSL_CTX *ctx, 4439 SSL_psk_find_session_cb_func cb) 4440 { 4441 ctx->psk_find_session_cb = cb; 4442 } 4443 4444 void SSL_set_psk_use_session_callback(SSL *s, SSL_psk_use_session_cb_func cb) 4445 { 4446 s->psk_use_session_cb = cb; 4447 } 4448 4449 void SSL_CTX_set_psk_use_session_callback(SSL_CTX *ctx, 4450 SSL_psk_use_session_cb_func cb) 4451 { 4452 ctx->psk_use_session_cb = cb; 4453 } 4454 4455 void SSL_CTX_set_msg_callback(SSL_CTX *ctx, 4456 void (*cb) (int write_p, int version, 4457 int content_type, const void *buf, 4458 size_t len, SSL *ssl, void *arg)) 4459 { 4460 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_MSG_CALLBACK, (void (*)(void))cb); 4461 } 4462 4463 void SSL_set_msg_callback(SSL *ssl, 4464 void (*cb) (int write_p, int version, 4465 int content_type, const void *buf, 4466 size_t len, SSL *ssl, void *arg)) 4467 { 4468 SSL_callback_ctrl(ssl, SSL_CTRL_SET_MSG_CALLBACK, (void (*)(void))cb); 4469 } 4470 4471 void SSL_CTX_set_not_resumable_session_callback(SSL_CTX *ctx, 4472 int (*cb) (SSL *ssl, 4473 int 4474 is_forward_secure)) 4475 { 4476 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB, 4477 (void (*)(void))cb); 4478 } 4479 4480 void SSL_set_not_resumable_session_callback(SSL *ssl, 4481 int (*cb) (SSL *ssl, 4482 int is_forward_secure)) 4483 { 4484 SSL_callback_ctrl(ssl, SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB, 4485 (void (*)(void))cb); 4486 } 4487 4488 void SSL_CTX_set_record_padding_callback(SSL_CTX *ctx, 4489 size_t (*cb) (SSL *ssl, int type, 4490 size_t len, void *arg)) 4491 { 4492 ctx->record_padding_cb = cb; 4493 } 4494 4495 void SSL_CTX_set_record_padding_callback_arg(SSL_CTX *ctx, void *arg) 4496 { 4497 ctx->record_padding_arg = arg; 4498 } 4499 4500 void *SSL_CTX_get_record_padding_callback_arg(const SSL_CTX *ctx) 4501 { 4502 return ctx->record_padding_arg; 4503 } 4504 4505 int SSL_CTX_set_block_padding(SSL_CTX *ctx, size_t block_size) 4506 { 4507 /* block size of 0 or 1 is basically no padding */ 4508 if (block_size == 1) 4509 ctx->block_padding = 0; 4510 else if (block_size <= SSL3_RT_MAX_PLAIN_LENGTH) 4511 ctx->block_padding = block_size; 4512 else 4513 return 0; 4514 return 1; 4515 } 4516 4517 int SSL_set_record_padding_callback(SSL *ssl, 4518 size_t (*cb) (SSL *ssl, int type, 4519 size_t len, void *arg)) 4520 { 4521 BIO *b; 4522 4523 b = SSL_get_wbio(ssl); 4524 if (b == NULL || !BIO_get_ktls_send(b)) { 4525 ssl->record_padding_cb = cb; 4526 return 1; 4527 } 4528 return 0; 4529 } 4530 4531 void SSL_set_record_padding_callback_arg(SSL *ssl, void *arg) 4532 { 4533 ssl->record_padding_arg = arg; 4534 } 4535 4536 void *SSL_get_record_padding_callback_arg(const SSL *ssl) 4537 { 4538 return ssl->record_padding_arg; 4539 } 4540 4541 int SSL_set_block_padding(SSL *ssl, size_t block_size) 4542 { 4543 /* block size of 0 or 1 is basically no padding */ 4544 if (block_size == 1) 4545 ssl->block_padding = 0; 4546 else if (block_size <= SSL3_RT_MAX_PLAIN_LENGTH) 4547 ssl->block_padding = block_size; 4548 else 4549 return 0; 4550 return 1; 4551 } 4552 4553 int SSL_set_num_tickets(SSL *s, size_t num_tickets) 4554 { 4555 s->num_tickets = num_tickets; 4556 4557 return 1; 4558 } 4559 4560 size_t SSL_get_num_tickets(const SSL *s) 4561 { 4562 return s->num_tickets; 4563 } 4564 4565 int SSL_CTX_set_num_tickets(SSL_CTX *ctx, size_t num_tickets) 4566 { 4567 ctx->num_tickets = num_tickets; 4568 4569 return 1; 4570 } 4571 4572 size_t SSL_CTX_get_num_tickets(const SSL_CTX *ctx) 4573 { 4574 return ctx->num_tickets; 4575 } 4576 4577 /* 4578 * Allocates new EVP_MD_CTX and sets pointer to it into given pointer 4579 * variable, freeing EVP_MD_CTX previously stored in that variable, if any. 4580 * If EVP_MD pointer is passed, initializes ctx with this |md|. 4581 * Returns the newly allocated ctx; 4582 */ 4583 4584 EVP_MD_CTX *ssl_replace_hash(EVP_MD_CTX **hash, const EVP_MD *md) 4585 { 4586 ssl_clear_hash_ctx(hash); 4587 *hash = EVP_MD_CTX_new(); 4588 if (*hash == NULL || (md && EVP_DigestInit_ex(*hash, md, NULL) <= 0)) { 4589 EVP_MD_CTX_free(*hash); 4590 *hash = NULL; 4591 return NULL; 4592 } 4593 return *hash; 4594 } 4595 4596 void ssl_clear_hash_ctx(EVP_MD_CTX **hash) 4597 { 4598 4599 EVP_MD_CTX_free(*hash); 4600 *hash = NULL; 4601 } 4602 4603 /* Retrieve handshake hashes */ 4604 int ssl_handshake_hash(SSL *s, unsigned char *out, size_t outlen, 4605 size_t *hashlen) 4606 { 4607 EVP_MD_CTX *ctx = NULL; 4608 EVP_MD_CTX *hdgst = s->s3->handshake_dgst; 4609 int hashleni = EVP_MD_CTX_size(hdgst); 4610 int ret = 0; 4611 4612 if (hashleni < 0 || (size_t)hashleni > outlen) { 4613 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_HANDSHAKE_HASH, 