1 /* 2 * Copyright 1995-2023 The OpenSSL Project Authors. All Rights Reserved. 3 * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved 4 * Copyright 2005 Nokia. All rights reserved. 5 * 6 * Licensed under the Apache License 2.0 (the "License"). You may not use 7 * this file except in compliance with the License. You can obtain a copy 8 * in the file LICENSE in the source distribution or at 9 * https://www.openssl.org/source/license.html 10 */ 11 12 #include <stdio.h> 13 #include "ssl_local.h" 14 #include "e_os.h" 15 #include <openssl/objects.h> 16 #include <openssl/x509v3.h> 17 #include <openssl/rand.h> 18 #include <openssl/ocsp.h> 19 #include <openssl/dh.h> 20 #include <openssl/engine.h> 21 #include <openssl/async.h> 22 #include <openssl/ct.h> 23 #include <openssl/trace.h> 24 #include "internal/cryptlib.h" 25 #include "internal/refcount.h" 26 #include "internal/ktls.h" 27 28 static int ssl_undefined_function_1(SSL *ssl, SSL3_RECORD *r, size_t s, int t, 29 SSL_MAC_BUF *mac, size_t macsize) 30 { 31 return ssl_undefined_function(ssl); 32 } 33 34 static int ssl_undefined_function_2(SSL *ssl, SSL3_RECORD *r, unsigned char *s, 35 int t) 36 { 37 return ssl_undefined_function(ssl); 38 } 39 40 static int ssl_undefined_function_3(SSL *ssl, unsigned char *r, 41 unsigned char *s, size_t t, size_t *u) 42 { 43 return ssl_undefined_function(ssl); 44 } 45 46 static int ssl_undefined_function_4(SSL *ssl, int r) 47 { 48 return ssl_undefined_function(ssl); 49 } 50 51 static size_t ssl_undefined_function_5(SSL *ssl, const char *r, size_t s, 52 unsigned char *t) 53 { 54 return ssl_undefined_function(ssl); 55 } 56 57 static int ssl_undefined_function_6(int r) 58 { 59 return ssl_undefined_function(NULL); 60 } 61 62 static int ssl_undefined_function_7(SSL *ssl, unsigned char *r, size_t s, 63 const char *t, size_t u, 64 const unsigned char *v, size_t w, int x) 65 { 66 return ssl_undefined_function(ssl); 67 } 68 69 SSL3_ENC_METHOD ssl3_undef_enc_method = { 70 ssl_undefined_function_1, 71 ssl_undefined_function_2, 72 ssl_undefined_function, 73 ssl_undefined_function_3, 74 ssl_undefined_function_4, 75 ssl_undefined_function_5, 76 NULL, /* client_finished_label */ 77 0, /* client_finished_label_len */ 78 NULL, /* server_finished_label */ 79 0, /* server_finished_label_len */ 80 ssl_undefined_function_6, 81 ssl_undefined_function_7, 82 }; 83 84 struct ssl_async_args { 85 SSL *s; 86 void *buf; 87 size_t num; 88 enum { READFUNC, WRITEFUNC, OTHERFUNC } type; 89 union { 90 int (*func_read) (SSL *, void *, size_t, size_t *); 91 int (*func_write) (SSL *, const void *, size_t, size_t *); 92 int (*func_other) (SSL *); 93 } f; 94 }; 95 96 static const struct { 97 uint8_t mtype; 98 uint8_t ord; 99 int nid; 100 } dane_mds[] = { 101 { 102 DANETLS_MATCHING_FULL, 0, NID_undef 103 }, 104 { 105 DANETLS_MATCHING_2256, 1, NID_sha256 106 }, 107 { 108 DANETLS_MATCHING_2512, 2, NID_sha512 109 }, 110 }; 111 112 static int dane_ctx_enable(struct dane_ctx_st *dctx) 113 { 114 const EVP_MD **mdevp; 115 uint8_t *mdord; 116 uint8_t mdmax = DANETLS_MATCHING_LAST; 117 int n = ((int)mdmax) + 1; /* int to handle PrivMatch(255) */ 118 size_t i; 119 120 if (dctx->mdevp != NULL) 121 return 1; 122 123 mdevp = OPENSSL_zalloc(n * sizeof(*mdevp)); 124 mdord = OPENSSL_zalloc(n * sizeof(*mdord)); 125 126 if (mdord == NULL || mdevp == NULL) { 127 OPENSSL_free(mdord); 128 OPENSSL_free(mdevp); 129 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); 130 return 0; 131 } 132 133 /* Install default entries */ 134 for (i = 0; i < OSSL_NELEM(dane_mds); ++i) { 135 const EVP_MD *md; 136 137 if (dane_mds[i].nid == NID_undef || 138 (md = EVP_get_digestbynid(dane_mds[i].nid)) == NULL) 139 continue; 140 mdevp[dane_mds[i].mtype] = md; 141 mdord[dane_mds[i].mtype] = dane_mds[i].ord; 142 } 143 144 dctx->mdevp = mdevp; 145 dctx->mdord = mdord; 146 dctx->mdmax = mdmax; 147 148 return 1; 149 } 150 151 static void dane_ctx_final(struct dane_ctx_st *dctx) 152 { 153 OPENSSL_free(dctx->mdevp); 154 dctx->mdevp = NULL; 155 156 OPENSSL_free(dctx->mdord); 157 dctx->mdord = NULL; 158 dctx->mdmax = 0; 159 } 160 161 static void tlsa_free(danetls_record *t) 162 { 163 if (t == NULL) 164 return; 165 OPENSSL_free(t->data); 166 EVP_PKEY_free(t->spki); 167 OPENSSL_free(t); 168 } 169 170 static void dane_final(SSL_DANE *dane) 171 { 172 sk_danetls_record_pop_free(dane->trecs, tlsa_free); 173 dane->trecs = NULL; 174 175 sk_X509_pop_free(dane->certs, X509_free); 176 dane->certs = NULL; 177 178 X509_free(dane->mcert); 179 dane->mcert = NULL; 180 dane->mtlsa = NULL; 181 dane->mdpth = -1; 182 dane->pdpth = -1; 183 } 184 185 /* 186 * dane_copy - Copy dane configuration, sans verification state. 187 */ 188 static int ssl_dane_dup(SSL *to, SSL *from) 189 { 190 int num; 191 int i; 192 193 if (!DANETLS_ENABLED(&from->dane)) 194 return 1; 195 196 num = sk_danetls_record_num(from->dane.trecs); 197 dane_final(&to->dane); 198 to->dane.flags = from->dane.flags; 199 to->dane.dctx = &to->ctx->dane; 200 to->dane.trecs = sk_danetls_record_new_reserve(NULL, num); 201 202 if (to->dane.trecs == NULL) { 203 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); 204 return 0; 205 } 206 207 for (i = 0; i < num; ++i) { 208 danetls_record *t = sk_danetls_record_value(from->dane.trecs, i); 209 210 if (SSL_dane_tlsa_add(to, t->usage, t->selector, t->mtype, 211 t->data, t->dlen) <= 0) 212 return 0; 213 } 214 return 1; 215 } 216 217 static int dane_mtype_set(struct dane_ctx_st *dctx, 218 const EVP_MD *md, uint8_t mtype, uint8_t ord) 219 { 220 int i; 221 222 if (mtype == DANETLS_MATCHING_FULL && md != NULL) { 223 ERR_raise(ERR_LIB_SSL, SSL_R_DANE_CANNOT_OVERRIDE_MTYPE_FULL); 224 return 0; 225 } 226 227 if (mtype > dctx->mdmax) { 228 const EVP_MD **mdevp; 229 uint8_t *mdord; 230 int n = ((int)mtype) + 1; 231 232 mdevp = OPENSSL_realloc(dctx->mdevp, n * sizeof(*mdevp)); 233 if (mdevp == NULL) { 234 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); 235 return -1; 236 } 237 dctx->mdevp = mdevp; 238 239 mdord = OPENSSL_realloc(dctx->mdord, n * sizeof(*mdord)); 240 if (mdord == NULL) { 241 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); 242 return -1; 243 } 244 dctx->mdord = mdord; 245 246 /* Zero-fill any gaps */ 247 for (i = dctx->mdmax + 1; i < mtype; ++i) { 248 mdevp[i] = NULL; 249 mdord[i] = 0; 250 } 251 252 dctx->mdmax = mtype; 253 } 254 255 dctx->mdevp[mtype] = md; 256 /* Coerce ordinal of disabled matching types to 0 */ 257 dctx->mdord[mtype] = (md == NULL) ? 0 : ord; 258 259 return 1; 260 } 261 262 static const EVP_MD *tlsa_md_get(SSL_DANE *dane, uint8_t mtype) 263 { 264 if (mtype > dane->dctx->mdmax) 265 return NULL; 266 return dane->dctx->mdevp[mtype]; 267 } 268 269 static int dane_tlsa_add(SSL_DANE *dane, 270 uint8_t usage, 271 uint8_t selector, 272 uint8_t mtype, const unsigned char *data, size_t dlen) 273 { 274 danetls_record *t; 275 const EVP_MD *md = NULL; 276 int ilen = (int)dlen; 277 int i; 278 int num; 279 280 if (dane->trecs == NULL) { 281 ERR_raise(ERR_LIB_SSL, SSL_R_DANE_NOT_ENABLED); 282 return -1; 283 } 284 285 if (ilen < 0 || dlen != (size_t)ilen) { 286 ERR_raise(ERR_LIB_SSL, SSL_R_DANE_TLSA_BAD_DATA_LENGTH); 287 return 0; 288 } 289 290 if (usage > DANETLS_USAGE_LAST) { 291 ERR_raise(ERR_LIB_SSL, SSL_R_DANE_TLSA_BAD_CERTIFICATE_USAGE); 292 return 0; 293 } 294 295 if (selector > DANETLS_SELECTOR_LAST) { 296 ERR_raise(ERR_LIB_SSL, SSL_R_DANE_TLSA_BAD_SELECTOR); 297 return 0; 298 } 299 300 if (mtype != DANETLS_MATCHING_FULL) { 301 md = tlsa_md_get(dane, mtype); 302 if (md == NULL) { 303 ERR_raise(ERR_LIB_SSL, SSL_R_DANE_TLSA_BAD_MATCHING_TYPE); 304 return 0; 305 } 306 } 307 308 if (md != NULL && dlen != (size_t)EVP_MD_get_size(md)) { 309 ERR_raise(ERR_LIB_SSL, SSL_R_DANE_TLSA_BAD_DIGEST_LENGTH); 310 return 0; 311 } 312 if (!data) { 313 ERR_raise(ERR_LIB_SSL, SSL_R_DANE_TLSA_NULL_DATA); 314 return 0; 315 } 316 317 if ((t = OPENSSL_zalloc(sizeof(*t))) == NULL) { 318 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); 319 return -1; 320 } 321 322 t->usage = usage; 323 t->selector = selector; 324 t->mtype = mtype; 325 t->data = OPENSSL_malloc(dlen); 326 if (t->data == NULL) { 327 tlsa_free(t); 328 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); 329 return -1; 330 } 331 memcpy(t->data, data, dlen); 332 t->dlen = dlen; 333 334 /* Validate and cache full certificate or public key */ 335 if (mtype == DANETLS_MATCHING_FULL) { 336 const unsigned char *p = data; 337 X509 *cert = NULL; 338 EVP_PKEY *pkey = NULL; 339 340 switch (selector) { 341 case DANETLS_SELECTOR_CERT: 342 if (!d2i_X509(&cert, &p, ilen) || p < data || 343 dlen != (size_t)(p - data)) { 344 X509_free(cert); 345 tlsa_free(t); 346 ERR_raise(ERR_LIB_SSL, SSL_R_DANE_TLSA_BAD_CERTIFICATE); 347 return 0; 348 } 349 if (X509_get0_pubkey(cert) == NULL) { 350 X509_free(cert); 351 tlsa_free(t); 352 ERR_raise(ERR_LIB_SSL, SSL_R_DANE_TLSA_BAD_CERTIFICATE); 353 return 0; 354 } 355 356 if ((DANETLS_USAGE_BIT(usage) & DANETLS_TA_MASK) == 0) { 357 /* 358 * The Full(0) certificate decodes to a seemingly valid X.509 359 * object with a plausible key, so the TLSA record is well 360 * formed. However, we don't actually need the certifiate for 361 * usages PKIX-EE(1) or DANE-EE(3), because at least the EE 362 * certificate is always presented by the peer. We discard the 363 * certificate, and just use the TLSA data as an opaque blob 364 * for matching the raw presented DER octets. 365 * 366 * DO NOT FREE `t` here, it will be added to the TLSA record 367 * list below! 368 */ 369 X509_free(cert); 370 break; 371 } 372 373 /* 374 * For usage DANE-TA(2), we support authentication via "2 0 0" TLSA 375 * records that contain full certificates of trust-anchors that are 376 * not present in the wire chain. For usage PKIX-TA(0), we augment 377 * the chain with untrusted Full(0) certificates from DNS, in case 378 * they are missing from the chain. 379 */ 380 if ((dane->certs == NULL && 381 (dane->certs = sk_X509_new_null()) == NULL) || 382 !sk_X509_push(dane->certs, cert)) { 383 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); 384 X509_free(cert); 385 tlsa_free(t); 386 return -1; 387 } 388 break; 389 390 case DANETLS_SELECTOR_SPKI: 391 if (!d2i_PUBKEY(&pkey, &p, ilen) || p < data || 392 dlen != (size_t)(p - data)) { 393 EVP_PKEY_free(pkey); 394 tlsa_free(t); 395 ERR_raise(ERR_LIB_SSL, SSL_R_DANE_TLSA_BAD_PUBLIC_KEY); 396 return 0; 397 } 398 399 /* 400 * For usage DANE-TA(2), we support authentication via "2 1 0" TLSA 401 * records that contain full bare keys of trust-anchors that are 402 * not present in the wire chain. 403 */ 404 if (usage == DANETLS_USAGE_DANE_TA) 405 t->spki = pkey; 406 else 407 EVP_PKEY_free(pkey); 408 break; 409 } 410 } 411 412 /*- 413 * Find the right insertion point for the new record. 414 * 415 * See crypto/x509/x509_vfy.c. We sort DANE-EE(3) records first, so that 416 * they can be processed first, as they require no chain building, and no 417 * expiration or hostname checks. Because DANE-EE(3) is numerically 418 * largest, this is accomplished via descending sort by "usage". 419 * 420 * We also sort in descending order by matching ordinal to simplify 421 * the implementation of digest agility in the verification code. 422 * 423 * The choice of order for the selector is not significant, so we 424 * use the same descending order for consistency. 425 */ 426 num = sk_danetls_record_num(dane->trecs); 427 for (i = 0; i < num; ++i) { 428 danetls_record *rec = sk_danetls_record_value(dane->trecs, i); 429 430 if (rec->usage > usage) 431 continue; 432 if (rec->usage < usage) 433 break; 434 if (rec->selector > selector) 435 continue; 436 if (rec->selector < selector) 437 break; 438 if (dane->dctx->mdord[rec->mtype] > dane->dctx->mdord[mtype]) 439 continue; 440 break; 441 } 442 443 if (!sk_danetls_record_insert(dane->trecs, t, i)) { 444 tlsa_free(t); 445 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); 446 return -1; 447 } 448 dane->umask |= DANETLS_USAGE_BIT(usage); 449 450 return 1; 451 } 452 453 /* 454 * Return 0 if there is only one version configured and it was disabled 455 * at configure time. Return 1 otherwise. 456 */ 457 static int ssl_check_allowed_versions(int min_version, int max_version) 458 { 459 int minisdtls = 0, maxisdtls = 0; 460 461 /* Figure out if we're doing DTLS versions or TLS versions */ 462 if (min_version == DTLS1_BAD_VER 463 || min_version >> 8 == DTLS1_VERSION_MAJOR) 464 minisdtls = 1; 465 if (max_version == DTLS1_BAD_VER 466 || max_version >> 8 == DTLS1_VERSION_MAJOR) 467 maxisdtls = 1; 468 /* A wildcard version of 0 could be DTLS or TLS. */ 469 if ((minisdtls && !maxisdtls && max_version != 0) 470 || (maxisdtls && !minisdtls && min_version != 0)) { 471 /* Mixing DTLS and TLS versions will lead to sadness; deny it. */ 472 return 0; 473 } 474 475 if (minisdtls || maxisdtls) { 476 /* Do DTLS version checks. */ 477 if (min_version == 0) 478 /* Ignore DTLS1_BAD_VER */ 479 min_version = DTLS1_VERSION; 480 if (max_version == 0) 481 max_version = DTLS1_2_VERSION; 482 #ifdef OPENSSL_NO_DTLS1_2 483 if (max_version == DTLS1_2_VERSION) 484 max_version = DTLS1_VERSION; 485 #endif 486 #ifdef OPENSSL_NO_DTLS1 487 if (min_version == DTLS1_VERSION) 488 min_version = DTLS1_2_VERSION; 489 #endif 490 /* Done massaging versions; do the check. */ 491 if (0 492 #ifdef OPENSSL_NO_DTLS1 493 || (DTLS_VERSION_GE(min_version, DTLS1_VERSION) 494 && DTLS_VERSION_GE(DTLS1_VERSION, max_version)) 495 #endif 496 #ifdef OPENSSL_NO_DTLS1_2 497 || (DTLS_VERSION_GE(min_version, DTLS1_2_VERSION) 498 && DTLS_VERSION_GE(DTLS1_2_VERSION, max_version)) 499 #endif 500 ) 501 return 0; 502 } else { 503 /* Regular TLS version checks. */ 504 if (min_version == 0) 505 min_version = SSL3_VERSION; 506 if (max_version == 0) 507 max_version = TLS1_3_VERSION; 508 #ifdef OPENSSL_NO_TLS1_3 509 if (max_version == TLS1_3_VERSION) 510 max_version = TLS1_2_VERSION; 511 #endif 512 #ifdef OPENSSL_NO_TLS1_2 513 if (max_version == TLS1_2_VERSION) 514 max_version = TLS1_1_VERSION; 515 #endif 516 #ifdef OPENSSL_NO_TLS1_1 517 if (max_version == TLS1_1_VERSION) 518 max_version = TLS1_VERSION; 519 #endif 520 #ifdef OPENSSL_NO_TLS1 521 if (max_version == TLS1_VERSION) 522 max_version = SSL3_VERSION; 523 #endif 524 #ifdef OPENSSL_NO_SSL3 525 if (min_version == SSL3_VERSION) 526 min_version = TLS1_VERSION; 527 #endif 528 #ifdef OPENSSL_NO_TLS1 529 if (min_version == TLS1_VERSION) 530 min_version = TLS1_1_VERSION; 531 #endif 532 #ifdef OPENSSL_NO_TLS1_1 533 if (min_version == TLS1_1_VERSION) 534 min_version = TLS1_2_VERSION; 535 #endif 536 #ifdef OPENSSL_NO_TLS1_2 537 if (min_version == TLS1_2_VERSION) 538 min_version = TLS1_3_VERSION; 539 #endif 540 /* Done massaging versions; do the check. */ 541 if (0 542 #ifdef OPENSSL_NO_SSL3 543 || (min_version <= SSL3_VERSION && SSL3_VERSION <= max_version) 544 #endif 545 #ifdef OPENSSL_NO_TLS1 546 || (min_version <= TLS1_VERSION && TLS1_VERSION <= max_version) 547 #endif 548 #ifdef OPENSSL_NO_TLS1_1 549 || (min_version <= TLS1_1_VERSION && TLS1_1_VERSION <= max_version) 550 #endif 551 #ifdef OPENSSL_NO_TLS1_2 552 || (min_version <= TLS1_2_VERSION && TLS1_2_VERSION <= max_version) 553 #endif 554 #ifdef OPENSSL_NO_TLS1_3 555 || (min_version <= TLS1_3_VERSION && TLS1_3_VERSION <= max_version) 556 #endif 557 ) 558 return 0; 559 } 560 return 1; 561 } 562 563 #if defined(__TANDEM) && defined(OPENSSL_VPROC) 564 /* 565 * Define a VPROC function for HP NonStop build ssl library. 