4614 ERR_R_INTERNAL_ERROR); 4615 goto err; 4616 } 4617 4618 ctx = EVP_MD_CTX_new(); 4619 if (ctx == NULL) 4620 goto err; 4621 4622 if (!EVP_MD_CTX_copy_ex(ctx, hdgst) 4623 || EVP_DigestFinal_ex(ctx, out, NULL) <= 0) { 4624 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_HANDSHAKE_HASH, 4625 ERR_R_INTERNAL_ERROR); 4626 goto err; 4627 } 4628 4629 *hashlen = hashleni; 4630 4631 ret = 1; 4632 err: 4633 EVP_MD_CTX_free(ctx); 4634 return ret; 4635 } 4636 4637 int SSL_session_reused(const SSL *s) 4638 { 4639 return s->hit; 4640 } 4641 4642 int SSL_is_server(const SSL *s) 4643 { 4644 return s->server; 4645 } 4646 4647 #if OPENSSL_API_COMPAT < 0x10100000L 4648 void SSL_set_debug(SSL *s, int debug) 4649 { 4650 /* Old function was do-nothing anyway... */ 4651 (void)s; 4652 (void)debug; 4653 } 4654 #endif 4655 4656 void SSL_set_security_level(SSL *s, int level) 4657 { 4658 s->cert->sec_level = level; 4659 } 4660 4661 int SSL_get_security_level(const SSL *s) 4662 { 4663 return s->cert->sec_level; 4664 } 4665 4666 void SSL_set_security_callback(SSL *s, 4667 int (*cb) (const SSL *s, const SSL_CTX *ctx, 4668 int op, int bits, int nid, 4669 void *other, void *ex)) 4670 { 4671 s->cert->sec_cb = cb; 4672 } 4673 4674 int (*SSL_get_security_callback(const SSL *s)) (const SSL *s, 4675 const SSL_CTX *ctx, int op, 4676 int bits, int nid, void *other, 4677 void *ex) { 4678 return s->cert->sec_cb; 4679 } 4680 4681 void SSL_set0_security_ex_data(SSL *s, void *ex) 4682 { 4683 s->cert->sec_ex = ex; 4684 } 4685 4686 void *SSL_get0_security_ex_data(const SSL *s) 4687 { 4688 return s->cert->sec_ex; 4689 } 4690 4691 void SSL_CTX_set_security_level(SSL_CTX *ctx, int level) 4692 { 4693 ctx->cert->sec_level = level; 4694 } 4695 4696 int SSL_CTX_get_security_level(const SSL_CTX *ctx) 4697 { 4698 return ctx->cert->sec_level; 4699 } 4700 4701 void SSL_CTX_set_security_callback(SSL_CTX *ctx, 4702 int (*cb) (const SSL *s, const SSL_CTX *ctx, 4703 int op, int bits, int nid, 4704 void *other, void *ex)) 4705 { 4706 ctx->cert->sec_cb = cb; 4707 } 4708 4709 int (*SSL_CTX_get_security_callback(const SSL_CTX *ctx)) (const SSL *s, 4710 const SSL_CTX *ctx, 4711 int op, int bits, 4712 int nid, 4713 void *other, 4714 void *ex) { 4715 return ctx->cert->sec_cb; 4716 } 4717 4718 void SSL_CTX_set0_security_ex_data(SSL_CTX *ctx, void *ex) 4719 { 4720 ctx->cert->sec_ex = ex; 4721 } 4722 4723 void *SSL_CTX_get0_security_ex_data(const SSL_CTX *ctx) 4724 { 4725 return ctx->cert->sec_ex; 4726 } 4727 4728 /* 4729 * Get/Set/Clear options in SSL_CTX or SSL, formerly macros, now functions that 4730 * can return unsigned long, instead of the generic long return value from the 4731 * control interface. 4732 */ 4733 unsigned long SSL_CTX_get_options(const SSL_CTX *ctx) 4734 { 4735 return ctx->options; 4736 } 4737 4738 unsigned long SSL_get_options(const SSL *s) 4739 { 4740 return s->options; 4741 } 4742 4743 unsigned long SSL_CTX_set_options(SSL_CTX *ctx, unsigned long op) 4744 { 4745 return ctx->options |= op; 4746 } 4747 4748 unsigned long SSL_set_options(SSL *s, unsigned long op) 4749 { 4750 return s->options |= op; 4751 } 4752 4753 unsigned long SSL_CTX_clear_options(SSL_CTX *ctx, unsigned long op) 4754 { 4755 return ctx->options &= ~op; 4756 } 4757 4758 unsigned long SSL_clear_options(SSL *s, unsigned long op) 4759 { 4760 return s->options &= ~op; 4761 } 4762 4763 STACK_OF(X509) *SSL_get0_verified_chain(const SSL *s) 4764 { 4765 return s->verified_chain; 4766 } 4767 4768 IMPLEMENT_OBJ_BSEARCH_GLOBAL_CMP_FN(SSL_CIPHER, SSL_CIPHER, ssl_cipher_id); 4769 4770 #ifndef OPENSSL_NO_CT 4771 4772 /* 4773 * Moves SCTs from the |src| stack to the |dst| stack. 4774 * The source of each SCT will be set to |origin|. 4775 * If |dst| points to a NULL pointer, a new stack will be created and owned by 4776 * the caller. 4777 * Returns the number of SCTs moved, or a negative integer if an error occurs. 4778 */ 4779 static int ct_move_scts(STACK_OF(SCT) **dst, STACK_OF(SCT) *src, 4780 sct_source_t origin) 4781 { 4782 int scts_moved = 0; 4783 SCT *sct = NULL; 4784 4785 if (*dst == NULL) { 4786 *dst = sk_SCT_new_null(); 4787 if (*dst == NULL) { 4788 SSLerr(SSL_F_CT_MOVE_SCTS, ERR_R_MALLOC_FAILURE); 4789 goto err; 4790 } 4791 } 4792 4793 while ((sct = sk_SCT_pop(src)) != NULL) { 4794 if (SCT_set_source(sct, origin) != 1) 4795 goto err; 4796 4797 if (sk_SCT_push(*dst, sct) <= 0) 4798 goto err; 4799 scts_moved += 1; 4800 } 4801 4802 return scts_moved; 4803 err: 4804 if (sct != NULL) 4805 sk_SCT_push(src, sct); /* Put the SCT back */ 4806 return -1; 4807 } 4808 4809 /* 4810 * Look for data collected during ServerHello and parse if found. 