566 * This is used by platform version identification tools. 567 * Do not inline this procedure or make it static. 568 */ 569 # define OPENSSL_VPROC_STRING_(x) x##_SSL 570 # define OPENSSL_VPROC_STRING(x) OPENSSL_VPROC_STRING_(x) 571 # define OPENSSL_VPROC_FUNC OPENSSL_VPROC_STRING(OPENSSL_VPROC) 572 void OPENSSL_VPROC_FUNC(void) {} 573 #endif 574 575 576 static void clear_ciphers(SSL *s) 577 { 578 /* clear the current cipher */ 579 ssl_clear_cipher_ctx(s); 580 ssl_clear_hash_ctx(&s->read_hash); 581 ssl_clear_hash_ctx(&s->write_hash); 582 } 583 584 int SSL_clear(SSL *s) 585 { 586 if (s->method == NULL) { 587 ERR_raise(ERR_LIB_SSL, SSL_R_NO_METHOD_SPECIFIED); 588 return 0; 589 } 590 591 if (ssl_clear_bad_session(s)) { 592 SSL_SESSION_free(s->session); 593 s->session = NULL; 594 } 595 SSL_SESSION_free(s->psksession); 596 s->psksession = NULL; 597 OPENSSL_free(s->psksession_id); 598 s->psksession_id = NULL; 599 s->psksession_id_len = 0; 600 s->hello_retry_request = SSL_HRR_NONE; 601 s->sent_tickets = 0; 602 603 s->error = 0; 604 s->hit = 0; 605 s->shutdown = 0; 606 607 if (s->renegotiate) { 608 ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR); 609 return 0; 610 } 611 612 ossl_statem_clear(s); 613 614 s->version = s->method->version; 615 s->client_version = s->version; 616 s->rwstate = SSL_NOTHING; 617 618 BUF_MEM_free(s->init_buf); 619 s->init_buf = NULL; 620 clear_ciphers(s); 621 s->first_packet = 0; 622 623 s->key_update = SSL_KEY_UPDATE_NONE; 624 625 EVP_MD_CTX_free(s->pha_dgst); 626 s->pha_dgst = NULL; 627 628 /* Reset DANE verification result state */ 629 s->dane.mdpth = -1; 630 s->dane.pdpth = -1; 631 X509_free(s->dane.mcert); 632 s->dane.mcert = NULL; 633 s->dane.mtlsa = NULL; 634 635 /* Clear the verification result peername */ 636 X509_VERIFY_PARAM_move_peername(s->param, NULL); 637 638 /* Clear any shared connection state */ 639 OPENSSL_free(s->shared_sigalgs); 640 s->shared_sigalgs = NULL; 641 s->shared_sigalgslen = 0; 642 643 /* 644 * Check to see if we were changed into a different method, if so, revert 645 * back. 646 */ 647 if (s->method != s->ctx->method) { 648 s->method->ssl_free(s); 649 s->method = s->ctx->method; 650 if (!s->method->ssl_new(s)) 651 return 0; 652 } else { 653 if (!s->method->ssl_clear(s)) 654 return 0; 655 } 656 657 RECORD_LAYER_clear(&s->rlayer); 658 659 return 1; 660 } 661 662 #ifndef OPENSSL_NO_DEPRECATED_3_0 663 /** Used to change an SSL_CTXs default SSL method type */ 664 int SSL_CTX_set_ssl_version(SSL_CTX *ctx, const SSL_METHOD *meth) 665 { 666 STACK_OF(SSL_CIPHER) *sk; 667 668 ctx->method = meth; 669 670 if (!SSL_CTX_set_ciphersuites(ctx, OSSL_default_ciphersuites())) { 671 ERR_raise(ERR_LIB_SSL, SSL_R_SSL_LIBRARY_HAS_NO_CIPHERS); 672 return 0; 673 } 674 sk = ssl_create_cipher_list(ctx, 675 ctx->tls13_ciphersuites, 676 &(ctx->cipher_list), 677 &(ctx->cipher_list_by_id), 678 OSSL_default_cipher_list(), ctx->cert); 679 if ((sk == NULL) || (sk_SSL_CIPHER_num(sk) <= 0)) { 680 ERR_raise(ERR_LIB_SSL, SSL_R_SSL_LIBRARY_HAS_NO_CIPHERS); 681 return 0; 682 } 683 return 1; 684 } 685 #endif 686 687 SSL *SSL_new(SSL_CTX *ctx) 688 { 689 SSL *s; 690 691 if (ctx == NULL) { 692 ERR_raise(ERR_LIB_SSL, SSL_R_NULL_SSL_CTX); 693 return NULL; 694 } 695 if (ctx->method == NULL) { 696 ERR_raise(ERR_LIB_SSL, SSL_R_SSL_CTX_HAS_NO_DEFAULT_SSL_VERSION); 697 return NULL; 698 } 699 700 s = OPENSSL_zalloc(sizeof(*s)); 701 if (s == NULL) 702 goto err; 703 704 s->references = 1; 705 s->lock = CRYPTO_THREAD_lock_new(); 706 if (s->lock == NULL) { 707 OPENSSL_free(s); 708 s = NULL; 709 goto err; 710 } 711 712 RECORD_LAYER_init(&s->rlayer, s); 713 714 s->options = ctx->options; 715 s->dane.flags = ctx->dane.flags; 716 s->min_proto_version = ctx->min_proto_version; 717 s->max_proto_version = ctx->max_proto_version; 718 s->mode = ctx->mode; 719 s->max_cert_list = ctx->max_cert_list; 720 s->max_early_data = ctx->max_early_data; 721 s->recv_max_early_data = ctx->recv_max_early_data; 722 s->num_tickets = ctx->num_tickets; 723 s->pha_enabled = ctx->pha_enabled; 724 725 /* Shallow copy of the ciphersuites stack */ 726 s->tls13_ciphersuites = sk_SSL_CIPHER_dup(ctx->tls13_ciphersuites); 727 if (s->tls13_ciphersuites == NULL) 728 goto err; 729 730 /* 731 * Earlier library versions used to copy the pointer to the CERT, not 732 * its contents; only when setting new parameters for the per-SSL 733 * copy, ssl_cert_new would be called (and the direct reference to 734 * the per-SSL_CTX settings would be lost, but those still were 735 * indirectly accessed for various purposes, and for that reason they 736 * used to be known as s->ctx->default_cert). Now we don't look at the 737 * SSL_CTX's CERT after having duplicated it once. 738 */ 739 s->cert = ssl_cert_dup(ctx->cert); 740 if (s->cert == NULL) 741 goto err; 742 743 RECORD_LAYER_set_read_ahead(&s->rlayer, ctx->read_ahead); 744 s->msg_callback = ctx->msg_callback; 745 s->msg_callback_arg = ctx->msg_callback_arg; 746 s->verify_mode = ctx->verify_mode; 747 s->not_resumable_session_cb = ctx->not_resumable_session_cb; 748 s->record_padding_cb = ctx->record_padding_cb; 749 s->record_padding_arg = ctx->record_padding_arg; 750 s->block_padding = ctx->block_padding; 751 s->sid_ctx_length = ctx->sid_ctx_length; 752 if (!ossl_assert(s->sid_ctx_length <= sizeof(s->sid_ctx))) 753 goto err; 754 memcpy(&s->sid_ctx, &ctx->sid_ctx, sizeof(s->sid_ctx)); 755 s->verify_callback = ctx->default_verify_callback; 756 s->generate_session_id = ctx->generate_session_id; 757 758 s->param = X509_VERIFY_PARAM_new(); 759 if (s->param == NULL) 760 goto err; 761 X509_VERIFY_PARAM_inherit(s->param, ctx->param); 762 s->quiet_shutdown = ctx->quiet_shutdown; 763 764 s->ext.max_fragment_len_mode = ctx->ext.max_fragment_len_mode; 765 s->max_send_fragment = ctx->max_send_fragment; 766 s->split_send_fragment = ctx->split_send_fragment; 767 s->max_pipelines = ctx->max_pipelines; 768 if (s->max_pipelines > 1) 769 RECORD_LAYER_set_read_ahead(&s->rlayer, 1); 770 if (ctx->default_read_buf_len > 0) 771 SSL_set_default_read_buffer_len(s, ctx->default_read_buf_len); 772 773 SSL_CTX_up_ref(ctx); 774 s->ctx = ctx; 775 s->ext.debug_cb = 0; 776 s->ext.debug_arg = NULL; 777 s->ext.ticket_expected = 0; 778 s->ext.status_type = ctx->ext.status_type; 779 s->ext.status_expected = 0; 780 s->ext.ocsp.ids = NULL; 781 s->ext.ocsp.exts = NULL; 782 s->ext.ocsp.resp = NULL; 783 s->ext.ocsp.resp_len = 0; 784 SSL_CTX_up_ref(ctx); 785 s->session_ctx = ctx; 786 if (ctx->ext.ecpointformats) { 787 s->ext.ecpointformats = 788 OPENSSL_memdup(ctx->ext.ecpointformats, 789 ctx->ext.ecpointformats_len); 790 if (!s->ext.ecpointformats) { 791 s->ext.ecpointformats_len = 0; 792 goto err; 793 } 794 s->ext.ecpointformats_len = 795 ctx->ext.ecpointformats_len; 796 } 797 if (ctx->ext.supportedgroups) { 798 s->ext.supportedgroups = 799 OPENSSL_memdup(ctx->ext.supportedgroups, 800 ctx->ext.supportedgroups_len 801 * sizeof(*ctx->ext.supportedgroups)); 802 if (!s->ext.supportedgroups) { 803 s->ext.supportedgroups_len = 0; 804 goto err; 805 } 806 s->ext.supportedgroups_len = ctx->ext.supportedgroups_len; 807 } 808 809 #ifndef OPENSSL_NO_NEXTPROTONEG 810 s->ext.npn = NULL; 811 #endif 812 813 if (s->ctx->ext.alpn) { 814 s->ext.alpn = OPENSSL_malloc(s->ctx->ext.alpn_len); 815 if (s->ext.alpn == NULL) { 816 s->ext.alpn_len = 0; 817 goto err; 818 } 819 memcpy(s->ext.alpn, s->ctx->ext.alpn, s->ctx->ext.alpn_len); 820 s->ext.alpn_len = s->ctx->ext.alpn_len; 821 } 822 823 s->verified_chain = NULL; 824 s->verify_result = X509_V_OK; 825 826 s->default_passwd_callback = ctx->default_passwd_callback; 827 s->default_passwd_callback_userdata = ctx->default_passwd_callback_userdata; 828 829 s->method = ctx->method; 830 831 s->key_update = SSL_KEY_UPDATE_NONE; 832 833 s->allow_early_data_cb = ctx->allow_early_data_cb; 834 s->allow_early_data_cb_data = ctx->allow_early_data_cb_data; 835 836 if (!s->method->ssl_new(s)) 837 goto err; 838 839 s->server = (ctx->method->ssl_accept == ssl_undefined_function) ? 0 : 1; 840 841 if (!SSL_clear(s)) 842 goto err; 843 844 if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL, s, &s->ex_data)) 845 goto err; 846 847 #ifndef OPENSSL_NO_PSK 848 s->psk_client_callback = ctx->psk_client_callback; 849 s->psk_server_callback = ctx->psk_server_callback; 850 #endif 851 s->psk_find_session_cb = ctx->psk_find_session_cb; 852 s->psk_use_session_cb = ctx->psk_use_session_cb; 853 854 s->async_cb = ctx->async_cb; 855 s->async_cb_arg = ctx->async_cb_arg; 856 857 s->job = NULL; 858 859 #ifndef OPENSSL_NO_CT 860 if (!SSL_set_ct_validation_callback(s, ctx->ct_validation_callback, 861 ctx->ct_validation_callback_arg)) 862 goto err; 863 #endif 864 865 return s; 866 err: 867 SSL_free(s); 868 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); 869 return NULL; 870 } 871 872 int SSL_is_dtls(const SSL *s) 873 { 874 return SSL_IS_DTLS(s) ? 1 : 0; 875 } 876 877 int SSL_up_ref(SSL *s) 878 { 879 int i; 880 881 if (CRYPTO_UP_REF(&s->references, &i, s->lock) <= 0) 882 return 0; 883 884 REF_PRINT_COUNT("SSL", s); 885 REF_ASSERT_ISNT(i < 2); 886 return ((i > 1) ? 1 : 0); 887 } 888 889 int SSL_CTX_set_session_id_context(SSL_CTX *ctx, const unsigned char *sid_ctx, 890 unsigned int sid_ctx_len) 891 { 892 if (sid_ctx_len > SSL_MAX_SID_CTX_LENGTH) { 893 ERR_raise(ERR_LIB_SSL, SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG); 894 return 0; 895 } 896 ctx->sid_ctx_length = sid_ctx_len; 897 memcpy(ctx->sid_ctx, sid_ctx, sid_ctx_len); 898 899 return 1; 900 } 901 902 int SSL_set_session_id_context(SSL *ssl, const unsigned char *sid_ctx, 903 unsigned int sid_ctx_len) 904 { 905 if (sid_ctx_len > SSL_MAX_SID_CTX_LENGTH) { 906 ERR_raise(ERR_LIB_SSL, SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG); 907 return 0; 908 } 909 ssl->sid_ctx_length = sid_ctx_len; 910 memcpy(ssl->sid_ctx, sid_ctx, sid_ctx_len); 911 912 return 1; 913 } 914 915 int SSL_CTX_set_generate_session_id(SSL_CTX *ctx, GEN_SESSION_CB cb) 916 { 917 if (!CRYPTO_THREAD_write_lock(ctx->lock)) 918 return 0; 919 ctx->generate_session_id = cb; 920 CRYPTO_THREAD_unlock(ctx->lock); 921 return 1; 922 } 923 924 int SSL_set_generate_session_id(SSL *ssl, GEN_SESSION_CB cb) 925 { 926 if (!CRYPTO_THREAD_write_lock(ssl->lock)) 927 return 0; 928 ssl->generate_session_id = cb; 929 CRYPTO_THREAD_unlock(ssl->lock); 930 return 1; 931 } 932 933 int SSL_has_matching_session_id(const SSL *ssl, const unsigned char *id, 934 unsigned int id_len) 935 { 936 /* 937 * A quick examination of SSL_SESSION_hash and SSL_SESSION_cmp shows how 938 * we can "construct" a session to give us the desired check - i.e. to 939 * find if there's a session in the hash table that would conflict with 940 * any new session built out of this id/id_len and the ssl_version in use 941 * by this SSL. 942 */ 943 SSL_SESSION r, *p; 944 945 if (id_len > sizeof(r.session_id)) 946 return 0; 947 948 r.ssl_version = ssl->version; 949 r.session_id_length = id_len; 950 memcpy(r.session_id, id, id_len); 951 952 if (!CRYPTO_THREAD_read_lock(ssl->session_ctx->lock)) 953 return 0; 954 p = lh_SSL_SESSION_retrieve(ssl->session_ctx->sessions, &r); 955 CRYPTO_THREAD_unlock(ssl->session_ctx->lock); 956 return (p != NULL); 957 } 958 959 int SSL_CTX_set_purpose(SSL_CTX *s, int purpose) 960 { 961 return X509_VERIFY_PARAM_set_purpose(s->param, purpose); 962 } 963 964 int SSL_set_purpose(SSL *s, int purpose) 965 { 966 return X509_VERIFY_PARAM_set_purpose(s->param, purpose); 967 } 968 969 int SSL_CTX_set_trust(SSL_CTX *s, int trust) 970 { 971 return X509_VERIFY_PARAM_set_trust(s->param, trust); 972 } 973 974 int SSL_set_trust(SSL *s, int trust) 975 { 976 return X509_VERIFY_PARAM_set_trust(s->param, trust); 977 } 978 979 int SSL_set1_host(SSL *s, const char *hostname) 980 { 981 /* If a hostname is provided and parses as an IP address, 982 * treat it as such. */ 983 if (hostname && X509_VERIFY_PARAM_set1_ip_asc(s->param, hostname) == 1) 984 return 1; 985 986 return X509_VERIFY_PARAM_set1_host(s->param, hostname, 0); 987 } 988 989 int SSL_add1_host(SSL *s, const char *hostname) 990 { 991 /* If a hostname is provided and parses as an IP address, 992 * treat it as such. */ 993 if (hostname) 994 { 995 ASN1_OCTET_STRING *ip; 996 char *old_ip; 997 998 ip = a2i_IPADDRESS(hostname); 999 if (ip) { 1000 /* We didn't want it; only to check if it *is* an IP address */ 1001 ASN1_OCTET_STRING_free(ip); 1002 1003 old_ip = X509_VERIFY_PARAM_get1_ip_asc(s->param); 1004 if (old_ip) 1005 { 1006 OPENSSL_free(old_ip); 1007 /* There can be only one IP address */ 1008 return 0; 1009 } 1010 1011 return X509_VERIFY_PARAM_set1_ip_asc(s->param, hostname); 1012 } 1013 } 1014 1015 return X509_VERIFY_PARAM_add1_host(s->param, hostname, 0); 1016 } 1017 1018 void SSL_set_hostflags(SSL *s, unsigned int flags) 1019 { 1020 X509_VERIFY_PARAM_set_hostflags(s->param, flags); 1021 } 1022 1023 const char *SSL_get0_peername(SSL *s) 1024 { 1025 return X509_VERIFY_PARAM_get0_peername(s->param); 1026 } 1027 1028 int SSL_CTX_dane_enable(SSL_CTX *ctx) 1029 { 1030 return dane_ctx_enable(&ctx->dane); 1031 } 1032 1033 unsigned long SSL_CTX_dane_set_flags(SSL_CTX *ctx, unsigned long flags) 1034 { 1035 unsigned long orig = ctx->dane.flags; 1036 1037 ctx->dane.flags |= flags; 1038 return orig; 1039 } 1040 1041 unsigned long SSL_CTX_dane_clear_flags(SSL_CTX *ctx, unsigned long flags) 1042 { 1043 unsigned long orig = ctx->dane.flags; 1044 1045 ctx->dane.flags &= ~flags; 1046 return orig; 1047 } 1048 1049 int SSL_dane_enable(SSL *s, const char *basedomain) 1050 { 1051 SSL_DANE *dane = &s->dane; 1052 1053 if (s->ctx->dane.mdmax == 0) { 1054 ERR_raise(ERR_LIB_SSL, SSL_R_CONTEXT_NOT_DANE_ENABLED); 1055 return 0; 1056 } 1057 if (dane->trecs != NULL) { 1058 ERR_raise(ERR_LIB_SSL, SSL_R_DANE_ALREADY_ENABLED); 1059 return 0; 1060 } 1061 1062 /* 1063 * Default SNI name. This rejects empty names, while set1_host below 1064 * accepts them and disables host name checks. To avoid side-effects with 1065 * invalid input, set the SNI name first. 