4811 * Returns the number of SCTs extracted. 4812 */ 4813 static int ct_extract_tls_extension_scts(SSL *s) 4814 { 4815 int scts_extracted = 0; 4816 4817 if (s->ext.scts != NULL) { 4818 const unsigned char *p = s->ext.scts; 4819 STACK_OF(SCT) *scts = o2i_SCT_LIST(NULL, &p, s->ext.scts_len); 4820 4821 scts_extracted = ct_move_scts(&s->scts, scts, SCT_SOURCE_TLS_EXTENSION); 4822 4823 SCT_LIST_free(scts); 4824 } 4825 4826 return scts_extracted; 4827 } 4828 4829 /* 4830 * Checks for an OCSP response and then attempts to extract any SCTs found if it 4831 * contains an SCT X509 extension. They will be stored in |s->scts|. 4832 * Returns: 4833 * - The number of SCTs extracted, assuming an OCSP response exists. 4834 * - 0 if no OCSP response exists or it contains no SCTs. 4835 * - A negative integer if an error occurs. 4836 */ 4837 static int ct_extract_ocsp_response_scts(SSL *s) 4838 { 4839 # ifndef OPENSSL_NO_OCSP 4840 int scts_extracted = 0; 4841 const unsigned char *p; 4842 OCSP_BASICRESP *br = NULL; 4843 OCSP_RESPONSE *rsp = NULL; 4844 STACK_OF(SCT) *scts = NULL; 4845 int i; 4846 4847 if (s->ext.ocsp.resp == NULL || s->ext.ocsp.resp_len == 0) 4848 goto err; 4849 4850 p = s->ext.ocsp.resp; 4851 rsp = d2i_OCSP_RESPONSE(NULL, &p, (int)s->ext.ocsp.resp_len); 4852 if (rsp == NULL) 4853 goto err; 4854 4855 br = OCSP_response_get1_basic(rsp); 4856 if (br == NULL) 4857 goto err; 4858 4859 for (i = 0; i < OCSP_resp_count(br); ++i) { 4860 OCSP_SINGLERESP *single = OCSP_resp_get0(br, i); 4861 4862 if (single == NULL) 4863 continue; 4864 4865 scts = 4866 OCSP_SINGLERESP_get1_ext_d2i(single, NID_ct_cert_scts, NULL, NULL); 4867 scts_extracted = 4868 ct_move_scts(&s->scts, scts, SCT_SOURCE_OCSP_STAPLED_RESPONSE); 4869 if (scts_extracted < 0) 4870 goto err; 4871 } 4872 err: 4873 SCT_LIST_free(scts); 4874 OCSP_BASICRESP_free(br); 4875 OCSP_RESPONSE_free(rsp); 4876 return scts_extracted; 4877 # else 4878 /* Behave as if no OCSP response exists */ 4879 return 0; 4880 # endif 4881 } 4882 4883 /* 4884 * Attempts to extract SCTs from the peer certificate. 4885 * Return the number of SCTs extracted, or a negative integer if an error 4886 * occurs. 4887 */ 4888 static int ct_extract_x509v3_extension_scts(SSL *s) 4889 { 4890 int scts_extracted = 0; 4891 X509 *cert = s->session != NULL ? s->session->peer : NULL; 4892 4893 if (cert != NULL) { 4894 STACK_OF(SCT) *scts = 4895 X509_get_ext_d2i(cert, NID_ct_precert_scts, NULL, NULL); 4896 4897 scts_extracted = 4898 ct_move_scts(&s->scts, scts, SCT_SOURCE_X509V3_EXTENSION); 4899 4900 SCT_LIST_free(scts); 4901 } 4902 4903 return scts_extracted; 4904 } 4905 4906 /* 4907 * Attempts to find all received SCTs by checking TLS extensions, the OCSP 4908 * response (if it exists) and X509v3 extensions in the certificate. 4909 * Returns NULL if an error occurs. 4910 */ 4911 const STACK_OF(SCT) *SSL_get0_peer_scts(SSL *s) 4912 { 4913 if (!s->scts_parsed) { 4914 if (ct_extract_tls_extension_scts(s) < 0 || 4915 ct_extract_ocsp_response_scts(s) < 0 || 4916 ct_extract_x509v3_extension_scts(s) < 0) 4917 goto err; 4918 4919 s->scts_parsed = 1; 4920 } 4921 return s->scts; 4922 err: 4923 return NULL; 4924 } 4925 4926 static int ct_permissive(const CT_POLICY_EVAL_CTX * ctx, 4927 const STACK_OF(SCT) *scts, void *unused_arg) 4928 { 4929 return 1; 4930 } 4931 4932 static int ct_strict(const CT_POLICY_EVAL_CTX * ctx, 4933 const STACK_OF(SCT) *scts, void *unused_arg) 4934 { 4935 int count = scts != NULL ? sk_SCT_num(scts) : 0; 4936 int i; 4937 4938 for (i = 0; i < count; ++i) { 4939 SCT *sct = sk_SCT_value(scts, i); 4940 int status = SCT_get_validation_status(sct); 4941 4942 if (status == SCT_VALIDATION_STATUS_VALID) 4943 return 1; 4944 } 4945 SSLerr(SSL_F_CT_STRICT, SSL_R_NO_VALID_SCTS); 4946 return 0; 4947 } 4948 4949 int SSL_set_ct_validation_callback(SSL *s, ssl_ct_validation_cb callback, 4950 void *arg) 4951 { 4952 /* 4953 * Since code exists that uses the custom extension handler for CT, look 4954 * for this and throw an error if they have already registered to use CT. 4955 */ 4956 if (callback != NULL && SSL_CTX_has_client_custom_ext(s->ctx, 4957 TLSEXT_TYPE_signed_certificate_timestamp)) 4958 { 4959 SSLerr(SSL_F_SSL_SET_CT_VALIDATION_CALLBACK, 4960 SSL_R_CUSTOM_EXT_HANDLER_ALREADY_INSTALLED); 4961 return 0; 4962 } 4963 4964 if (callback != NULL) { 4965 /* 4966 * If we are validating CT, then we MUST accept SCTs served via OCSP 4967 */ 4968 if (!SSL_set_tlsext_status_type(s, TLSEXT_STATUSTYPE_ocsp)) 4969 return 0; 4970 } 4971 4972 s->ct_validation_callback = callback; 4973 s->ct_validation_callback_arg = arg; 4974 4975 return 1; 4976 } 4977 4978 int