1066 */ 1067 if (s->ext.hostname == NULL) { 1068 if (!SSL_set_tlsext_host_name(s, basedomain)) { 1069 ERR_raise(ERR_LIB_SSL, SSL_R_ERROR_SETTING_TLSA_BASE_DOMAIN); 1070 return -1; 1071 } 1072 } 1073 1074 /* Primary RFC6125 reference identifier */ 1075 if (!X509_VERIFY_PARAM_set1_host(s->param, basedomain, 0)) { 1076 ERR_raise(ERR_LIB_SSL, SSL_R_ERROR_SETTING_TLSA_BASE_DOMAIN); 1077 return -1; 1078 } 1079 1080 dane->mdpth = -1; 1081 dane->pdpth = -1; 1082 dane->dctx = &s->ctx->dane; 1083 dane->trecs = sk_danetls_record_new_null(); 1084 1085 if (dane->trecs == NULL) { 1086 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); 1087 return -1; 1088 } 1089 return 1; 1090 } 1091 1092 unsigned long SSL_dane_set_flags(SSL *ssl, unsigned long flags) 1093 { 1094 unsigned long orig = ssl->dane.flags; 1095 1096 ssl->dane.flags |= flags; 1097 return orig; 1098 } 1099 1100 unsigned long SSL_dane_clear_flags(SSL *ssl, unsigned long flags) 1101 { 1102 unsigned long orig = ssl->dane.flags; 1103 1104 ssl->dane.flags &= ~flags; 1105 return orig; 1106 } 1107 1108 int SSL_get0_dane_authority(SSL *s, X509 **mcert, EVP_PKEY **mspki) 1109 { 1110 SSL_DANE *dane = &s->dane; 1111 1112 if (!DANETLS_ENABLED(dane) || s->verify_result != X509_V_OK) 1113 return -1; 1114 if (dane->mtlsa) { 1115 if (mcert) 1116 *mcert = dane->mcert; 1117 if (mspki) 1118 *mspki = (dane->mcert == NULL) ? dane->mtlsa->spki : NULL; 1119 } 1120 return dane->mdpth; 1121 } 1122 1123 int SSL_get0_dane_tlsa(SSL *s, uint8_t *usage, uint8_t *selector, 1124 uint8_t *mtype, const unsigned char **data, size_t *dlen) 1125 { 1126 SSL_DANE *dane = &s->dane; 1127 1128 if (!DANETLS_ENABLED(dane) || s->verify_result != X509_V_OK) 1129 return -1; 1130 if (dane->mtlsa) { 1131 if (usage) 1132 *usage = dane->mtlsa->usage; 1133 if (selector) 1134 *selector = dane->mtlsa->selector; 1135 if (mtype) 1136 *mtype = dane->mtlsa->mtype; 1137 if (data) 1138 *data = dane->mtlsa->data; 1139 if (dlen) 1140 *dlen = dane->mtlsa->dlen; 1141 } 1142 return dane->mdpth; 1143 } 1144 1145 SSL_DANE *SSL_get0_dane(SSL *s) 1146 { 1147 return &s->dane; 1148 } 1149 1150 int SSL_dane_tlsa_add(SSL *s, uint8_t usage, uint8_t selector, 1151 uint8_t mtype, const unsigned char *data, size_t dlen) 1152 { 1153 return dane_tlsa_add(&s->dane, usage, selector, mtype, data, dlen); 1154 } 1155 1156 int SSL_CTX_dane_mtype_set(SSL_CTX *ctx, const EVP_MD *md, uint8_t mtype, 1157 uint8_t ord) 1158 { 1159 return dane_mtype_set(&ctx->dane, md, mtype, ord); 1160 } 1161 1162 int SSL_CTX_set1_param(SSL_CTX *ctx, X509_VERIFY_PARAM *vpm) 1163 { 1164 return X509_VERIFY_PARAM_set1(ctx->param, vpm); 1165 } 1166 1167 int SSL_set1_param(SSL *ssl, X509_VERIFY_PARAM *vpm) 1168 { 1169 return X509_VERIFY_PARAM_set1(ssl->param, vpm); 1170 } 1171 1172 X509_VERIFY_PARAM *SSL_CTX_get0_param(SSL_CTX *ctx) 1173 { 1174 return ctx->param; 1175 } 1176 1177 X509_VERIFY_PARAM *SSL_get0_param(SSL *ssl) 1178 { 1179 return ssl->param; 1180 } 1181 1182 void SSL_certs_clear(SSL *s) 1183 { 1184 ssl_cert_clear_certs(s->cert); 1185 } 1186 1187 void SSL_free(SSL *s) 1188 { 1189 int i; 1190 1191 if (s == NULL) 1192 return; 1193 CRYPTO_DOWN_REF(&s->references, &i, s->lock); 1194 REF_PRINT_COUNT("SSL", s); 1195 if (i > 0) 1196 return; 1197 REF_ASSERT_ISNT(i < 0); 1198 1199 X509_VERIFY_PARAM_free(s->param); 1200 dane_final(&s->dane); 1201 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL, s, &s->ex_data); 1202 1203 RECORD_LAYER_release(&s->rlayer); 1204 1205 /* Ignore return value */ 1206 ssl_free_wbio_buffer(s); 1207 1208 BIO_free_all(s->wbio); 1209 s->wbio = NULL; 1210 BIO_free_all(s->rbio); 1211 s->rbio = NULL; 1212 1213 BUF_MEM_free(s->init_buf); 1214 1215 /* add extra stuff */ 1216 sk_SSL_CIPHER_free(s->cipher_list); 1217 sk_SSL_CIPHER_free(s->cipher_list_by_id); 1218 sk_SSL_CIPHER_free(s->tls13_ciphersuites); 1219 sk_SSL_CIPHER_free(s->peer_ciphers); 1220 1221 /* Make the next call work :-) */ 1222 if (s->session != NULL) { 1223 ssl_clear_bad_session(s); 1224 SSL_SESSION_free(s->session); 1225 } 1226 SSL_SESSION_free(s->psksession); 1227 OPENSSL_free(s->psksession_id); 1228 1229 ssl_cert_free(s->cert); 1230 OPENSSL_free(s->shared_sigalgs); 1231 /* Free up if allocated */ 1232 1233 OPENSSL_free(s->ext.hostname); 1234 SSL_CTX_free(s->session_ctx); 1235 OPENSSL_free(s->ext.ecpointformats); 1236 OPENSSL_free(s->ext.peer_ecpointformats); 1237 OPENSSL_free(s->ext.supportedgroups); 1238 OPENSSL_free(s->ext.peer_supportedgroups); 1239 sk_X509_EXTENSION_pop_free(s->ext.ocsp.exts, X509_EXTENSION_free); 1240 #ifndef OPENSSL_NO_OCSP 1241 sk_OCSP_RESPID_pop_free(s->ext.ocsp.ids, OCSP_RESPID_free); 1242 #endif 1243 #ifndef OPENSSL_NO_CT 1244 SCT_LIST_free(s->scts); 1245 OPENSSL_free(s->ext.scts); 1246 #endif 1247 OPENSSL_free(s->ext.ocsp.resp); 1248 OPENSSL_free(s->ext.alpn); 1249 OPENSSL_free(s->ext.tls13_cookie); 1250 if (s->clienthello != NULL) 1251 OPENSSL_free(s->clienthello->pre_proc_exts); 1252 OPENSSL_free(s->clienthello); 1253 OPENSSL_free(s->pha_context); 1254 EVP_MD_CTX_free(s->pha_dgst); 1255 1256 sk_X509_NAME_pop_free(s->ca_names, X509_NAME_free); 1257 sk_X509_NAME_pop_free(s->client_ca_names, X509_NAME_free); 1258 1259 sk_X509_pop_free(s->verified_chain, X509_free); 1260 1261 if (s->method != NULL) 1262 s->method->ssl_free(s); 1263 1264 /* 1265 * Must occur after s->method->ssl_free(). The DTLS sent_messages queue 1266 * may reference the EVP_CIPHER_CTX/EVP_MD_CTX that are freed here. 1267 */ 1268 clear_ciphers(s); 1269 1270 SSL_CTX_free(s->ctx); 1271 1272 ASYNC_WAIT_CTX_free(s->waitctx); 1273 1274 #if !defined(OPENSSL_NO_NEXTPROTONEG) 1275 OPENSSL_free(s->ext.npn); 1276 #endif 1277 1278 #ifndef OPENSSL_NO_SRTP 1279 sk_SRTP_PROTECTION_PROFILE_free(s->srtp_profiles); 1280 #endif 1281 1282 CRYPTO_THREAD_lock_free(s->lock); 1283 1284 OPENSSL_free(s); 1285 } 1286 1287 void SSL_set0_rbio(SSL *s, BIO *rbio) 1288 { 1289 BIO_free_all(s->rbio); 1290 s->rbio = rbio; 1291 } 1292 1293 void SSL_set0_wbio(SSL *s, BIO *wbio) 1294 { 1295 /* 1296 * If the output buffering BIO is still in place, remove it 1297 */ 1298 if (s->bbio != NULL) 1299 s->wbio = BIO_pop(s->wbio); 1300 1301 BIO_free_all(s->wbio); 1302 s->wbio = wbio; 1303 1304 /* Re-attach |bbio| to the new |wbio|. */ 1305 if (s->bbio != NULL) 1306 s->wbio = BIO_push(s->bbio, s->wbio); 1307 } 1308 1309 void SSL_set_bio(SSL *s, BIO *rbio, BIO *wbio) 1310 { 1311 /* 1312 * For historical reasons, this function has many different cases in 1313 * ownership handling. 1314 */ 1315 1316 /* If nothing has changed, do nothing */ 1317 if (rbio == SSL_get_rbio(s) && wbio == SSL_get_wbio(s)) 1318 return; 1319 1320 /* 1321 * If the two arguments are equal then one fewer reference is granted by the 1322 * caller than we want to take 1323 */ 1324 if (rbio != NULL && rbio == wbio) 1325 BIO_up_ref(rbio); 1326 1327 /* 1328 * If only the wbio is changed only adopt one reference. 1329 */ 1330 if (rbio == SSL_get_rbio(s)) { 1331 SSL_set0_wbio(s, wbio); 1332 return; 1333 } 1334 /* 1335 * There is an asymmetry here for historical reasons. If only the rbio is 1336 * changed AND the rbio and wbio were originally different, then we only 1337 * adopt one reference. 1338 */ 1339 if (wbio == SSL_get_wbio(s) && SSL_get_rbio(s) != SSL_get_wbio(s)) { 1340 SSL_set0_rbio(s, rbio); 1341 return; 1342 } 1343 1344 /* Otherwise, adopt both references. */ 1345 SSL_set0_rbio(s, rbio); 1346 SSL_set0_wbio(s, wbio); 1347 } 1348 1349 BIO *SSL_get_rbio(const SSL *s) 1350 { 1351 return s->rbio; 1352 } 1353 1354 BIO *SSL_get_wbio(const SSL *s) 1355 { 1356 if (s->bbio != NULL) { 1357 /* 1358 * If |bbio| is active, the true caller-configured BIO is its 1359 * |next_bio|. 1360 */ 1361 return BIO_next(s->bbio); 1362 } 1363 return s->wbio; 1364 } 1365 1366 int SSL_get_fd(const SSL *s) 1367 { 1368 return SSL_get_rfd(s); 1369 } 1370 1371 int SSL_get_rfd(const SSL *s) 1372 { 1373 int ret = -1; 1374 BIO *b, *r; 1375 1376 b = SSL_get_rbio(s); 1377 r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR); 1378 if (r != NULL) 1379 BIO_get_fd(r, &ret); 1380 return ret; 1381 } 1382 1383 int SSL_get_wfd(const SSL *s) 1384 { 1385 int ret = -1; 1386 BIO *b, *r; 1387 1388 b = SSL_get_wbio(s); 1389 r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR); 1390 if (r != NULL) 1391 BIO_get_fd(r, &ret); 1392 return ret; 1393 } 1394 1395 #ifndef OPENSSL_NO_SOCK 1396 int SSL_set_fd(SSL *s, int fd) 1397 { 1398 int ret = 0; 1399 BIO *bio = NULL; 1400 1401 bio = BIO_new(BIO_s_socket()); 1402 1403 if (bio == NULL) { 1404 ERR_raise(ERR_LIB_SSL, ERR_R_BUF_LIB); 1405 goto err; 1406 } 1407 BIO_set_fd(bio, fd, BIO_NOCLOSE); 1408 SSL_set_bio(s, bio, bio); 1409 #ifndef OPENSSL_NO_KTLS 1410 /* 1411 * The new socket is created successfully regardless of ktls_enable. 1412 * ktls_enable doesn't change any functionality of the socket, except 1413 * changing the setsockopt to enable the processing of ktls_start. 1414 * Thus, it is not a problem to call it for non-TLS sockets. 1415 */ 1416 ktls_enable(fd); 1417 #endif /* OPENSSL_NO_KTLS */ 1418 ret = 1; 1419 err: 1420 return ret; 1421 } 1422 1423 int SSL_set_wfd(SSL *s, int fd) 1424 { 1425 BIO *rbio = SSL_get_rbio(s); 1426 1427 if (rbio == NULL || BIO_method_type(rbio) != BIO_TYPE_SOCKET 1428 || (int)BIO_get_fd(rbio, NULL) != fd) { 1429 BIO *bio = BIO_new(BIO_s_socket()); 1430 1431 if (bio == NULL) { 1432 ERR_raise(ERR_LIB_SSL, ERR_R_BUF_LIB); 1433 return 0; 1434 } 1435 BIO_set_fd(bio, fd, BIO_NOCLOSE); 1436 SSL_set0_wbio(s, bio); 1437 #ifndef OPENSSL_NO_KTLS 1438 /* 1439 * The new socket is created successfully regardless of ktls_enable. 1440 * ktls_enable doesn't change any functionality of the socket, except 1441 * changing the setsockopt to enable the processing of ktls_start. 1442 * Thus, it is not a problem to call it for non-TLS sockets. 1443 */ 1444 ktls_enable(fd); 1445 #endif /* OPENSSL_NO_KTLS */ 1446 } else { 1447 BIO_up_ref(rbio); 1448 SSL_set0_wbio(s, rbio); 1449 } 1450 return 1; 1451 } 1452 1453 int SSL_set_rfd(SSL *s, int fd) 1454 { 1455 BIO *wbio = SSL_get_wbio(s); 1456 1457 if (wbio == NULL || BIO_method_type(wbio) != BIO_TYPE_SOCKET 1458 || ((int)BIO_get_fd(wbio, NULL) != fd)) { 1459 BIO *bio = BIO_new(BIO_s_socket()); 1460 1461 if (bio == NULL) { 1462 ERR_raise(ERR_LIB_SSL, ERR_R_BUF_LIB); 1463 return 0; 1464 } 1465 BIO_set_fd(bio, fd, BIO_NOCLOSE); 1466 SSL_set0_rbio(s, bio); 1467 } else { 1468 BIO_up_ref(wbio); 1469 SSL_set0_rbio(s, wbio); 1470 } 1471 1472 return 1; 1473 } 1474 #endif 1475 1476 /* return length of latest Finished message we sent, copy to 'buf' */ 1477 size_t SSL_get_finished(const SSL *s, void *buf, size_t count) 1478 { 1479 size_t ret = 0; 1480 1481 ret = s->s3.tmp.finish_md_len; 1482 if (count > ret) 1483 count = ret; 1484 memcpy(buf, s->s3.tmp.finish_md, count); 1485 return ret; 1486 } 1487 1488 /* return length of latest Finished message we expected, copy to 'buf' */ 1489 size_t SSL_get_peer_finished(const SSL *s, void *buf, size_t count) 1490 { 1491 size_t ret = 0; 1492 1493 ret = s->s3.tmp.peer_finish_md_len; 1494 if (count > ret) 1495 count = ret; 1496 memcpy(buf, s->s3.tmp.peer_finish_md, count); 1497 return ret; 1498 } 1499 1500 int SSL_get_verify_mode(const SSL *s) 1501 { 1502 return s->verify_mode; 1503 } 1504 1505 int SSL_get_verify_depth(const SSL *s) 1506 { 1507 return X509_VERIFY_PARAM_get_depth(s->param); 1508 } 1509 1510 int (*SSL_get_verify_callback(const SSL *s)) (int, X509_STORE_CTX *) { 1511 return s->verify_callback; 1512 } 1513 1514 int SSL_CTX_get_verify_mode(const SSL_CTX *ctx) 1515 { 1516 return ctx->verify_mode; 1517 } 1518 1519 int SSL_CTX_get_verify_depth(const SSL_CTX *ctx) 1520 { 1521 return X509_VERIFY_PARAM_get_depth(ctx->param); 1522 } 1523 1524 int (*SSL_CTX_get_verify_callback(const SSL_CTX *ctx)) (int, X509_STORE_CTX *) { 1525 return ctx->default_verify_callback; 1526 } 1527 1528 void SSL_set_verify(SSL *s, int mode, 1529 int (*callback) (int ok, X509_STORE_CTX *ctx)) 1530 { 1531 s->verify_mode = mode; 1532 if (callback != NULL) 1533 s->verify_callback = callback; 1534 } 1535 1536 void SSL_set_verify_depth(SSL *s, int depth) 1537 { 1538 X509_VERIFY_PARAM_set_depth(s->param, depth); 1539 } 1540 1541 void SSL_set_read_ahead(SSL *s, int yes) 1542 { 1543 RECORD_LAYER_set_read_ahead(&s->rlayer, yes); 1544 } 1545 1546 int SSL_get_read_ahead(const SSL *s) 1547 { 1548 return RECORD_LAYER_get_read_ahead(&s->rlayer); 1549 } 1550 1551 int SSL_pending(const SSL *s) 1552 { 1553 size_t pending = s->method->ssl_pending(s); 1554 1555 /* 1556 * SSL_pending cannot work properly if read-ahead is enabled 1557 * (SSL_[CTX_]ctrl(..., SSL_CTRL_SET_READ_AHEAD, 1, NULL)), and it is 1558 * impossible to fix since SSL_pending cannot report errors that may be 1559 * observed while scanning the new data. (Note that SSL_pending() is 1560 * often used as a boolean value, so we'd better not return -1.) 1561 * 1562 * SSL_pending also cannot work properly if the value >INT_MAX. In that case 1563 * we just return INT_MAX. 1564 */ 1565 return pending < INT_MAX ? (int)pending : INT_MAX; 1566 } 1567 1568 int SSL_has_pending(const SSL *s) 1569 { 1570 /* 1571 * Similar to SSL_pending() but returns a 1 to indicate that we have 1572 * processed or unprocessed data available or 0 otherwise (as opposed to the 1573 * number of bytes available). Unlike SSL_pending() this will take into 1574 * account read_ahead data. A 1 return simply indicates that we have data. 1575 * That data may not result in any application data, or we may fail to parse 1576 * the records for some reason. 1577 */ 1578 1579 /* Check buffered app data if any first */ 1580 if (SSL_IS_DTLS(s)) { 1581 DTLS1_RECORD_DATA *rdata; 1582 pitem *item, *iter; 1583 1584 iter = pqueue_iterator(s->rlayer.d->buffered_app_data.q); 1585 while ((item = pqueue_next(&iter)) != NULL) { 1586 rdata = item->data; 1587 if (rdata->rrec.length > 0) 1588 return 1; 1589 } 1590 } 1591 1592 if (RECORD_LAYER_processed_read_pending(&s->rlayer)) 1593 return 1; 1594 1595 return RECORD_LAYER_read_pending(&s->rlayer); 1596 } 1597 1598 X509 *SSL_get1_peer_certificate(const SSL *s) 1599 { 1600 X509 *r = SSL_get0_peer_certificate(s); 1601 1602 if (r != NULL) 1603 X509_up_ref(r); 1604 1605 return r; 1606 } 1607 1608 X509 *SSL_get0_peer_certificate(const SSL *s) 1609 { 1610 if ((s == NULL) || (s->session == NULL)) 1611 return NULL; 1612 else 1613 return s->session->peer; 1614 } 1615 1616 STACK_OF(X509) *SSL_get_peer_cert_chain(const SSL *s) 1617 { 1618 STACK_OF(X509) *r; 1619 1620 if ((s == NULL) || (s->session == NULL)) 1621 r = NULL; 1622 else 1623 r = s->session->peer_chain; 1624 1625 /* 1626 * If we are a client, cert_chain includes the peer's own certificate; if 1627 * we are a server, it does not. 1628 */ 1629 1630 return r; 1631 } 1632 1633 /* 1634 * Now in theory, since the calling process own 't' it should be safe to 1635 * modify. We need to be able to read f without being hassled 1636 */ 1637 int SSL_copy_session_id(SSL *t, const SSL *f) 1638 { 1639 int i; 1640 /* Do we need to do SSL locking? */ 1641 if (!SSL_set_session(t, SSL_get_session(f))) { 1642 return 0; 1643 } 1644 1645 /* 1646 * what if we are setup for one protocol version but want to talk another 1647 */ 1648 if (t->method != f->method) { 1649 t->method->ssl_free(t); 1650 t->method = f->method; 1651 if (t->method->ssl_new(t) == 0) 1652 return 0; 1653 } 1654 1655 CRYPTO_UP_REF(&f->cert->references, &i, f->cert->lock); 1656 ssl_cert_free(t->cert); 1657 t->cert = f->cert; 1658 if (!SSL_set_session_id_context(t, f->sid_ctx, (int)f->sid_ctx_length)) { 1659 return 0; 1660 } 1661 1662 return 1; 1663 } 1664 1665 /* Fix this so it checks all the valid key/cert options */ 1666 int SSL_CTX_check_private_key(const SSL_CTX *ctx) 1667 { 1668 if ((ctx == NULL) || (ctx->cert->key->x509 == NULL)) { 1669 ERR_raise(ERR_LIB_SSL, SSL_R_NO_CERTIFICATE_ASSIGNED); 1670 return 0; 1671 } 1672 if (ctx->cert->key->privatekey == NULL) { 1673 ERR_raise(ERR_LIB_SSL, SSL_R_NO_PRIVATE_KEY_ASSIGNED); 1674 return 0; 1675 } 1676 return X509_check_private_key 1677 (ctx->cert->key->x509, ctx->cert->key->privatekey); 1678 } 1679 1680 /* Fix this function so that it takes an optional type parameter */ 1681 int SSL_check_private_key(const SSL *ssl) 1682 { 1683 if (ssl == NULL) { 1684 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_NULL_PARAMETER); 1685 return 0; 1686 } 1687 if (ssl->cert->key->x509 == NULL) { 1688 ERR_raise(ERR_LIB_SSL, SSL_R_NO_CERTIFICATE_ASSIGNED); 1689 return 0; 1690 } 1691 if (ssl->cert->key->privatekey == NULL) { 1692 ERR_raise(ERR_LIB_SSL, SSL_R_NO_PRIVATE_KEY_ASSIGNED); 1693 return 0; 1694 } 1695 return X509_check_private_key(ssl->cert->key->x509, 1696 ssl->cert->key->privatekey); 1697 } 1698 1699 int SSL_waiting_for_async(SSL *s) 1700 { 1701 if (s->job) 1702 return 1; 1703 1704 return 0; 1705 } 1706 1707 int SSL_get_all_async_fds(SSL *s, OSSL_ASYNC_FD *fds, size_t *numfds) 1708 { 1709 ASYNC_WAIT_CTX *ctx = s->waitctx; 1710 1711 if (ctx == NULL) 1712 return 0; 1713 return ASYNC_WAIT_CTX_get_all_fds(ctx, fds, numfds); 1714 } 1715 1716 int SSL_get_changed_async_fds(SSL *s, OSSL_ASYNC_FD *addfd, size_t *numaddfds, 1717 OSSL_ASYNC_FD *delfd, size_t *numdelfds) 1718 { 1719 ASYNC_WAIT_CTX *ctx = s->waitctx; 1720 1721 if (ctx == NULL) 1722 return 0; 1723 return ASYNC_WAIT_CTX_get_changed_fds(ctx, addfd, numaddfds, delfd, 1724 numdelfds); 1725 } 1726 1727 int SSL_CTX_set_async_callback(SSL_CTX *ctx, SSL_async_callback_fn callback) 1728 { 1729 ctx->async_cb = callback; 1730 return 1; 1731 } 1732 1733 int SSL_CTX_set_async_callback_arg(SSL_CTX *ctx, void *arg) 1734 { 1735 ctx->async_cb_arg = arg; 1736 return 1; 1737 } 1738 1739 int SSL_set_async_callback(SSL *s, SSL_async_callback_fn callback) 1740 { 1741 s->async_cb = callback; 1742 return 1; 1743 } 1744 1745 int SSL_set_async_callback_arg(SSL *s, void *arg) 1746 { 1747 s->async_cb_arg = arg; 1748 return 1; 1749 } 1750 1751 int SSL_get_async_status(SSL *s, int *status) 1752 { 1753 ASYNC_WAIT_CTX *ctx = s->waitctx; 1754 1755 if (ctx == NULL) 1756 return 0; 1757 *status = ASYNC_WAIT_CTX_get_status(ctx); 1758 return 1; 1759 } 1760 1761 int SSL_accept(SSL *s) 1762 { 1763 if (s->handshake_func == NULL) { 1764 /* Not properly initialized yet */ 1765 SSL_set_accept_state(s); 1766 } 1767 1768 return SSL_do_handshake(s); 1769 } 1770 1771 int SSL_connect(SSL *s) 1772 { 1773 if (s->handshake_func == NULL) { 1774 /* Not properly initialized yet */ 1775 SSL_set_connect_state(s); 1776 } 1777 1778 return SSL_do_handshake(s); 1779 } 1780 1781 long SSL_get_default_timeout(const SSL *s) 1782 { 1783 return s->method->get_timeout(); 1784 } 1785 1786 static int ssl_async_wait_ctx_cb(void *arg) 1787 { 1788 SSL *s = (SSL *)arg; 1789 1790 return s->async_cb(s, s->async_cb_arg); 1791 } 1792 1793 static int ssl_start_async_job(SSL *s, struct ssl_async_args *args, 1794 int (*func) (void *)) 1795 { 1796 int ret; 1797 if (s->waitctx == NULL) { 1798 s->waitctx = ASYNC_WAIT_CTX_new(); 1799 if (s->waitctx == NULL) 1800 return -1; 1801 if (s->async_cb != NULL 1802 && !ASYNC_WAIT_CTX_set_callback 1803 (s->waitctx, ssl_async_wait_ctx_cb, s)) 1804 return -1; 1805 } 1806 1807 s->rwstate = SSL_NOTHING; 1808 switch (ASYNC_start_job(&s->job, s->waitctx, &ret, func, args, 1809 sizeof(struct ssl_async_args))) { 1810 case ASYNC_ERR: 1811 s->rwstate = SSL_NOTHING; 1812 ERR_raise(ERR_LIB_SSL, SSL_R_FAILED_TO_INIT_ASYNC); 1813 return -1; 1814 case ASYNC_PAUSE: 1815 s->rwstate = SSL_ASYNC_PAUSED; 1816 return -1; 1817 case ASYNC_NO_JOBS: 1818 s->rwstate = SSL_ASYNC_NO_JOBS; 1819 return -1; 1820 case ASYNC_FINISH: 1821 s->job = NULL; 1822 return ret; 1823 default: 1824 s->rwstate = SSL_NOTHING; 1825 ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR); 1826 /* Shouldn't happen */ 1827 return -1; 1828 } 1829 } 1830 1831 static int ssl_io_intern(void *vargs) 1832 { 1833 struct ssl_async_args *args; 1834 SSL *s; 1835 void *buf; 1836 size_t num; 1837 1838 args = (struct ssl_async_args *)vargs; 1839 s = args->s; 1840 buf = args->buf; 1841 num = args->num; 1842 switch (args->type) { 1843 case READFUNC: 1844 return args->f.func_read(s, buf, num, &s->asyncrw); 1845 case WRITEFUNC: 1846 return args->f.func_write(s, buf, num, &s->asyncrw); 1847 case OTHERFUNC: 1848 return args->f.func_other(s); 1849 } 1850 return -1; 1851 } 1852 1853 int ssl_read_internal(SSL *s, void *buf, size_t num, size_t *readbytes) 1854 { 1855 if (s->handshake_func == NULL) { 1856 ERR_raise(ERR_LIB_SSL, SSL_R_UNINITIALIZED); 1857 return -1; 1858 } 1859 1860 if (s->shutdown & SSL_RECEIVED_SHUTDOWN) { 1861 s->rwstate = SSL_NOTHING; 1862 return 0; 1863 } 1864 1865 if (s->early_data_state == SSL_EARLY_DATA_CONNECT_RETRY 1866 || s->early_data_state == SSL_EARLY_DATA_ACCEPT_RETRY) { 1867 ERR_raise(ERR_LIB_SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 1868 return 0; 1869 } 1870 /* 1871 * If we are a client and haven't received the ServerHello etc then we 1872 * better do that 1873 */ 1874 ossl_statem_check_finish_init(s, 0); 1875 1876 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) { 1877 struct ssl_async_args args; 1878 int ret; 1879 1880 args.s = s; 1881 args.buf = buf; 1882 args.num = num; 1883 args.type = READFUNC; 1884 args.f.func_read = s->method->ssl_read; 1885 1886 ret = ssl_start_async_job(s, &args, ssl_io_intern); 1887 *readbytes = s->asyncrw; 1888 return ret; 1889 } else { 1890 return s->method->ssl_read(s, buf, num, readbytes); 1891 } 1892 } 1893 1894 int SSL_read(SSL *s, void *buf, int num) 1895 { 1896 int ret; 1897 size_t readbytes; 1898 1899 if (num < 0) { 1900 ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH); 1901 return -1; 1902 } 1903 1904 ret = ssl_read_internal(s, buf, (size_t)num, &readbytes); 1905 1906 /* 1907 * The cast is safe here because ret should be <= INT_MAX because num is 1908 * <= INT_MAX 1909 */ 1910 if (ret > 0) 1911 ret = (int)readbytes; 1912 1913 return ret; 1914 } 1915 1916 int SSL_read_ex(SSL *s, void *buf, size_t num, size_t *readbytes) 1917 { 1918 int ret = ssl_read_internal(s, buf, num, readbytes); 1919 1920 if (ret < 0) 1921 ret = 0; 1922 return ret; 1923 } 1924 1925 int SSL_read_early_data(SSL *s, void *buf, size_t num, size_t *readbytes) 1926 { 1927 int ret; 1928 1929 if (!s->server) { 1930 ERR_raise(ERR_LIB_SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 1931 return SSL_READ_EARLY_DATA_ERROR; 1932 } 1933 1934 switch (s->early_data_state) { 1935 case SSL_EARLY_DATA_NONE: 1936 if (!SSL_in_before(s)) { 1937 ERR_raise(ERR_LIB_SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 1938 return SSL_READ_EARLY_DATA_ERROR; 1939 } 1940 /* fall through */ 1941 1942 case SSL_EARLY_DATA_ACCEPT_RETRY: 1943 s->early_data_state = SSL_EARLY_DATA_ACCEPTING; 1944 ret = SSL_accept(s); 1945 if (ret <= 0) { 1946 /* NBIO or error */ 1947 s->early_data_state = SSL_EARLY_DATA_ACCEPT_RETRY; 1948 return SSL_READ_EARLY_DATA_ERROR; 1949 } 1950 /* fall through */ 1951 1952 case SSL_EARLY_DATA_READ_RETRY: 1953 if (s->ext.early_data == SSL_EARLY_DATA_ACCEPTED) { 1954 s->early_data_state = SSL_EARLY_DATA_READING; 1955 ret = SSL_read_ex(s, buf, num, readbytes); 1956 /* 1957 * State machine will update early_data_state to 1958 * SSL_EARLY_DATA_FINISHED_READING if we get an EndOfEarlyData 1959 * message 1960 */ 1961 if (ret > 0 || (ret <= 0 && s->early_data_state 1962 != SSL_EARLY_DATA_FINISHED_READING)) { 1963 s->early_data_state = SSL_EARLY_DATA_READ_RETRY; 1964 return ret > 0 ? SSL_READ_EARLY_DATA_SUCCESS 1965 : SSL_READ_EARLY_DATA_ERROR; 1966 } 1967 } else { 1968 s->early_data_state = SSL_EARLY_DATA_FINISHED_READING; 1969 } 1970 *readbytes = 0; 1971 return SSL_READ_EARLY_DATA_FINISH; 1972 1973 default: 1974 ERR_raise(ERR_LIB_SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 1975 return SSL_READ_EARLY_DATA_ERROR; 1976 } 1977 } 1978 1979 int SSL_get_early_data_status(const SSL *s) 1980 { 1981 return s->ext.early_data; 1982 } 1983 1984 static int ssl_peek_internal(SSL *s, void *buf, size_t num, size_t *readbytes) 1985 { 1986 if (s->handshake_func == NULL) { 1987 ERR_raise(ERR_LIB_SSL, SSL_R_UNINITIALIZED); 1988 return -1; 1989 } 1990 1991 if (s->shutdown & SSL_RECEIVED_SHUTDOWN) { 1992 return 0; 1993 } 1994 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) { 1995 struct ssl_async_args args; 1996 int ret; 1997 1998 args.s = s; 1999 args.buf = buf; 2000 args.num = num; 2001 args.type = READFUNC; 2002 args.f.func_read = s->method->ssl_peek; 2003 2004 ret = ssl_start_async_job(s, &args, ssl_io_intern); 2005 *readbytes = s->asyncrw; 2006 return ret; 2007 } else { 2008 return s->method->ssl_peek(s, buf, num, readbytes); 2009 } 2010 } 2011 2012 int SSL_peek(SSL *s, void *buf, int num) 2013 { 2014 int ret; 2015 size_t readbytes; 2016 2017 if (num < 0) { 2018 ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH); 2019 return -1; 2020 } 2021 2022 ret = ssl_peek_internal(s, buf, (size_t)num, &readbytes); 2023 2024 /* 2025 * The cast is safe here because ret should be <= INT_MAX because num is 2026 * <= INT_MAX 2027 */ 2028 if (ret > 0) 2029 ret = (int)readbytes; 2030 2031 return ret; 2032 } 2033 2034 2035 int SSL_peek_ex(SSL *s, void *buf, size_t num, size_t *readbytes) 2036 { 2037 int ret = ssl_peek_internal(s, buf, num, readbytes); 2038 2039 if (ret < 0) 2040 ret = 0; 2041 return ret; 2042 } 2043 2044 int ssl_write_internal(SSL *s, const void *buf, size_t num, size_t *written) 2045 { 2046 if (s->handshake_func == NULL) { 2047 ERR_raise(ERR_LIB_SSL, SSL_R_UNINITIALIZED); 2048 return -1; 2049 } 2050 2051 if (s->shutdown & SSL_SENT_SHUTDOWN) { 2052 s->rwstate = SSL_NOTHING; 2053 ERR_raise(ERR_LIB_SSL, SSL_R_PROTOCOL_IS_SHUTDOWN); 2054 return -1; 2055 } 2056 2057 if (s->early_data_state == SSL_EARLY_DATA_CONNECT_RETRY 2058 || s->early_data_state == SSL_EARLY_DATA_ACCEPT_RETRY 2059 || s->early_data_state == SSL_EARLY_DATA_READ_RETRY) { 2060 ERR_raise(ERR_LIB_SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 2061 return 0; 2062 } 2063 /* If we are a client and haven't sent the Finished we better do that */ 2064 ossl_statem_check_finish_init(s, 1); 2065 2066 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) { 2067 int ret; 2068 struct ssl_async_args args; 2069 2070 args.s = s; 2071 args.buf = (void *)buf; 2072 args.num = num; 2073 args.type = WRITEFUNC; 2074 args.f.func_write = s->method->ssl_write; 2075 2076 ret = ssl_start_async_job(s, &args, ssl_io_intern); 2077 *written = s->asyncrw; 2078 return ret; 2079 } else { 2080 return s->method->ssl_write(s, buf, num, written); 2081 } 2082 } 2083 2084 ossl_ssize_t SSL_sendfile(SSL *s, int fd, off_t offset, size_t size, int flags) 2085 { 2086 ossl_ssize_t ret; 2087 2088 if (s->handshake_func == NULL) { 2089 ERR_raise(ERR_LIB_SSL, SSL_R_UNINITIALIZED); 2090 return -1; 2091 } 2092 2093 if (s->shutdown & SSL_SENT_SHUTDOWN) { 2094 s->rwstate = SSL_NOTHING; 2095 ERR_raise(ERR_LIB_SSL, SSL_R_PROTOCOL_IS_SHUTDOWN); 2096 return -1; 2097 } 2098 2099 if (!BIO_get_ktls_send(s->wbio)) { 2100 ERR_raise(ERR_LIB_SSL, SSL_R_UNINITIALIZED); 2101 return -1; 2102 } 2103 2104 /* If we have an alert to send, lets send it */ 2105 if (s->s3.alert_dispatch) { 2106 ret = (ossl_ssize_t)s->method->ssl_dispatch_alert(s); 2107 if (ret <= 0) { 2108 /* SSLfatal() already called if appropriate */ 2109 return ret; 2110 } 2111 /* if it went, fall through and send more stuff */ 2112 } 2113 2114 s->rwstate = SSL_WRITING; 2115 if (BIO_flush(s->wbio) <= 0) { 2116 if (!BIO_should_retry(s->wbio)) { 2117 s->rwstate = SSL_NOTHING; 2118 } else { 2119 #ifdef EAGAIN 2120 set_sys_error(EAGAIN); 2121 #endif 2122 } 2123 return -1; 2124 } 2125 2126 #ifdef OPENSSL_NO_KTLS 2127 ERR_raise_data(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR, 2128 "can't call ktls_sendfile(), ktls disabled"); 2129 return -1; 2130 #else 2131 ret = ktls_sendfile(SSL_get_wfd(s), fd, offset, size, flags); 2132 if (ret < 0) { 2133 #if defined(EAGAIN) && defined(EINTR) && defined(EBUSY) 2134 if ((get_last_sys_error() == EAGAIN) || 2135 (get_last_sys_error() == EINTR) || 2136 (get_last_sys_error() == EBUSY)) 2137 BIO_set_retry_write(s->wbio); 2138 else 2139 #endif 2140 ERR_raise(ERR_LIB_SSL, SSL_R_UNINITIALIZED); 2141 return ret; 2142 } 2143 s->rwstate = SSL_NOTHING; 2144 return ret; 2145 #endif 2146 } 2147 2148 int SSL_write(SSL *s, const void *buf, int num) 2149 { 2150 int ret; 2151 size_t