SSL_CTX_set_ct_validation_callback(SSL_CTX *ctx, 4979 ssl_ct_validation_cb callback, void *arg) 4980 { 4981 /* 4982 * Since code exists that uses the custom extension handler for CT, look for 4983 * this and throw an error if they have already registered to use CT. 4984 */ 4985 if (callback != NULL && SSL_CTX_has_client_custom_ext(ctx, 4986 TLSEXT_TYPE_signed_certificate_timestamp)) 4987 { 4988 SSLerr(SSL_F_SSL_CTX_SET_CT_VALIDATION_CALLBACK, 4989 SSL_R_CUSTOM_EXT_HANDLER_ALREADY_INSTALLED); 4990 return 0; 4991 } 4992 4993 ctx->ct_validation_callback = callback; 4994 ctx->ct_validation_callback_arg = arg; 4995 return 1; 4996 } 4997 4998 int SSL_ct_is_enabled(const SSL *s) 4999 { 5000 return s->ct_validation_callback != NULL; 5001 } 5002 5003 int SSL_CTX_ct_is_enabled(const SSL_CTX *ctx) 5004 { 5005 return ctx->ct_validation_callback != NULL; 5006 } 5007 5008 int ssl_validate_ct(SSL *s) 5009 { 5010 int ret = 0; 5011 X509 *cert = s->session != NULL ? s->session->peer : NULL; 5012 X509 *issuer; 5013 SSL_DANE *dane = &s->dane; 5014 CT_POLICY_EVAL_CTX *ctx = NULL; 5015 const STACK_OF(SCT) *scts; 5016 5017 /* 5018 * If no callback is set, the peer is anonymous, or its chain is invalid, 5019 * skip SCT validation - just return success. Applications that continue 5020 * handshakes without certificates, with unverified chains, or pinned leaf 5021 * certificates are outside the scope of the WebPKI and CT. 5022 * 5023 * The above exclusions notwithstanding the vast majority of peers will 5024 * have rather ordinary certificate chains validated by typical 5025 * applications that perform certificate verification and therefore will 5026 * process SCTs when enabled. 5027 */ 5028 if (s->ct_validation_callback == NULL || cert == NULL || 5029 s->verify_result != X509_V_OK || 5030 s->verified_chain == NULL || sk_X509_num(s->verified_chain) <= 1) 5031 return 1; 5032 5033 /* 5034 * CT not applicable for chains validated via DANE-TA(2) or DANE-EE(3) 5035 * trust-anchors. See https://tools.ietf.org/html/rfc7671#section-4.2 5036 */ 5037 if (DANETLS_ENABLED(dane) && dane->mtlsa != NULL) { 5038 switch (dane->mtlsa->usage) { 5039 case DANETLS_USAGE_DANE_TA: 5040 case DANETLS_USAGE_DANE_EE: 5041 return 1; 5042 } 5043 } 5044 5045 ctx = CT_POLICY_EVAL_CTX_new(); 5046 if (ctx == NULL) { 5047 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_VALIDATE_CT, 5048 ERR_R_MALLOC_FAILURE); 5049 goto end; 5050 } 5051 5052 issuer = sk_X509_value(s->verified_chain, 1); 5053 CT_POLICY_EVAL_CTX_set1_cert(ctx, cert); 5054 CT_POLICY_EVAL_CTX_set1_issuer(ctx, issuer); 5055 CT_POLICY_EVAL_CTX_set_shared_CTLOG_STORE(ctx, s->ctx->ctlog_store); 5056 CT_POLICY_EVAL_CTX_set_time( 5057 ctx, (uint64_t)SSL_SESSION_get_time(SSL_get0_session(s)) * 1000); 5058 5059 scts = SSL_get0_peer_scts(s); 5060 5061 /* 5062 * This function returns success (> 0) only when all the SCTs are valid, 0 5063 * when some are invalid, and < 0 on various internal errors (out of 5064 * memory, etc.). Having some, or even all, invalid SCTs is not sufficient 5065 * reason to abort the handshake, that decision is up to the callback. 5066 * Therefore, we error out only in the unexpected case that the return 5067 * value is negative. 5068 * 5069 * XXX: One might well argue that the return value of this function is an 5070 * unfortunate design choice. Its job is only to determine the validation 5071 * status of each of the provided SCTs. So long as it correctly separates 5072 * the wheat from the chaff it should return success. Failure in this case 5073 * ought to correspond to an inability to carry out its duties. 5074 */ 5075 if (SCT_LIST_validate(scts, ctx) < 0) { 5076 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_SSL_VALIDATE_CT, 5077 SSL_R_SCT_VERIFICATION_FAILED); 5078 goto end; 5079 } 5080 5081 ret = s->ct_validation_callback(ctx, scts, s->ct_validation_callback_arg); 5082 if (ret < 0) 5083 ret = 0; /* This function returns 0 on failure */ 5084 if (!ret) 5085 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_SSL_VALIDATE_CT, 5086 SSL_R_CALLBACK_FAILED); 5087 5088 end: 5089 CT_POLICY_EVAL_CTX_free(ctx); 5090 /* 5091 * With SSL_VERIFY_NONE the session may be cached and re-used despite a 5092 * failure return code here. Also the application may wish the complete 5093 * the handshake, and then disconnect cleanly at a higher layer, after 5094 * checking the verification status of the completed connection. 5095 * 5096 * We therefore force a certificate verification failure which will be 5097 * visible via SSL_get_verify_result() and cached as part of any resumed 5098 * session. 