written; 2152 2153 if (num < 0) { 2154 ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH); 2155 return -1; 2156 } 2157 2158 ret = ssl_write_internal(s, buf, (size_t)num, &written); 2159 2160 /* 2161 * The cast is safe here because ret should be <= INT_MAX because num is 2162 * <= INT_MAX 2163 */ 2164 if (ret > 0) 2165 ret = (int)written; 2166 2167 return ret; 2168 } 2169 2170 int SSL_write_ex(SSL *s, const void *buf, size_t num, size_t *written) 2171 { 2172 int ret = ssl_write_internal(s, buf, num, written); 2173 2174 if (ret < 0) 2175 ret = 0; 2176 return ret; 2177 } 2178 2179 int SSL_write_early_data(SSL *s, const void *buf, size_t num, size_t *written) 2180 { 2181 int ret, early_data_state; 2182 size_t writtmp; 2183 uint32_t partialwrite; 2184 2185 switch (s->early_data_state) { 2186 case SSL_EARLY_DATA_NONE: 2187 if (s->server 2188 || !SSL_in_before(s) 2189 || ((s->session == NULL || s->session->ext.max_early_data == 0) 2190 && (s->psk_use_session_cb == NULL))) { 2191 ERR_raise(ERR_LIB_SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 2192 return 0; 2193 } 2194 /* fall through */ 2195 2196 case SSL_EARLY_DATA_CONNECT_RETRY: 2197 s->early_data_state = SSL_EARLY_DATA_CONNECTING; 2198 ret = SSL_connect(s); 2199 if (ret <= 0) { 2200 /* NBIO or error */ 2201 s->early_data_state = SSL_EARLY_DATA_CONNECT_RETRY; 2202 return 0; 2203 } 2204 /* fall through */ 2205 2206 case SSL_EARLY_DATA_WRITE_RETRY: 2207 s->early_data_state = SSL_EARLY_DATA_WRITING; 2208 /* 2209 * We disable partial write for early data because we don't keep track 2210 * of how many bytes we've written between the SSL_write_ex() call and 2211 * the flush if the flush needs to be retried) 2212 */ 2213 partialwrite = s->mode & SSL_MODE_ENABLE_PARTIAL_WRITE; 2214 s->mode &= ~SSL_MODE_ENABLE_PARTIAL_WRITE; 2215 ret = SSL_write_ex(s, buf, num, &writtmp); 2216 s->mode |= partialwrite; 2217 if (!ret) { 2218 s->early_data_state = SSL_EARLY_DATA_WRITE_RETRY; 2219 return ret; 2220 } 2221 s->early_data_state = SSL_EARLY_DATA_WRITE_FLUSH; 2222 /* fall through */ 2223 2224 case SSL_EARLY_DATA_WRITE_FLUSH: 2225 /* The buffering BIO is still in place so we need to flush it */ 2226 if (statem_flush(s) != 1) 2227 return 0; 2228 *written = num; 2229 s->early_data_state = SSL_EARLY_DATA_WRITE_RETRY; 2230 return 1; 2231 2232 case SSL_EARLY_DATA_FINISHED_READING: 2233 case SSL_EARLY_DATA_READ_RETRY: 2234 early_data_state = s->early_data_state; 2235 /* We are a server writing to an unauthenticated client */ 2236 s->early_data_state = SSL_EARLY_DATA_UNAUTH_WRITING; 2237 ret = SSL_write_ex(s, buf, num, written); 2238 /* The buffering BIO is still in place */ 2239 if (ret) 2240 (void)BIO_flush(s->wbio); 2241 s->early_data_state = early_data_state; 2242 return ret; 2243 2244 default: 2245 ERR_raise(ERR_LIB_SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 2246 return 0; 2247 } 2248 } 2249 2250 int SSL_shutdown(SSL *s) 2251 { 2252 /* 2253 * Note that this function behaves differently from what one might 2254 * expect. Return values are 0 for no success (yet), 1 for success; but 2255 * calling it once is usually not enough, even if blocking I/O is used 2256 * (see ssl3_shutdown). 2257 */ 2258 2259 if (s->handshake_func == NULL) { 2260 ERR_raise(ERR_LIB_SSL, SSL_R_UNINITIALIZED); 2261 return -1; 2262 } 2263 2264 if (!SSL_in_init(s)) { 2265 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) { 2266 struct ssl_async_args args; 2267 2268 memset(&args, 0, sizeof(args)); 2269 args.s = s; 2270 args.type = OTHERFUNC; 2271 args.f.func_other = s->method->ssl_shutdown; 2272 2273 return ssl_start_async_job(s, &args, ssl_io_intern); 2274 } else { 2275 return s->method->ssl_shutdown(s); 2276 } 2277 } else { 2278 ERR_raise(ERR_LIB_SSL, SSL_R_SHUTDOWN_WHILE_IN_INIT); 2279 return -1; 2280 } 2281 } 2282 2283 int SSL_key_update(SSL *s, int updatetype) 2284 { 2285 if (!SSL_IS_TLS13(s)) { 2286 ERR_raise(ERR_LIB_SSL, SSL_R_WRONG_SSL_VERSION); 2287 return 0; 2288 } 2289 2290 if (updatetype != SSL_KEY_UPDATE_NOT_REQUESTED 2291 && updatetype != SSL_KEY_UPDATE_REQUESTED) { 2292 ERR_raise(ERR_LIB_SSL, SSL_R_INVALID_KEY_UPDATE_TYPE); 2293 return 0; 2294 } 2295 2296 if (!SSL_is_init_finished(s)) { 2297 ERR_raise(ERR_LIB_SSL, SSL_R_STILL_IN_INIT); 2298 return 0; 2299 } 2300 2301 if (RECORD_LAYER_write_pending(&s->rlayer)) { 2302 ERR_raise(ERR_LIB_SSL, SSL_R_BAD_WRITE_RETRY); 2303 return 0; 2304 } 2305 2306 ossl_statem_set_in_init(s, 1); 2307 s->key_update = updatetype; 2308 return 1; 2309 } 2310 2311 int SSL_get_key_update_type(const SSL *s) 2312 { 2313 return s->key_update; 2314 } 2315 2316 /* 2317 * Can we accept a renegotiation request? If yes, set the flag and 2318 * return 1 if yes. If not, raise error and return 0. 2319 */ 2320 static int can_renegotiate(const SSL *s) 2321 { 2322 if (SSL_IS_TLS13(s)) { 2323 ERR_raise(ERR_LIB_SSL, SSL_R_WRONG_SSL_VERSION); 2324 return 0; 2325 } 2326 2327 if ((s->options & SSL_OP_NO_RENEGOTIATION) != 0) { 2328 ERR_raise(ERR_LIB_SSL, SSL_R_NO_RENEGOTIATION); 2329 return 0; 2330 } 2331 2332 return 1; 2333 } 2334 2335 int SSL_renegotiate(SSL *s) 2336 { 2337 if (!can_renegotiate(s)) 2338 return 0; 2339 2340 s->renegotiate = 1; 2341 s->new_session = 1; 2342 return s->method->ssl_renegotiate(s); 2343 } 2344 2345 int SSL_renegotiate_abbreviated(SSL *s) 2346 { 2347 if (!can_renegotiate(s)) 2348 return 0; 2349 2350 s->renegotiate = 1; 2351 s->new_session = 0; 2352 return s->method->ssl_renegotiate(s); 2353 } 2354 2355 int SSL_renegotiate_pending(const SSL *s) 2356 { 2357 /* 2358 * becomes true when negotiation is requested; false again once a 2359 * handshake has finished 2360 */ 2361 return (s->renegotiate != 0); 2362 } 2363 2364 int SSL_new_session_ticket(SSL *s) 2365 { 2366 /* If we are in init because we're sending tickets, okay to send more. */ 2367 if ((SSL_in_init(s) && s->ext.extra_tickets_expected == 0) 2368 || SSL_IS_FIRST_HANDSHAKE(s) || !s->server 2369 || !SSL_IS_TLS13(s)) 2370 return 0; 2371 s->ext.extra_tickets_expected++; 2372 if (!RECORD_LAYER_write_pending(&s->rlayer) && !SSL_in_init(s)) 2373 ossl_statem_set_in_init(s, 1); 2374 return 1; 2375 } 2376 2377 long SSL_ctrl(SSL *s, int cmd, long larg, void *parg) 2378 { 2379 long l; 2380 2381 switch (cmd) { 2382 case SSL_CTRL_GET_READ_AHEAD: 2383 return RECORD_LAYER_get_read_ahead(&s->rlayer); 2384 case SSL_CTRL_SET_READ_AHEAD: 2385 l = RECORD_LAYER_get_read_ahead(&s->rlayer); 2386 RECORD_LAYER_set_read_ahead(&s->rlayer, larg); 2387 return l; 2388 2389 case SSL_CTRL_SET_MSG_CALLBACK_ARG: 2390 s->msg_callback_arg = parg; 2391 return 1; 2392 2393 case SSL_CTRL_MODE: 2394 return (s->mode |= larg); 2395 case SSL_CTRL_CLEAR_MODE: 2396 return (s->mode &= ~larg); 2397 case SSL_CTRL_GET_MAX_CERT_LIST: 2398 return (long)s->max_cert_list; 2399 case SSL_CTRL_SET_MAX_CERT_LIST: 2400 if (larg < 0) 2401 return 0; 2402 l = (long)s->max_cert_list; 2403 s->max_cert_list = (size_t)larg; 2404 return l; 2405 case SSL_CTRL_SET_MAX_SEND_FRAGMENT: 2406 if (larg < 512 || larg > SSL3_RT_MAX_PLAIN_LENGTH) 2407 return 0; 2408 #ifndef OPENSSL_NO_KTLS 2409 if (s->wbio != NULL && BIO_get_ktls_send(s->wbio)) 2410 return 0; 2411 #endif /* OPENSSL_NO_KTLS */ 2412 s->max_send_fragment = larg; 2413 if (s->max_send_fragment < s->split_send_fragment) 2414 s->split_send_fragment = s->max_send_fragment; 2415 return 1; 2416 case SSL_CTRL_SET_SPLIT_SEND_FRAGMENT: 2417 if ((size_t)larg > s->max_send_fragment || larg == 0) 2418 return 0; 2419 s->split_send_fragment = larg; 2420 return 1; 2421 case SSL_CTRL_SET_MAX_PIPELINES: 2422 if (larg < 1 || larg > SSL_MAX_PIPELINES) 2423 return 0; 2424 s->max_pipelines = larg; 2425 if (larg > 1) 2426 RECORD_LAYER_set_read_ahead(&s->rlayer, 1); 2427 return 1; 2428 case SSL_CTRL_GET_RI_SUPPORT: 2429 return s->s3.send_connection_binding; 2430 case SSL_CTRL_SET_RETRY_VERIFY: 2431 s->rwstate = SSL_RETRY_VERIFY; 2432 return 1; 2433 case SSL_CTRL_CERT_FLAGS: 2434 return (s->cert->cert_flags |= larg); 2435 case SSL_CTRL_CLEAR_CERT_FLAGS: 2436 return (s->cert->cert_flags &= ~larg); 2437 2438 case SSL_CTRL_GET_RAW_CIPHERLIST: 2439 if (parg) { 2440 if (s->s3.tmp.ciphers_raw == NULL) 2441 return 0; 2442 *(unsigned char **)parg = s->s3.tmp.ciphers_raw; 2443 return (int)s->s3.tmp.ciphers_rawlen; 2444 } else { 2445 return TLS_CIPHER_LEN; 2446 } 2447 case SSL_CTRL_GET_EXTMS_SUPPORT: 2448 if (!s->session || SSL_in_init(s) || ossl_statem_get_in_handshake(s)) 2449 return -1; 2450 if (s->session->flags & SSL_SESS_FLAG_EXTMS) 2451 return 1; 2452 else 2453 return 0; 2454 case SSL_CTRL_SET_MIN_PROTO_VERSION: 2455 return ssl_check_allowed_versions(larg, s->max_proto_version) 2456 && ssl_set_version_bound(s->ctx->method->version, (int)larg, 2457 &s->min_proto_version); 2458 case SSL_CTRL_GET_MIN_PROTO_VERSION: 2459 return s->min_proto_version; 2460 case SSL_CTRL_SET_MAX_PROTO_VERSION: 2461 return ssl_check_allowed_versions(s->min_proto_version, larg) 2462 && ssl_set_version_bound(s->ctx->method->version, (int)larg, 2463 &s->max_proto_version); 2464 case SSL_CTRL_GET_MAX_PROTO_VERSION: 2465 return s->max_proto_version; 2466 default: 2467 return s->method->ssl_ctrl(s, cmd, larg, parg); 2468 } 2469 } 2470 2471 long SSL_callback_ctrl(SSL *s, int cmd, void (*fp) (void)) 2472 { 2473 switch (cmd) { 2474 case SSL_CTRL_SET_MSG_CALLBACK: 2475 s->msg_callback = (void (*) 2476 (int write_p, int version, int content_type, 2477 const void *buf, size_t len, SSL *ssl, 2478 void *arg))(fp); 2479 return 1; 2480 2481 default: 2482 return s->method->ssl_callback_ctrl(s, cmd, fp); 2483 } 2484 } 2485 2486 LHASH_OF(SSL_SESSION) *SSL_CTX_sessions(SSL_CTX *ctx) 2487 { 2488 return ctx->sessions; 2489 } 2490 2491 static int ssl_tsan_load(SSL_CTX *ctx, TSAN_QUALIFIER int *stat) 2492 { 2493 int res = 0; 2494 2495 if (ssl_tsan_lock(ctx)) { 2496 res = tsan_load(stat); 2497 ssl_tsan_unlock(ctx); 2498 } 2499 return res; 2500 } 2501 2502 long SSL_CTX_ctrl(SSL_CTX *ctx, int cmd, long larg, void *parg) 2503 { 2504 long l; 2505 /* For some cases with ctx == NULL perform syntax checks */ 2506 if (ctx == NULL) { 2507 switch (cmd) { 2508 case SSL_CTRL_SET_GROUPS_LIST: 2509 return tls1_set_groups_list(ctx, NULL, NULL, parg); 2510 case SSL_CTRL_SET_SIGALGS_LIST: 2511 case SSL_CTRL_SET_CLIENT_SIGALGS_LIST: 2512 return tls1_set_sigalgs_list(NULL, parg, 0); 2513 default: 2514 return 0; 2515 } 2516 } 2517 2518 switch (cmd) { 2519 case SSL_CTRL_GET_READ_AHEAD: 2520 return ctx->read_ahead; 2521 case SSL_CTRL_SET_READ_AHEAD: 2522 l = ctx->read_ahead; 2523 ctx->read_ahead = larg; 2524 return l; 2525 2526 case SSL_CTRL_SET_MSG_CALLBACK_ARG: 2527 ctx->msg_callback_arg = parg; 2528 return 1; 2529 2530 case SSL_CTRL_GET_MAX_CERT_LIST: 2531 return (long)ctx->max_cert_list; 2532 case SSL_CTRL_SET_MAX_CERT_LIST: 2533 if (larg < 0) 2534 return 0; 2535 l = (long)ctx->max_cert_list; 2536 ctx->max_cert_list = (size_t)larg; 2537 return l; 2538 2539 case SSL_CTRL_SET_SESS_CACHE_SIZE: 2540 if (larg < 0) 2541 return 0; 2542 l = (long)ctx->session_cache_size; 2543 ctx->session_cache_size = (size_t)larg; 2544 return l; 2545 case SSL_CTRL_GET_SESS_CACHE_SIZE: 2546 return (long)ctx->session_cache_size; 2547 case SSL_CTRL_SET_SESS_CACHE_MODE: 2548 l = ctx->session_cache_mode; 2549 ctx->session_cache_mode = larg; 2550 return l; 2551 case SSL_CTRL_GET_SESS_CACHE_MODE: 2552 return ctx->session_cache_mode; 2553 2554 case SSL_CTRL_SESS_NUMBER: 2555 return lh_SSL_SESSION_num_items(ctx->sessions); 2556 case SSL_CTRL_SESS_CONNECT: 2557 return ssl_tsan_load(ctx, &ctx->stats.sess_connect); 2558 case SSL_CTRL_SESS_CONNECT_GOOD: 2559 return ssl_tsan_load(ctx, &ctx->stats.sess_connect_good); 2560 case SSL_CTRL_SESS_CONNECT_RENEGOTIATE: 2561 return ssl_tsan_load(ctx, &ctx->stats.sess_connect_renegotiate); 2562 case SSL_CTRL_SESS_ACCEPT: 2563 return ssl_tsan_load(ctx, &ctx->stats.sess_accept); 2564 case SSL_CTRL_SESS_ACCEPT_GOOD: 2565 return ssl_tsan_load(ctx, &ctx->stats.sess_accept_good); 2566 case SSL_CTRL_SESS_ACCEPT_RENEGOTIATE: 2567 return ssl_tsan_load(ctx, &ctx->stats.sess_accept_renegotiate); 2568 case SSL_CTRL_SESS_HIT: 2569 return ssl_tsan_load(ctx, &ctx->stats.sess_hit); 2570 case SSL_CTRL_SESS_CB_HIT: 2571 return ssl_tsan_load(ctx, &ctx->stats.sess_cb_hit); 2572 case SSL_CTRL_SESS_MISSES: 2573 return ssl_tsan_load(ctx, &ctx->stats.sess_miss); 2574 case SSL_CTRL_SESS_TIMEOUTS: 2575 return ssl_tsan_load(ctx, &ctx->stats.sess_timeout); 2576 case SSL_CTRL_SESS_CACHE_FULL: 2577 return ssl_tsan_load(ctx, &ctx->stats.sess_cache_full); 2578 case SSL_CTRL_MODE: 2579 return (ctx->mode |= larg); 2580 case SSL_CTRL_CLEAR_MODE: 2581 return (ctx->mode &= ~larg); 2582 case SSL_CTRL_SET_MAX_SEND_FRAGMENT: 2583 if (larg < 512 || larg > SSL3_RT_MAX_PLAIN_LENGTH) 2584 return 0; 2585 ctx->max_send_fragment = larg; 2586 if (ctx->max_send_fragment < ctx->split_send_fragment) 2587 ctx->split_send_fragment = ctx->max_send_fragment; 2588 return 1; 2589 case SSL_CTRL_SET_SPLIT_SEND_FRAGMENT: 2590 if ((size_t)larg > ctx->max_send_fragment || larg == 0) 2591 return 0; 2592 ctx->split_send_fragment = larg; 2593 return 1; 2594 case SSL_CTRL_SET_MAX_PIPELINES: 2595 if (larg < 1 || larg > SSL_MAX_PIPELINES) 2596 return 0; 2597 ctx->max_pipelines = larg; 2598 return 1; 2599 case SSL_CTRL_CERT_FLAGS: 2600 return (ctx->cert->cert_flags |= larg); 2601 case SSL_CTRL_CLEAR_CERT_FLAGS: 2602 return (ctx->cert->cert_flags &= ~larg); 2603 case SSL_CTRL_SET_MIN_PROTO_VERSION: 2604 return ssl_check_allowed_versions(larg, ctx->max_proto_version) 2605 && ssl_set_version_bound(ctx->method->version, (int)larg, 2606 &ctx->min_proto_version); 2607 case SSL_CTRL_GET_MIN_PROTO_VERSION: 2608 return ctx->min_proto_version; 2609 case SSL_CTRL_SET_MAX_PROTO_VERSION: 2610 return ssl_check_allowed_versions(ctx->min_proto_version, larg) 2611 && ssl_set_version_bound(ctx->method->version, (int)larg, 2612 &ctx->max_proto_version); 2613 case SSL_CTRL_GET_MAX_PROTO_VERSION: 2614 return ctx->max_proto_version; 2615 default: 2616 return ctx->method->ssl_ctx_ctrl(ctx, cmd, larg, parg); 2617 } 2618 } 2619 2620 long SSL_CTX_callback_ctrl(SSL_CTX *ctx, int cmd, void (*fp) (void)) 2621 { 2622 switch (cmd) { 2623 case SSL_CTRL_SET_MSG_CALLBACK: 2624 ctx->msg_callback = (void (*) 2625 (int write_p, int version, int content_type, 2626 const void *buf, size_t len, SSL *ssl, 2627 void *arg))(fp); 2628 return 1; 2629 2630 default: 2631 return ctx->method->ssl_ctx_callback_ctrl(ctx, cmd, fp); 2632 } 2633 } 2634 2635 int ssl_cipher_id_cmp(const SSL_CIPHER *a, const SSL_CIPHER *b) 2636 { 2637 if (a->id > b->id) 2638 return 1; 2639 if (a->id < b->id) 2640 return -1; 2641 return 0; 2642 } 2643 2644 int ssl_cipher_ptr_id_cmp(const SSL_CIPHER *const *ap, 2645 const SSL_CIPHER *const *bp) 2646 { 2647 if ((*ap)->id > (*bp)->id) 2648 return 1; 2649 if ((*ap)->id < (*bp)->id) 2650 return -1; 2651 return 0; 2652 } 2653 2654 /** return a STACK of the ciphers available for the SSL and in order of 2655 * preference */ 2656 STACK_OF(SSL_CIPHER) *SSL_get_ciphers(const SSL *s) 2657 { 2658 if (s != NULL) { 2659 if (s->cipher_list != NULL) { 2660 return s->cipher_list; 2661 } else if ((s->ctx != NULL) && (s->ctx->cipher_list != NULL)) { 2662 return s->ctx->cipher_list; 2663 } 2664 } 2665 return NULL; 2666 } 2667 2668 STACK_OF(SSL_CIPHER) *SSL_get_client_ciphers(const SSL *s) 2669 { 2670 if ((s == NULL) || !s->server) 2671 return NULL; 2672 return s->peer_ciphers; 2673 } 2674 2675 STACK_OF(SSL_CIPHER) *SSL_get1_supported_ciphers(SSL *s) 2676 { 2677 STACK_OF(SSL_CIPHER) *sk = NULL, *ciphers; 2678 int i; 2679 2680 ciphers = SSL_get_ciphers(s); 2681 if (!ciphers) 2682 return NULL; 2683 if (!ssl_set_client_disabled(s)) 2684 return NULL; 2685 for (i = 0; i < sk_SSL_CIPHER_num(ciphers); i++) { 2686 const SSL_CIPHER *c = sk_SSL_CIPHER_value(ciphers, i); 2687 if (!ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0)) { 2688 if (!sk) 2689 sk = sk_SSL_CIPHER_new_null(); 2690 if (!sk) 2691 return NULL; 2692 if (!sk_SSL_CIPHER_push(sk, c)) { 2693 sk_SSL_CIPHER_free(sk); 2694 return NULL; 2695 } 2696 } 2697 } 2698 return sk; 2699 } 2700 2701 /** return a STACK of the ciphers available for the SSL and in order of 2702 * algorithm id */ 2703 STACK_OF(SSL_CIPHER) *ssl_get_ciphers_by_id(SSL *s) 2704 { 2705 if (s != NULL) { 2706 if (s->cipher_list_by_id != NULL) { 2707 return s->cipher_list_by_id; 2708 } else if ((s->ctx != NULL) && (s->ctx->cipher_list_by_id != NULL)) { 2709 return s->ctx->cipher_list_by_id; 2710 } 2711 } 2712 return NULL; 2713 } 2714 2715 /** The old interface to get the same thing as SSL_get_ciphers() */ 2716 const char *SSL_get_cipher_list(const SSL *s, int n) 2717 { 2718 const SSL_CIPHER *c; 2719 STACK_OF(SSL_CIPHER) *sk; 2720 2721 if (s == NULL) 2722 return NULL; 2723 sk = SSL_get_ciphers(s); 2724 if ((sk == NULL) || (sk_SSL_CIPHER_num(sk) <= n)) 2725 return NULL; 2726 c = sk_SSL_CIPHER_value(sk, n); 2727 if (c == NULL) 2728 return NULL; 2729 return c->name; 2730 } 2731 2732 /** return a STACK of the ciphers available for the SSL_CTX and in order of 2733 * preference */ 2734 STACK_OF(SSL_CIPHER) *SSL_CTX_get_ciphers(const SSL_CTX *ctx) 2735 { 2736 if (ctx != NULL) 2737 return ctx->cipher_list; 2738 return NULL; 2739 } 2740 2741 /* 2742 * Distinguish between ciphers controlled by set_ciphersuite() and 2743 * set_cipher_list() when counting. 2744 */ 2745 static int cipher_list_tls12_num(STACK_OF(SSL_CIPHER) *sk) 2746 { 2747 int i, num = 0; 2748 const SSL_CIPHER *c; 2749 2750 if (sk == NULL) 2751 return 0; 2752 for (i = 0; i < sk_SSL_CIPHER_num(sk); ++i) { 2753 c = sk_SSL_CIPHER_value(sk, i); 2754 if (c->min_tls >= TLS1_3_VERSION) 2755 continue; 2756 num++; 2757 } 2758 return num; 2759 } 2760 2761 /** specify the ciphers to be used by default by the SSL_CTX */ 2762 int SSL_CTX_set_cipher_list(SSL_CTX *ctx, const char *str) 2763 { 2764 STACK_OF(SSL_CIPHER) *sk; 2765 2766 sk = ssl_create_cipher_list(ctx, ctx->tls13_ciphersuites, 2767 &ctx->cipher_list, &ctx->cipher_list_by_id, str, 2768 ctx->cert); 2769 /* 2770 * ssl_create_cipher_list may return an empty stack if it was unable to 2771 * find a cipher matching the given rule string (for example if the rule 2772 * string specifies a cipher which has been disabled). This is not an 2773 * error as far as ssl_create_cipher_list is concerned, and hence 2774 * ctx->cipher_list and ctx->cipher_list_by_id has been updated. 2775 */ 2776 if (sk == NULL) 2777 return 0; 2778 else if (cipher_list_tls12_num(sk) == 0) { 2779 ERR_raise(ERR_LIB_SSL, SSL_R_NO_CIPHER_MATCH); 2780 return 0; 2781 } 2782 return 1; 2783 } 2784 2785 /** specify the ciphers to be used by the SSL */ 2786 int SSL_set_cipher_list(SSL *s, const char *str) 2787 { 2788 STACK_OF(SSL_CIPHER) *sk; 2789 2790 sk = ssl_create_cipher_list(s->ctx, s->tls13_ciphersuites, 2791 &s->cipher_list, &s->cipher_list_by_id, str, 2792 s->cert); 2793 /* see comment in SSL_CTX_set_cipher_list */ 2794 if (sk == NULL) 2795 return 0; 2796 else if (cipher_list_tls12_num(sk) == 0) { 2797 ERR_raise(ERR_LIB_SSL, SSL_R_NO_CIPHER_MATCH); 2798 return 0; 2799 } 2800 return 1; 2801 } 2802 2803 char *SSL_get_shared_ciphers(const SSL *s, char *buf, int size) 2804 { 2805 char *p; 2806 STACK_OF(SSL_CIPHER) *clntsk, *srvrsk; 2807 const SSL_CIPHER *c; 2808 int i; 2809 2810 if (!s->server 2811 || s->peer_ciphers == NULL 2812 || size < 2) 2813 return NULL; 2814 2815 p = buf; 2816 clntsk = s->peer_ciphers; 2817 srvrsk = SSL_get_ciphers(s); 2818 if (clntsk == NULL || srvrsk == NULL) 2819 return NULL; 2820 2821 if (sk_SSL_CIPHER_num(clntsk) == 0 || sk_SSL_CIPHER_num(srvrsk) == 0) 2822 return NULL; 2823 2824 for (i = 0; i < sk_SSL_CIPHER_num(clntsk); i++) { 2825 int n; 2826 2827 c = sk_SSL_CIPHER_value(clntsk, i); 2828 if (sk_SSL_CIPHER_find(srvrsk, c) < 0) 2829 continue; 2830 2831 n = OPENSSL_strnlen(c->name, size); 2832 if (n >= size) { 2833 if (p != buf) 2834 --p; 2835 *p = '\0'; 2836 return buf; 2837 } 2838 memcpy(p, c->name, n); 2839 p += n; 2840 *(p++) = ':'; 2841 size -= n + 1; 2842 } 2843 p[-1] = '\0'; 2844 return buf; 2845 } 2846 2847 /** 2848 * Return the requested servername (SNI) value. Note that the behaviour varies 2849 * depending on: 2850 * - whether this is called by the client or the server, 2851 * - if we are before or during/after the handshake, 2852 * - if a resumption or normal handshake is being attempted/has occurred 2853 * - whether we have negotiated TLSv1.2 (or below) or TLSv1.3 2854 * 2855 * Note that only the host_name type is defined (RFC 3546). 2856 */ 2857 const char *SSL_get_servername(const SSL *s, const int type) 2858 { 2859 /* 2860 * If we don't know if we are the client or the server yet then we assume 2861 * client. 2862 */ 2863 int server = s->handshake_func == NULL ? 0 : s->server; 2864 if (type != TLSEXT_NAMETYPE_host_name) 2865 return NULL; 2866 2867 if (server) { 2868 /** 2869 * Server side 2870 * In TLSv1.3 on the server SNI is not associated with the session 2871 * but in TLSv1.2 or below it is. 2872 * 2873 * Before the handshake: 2874 * - return NULL 2875 * 2876 * During/after the handshake (TLSv1.2 or below resumption occurred): 2877 * - If a servername was accepted by the server in the original 2878 * handshake then it will return that servername, or NULL otherwise. 2879 * 2880 * During/after the handshake (TLSv1.2 or below resumption did not occur): 2881 * - The function will return the servername requested by the client in 2882 * this handshake or NULL if none was requested. 2883 */ 2884 if (s->hit && !SSL_IS_TLS13(s)) 2885 return s->session->ext.hostname; 2886 } else { 2887 /** 2888 * Client side 2889 * 2890 * Before the handshake: 2891 * - If a servername has been set via a call to 2892 * SSL_set_tlsext_host_name() then it will return that servername 2893 * - If one has not been set, but a TLSv1.2 resumption is being 2894 * attempted and the session from the original handshake had a 2895 * servername accepted by the server then it will return that 2896 * servername 2897 * - Otherwise it returns NULL 2898 * 2899 * During/after the handshake (TLSv1.2 or below resumption occurred): 2900 * - If the session from the original handshake had a servername accepted 2901 * by the server then it will return that servername. 2902 * - Otherwise it returns the servername set via 2903 * SSL_set_tlsext_host_name() (or NULL if it was not called). 2904 * 2905 * During/after the handshake (TLSv1.2 or below resumption did not occur): 2906 * - It will return the servername set via SSL_set_tlsext_host_name() 2907 * (or NULL if it was not called). 2908 */ 2909 if (SSL_in_before(s)) { 2910 if (s->ext.hostname == NULL 2911 && s->session != NULL 2912 && s->session->ssl_version != TLS1_3_VERSION) 2913 return s->session->ext.hostname; 2914 } else { 2915 if (!SSL_IS_TLS13(s) && s->hit && s->session->ext.hostname != NULL) 2916 return s->session->ext.hostname; 2917 } 2918 } 2919 2920 return s->ext.hostname; 2921 } 2922 2923 int SSL_get_servername_type(const SSL *s) 2924 { 2925 if (SSL_get_servername(s, TLSEXT_NAMETYPE_host_name) != NULL) 2926 return TLSEXT_NAMETYPE_host_name; 2927 return -1; 2928 } 2929 2930 /* 2931 * SSL_select_next_proto implements the standard protocol selection. It is 2932 * expected that this function is called from the callback set by 2933 * SSL_CTX_set_next_proto_select_cb. The protocol data is assumed to be a 2934 * vector of 8-bit, length prefixed byte strings. The length byte itself is 2935 * not included in the length. A byte string of length 0 is invalid. No byte 2936 * string may be truncated. The current, but experimental algorithm for 2937 * selecting the protocol is: 1) If the server doesn't support NPN then this 2938 * is indicated to the callback. In this case, the client application has to 2939 * abort the connection or have a default application level protocol. 2) If 2940 * the server supports NPN, but advertises an empty list then the client 2941 * selects the first protocol in its list, but indicates via the API that this 2942 * fallback case was enacted. 3) Otherwise, the client finds the first 2943 * protocol in the server's list that it supports and selects this protocol. 2944 * This is because it's assumed that the server has better information about 2945 * which protocol a client should use. 4) If the client doesn't support any 2946 * of the server's advertised protocols, then this is treated the same as 2947 * case 2. It returns either OPENSSL_NPN_NEGOTIATED if a common protocol was 2948 * found, or OPENSSL_NPN_NO_OVERLAP if the fallback case was reached. 2949 */ 2950 int SSL_select_next_proto(unsigned char **out, unsigned char *outlen, 2951 const unsigned char *server, 2952 unsigned int server_len, 2953 const unsigned char *client, unsigned int client_len) 2954 { 2955 unsigned int i, j; 2956 const unsigned char *result; 2957 int status = OPENSSL_NPN_UNSUPPORTED; 2958 2959 /* 2960 * For each protocol in server preference order, see if we support it. 2961 */ 2962 for (i = 0; i < server_len;) { 2963 for (j = 0; j < client_len;) { 2964 if (server[i] == client[j] && 2965 memcmp(&server[i + 1], &client[j + 1], server[i]) == 0) { 2966 /* We found a match */ 2967 result = &server[i]; 2968 status = OPENSSL_NPN_NEGOTIATED; 2969 goto found; 2970 } 2971 j += client[j]; 2972 j++; 2973 } 2974 i += server[i]; 2975 i++; 2976 } 2977 2978 /* There's no overlap between our protocols and the server's list. */ 2979 result = client; 2980 status = OPENSSL_NPN_NO_OVERLAP; 2981 2982 found: 2983 *out = (unsigned char *)result + 1; 2984 *outlen = result[0]; 2985 return status; 2986 } 2987 2988 #ifndef OPENSSL_NO_NEXTPROTONEG 2989 /* 2990 * SSL_get0_next_proto_negotiated sets *data and *len to point to the 2991 * client's requested protocol for this connection and returns 0. If the 2992 * client didn't request any protocol, then *data is set to NULL. Note that 2993 * the client can request any protocol it chooses. The value returned from 2994 * this function need not be a member of the list of supported protocols 2995 * provided by the callback. 2996 */ 2997 void SSL_get0_next_proto_negotiated(const SSL *s, const unsigned char **data, 2998 unsigned *len) 2999 { 3000 *data = s->ext.npn; 3001 if (*data == NULL) { 3002 *len = 0; 3003 } else { 3004 *len = (unsigned int)s->ext.npn_len; 3005 } 3006 } 3007 3008 /* 3009 * SSL_CTX_set_npn_advertised_cb sets a callback that is called when 3010 * a TLS server needs a list of supported protocols for Next Protocol 3011 * Negotiation. The returned list must be in wire format. The list is 3012 * returned by setting |out| to point to it and |outlen| to its length. This 3013 * memory will not be modified, but one should assume that the SSL* keeps a 3014 * reference to it. The callback should return SSL_TLSEXT_ERR_OK if it 3015 * wishes to advertise. Otherwise, no such extension will be included in the 3016 * ServerHello. 3017 */ 3018 void SSL_CTX_set_npn_advertised_cb(SSL_CTX *ctx, 3019 SSL_CTX_npn_advertised_cb_func cb, 3020 void *arg) 3021 { 3022 ctx->ext.npn_advertised_cb = cb; 3023 ctx->ext.npn_advertised_cb_arg = arg; 3024 } 3025 3026 /* 3027 * SSL_CTX_set_next_proto_select_cb sets a callback that is called when a 3028 * client needs to select a protocol from the server's provided list. |out| 3029 * must be set to point to the selected protocol (which may be within |in|). 3030 * The length of the protocol name must be written into |outlen|. The 3031 * server's advertised protocols are provided in |in| and |inlen|. The 3032 * callback can assume that |in| is syntactically valid. The client must 3033 * select a protocol. It is fatal to the connection if this callback returns 3034 * a value other than SSL_TLSEXT_ERR_OK. 3035 */ 3036 void SSL_CTX_set_npn_select_cb(SSL_CTX *ctx, 3037 SSL_CTX_npn_select_cb_func cb, 3038 void *arg) 3039 { 3040 ctx->ext.npn_select_cb = cb; 3041 ctx->ext.npn_select_cb_arg = arg; 3042 } 3043 #endif 3044 3045 static int alpn_value_ok(const unsigned char *protos, unsigned int protos_len) 3046 { 3047 unsigned int idx; 3048 3049 if (protos_len < 2 || protos == NULL) 3050 return 0; 3051 3052 for (idx = 0; idx < protos_len; idx += protos[idx] + 1) { 3053 if (protos[idx] == 0) 3054 return 0; 3055 } 3056 return idx == protos_len; 3057 } 3058 /* 3059 * SSL_CTX_set_alpn_protos sets the ALPN protocol list on |ctx| to |protos|. 3060 * |protos| must be in wire-format (i.e. a series of non-empty, 8-bit 3061 * length-prefixed strings). Returns 0 on success. 3062 */ 3063 int SSL_CTX_set_alpn_protos(SSL_CTX *ctx, const unsigned char *protos, 3064 unsigned int protos_len) 3065 { 3066 unsigned char *alpn; 3067 3068 if (protos_len == 0 || protos == NULL) { 3069 OPENSSL_free(ctx->ext.alpn); 3070 ctx->ext.alpn = NULL; 3071 ctx->ext.alpn_len = 0; 3072 return 0; 3073 } 3074 /* Not valid per RFC */ 3075 if (!alpn_value_ok(protos, protos_len)) 3076 return 1; 3077 3078 alpn = OPENSSL_memdup(protos, protos_len); 3079 if (alpn == NULL) { 3080 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); 3081 return 1; 3082 } 3083 OPENSSL_free(ctx->ext.alpn); 3084 ctx->ext.alpn = alpn; 3085 ctx->ext.alpn_len = protos_len; 3086 3087 return 0; 3088 } 3089 3090 /* 3091 * SSL_set_alpn_protos sets the ALPN protocol list on |ssl| to |protos|. 3092 * |protos| must be in wire-format (i.e. a series of non-empty, 8-bit 3093 * length-prefixed strings). Returns 0 on success. 3094 */ 3095 int SSL_set_alpn_protos(SSL *ssl, const unsigned char *protos, 3096 unsigned int protos_len) 3097 { 3098 unsigned char *alpn; 3099 3100 if (protos_len == 0 || protos == NULL) { 3101 OPENSSL_free(ssl->ext.alpn); 3102 ssl->ext.alpn = NULL; 3103 ssl->ext.alpn_len = 0; 3104 return 0; 3105 } 3106 /* Not valid per RFC */ 3107 if (!alpn_value_ok(protos, protos_len)) 3108 return 1; 3109 3110 alpn = OPENSSL_memdup(protos, protos_len); 3111 if (alpn == NULL) { 3112 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); 3113 return 1; 3114 } 3115 OPENSSL_free(ssl->ext.alpn); 3116 ssl->ext.alpn = alpn; 3117 ssl->ext.alpn_len = protos_len; 3118 3119 return 0; 3120 } 3121 3122 /* 3123 * SSL_CTX_set_alpn_select_cb sets a callback function on |ctx| that is 3124 * called during ClientHello processing in order to select an ALPN protocol 3125 * from the client's list of offered protocols. 3126 */ 3127 void SSL_CTX_set_alpn_select_cb(SSL_CTX *ctx, 3128 SSL_CTX_alpn_select_cb_func cb, 3129 void *arg) 3130 { 3131 ctx->ext.alpn_select_cb = cb; 3132 ctx->ext.alpn_select_cb_arg = arg; 3133 } 3134 3135 /* 3136 * SSL_get0_alpn_selected gets the selected ALPN protocol (if any) from |ssl|. 3137 * On return it sets |*data| to point to |*len| bytes of protocol name 3138 * (not including the leading length-prefix byte). If the server didn't 3139 * respond with a negotiated protocol then |*len| will be zero. 3140 */ 3141 void SSL_get0_alpn_selected(const SSL *ssl, const unsigned char **data, 3142 unsigned int *len) 3143 { 3144 *data = ssl->s3.alpn_selected; 3145 if (*data == NULL) 3146 *len = 0; 3147 else 3148 *len = (unsigned int)ssl->s3.alpn_selected_len; 3149 } 3150 3151 int SSL_export_keying_material(SSL *s, unsigned char *out, size_t olen, 3152 const char *label, size_t llen, 3153 const unsigned char *context, size_t contextlen, 3154 int use_context) 3155 { 3156 if (s->session == NULL 3157 || (s->version < TLS1_VERSION && s->version != DTLS1_BAD_VER)) 3158 return -1; 3159 3160 return s->method->ssl3_enc->export_keying_material(s, out, olen, label, 3161 llen, context, 3162 contextlen, use_context); 3163 } 3164 3165 int SSL_export_keying_material_early(SSL *s, unsigned char *out, size_t olen, 3166 const char *label, size_t llen, 3167 const unsigned char *context, 3168 size_t contextlen) 3169 { 3170 if (s->version != TLS1_3_VERSION) 3171 return 0; 3172 3173 return tls13_export_keying_material_early(s, out, olen, label, llen, 3174 context, contextlen); 3175 } 3176 3177 static unsigned long ssl_session_hash(const SSL_SESSION *a) 3178 { 3179 const unsigned char *session_id = a->session_id; 3180 unsigned long l; 3181 unsigned char tmp_storage[4]; 3182 3183 if (a->session_id_length < sizeof(tmp_storage)) { 3184 memset(tmp_storage, 0, sizeof(tmp_storage)); 3185 memcpy(tmp_storage, a->session_id, a->session_id_length); 3186 session_id = tmp_storage; 3187 } 3188 3189 l = (unsigned long) 3190 ((unsigned long)session_id[0]) | 3191 ((unsigned long)session_id[1] << 8L) | 3192 ((unsigned long)session_id[2] << 16L) | 3193 ((unsigned long)session_id[3] << 24L); 3194 return l; 3195 } 3196 3197 /* 3198 * NB: If this function (or indeed the hash function which uses a sort of 3199 * coarser function than this one) is changed, ensure 3200 * SSL_CTX_has_matching_session_id() is checked accordingly. It relies on 3201 * being able to construct an SSL_SESSION that will collide with any existing 3202 * session with a matching session ID. 3203 */ 3204 static int ssl_session_cmp(const SSL_SESSION *a, const SSL_SESSION *b) 3205 { 3206 if (a->ssl_version != b->ssl_version) 3207 return 1; 3208 if (a->session_id_length != b->session_id_length) 3209 return 1; 3210 return memcmp(a->session_id, b->session_id, a->session_id_length); 3211 } 3212 3213 /* 3214 * These wrapper functions should remain rather than redeclaring 3215 * SSL_SESSION_hash and SSL_SESSION_cmp for void* types and casting each 3216 * variable. The reason is that the functions aren't static, they're exposed 3217 * via ssl.h. 3218 */ 3219 3220 SSL_CTX *SSL_CTX_new_ex(OSSL_LIB_CTX *libctx, const char *propq, 3221 const SSL_METHOD *meth) 3222 { 3223 SSL_CTX *ret = NULL; 3224 3225 if (meth == NULL) { 3226 ERR_raise(ERR_LIB_SSL, SSL_R_NULL_SSL_METHOD_PASSED); 3227 return NULL; 3228 } 3229 3230 if (!OPENSSL_init_ssl(OPENSSL_INIT_LOAD_SSL_STRINGS, NULL)) 3231 return NULL; 3232 3233 if (SSL_get_ex_data_X509_STORE_CTX_idx() < 0) { 3234 ERR_raise(ERR_LIB_SSL, SSL_R_X509_VERIFICATION_SETUP_PROBLEMS); 3235 goto err; 3236 } 3237 ret = OPENSSL_zalloc(sizeof(*ret)); 3238 if (ret == NULL) 3239 goto err; 3240 3241 /* Init the reference counting before any call to SSL_CTX_free */ 3242 ret->references = 1; 3243 ret->lock = CRYPTO_THREAD_lock_new(); 3244 if (ret->lock == NULL) { 3245 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); 3246 OPENSSL_free(ret); 3247 return NULL; 3248 } 3249 3250 #ifdef TSAN_REQUIRES_LOCKING 3251 ret->tsan_lock = CRYPTO_THREAD_lock_new(); 3252 if (ret->tsan_lock == NULL) { 3253 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); 3254 goto err; 3255 } 3256 #endif 3257 3258 ret->libctx = libctx; 3259 if (propq != NULL) { 3260 ret->propq = OPENSSL_strdup(propq); 3261 if (ret->propq == NULL) 3262 goto err; 3263 } 3264 3265 ret->method = meth; 3266 ret->min_proto_version = 0; 3267 ret->max_proto_version = 0; 3268 ret->mode = SSL_MODE_AUTO_RETRY; 3269 ret->session_cache_mode = SSL_SESS_CACHE_SERVER; 3270 ret->session_cache_size = SSL_SESSION_CACHE_MAX_SIZE_DEFAULT; 3271 /* We take the system default. */ 3272 ret->session_timeout = meth->get_timeout(); 3273 ret->max_cert_list = SSL_MAX_CERT_LIST_DEFAULT; 3274 ret->verify_mode = SSL_VERIFY_NONE; 3275 if ((ret->cert = ssl_cert_new()) == NULL) 3276 goto err; 3277 3278 ret->sessions = lh_SSL_SESSION_new(ssl_session_hash, ssl_session_cmp); 3279 if (ret->sessions == NULL) 3280 goto err; 3281 ret->cert_store = X509_STORE_new(); 3282 if (ret->cert_store == NULL) 3283 goto err; 3284 #ifndef OPENSSL_NO_CT 3285 ret->ctlog_store = CTLOG_STORE_new_ex(libctx, propq); 3286 if (ret->ctlog_store == NULL) 3287 goto err; 3288 #endif 3289 3290 /* initialize cipher/digest methods table */ 3291 if (!ssl_load_ciphers(ret)) 3292 goto err2; 3293 /* initialise sig algs */ 3294 if (!ssl_setup_sig_algs(ret)) 3295 goto err2; 3296 3297 3298 if (!ssl_load_groups(ret)) 3299 goto err2; 3300 3301 if (!SSL_CTX_set_ciphersuites(ret, OSSL_default_ciphersuites())) 3302 goto err; 3303 3304 if (!ssl_create_cipher_list(ret, 3305 ret->tls13_ciphersuites, 3306 &ret->cipher_list, &ret->cipher_list_by_id, 3307 OSSL_default_cipher_list(), ret->cert) 3308 || sk_SSL_CIPHER_num(ret->cipher_list) <= 0) { 3309 ERR_raise(ERR_LIB_SSL, SSL_R_LIBRARY_HAS_NO_CIPHERS); 3310 goto err2; 3311 } 3312 3313 ret->param = X509_VERIFY_PARAM_new(); 3314 if (ret->param == NULL) 3315 goto err; 3316 3317 /* 3318 * If these aren't available from the provider we'll get NULL returns. 3319 * That's fine but will cause errors later if SSLv3 is negotiated 3320 */ 3321 ret->md5 = ssl_evp_md_fetch(libctx, NID_md5, propq); 3322 ret->sha1 = ssl_evp_md_fetch(libctx, NID_sha1, propq); 3323 3324 if ((ret->ca_names = sk_X509_NAME_new_null()) == NULL) 3325 goto err; 3326 3327 if ((ret->client_ca_names = sk_X509_NAME_new_null()) == NULL) 3328 goto err; 3329 3330 if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL_CTX, ret, &ret->ex_data)) 3331 goto err; 3332 3333 if ((ret->ext.secure = OPENSSL_secure_zalloc(sizeof(*ret->ext.secure))) == NULL) 3334 goto err; 3335 3336 /* No compression for DTLS */ 3337 if (!(meth->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS)) 3338 ret->comp_methods = SSL_COMP_get_compression_methods(); 3339 3340 ret->max_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH; 3341 ret->split_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH; 3342 3343 /* Setup RFC5077 ticket keys */ 3344 if ((RAND_bytes_ex(libctx, ret->ext.tick_key_name, 3345 sizeof(ret->ext.tick_key_name), 0) <= 0) 3346 || (RAND_priv_bytes_ex(libctx, ret->ext.secure->tick_hmac_key, 3347 sizeof(ret->ext.secure->tick_hmac_key), 0) <= 0) 3348 || (RAND_priv_bytes_ex(libctx, ret->ext.secure->tick_aes_key, 3349 sizeof(ret->ext.secure->tick_aes_key), 0) <= 0)) 3350 ret->options |= SSL_OP_NO_TICKET; 3351 3352 if (RAND_priv_bytes_ex(libctx, ret->ext.cookie_hmac_key, 3353 sizeof(ret->ext.cookie_hmac_key), 0) <= 0) 3354 goto err; 3355 3356 #ifndef OPENSSL_NO_SRP 3357 if (!ssl_ctx_srp_ctx_init_intern(ret)) 3358 goto err; 3359 #endif 3360 #ifndef OPENSSL_NO_ENGINE 3361 # ifdef OPENSSL_SSL_CLIENT_ENGINE_AUTO 3362 # define eng_strx(x) #x 3363 # define eng_str(x) eng_strx(x) 3364 /* Use specific client engine automatically... ignore errors */ 3365 { 3366 ENGINE *eng; 3367 eng = ENGINE_by_id(eng_str(OPENSSL_SSL_CLIENT_ENGINE_AUTO)); 3368 if (!eng) { 3369 ERR_clear_error(); 3370 ENGINE_load_builtin_engines(); 3371 eng = ENGINE_by_id(eng_str(OPENSSL_SSL_CLIENT_ENGINE_AUTO)); 3372 } 3373 if (!eng || !SSL_CTX_set_client_cert_engine(ret, eng)) 3374 ERR_clear_error(); 3375 } 3376 # endif 3377 #endif 3378 /* 3379 * Disable compression by default to prevent CRIME. Applications can 3380 * re-enable compression by configuring 3381 * SSL_CTX_clear_options(ctx, SSL_OP_NO_COMPRESSION); 3382 * or by using the SSL_CONF library. Similarly we also enable TLSv1.3 3383 * middlebox compatibility by default. This may be disabled by default in 3384 * a later OpenSSL version. 3385 */ 3386 ret->options |= SSL_OP_NO_COMPRESSION | SSL_OP_ENABLE_MIDDLEBOX_COMPAT; 3387 3388 ret->ext.status_type = TLSEXT_STATUSTYPE_nothing; 3389 3390 /* 3391 * We cannot usefully set a default max_early_data here (which gets 3392 * propagated in SSL_new(), for the following reason: setting the 3393 * SSL field causes tls_construct_stoc_early_data() to tell the 3394 * client that early data will be accepted when constructing a TLS 1.3 3395 * session ticket, and the client will accordingly send us early data 3396 * when using that ticket (if the client has early data to send). 3397 * However, in order for the early data to actually be consumed by 3398 * the application, the application must also have calls to 3399 * SSL_read_early_data(); otherwise we'll just skip past the early data 3400 * and ignore it. So, since the application must add calls to 3401 * SSL_read_early_data(), we also require them to add 3402 * calls to SSL_CTX_set_max_early_data() in order to use early data, 3403 * eliminating the bandwidth-wasting early data in the case described 3404 * above. 3405 */ 3406 ret->max_early_data = 0; 3407 3408 /* 3409 * Default recv_max_early_data is a fully loaded single record. Could be 3410 * split across multiple records in practice. We set this differently to 3411 * max_early_data so that, in the default case, we do not advertise any 3412 * support for early_data, but if a client were to send us some (e.g. 3413 * because of an old, stale ticket) then we will tolerate it and skip over 3414 * it. 3415 */ 3416 ret->recv_max_early_data = SSL3_RT_MAX_PLAIN_LENGTH; 3417 3418 /* By default we send two session tickets automatically in TLSv1.3 */ 3419 ret->num_tickets = 2; 3420 3421 ssl_ctx_system_config(ret); 3422 3423 return ret; 3424 err: 3425 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); 3426 err2: 3427 SSL_CTX_free(ret); 3428 return NULL; 3429 } 3430 3431 SSL_CTX *SSL_CTX_new(const SSL_METHOD *meth) 3432 { 3433 return SSL_CTX_new_ex(NULL, NULL, meth); 3434 } 3435 3436 int SSL_CTX_up_ref(SSL_CTX *ctx) 3437 { 3438 int i; 3439 3440 if (CRYPTO_UP_REF(&ctx->references, &i, ctx->lock) <= 0) 3441 return 0; 3442 3443 REF_PRINT_COUNT("SSL_CTX", ctx); 3444 REF_ASSERT_ISNT(i < 2); 3445 return ((i > 1) ? 1 : 0); 3446 } 3447 3448 void SSL_CTX_free(SSL_CTX *a) 3449 { 3450 int i; 3451 size_t j; 3452 3453 if (a == NULL) 3454 return; 3455 3456 CRYPTO_DOWN_REF(&a->references, &i, a->lock); 3457 REF_PRINT_COUNT("SSL_CTX", a); 3458 if (i > 0) 3459 return; 3460 REF_ASSERT_ISNT(i < 0); 3461 3462 X509_VERIFY_PARAM_free(a->param); 3463 dane_ctx_final(&a->dane); 3464 3465 /* 3466 * Free internal session cache. However: the remove_cb() may reference 3467 * the ex_data of SSL_CTX, thus the ex_data store can only be removed 3468 * after the sessions were flushed. 3469 * As the ex_data handling routines might also touch the session cache, 3470 * the most secure solution seems to be: empty (flush) the cache, then 3471 * free ex_data, then finally free the cache. 3472 * (See ticket [openssl.org #212].) 