5099 * 5100 * Note: the permissive callback is for information gathering only, always 5101 * returns success, and does not affect verification status. Only the 5102 * strict callback or a custom application-specified callback can trigger 5103 * connection failure or record a verification error. 5104 */ 5105 if (ret <= 0) 5106 s->verify_result = X509_V_ERR_NO_VALID_SCTS; 5107 return ret; 5108 } 5109 5110 int SSL_CTX_enable_ct(SSL_CTX *ctx, int validation_mode) 5111 { 5112 switch (validation_mode) { 5113 default: 5114 SSLerr(SSL_F_SSL_CTX_ENABLE_CT, SSL_R_INVALID_CT_VALIDATION_TYPE); 5115 return 0; 5116 case SSL_CT_VALIDATION_PERMISSIVE: 5117 return SSL_CTX_set_ct_validation_callback(ctx, ct_permissive, NULL); 5118 case SSL_CT_VALIDATION_STRICT: 5119 return SSL_CTX_set_ct_validation_callback(ctx, ct_strict, NULL); 5120 } 5121 } 5122 5123 int SSL_enable_ct(SSL *s, int validation_mode) 5124 { 5125 switch (validation_mode) { 5126 default: 5127 SSLerr(SSL_F_SSL_ENABLE_CT, SSL_R_INVALID_CT_VALIDATION_TYPE); 5128 return 0; 5129 case SSL_CT_VALIDATION_PERMISSIVE: 5130 return SSL_set_ct_validation_callback(s, ct_permissive, NULL); 5131 case SSL_CT_VALIDATION_STRICT: 5132 return SSL_set_ct_validation_callback(s, ct_strict, NULL); 5133 } 5134 } 5135 5136 int SSL_CTX_set_default_ctlog_list_file(SSL_CTX *ctx) 5137 { 5138 return CTLOG_STORE_load_default_file(ctx->ctlog_store); 5139 } 5140 5141 int SSL_CTX_set_ctlog_list_file(SSL_CTX *ctx, const char *path) 5142 { 5143 return CTLOG_STORE_load_file(ctx->ctlog_store, path); 5144 } 5145 5146 void SSL_CTX_set0_ctlog_store(SSL_CTX *ctx, CTLOG_STORE * logs) 5147 { 5148 CTLOG_STORE_free(ctx->ctlog_store); 5149 ctx->ctlog_store = logs; 5150 } 5151 5152 const CTLOG_STORE *SSL_CTX_get0_ctlog_store(const SSL_CTX *ctx) 5153 { 5154 return ctx->ctlog_store; 5155 } 5156 5157 #endif /* OPENSSL_NO_CT */ 5158 5159 void SSL_CTX_set_client_hello_cb(SSL_CTX *c, SSL_client_hello_cb_fn cb, 5160 void *arg) 5161 { 5162 c->client_hello_cb = cb; 5163 c->client_hello_cb_arg = arg; 5164 } 5165 5166 int SSL_client_hello_isv2(SSL *s) 5167 { 5168 if (s->clienthello == NULL) 5169 return 0; 5170 return s->clienthello->isv2; 5171 } 5172 5173 unsigned int SSL_client_hello_get0_legacy_version(SSL *s) 5174 { 5175 if (s->clienthello == NULL) 5176 return 0; 5177 return s->clienthello->legacy_version; 5178 } 5179 5180 size_t SSL_client_hello_get0_random(SSL *s, const unsigned char **out) 5181 { 5182 if (s->clienthello == NULL) 5183 return 0; 5184 if (out != NULL) 5185 *out = s->clienthello->random; 5186 return SSL3_RANDOM_SIZE; 5187 } 5188 5189 size_t SSL_client_hello_get0_session_id(SSL *s, const unsigned char **out) 5190 { 5191 if (s->clienthello == NULL) 5192 return 0; 5193 if (out != NULL) 5194 *out = s->clienthello->session_id; 5195 return s->clienthello->session_id_len; 5196 } 5197 5198 size_t SSL_client_hello_get0_ciphers(SSL *s, const unsigned char **out) 5199 { 5200 if (s->clienthello == NULL) 5201 return 0; 5202 if (out != NULL) 5203 *out = PACKET_data(&s->clienthello->ciphersuites); 5204 return PACKET_remaining(&s->clienthello->ciphersuites); 5205 } 5206 5207 size_t SSL_client_hello_get0_compression_methods(SSL *s, const unsigned char **out) 5208 { 5209 if (s->clienthello == NULL) 5210 return 0; 5211 if (out != NULL) 5212 *out = s->clienthello->compressions; 5213 return s->clienthello->compressions_len; 5214 } 5215 5216 int SSL_client_hello_get1_extensions_present(SSL *s, int **out, size_t *outlen) 5217 { 5218 RAW_EXTENSION *ext; 5219 int *present; 5220 size_t num = 0, i; 5221 5222 if (s->clienthello == NULL || out == NULL || outlen == NULL) 5223 return 0; 5224 for (i = 0; i < s->clienthello->pre_proc_exts_len; i++) { 5225 ext = s->clienthello->pre_proc_exts + i; 5226 if (ext->present) 5227 num++; 5228 } 5229 if (num == 0) { 5230 *out = NULL; 5231 *outlen = 0; 5232 return 1; 5233 } 5234 if ((present = OPENSSL_malloc(sizeof(*present) * num)) == NULL) { 5235 SSLerr(SSL_F_SSL_CLIENT_HELLO_GET1_EXTENSIONS_PRESENT, 5236 ERR_R_MALLOC_FAILURE); 5237 return 0; 5238 } 5239 for (i = 0; i < s->clienthello->pre_proc_exts_len; i++) { 5240 ext = s->clienthello->pre_proc_exts + i; 5241 if (ext->present) { 5242 if (ext->received_order >= num) 5243 goto err; 5244 present[ext->received_order] = ext->type; 5245 } 5246 } 5247 *out = present; 5248 *outlen = num; 5249 return 1; 5250 err: 5251 OPENSSL_free(present); 5252 return 0; 5253 } 5254 5255 int SSL_client_hello_get0_ext(SSL *s, unsigned int type, const unsigned char **out, 5256 size_t *outlen) 5257 { 5258 size_t i; 5259 RAW_EXTENSION *r; 5260 5261 if (s->clienthello == NULL) 5262 return 0; 5263 for (i = 0; i < s->clienthello->pre_proc_exts_len; ++i) { 5264 r = s->clienthello->pre_proc_exts + i; 5265 if (r->present && r->type == type) { 5266 if (out != NULL) 5267 *out = PACKET_data(&r->data); 5268 if (outlen != NULL) 5269 *outlen = PACKET_remaining(&r->data); 5270 return 1; 5271 } 5272 } 5273 return 0; 5274 } 5275 5276 int SSL_free_buffers(SSL *ssl) 5277 { 5278 RECORD_LAYER *rl = &ssl->rlayer; 5279 5280 if (RECORD_LAYER_read_pending(rl) || RECORD_LAYER_write_pending(rl)) 5281 return 0; 5282 5283 RECORD_LAYER_release(rl); 5284 return 1; 5285 } 5286 5287 int SSL_alloc_buffers(SSL *ssl) 5288 { 5289 return ssl3_setup_buffers(ssl); 5290 } 5291 5292 void SSL_CTX_set_keylog_callback(SSL_CTX *ctx, SSL_CTX_keylog_cb_func cb) 5293 { 5294 ctx->keylog_callback = cb; 5295 } 5296 5297 SSL_CTX_keylog_cb_func SSL_CTX_get_keylog_callback(const SSL_CTX *ctx) 5298 { 5299 return ctx->keylog_callback; 5300 } 5301 5302 static int nss_keylog_int(const char *prefix, 5303 SSL *ssl, 5304 const uint8_t *parameter_1, 5305 size_t parameter_1_len, 5306 const uint8_t *parameter_2, 5307 size_t parameter_2_len) 5308 { 5309 char *out = NULL; 5310 char *cursor = NULL; 5311 size_t out_len = 0; 5312 size_t i; 5313 size_t prefix_len; 5314 5315 if (ssl->ctx->keylog_callback == NULL) 5316 return 1; 5317 5318 /* 5319 * Our output buffer will contain the following strings, rendered with 5320 * space characters in between, terminated by a NULL character: first the 5321 * prefix, then the first parameter, then the second parameter. The 5322 * meaning of each parameter depends on the specific key material being 5323 * logged. Note that the first and second parameters are encoded in 5324 * hexadecimal, so we need a buffer that is twice their lengths. 5325 */ 5326 prefix_len = strlen(prefix); 5327 out_len = prefix_len + (2 * parameter_1_len) + (2 * parameter_2_len) + 3; 5328 if ((out = cursor = OPENSSL_malloc(out_len)) == NULL) { 5329 SSLfatal(ssl, SSL_AD_INTERNAL_ERROR, SSL_F_NSS_KEYLOG_INT, 5330 ERR_R_MALLOC_FAILURE); 5331 return 0; 5332 } 5333 5334 strcpy(cursor, prefix); 5335 cursor += prefix_len; 5336 *cursor++ = ' '; 5337 5338 for (i = 0; i < parameter_1_len; i++) { 5339 sprintf(cursor, "%02x", parameter_1[i]); 5340 cursor += 2; 5341 } 5342 *cursor++ = ' '; 5343 5344 for (i = 0; i < parameter_2_len; i++) { 5345 sprintf(cursor, "%02x", parameter_2[i]); 5346 cursor += 2; 5347 } 5348 *cursor = '\0'; 5349 5350 ssl->ctx->keylog_callback(ssl, (const char *)out); 5351 OPENSSL_clear_free(out, out_len); 5352 return 1; 5353 5354 } 5355 5356 int ssl_log_rsa_client_key_exchange(SSL *ssl, 5357 const uint8_t *encrypted_premaster, 5358 size_t encrypted_premaster_len, 5359 const uint8_t *premaster, 5360 size_t premaster_len) 5361 { 5362 if (encrypted_premaster_len < 8) { 5363 SSLfatal(ssl, SSL_AD_INTERNAL_ERROR, 5364 SSL_F_SSL_LOG_RSA_CLIENT_KEY_EXCHANGE, ERR_R_INTERNAL_ERROR); 5365 return 0; 5366 } 5367 5368 /* We only want the first 8 bytes of the encrypted premaster as a tag. */ 5369 return nss_keylog_int("RSA", 5370 ssl, 5371 encrypted_premaster, 5372 8, 5373 premaster, 5374 premaster_len); 5375 } 5376 5377 int ssl_log_secret(SSL *ssl, 5378 const char *label, 5379 const uint8_t *secret, 5380 size_t secret_len) 5381 { 5382 return nss_keylog_int(label, 5383 ssl, 5384 ssl->s3->client_random, 5385 SSL3_RANDOM_SIZE, 5386 secret, 5387 secret_len); 5388 } 5389 5390 #define SSLV2_CIPHER_LEN 3 5391 5392 int ssl_cache_cipherlist(SSL *s, PACKET *cipher_suites, int sslv2format) 5393 { 5394 int n; 5395 5396 n = sslv2format ? SSLV2_CIPHER_LEN : TLS_CIPHER_LEN; 5397 5398 if (PACKET_remaining(cipher_suites) == 0) { 5399 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_SSL_CACHE_CIPHERLIST, 5400 SSL_R_NO_CIPHERS_SPECIFIED); 5401 return 0; 5402 } 5403 5404 if (PACKET_remaining(cipher_suites) % n != 0) { 5405 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_SSL_CACHE_CIPHERLIST, 5406 SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST); 5407 return 0; 5408 } 5409 5410 OPENSSL_free(s->s3->tmp.ciphers_raw); 5411 s->s3->tmp.ciphers_raw = NULL; 5412 s->s3->tmp.ciphers_rawlen = 0; 5413 5414 if (sslv2format) { 5415 size_t numciphers = PACKET_remaining(cipher_suites) / n; 5416 PACKET sslv2ciphers = *cipher_suites; 5417 unsigned int leadbyte; 5418 unsigned char *raw; 5419 5420 /* 5421 * We store the raw ciphers list in SSLv3+ format so we need to do some 5422 * preprocessing to convert the list first. If there are any SSLv2 only 5423 * ciphersuites with a non-zero leading byte then we are going to 5424 * slightly over allocate because we won't store those. But that isn't a 5425 * problem. 5426 */ 5427 raw = OPENSSL_malloc(numciphers * TLS_CIPHER_LEN); 5428 s->s3->tmp.ciphers_raw = raw; 5429 if (raw == NULL) { 5430 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_CACHE_CIPHERLIST, 5431 ERR_R_MALLOC_FAILURE); 5432 return 0; 5433 } 5434 for (s->s3->tmp.ciphers_rawlen = 0; 5435 PACKET_remaining(&sslv2ciphers) > 0; 5436 raw += TLS_CIPHER_LEN) { 5437 if (!PACKET_get_1(&sslv2ciphers, &leadbyte) 5438 || (leadbyte == 0 5439 && !PACKET_copy_bytes(&sslv2ciphers, raw, 5440 TLS_CIPHER_LEN)) 5441 || (leadbyte != 0 5442 && !PACKET_forward(&sslv2ciphers, TLS_CIPHER_LEN))) { 5443 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_SSL_CACHE_CIPHERLIST, 5444 SSL_R_BAD_PACKET); 5445 OPENSSL_free(s->s3->tmp.ciphers_raw); 5446 s->s3->tmp.ciphers_raw = NULL; 5447 s->s3->tmp.ciphers_rawlen = 0; 5448 return 0; 5449 } 5450 if (leadbyte == 0) 5451 s->s3->tmp.ciphers_rawlen += TLS_CIPHER_LEN; 5452 } 5453 } else if (!PACKET_memdup(cipher_suites, &s->s3->tmp.ciphers_raw, 5454 &s->s3->tmp.ciphers_rawlen)) { 5455 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_CACHE_CIPHERLIST, 5456 ERR_R_INTERNAL_ERROR); 5457 return 0; 5458 } 5459 return 1; 5460 } 5461 5462 int SSL_bytes_to_cipher_list(SSL *s, const unsigned char *bytes, size_t len, 5463 int isv2format, STACK_OF(SSL_CIPHER) **sk, 5464 STACK_OF(SSL_CIPHER) **scsvs) 5465 { 5466 PACKET pkt; 5467 5468 if (!PACKET_buf_init(&pkt, bytes, len)) 5469 return 0; 5470 return bytes_to_cipher_list(s, &pkt, sk, scsvs, isv2format, 0); 5471 } 5472 5473 int bytes_to_cipher_list(SSL *s, PACKET *cipher_suites, 5474 STACK_OF(SSL_CIPHER) **skp, 5475 STACK_OF(SSL_CIPHER) **scsvs_out, 5476 int sslv2format, int fatal) 5477 { 5478 const SSL_CIPHER *c; 5479 STACK_OF(SSL_CIPHER) *sk = NULL; 5480 STACK_OF(SSL_CIPHER) *scsvs = NULL; 5481 int n; 5482 /* 3 = SSLV2_CIPHER_LEN > TLS_CIPHER_LEN = 2. */ 5483 unsigned char cipher[SSLV2_CIPHER_LEN]; 5484 5485 n = sslv2format ? SSLV2_CIPHER_LEN : TLS_CIPHER_LEN; 5486 5487 if (PACKET_remaining(cipher_suites) == 0) { 5488 if (fatal) 5489 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_BYTES_TO_CIPHER_LIST, 5490 SSL_R_NO_CIPHERS_SPECIFIED); 5491 else 5492 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, SSL_R_NO_CIPHERS_SPECIFIED); 5493 return 0; 5494 } 5495 5496 if (PACKET_remaining(cipher_suites) % n != 0) { 5497 if (fatal) 5498 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_BYTES_TO_CIPHER_LIST, 5499 SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST); 5500 else 5501 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, 5502 SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST); 5503 return 0; 5504 } 5505 5506 sk = sk_SSL_CIPHER_new_null(); 5507 scsvs = sk_SSL_CIPHER_new_null(); 5508 if (sk == NULL || scsvs == NULL) { 5509 if (fatal) 5510 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_BYTES_TO_CIPHER_LIST, 5511 ERR_R_MALLOC_FAILURE); 5512 else 5513 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, ERR_R_MALLOC_FAILURE); 5514 goto err; 5515 } 5516 5517 while (PACKET_copy_bytes(cipher_suites, cipher, n)) { 5518 /* 5519 * SSLv3 ciphers wrapped in an SSLv2-compatible ClientHello have the 5520 * first byte set to zero, while true SSLv2 ciphers have a non-zero 5521 * first byte. We don't support any true SSLv2 ciphers, so skip them. 5522 */ 5523 if (sslv2format && cipher[0] != '\0') 5524 continue; 5525 5526 /* For SSLv2-compat, ignore leading 0-byte. */ 5527 c = ssl_get_cipher_by_char(s, sslv2format ? &cipher[1] : cipher, 1); 5528 if (c != NULL) { 5529 if ((c->valid && !sk_SSL_CIPHER_push(sk, c)) || 5530 (!c->valid && !sk_SSL_CIPHER_push(scsvs, c))) { 5531 if (fatal) 5532 SSLfatal(s, SSL_AD_INTERNAL_ERROR, 5533 SSL_F_BYTES_TO_CIPHER_LIST, ERR_R_MALLOC_FAILURE); 5534 else 5535 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, ERR_R_MALLOC_FAILURE); 5536 goto err; 5537 } 5538 } 5539 } 5540 if (PACKET_remaining(cipher_suites) > 0) { 5541 if (fatal) 5542 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_BYTES_TO_CIPHER_LIST, 5543 SSL_R_BAD_LENGTH); 5544 else 5545 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, SSL_R_BAD_LENGTH); 5546 goto err; 5547 } 5548 5549 if (skp != NULL) 5550 *skp = sk; 5551 else 5552 sk_SSL_CIPHER_free(sk); 5553 if (scsvs_out != NULL) 5554 *scsvs_out = scsvs; 5555 else 5556 sk_SSL_CIPHER_free(scsvs); 5557 return 1; 5558 err: 5559 sk_SSL_CIPHER_free(sk); 5560 sk_SSL_CIPHER_free(scsvs); 5561 return 0; 5562 } 5563 5564 int SSL_CTX_set_max_early_data(SSL_CTX *ctx, uint32_t max_early_data) 5565 { 5566 ctx->max_early_data = max_early_data; 5567 5568 return 1; 5569 } 5570 5571 uint32_t SSL_CTX_get_max_early_data(const SSL_CTX *ctx) 5572 { 5573 return ctx->max_early_data; 5574 } 5575 5576 int SSL_set_max_early_data(SSL *s, uint32_t max_early_data) 5577 { 5578 s->max_early_data = max_early_data; 5579 5580 return 1; 5581 } 5582 5583 uint32_t SSL_get_max_early_data(const SSL *s) 5584 { 5585 return s->max_early_data; 5586 } 5587 5588 int SSL_CTX_set_recv_max_early_data(SSL_CTX *ctx, uint32_t recv_max_early_data) 5589 { 5590 ctx->recv_max_early_data = recv_max_early_data; 5591 5592 return 1; 5593 } 5594 5595 uint32_t SSL_CTX_get_recv_max_early_data(const SSL_CTX *ctx) 5596 { 5597 return ctx->recv_max_early_data; 5598 } 5599 5600 int SSL_set_recv_max_early_data(SSL *s, uint32_t recv_max_early_data) 5601 { 5602 s->recv_max_early_data = recv_max_early_data; 5603 5604 return 1; 5605 } 5606 5607 uint32_t SSL_get_recv_max_early_data(const SSL *s) 5608 { 5609 return s->recv_max_early_data; 5610 } 5611 5612 __owur unsigned int ssl_get_max_send_fragment(const SSL *ssl) 5613 { 5614 /* Return any active Max Fragment Len extension */ 5615 if (ssl->session != NULL && USE_MAX_FRAGMENT_LENGTH_EXT(ssl->session)) 5616 return GET_MAX_FRAGMENT_LENGTH(ssl->session); 5617 5618 /* return current SSL connection setting */ 5619 return ssl->max_send_fragment; 5620 } 5621 5622 __owur unsigned int ssl_get_split_send_fragment(const SSL *ssl) 5623 { 5624 /* Return a value regarding an active Max Fragment Len extension */ 5625 if (ssl->session != NULL && USE_MAX_FRAGMENT_LENGTH_EXT(ssl->session) 5626 && ssl->split_send_fragment > GET_MAX_FRAGMENT_LENGTH(ssl->session)) 5627 return GET_MAX_FRAGMENT_LENGTH(ssl->session); 5628 5629 /* else limit |split_send_fragment| to current |max_send_fragment| */ 5630 if (ssl->split_send_fragment > ssl->max_send_fragment) 5631 return ssl->max_send_fragment; 5632 5633 /* return current SSL connection setting */ 5634 return ssl->split_send_fragment; 5635 } 5636 5637 int SSL_stateless(SSL *s) 5638 { 5639 int ret; 5640 5641 /* Ensure there is no state left over from a previous invocation */ 5642 if (!SSL_clear(s)) 5643 return 0; 5644 5645 ERR_clear_error(); 5646 5647 s->s3->flags |= TLS1_FLAGS_STATELESS; 5648 ret = SSL_accept(s); 5649 s->s3->flags &= ~TLS1_FLAGS_STATELESS; 5650 5651 if (ret > 0 && s->ext.cookieok) 5652 return 1; 5653 5654 if (s->hello_retry_request == SSL_HRR_PENDING && !ossl_statem_in_error(s)) 5655 return 0; 5656 5657 return -1; 5658 } 5659 5660 void SSL_CTX_set_post_handshake_auth(SSL_CTX *ctx, int val) 5661 { 5662 ctx->pha_enabled = val; 5663 } 5664 5665 void SSL_set_post_handshake_auth(SSL *ssl, int val) 5666 { 5667 ssl->pha_enabled = val; 5668 } 5669 5670 int SSL_verify_client_post_handshake(SSL *ssl) 5671 { 5672 if (!SSL_IS_TLS13(ssl)) { 5673 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_WRONG_SSL_VERSION); 5674 return 0; 5675 } 5676 if (!ssl->server) { 5677 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_NOT_SERVER); 5678 return 0; 5679 } 5680 5681 if (!SSL_is_init_finished(ssl)) { 5682 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_STILL_IN_INIT); 5683 return 0; 5684 } 5685 5686 switch (ssl->post_handshake_auth) { 5687 case SSL_PHA_NONE: 5688 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_EXTENSION_NOT_RECEIVED); 5689 return 0; 5690 default: 5691 case SSL_PHA_EXT_SENT: 5692 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, ERR_R_INTERNAL_ERROR); 5693 return 0; 5694 case SSL_PHA_EXT_RECEIVED: 5695 break; 5696 case SSL_PHA_REQUEST_PENDING: 5697 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_REQUEST_PENDING); 5698 return 0; 5699 case SSL_PHA_REQUESTED: 5700 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_REQUEST_SENT); 5701 return 0; 5702 } 5703 5704 ssl->post_handshake_auth = SSL_PHA_REQUEST_PENDING; 5705 5706 /* checks verify_mode and algorithm_auth */ 5707 if (!send_certificate_request(ssl)) { 5708 ssl->post_handshake_auth = SSL_PHA_EXT_RECEIVED; /* restore on error */ 5709 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_INVALID_CONFIG); 5710 return 0; 5711 } 5712 5713 ossl_statem_set_in_init(ssl, 1); 5714 return 1; 5715 } 5716 5717 int SSL_CTX_set_session_ticket_cb(SSL_CTX *ctx, 5718 SSL_CTX_generate_session_ticket_fn gen_cb, 5719 SSL_CTX_decrypt_session_ticket_fn dec_cb, 5720 void *arg) 5721 { 5722 ctx->generate_ticket_cb = gen_cb; 5723 ctx->decrypt_ticket_cb = dec_cb; 5724 ctx->ticket_cb_data = arg; 5725 return 1; 5726 } 5727 5728 void SSL_CTX_set_allow_early_data_cb(SSL_CTX *ctx, 5729 SSL_allow_early_data_cb_fn cb, 5730 void *arg) 5731 { 5732 ctx->allow_early_data_cb = cb; 5733 ctx->allow_early_data_cb_data = arg; 5734 } 5735 5736 void SSL_set_allow_early_data_cb(SSL *s, 5737 SSL_allow_early_data_cb_fn cb, 5738 void *arg) 5739 { 5740 s->allow_early_data_cb = cb; 5741 s->allow_early_data_cb_data = arg; 5742 } 5743