3473 */ 3474 if (a->sessions != NULL) 3475 SSL_CTX_flush_sessions(a, 0); 3476 3477 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL_CTX, a, &a->ex_data); 3478 lh_SSL_SESSION_free(a->sessions); 3479 X509_STORE_free(a->cert_store); 3480 #ifndef OPENSSL_NO_CT 3481 CTLOG_STORE_free(a->ctlog_store); 3482 #endif 3483 sk_SSL_CIPHER_free(a->cipher_list); 3484 sk_SSL_CIPHER_free(a->cipher_list_by_id); 3485 sk_SSL_CIPHER_free(a->tls13_ciphersuites); 3486 ssl_cert_free(a->cert); 3487 sk_X509_NAME_pop_free(a->ca_names, X509_NAME_free); 3488 sk_X509_NAME_pop_free(a->client_ca_names, X509_NAME_free); 3489 sk_X509_pop_free(a->extra_certs, X509_free); 3490 a->comp_methods = NULL; 3491 #ifndef OPENSSL_NO_SRTP 3492 sk_SRTP_PROTECTION_PROFILE_free(a->srtp_profiles); 3493 #endif 3494 #ifndef OPENSSL_NO_SRP 3495 ssl_ctx_srp_ctx_free_intern(a); 3496 #endif 3497 #ifndef OPENSSL_NO_ENGINE 3498 tls_engine_finish(a->client_cert_engine); 3499 #endif 3500 3501 OPENSSL_free(a->ext.ecpointformats); 3502 OPENSSL_free(a->ext.supportedgroups); 3503 OPENSSL_free(a->ext.supported_groups_default); 3504 OPENSSL_free(a->ext.alpn); 3505 OPENSSL_secure_free(a->ext.secure); 3506 3507 ssl_evp_md_free(a->md5); 3508 ssl_evp_md_free(a->sha1); 3509 3510 for (j = 0; j < SSL_ENC_NUM_IDX; j++) 3511 ssl_evp_cipher_free(a->ssl_cipher_methods[j]); 3512 for (j = 0; j < SSL_MD_NUM_IDX; j++) 3513 ssl_evp_md_free(a->ssl_digest_methods[j]); 3514 for (j = 0; j < a->group_list_len; j++) { 3515 OPENSSL_free(a->group_list[j].tlsname); 3516 OPENSSL_free(a->group_list[j].realname); 3517 OPENSSL_free(a->group_list[j].algorithm); 3518 } 3519 OPENSSL_free(a->group_list); 3520 3521 OPENSSL_free(a->sigalg_lookup_cache); 3522 3523 CRYPTO_THREAD_lock_free(a->lock); 3524 #ifdef TSAN_REQUIRES_LOCKING 3525 CRYPTO_THREAD_lock_free(a->tsan_lock); 3526 #endif 3527 3528 OPENSSL_free(a->propq); 3529 3530 OPENSSL_free(a); 3531 } 3532 3533 void SSL_CTX_set_default_passwd_cb(SSL_CTX *ctx, pem_password_cb *cb) 3534 { 3535 ctx->default_passwd_callback = cb; 3536 } 3537 3538 void SSL_CTX_set_default_passwd_cb_userdata(SSL_CTX *ctx, void *u) 3539 { 3540 ctx->default_passwd_callback_userdata = u; 3541 } 3542 3543 pem_password_cb *SSL_CTX_get_default_passwd_cb(SSL_CTX *ctx) 3544 { 3545 return ctx->default_passwd_callback; 3546 } 3547 3548 void *SSL_CTX_get_default_passwd_cb_userdata(SSL_CTX *ctx) 3549 { 3550 return ctx->default_passwd_callback_userdata; 3551 } 3552 3553 void SSL_set_default_passwd_cb(SSL *s, pem_password_cb *cb) 3554 { 3555 s->default_passwd_callback = cb; 3556 } 3557 3558 void SSL_set_default_passwd_cb_userdata(SSL *s, void *u) 3559 { 3560 s->default_passwd_callback_userdata = u; 3561 } 3562 3563 pem_password_cb *SSL_get_default_passwd_cb(SSL *s) 3564 { 3565 return s->default_passwd_callback; 3566 } 3567 3568 void *SSL_get_default_passwd_cb_userdata(SSL *s) 3569 { 3570 return s->default_passwd_callback_userdata; 3571 } 3572 3573 void SSL_CTX_set_cert_verify_callback(SSL_CTX *ctx, 3574 int (*cb) (X509_STORE_CTX *, void *), 3575 void *arg) 3576 { 3577 ctx->app_verify_callback = cb; 3578 ctx->app_verify_arg = arg; 3579 } 3580 3581 void SSL_CTX_set_verify(SSL_CTX *ctx, int mode, 3582 int (*cb) (int, X509_STORE_CTX *)) 3583 { 3584 ctx->verify_mode = mode; 3585 ctx->default_verify_callback = cb; 3586 } 3587 3588 void SSL_CTX_set_verify_depth(SSL_CTX *ctx, int depth) 3589 { 3590 X509_VERIFY_PARAM_set_depth(ctx->param, depth); 3591 } 3592 3593 void SSL_CTX_set_cert_cb(SSL_CTX *c, int (*cb) (SSL *ssl, void *arg), void *arg) 3594 { 3595 ssl_cert_set_cert_cb(c->cert, cb, arg); 3596 } 3597 3598 void SSL_set_cert_cb(SSL *s, int (*cb) (SSL *ssl, void *arg), void *arg) 3599 { 3600 ssl_cert_set_cert_cb(s->cert, cb, arg); 3601 } 3602 3603 void ssl_set_masks(SSL *s) 3604 { 3605 CERT *c = s->cert; 3606 uint32_t *pvalid = s->s3.tmp.valid_flags; 3607 int rsa_enc, rsa_sign, dh_tmp, dsa_sign; 3608 unsigned long mask_k, mask_a; 3609 int have_ecc_cert, ecdsa_ok; 3610 3611 if (c == NULL) 3612 return; 3613 3614 dh_tmp = (c->dh_tmp != NULL 3615 || c->dh_tmp_cb != NULL 3616 || c->dh_tmp_auto); 3617 3618 rsa_enc = pvalid[SSL_PKEY_RSA] & CERT_PKEY_VALID; 3619 rsa_sign = pvalid[SSL_PKEY_RSA] & CERT_PKEY_VALID; 3620 dsa_sign = pvalid[SSL_PKEY_DSA_SIGN] & CERT_PKEY_VALID; 3621 have_ecc_cert = pvalid[SSL_PKEY_ECC] & CERT_PKEY_VALID; 3622 mask_k = 0; 3623 mask_a = 0; 3624 3625 OSSL_TRACE4(TLS_CIPHER, "dh_tmp=%d rsa_enc=%d rsa_sign=%d dsa_sign=%d\n", 3626 dh_tmp, rsa_enc, rsa_sign, dsa_sign); 3627 3628 #ifndef OPENSSL_NO_GOST 3629 if (ssl_has_cert(s, SSL_PKEY_GOST12_512)) { 3630 mask_k |= SSL_kGOST | SSL_kGOST18; 3631 mask_a |= SSL_aGOST12; 3632 } 3633 if (ssl_has_cert(s, SSL_PKEY_GOST12_256)) { 3634 mask_k |= SSL_kGOST | SSL_kGOST18; 3635 mask_a |= SSL_aGOST12; 3636 } 3637 if (ssl_has_cert(s, SSL_PKEY_GOST01)) { 3638 mask_k |= SSL_kGOST; 3639 mask_a |= SSL_aGOST01; 3640 } 3641 #endif 3642 3643 if (rsa_enc) 3644 mask_k |= SSL_kRSA; 3645 3646 if (dh_tmp) 3647 mask_k |= SSL_kDHE; 3648 3649 /* 3650 * If we only have an RSA-PSS certificate allow RSA authentication 3651 * if TLS 1.2 and peer supports it. 3652 */ 3653 3654 if (rsa_enc || rsa_sign || (ssl_has_cert(s, SSL_PKEY_RSA_PSS_SIGN) 3655 && pvalid[SSL_PKEY_RSA_PSS_SIGN] & CERT_PKEY_EXPLICIT_SIGN 3656 && TLS1_get_version(s) == TLS1_2_VERSION)) 3657 mask_a |= SSL_aRSA; 3658 3659 if (dsa_sign) { 3660 mask_a |= SSL_aDSS; 3661 } 3662 3663 mask_a |= SSL_aNULL; 3664 3665 /* 3666 * An ECC certificate may be usable for ECDH and/or ECDSA cipher suites 3667 * depending on the key usage extension. 3668 */ 3669 if (have_ecc_cert) { 3670 uint32_t ex_kusage; 3671 ex_kusage = X509_get_key_usage(c->pkeys[SSL_PKEY_ECC].x509); 3672 ecdsa_ok = ex_kusage & X509v3_KU_DIGITAL_SIGNATURE; 3673 if (!(pvalid[SSL_PKEY_ECC] & CERT_PKEY_SIGN)) 3674 ecdsa_ok = 0; 3675 if (ecdsa_ok) 3676 mask_a |= SSL_aECDSA; 3677 } 3678 /* Allow Ed25519 for TLS 1.2 if peer supports it */ 3679 if (!(mask_a & SSL_aECDSA) && ssl_has_cert(s, SSL_PKEY_ED25519) 3680 && pvalid[SSL_PKEY_ED25519] & CERT_PKEY_EXPLICIT_SIGN 3681 && TLS1_get_version(s) == TLS1_2_VERSION) 3682 mask_a |= SSL_aECDSA; 3683 3684 /* Allow Ed448 for TLS 1.2 if peer supports it */ 3685 if (!(mask_a & SSL_aECDSA) && ssl_has_cert(s, SSL_PKEY_ED448) 3686 && pvalid[SSL_PKEY_ED448] & CERT_PKEY_EXPLICIT_SIGN 3687 && TLS1_get_version(s) == TLS1_2_VERSION) 3688 mask_a |= SSL_aECDSA; 3689 3690 mask_k |= SSL_kECDHE; 3691 3692 #ifndef OPENSSL_NO_PSK 3693 mask_k |= SSL_kPSK; 3694 mask_a |= SSL_aPSK; 3695 if (mask_k & SSL_kRSA) 3696 mask_k |= SSL_kRSAPSK; 3697 if (mask_k & SSL_kDHE) 3698 mask_k |= SSL_kDHEPSK; 3699 if (mask_k & SSL_kECDHE) 3700 mask_k |= SSL_kECDHEPSK; 3701 #endif 3702 3703 s->s3.tmp.mask_k = mask_k; 3704 s->s3.tmp.mask_a = mask_a; 3705 } 3706 3707 int ssl_check_srvr_ecc_cert_and_alg(X509 *x, SSL *s) 3708 { 3709 if (s->s3.tmp.new_cipher->algorithm_auth & SSL_aECDSA) { 3710 /* key usage, if present, must allow signing */ 3711 if (!(X509_get_key_usage(x) & X509v3_KU_DIGITAL_SIGNATURE)) { 3712 ERR_raise(ERR_LIB_SSL, SSL_R_ECC_CERT_NOT_FOR_SIGNING); 3713 return 0; 3714 } 3715 } 3716 return 1; /* all checks are ok */ 3717 } 3718 3719 int ssl_get_server_cert_serverinfo(SSL *s, const unsigned char **serverinfo, 3720 size_t *serverinfo_length) 3721 { 3722 CERT_PKEY *cpk = s->s3.tmp.cert; 3723 *serverinfo_length = 0; 3724 3725 if (cpk == NULL || cpk->serverinfo == NULL) 3726 return 0; 3727 3728 *serverinfo = cpk->serverinfo; 3729 *serverinfo_length = cpk->serverinfo_length; 3730 return 1; 3731 } 3732 3733 void ssl_update_cache(SSL *s, int mode) 3734 { 3735 int i; 3736 3737 /* 3738 * If the session_id_length is 0, we are not supposed to cache it, and it 3739 * would be rather hard to do anyway :-) 3740 */ 3741 if (s->session->session_id_length == 0) 3742 return; 3743 3744 /* 3745 * If sid_ctx_length is 0 there is no specific application context 3746 * associated with this session, so when we try to resume it and 3747 * SSL_VERIFY_PEER is requested to verify the client identity, we have no 3748 * indication that this is actually a session for the proper application 3749 * context, and the *handshake* will fail, not just the resumption attempt. 3750 * Do not cache (on the server) these sessions that are not resumable 3751 * (clients can set SSL_VERIFY_PEER without needing a sid_ctx set). 3752 */ 3753 if (s->server && s->session->sid_ctx_length == 0 3754 && (s->verify_mode & SSL_VERIFY_PEER) != 0) 3755 return; 3756 3757 i = s->session_ctx->session_cache_mode; 3758 if ((i & mode) != 0 3759 && (!s->hit || SSL_IS_TLS13(s))) { 3760 /* 3761 * Add the session to the internal cache. In server side TLSv1.3 we 3762 * normally don't do this because by default it's a full stateless ticket 3763 * with only a dummy session id so there is no reason to cache it, 3764 * unless: 3765 * - we are doing early_data, in which case we cache so that we can 3766 * detect replays 3767 * - the application has set a remove_session_cb so needs to know about 3768 * session timeout events 3769 * - SSL_OP_NO_TICKET is set in which case it is a stateful ticket 3770 */ 3771 if ((i & SSL_SESS_CACHE_NO_INTERNAL_STORE) == 0 3772 && (!SSL_IS_TLS13(s) 3773 || !s->server 3774 || (s->max_early_data > 0 3775 && (s->options & SSL_OP_NO_ANTI_REPLAY) == 0) 3776 || s->session_ctx->remove_session_cb != NULL 3777 || (s->options & SSL_OP_NO_TICKET) != 0)) 3778 SSL_CTX_add_session(s->session_ctx, s->session); 3779 3780 /* 3781 * Add the session to the external cache. We do this even in server side 3782 * TLSv1.3 without early data because some applications just want to 3783 * know about the creation of a session and aren't doing a full cache. 3784 */ 3785 if (s->session_ctx->new_session_cb != NULL) { 3786 SSL_SESSION_up_ref(s->session); 3787 if (!s->session_ctx->new_session_cb(s, s->session)) 3788 SSL_SESSION_free(s->session); 3789 } 3790 } 3791 3792 /* auto flush every 255 connections */ 3793 if ((!(i & SSL_SESS_CACHE_NO_AUTO_CLEAR)) && ((i & mode) == mode)) { 3794 TSAN_QUALIFIER int *stat; 3795 3796 if (mode & SSL_SESS_CACHE_CLIENT) 3797 stat = &s->session_ctx->stats.sess_connect_good; 3798 else 3799 stat = &s->session_ctx->stats.sess_accept_good; 3800 if ((ssl_tsan_load(s->session_ctx, stat) & 0xff) == 0xff) 3801 SSL_CTX_flush_sessions(s->session_ctx, (unsigned long)time(NULL)); 3802 } 3803 } 3804 3805 const SSL_METHOD *SSL_CTX_get_ssl_method(const SSL_CTX *ctx) 3806 { 3807 return ctx->method; 3808 } 3809 3810 const SSL_METHOD *SSL_get_ssl_method(const SSL *s) 3811 { 3812 return s->method; 3813 } 3814 3815 int SSL_set_ssl_method(SSL *s, const SSL_METHOD *meth) 3816 { 3817 int ret = 1; 3818 3819 if (s->method != meth) { 3820 const SSL_METHOD *sm = s->method; 3821 int (*hf) (SSL *) = s->handshake_func; 3822 3823 if (sm->version == meth->version) 3824 s->method = meth; 3825 else { 3826 sm->ssl_free(s); 3827 s->method = meth; 3828 ret = s->method->ssl_new(s); 3829 } 3830 3831 if (hf == sm->ssl_connect) 3832 s->handshake_func = meth->ssl_connect; 3833 else if (hf == sm->ssl_accept) 3834 s->handshake_func = meth->ssl_accept; 3835 } 3836 return ret; 3837 } 3838 3839 int SSL_get_error(const SSL *s, int i) 3840 { 3841 int reason; 3842 unsigned long l; 3843 BIO *bio; 3844 3845 if (i > 0) 3846 return SSL_ERROR_NONE; 3847 3848 /* 3849 * Make things return SSL_ERROR_SYSCALL when doing SSL_do_handshake etc, 3850 * where we do encode the error 3851 */ 3852 if ((l = ERR_peek_error()) != 0) { 3853 if (ERR_GET_LIB(l) == ERR_LIB_SYS) 3854 return SSL_ERROR_SYSCALL; 3855 else 3856 return SSL_ERROR_SSL; 3857 } 3858 3859 if (SSL_want_read(s)) { 3860 bio = SSL_get_rbio(s); 3861 if (BIO_should_read(bio)) 3862 return SSL_ERROR_WANT_READ; 3863 else if (BIO_should_write(bio)) 3864 /* 3865 * This one doesn't make too much sense ... We never try to write 3866 * to the rbio, and an application program where rbio and wbio 3867 * are separate couldn't even know what it should wait for. 3868 * However if we ever set s->rwstate incorrectly (so that we have 3869 * SSL_want_read(s) instead of SSL_want_write(s)) and rbio and 3870 * wbio *are* the same, this test works around that bug; so it 3871 * might be safer to keep it. 3872 */ 3873 return SSL_ERROR_WANT_WRITE; 3874 else if (BIO_should_io_special(bio)) { 3875 reason = BIO_get_retry_reason(bio); 3876 if (reason == BIO_RR_CONNECT) 3877 return SSL_ERROR_WANT_CONNECT; 3878 else if (reason == BIO_RR_ACCEPT) 3879 return SSL_ERROR_WANT_ACCEPT; 3880 else 3881 return SSL_ERROR_SYSCALL; /* unknown */ 3882 } 3883 } 3884 3885 if (SSL_want_write(s)) { 3886 /* Access wbio directly - in order to use the buffered bio if present */ 3887 bio = s->wbio; 3888 if (BIO_should_write(bio)) 3889 return SSL_ERROR_WANT_WRITE; 3890 else if (BIO_should_read(bio)) 3891 /* 3892 * See above (SSL_want_read(s) with BIO_should_write(bio)) 3893 */ 3894 return SSL_ERROR_WANT_READ; 3895 else if (BIO_should_io_special(bio)) { 3896 reason = BIO_get_retry_reason(bio); 3897 if (reason == BIO_RR_CONNECT) 3898 return SSL_ERROR_WANT_CONNECT; 3899 else if (reason == BIO_RR_ACCEPT) 3900 return SSL_ERROR_WANT_ACCEPT; 3901 else 3902 return SSL_ERROR_SYSCALL; 3903 } 3904 } 3905 if (SSL_want_x509_lookup(s)) 3906 return SSL_ERROR_WANT_X509_LOOKUP; 3907 if (SSL_want_retry_verify(s)) 3908 return SSL_ERROR_WANT_RETRY_VERIFY; 3909 if (SSL_want_async(s)) 3910 return SSL_ERROR_WANT_ASYNC; 3911 if (SSL_want_async_job(s)) 3912 return SSL_ERROR_WANT_ASYNC_JOB; 3913 if (SSL_want_client_hello_cb(s)) 3914 return SSL_ERROR_WANT_CLIENT_HELLO_CB; 3915 3916 if ((s->shutdown & SSL_RECEIVED_SHUTDOWN) && 3917 (s->s3.warn_alert == SSL_AD_CLOSE_NOTIFY)) 3918 return SSL_ERROR_ZERO_RETURN; 3919 3920 return SSL_ERROR_SYSCALL; 3921 } 3922 3923 static int ssl_do_handshake_intern(void *vargs) 3924 { 3925 struct ssl_async_args *args; 3926 SSL *s; 3927 3928 args = (struct ssl_async_args *)vargs; 3929 s = args->s; 3930 3931 return s->handshake_func(s); 3932 } 3933 3934 int SSL_do_handshake(SSL *s) 3935 { 3936 int ret = 1; 3937 3938 if (s->handshake_func == NULL) { 3939 ERR_raise(ERR_LIB_SSL, SSL_R_CONNECTION_TYPE_NOT_SET); 3940 return -1; 3941 } 3942 3943 ossl_statem_check_finish_init(s, -1); 3944 3945 s->method->ssl_renegotiate_check(s, 0); 3946 3947 if (SSL_in_init(s) || SSL_in_before(s)) { 3948 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) { 3949 struct ssl_async_args args; 3950 3951 memset(&args, 0, sizeof(args)); 3952 args.s = s; 3953 3954 ret = ssl_start_async_job(s, &args, ssl_do_handshake_intern); 3955 } else { 3956 ret = s->handshake_func(s); 3957 } 3958 } 3959 return ret; 3960 } 3961 3962 void SSL_set_accept_state(SSL *s) 3963 { 3964 s->server = 1; 3965 s->shutdown = 0; 3966 ossl_statem_clear(s); 3967 s->handshake_func = s->method->ssl_accept; 3968 clear_ciphers(s); 3969 } 3970 3971 void SSL_set_connect_state(SSL *s) 3972 { 3973 s->server = 0; 3974 s->shutdown = 0; 3975 ossl_statem_clear(s); 3976 s->handshake_func = s->method->ssl_connect; 3977 clear_ciphers(s); 3978 } 3979 3980 int ssl_undefined_function(SSL *s) 3981 { 3982 ERR_raise(ERR_LIB_SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 3983 return 0; 3984 } 3985 3986 int ssl_undefined_void_function(void) 3987 { 3988 ERR_raise(ERR_LIB_SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 3989 return 0; 3990 } 3991 3992 int ssl_undefined_const_function(const SSL *s) 3993 { 3994 return 0; 3995 } 3996 3997 const SSL_METHOD *ssl_bad_method(int ver) 3998 { 3999 ERR_raise(ERR_LIB_SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 4000 return NULL; 4001 } 4002 4003 const char *ssl_protocol_to_string(int version) 4004 { 4005 switch(version) 4006 { 4007 case TLS1_3_VERSION: 4008 return "TLSv1.3"; 4009 4010 case TLS1_2_VERSION: 4011 return "TLSv1.2"; 4012 4013 case TLS1_1_VERSION: 4014 return "TLSv1.1"; 4015 4016 case TLS1_VERSION: 4017 return "TLSv1"; 4018 4019 case SSL3_VERSION: 4020 return "SSLv3"; 4021 4022 case DTLS1_BAD_VER: 4023 return "DTLSv0.9"; 4024 4025 case DTLS1_VERSION: 4026 return "DTLSv1"; 4027 4028 case DTLS1_2_VERSION: 4029 return "DTLSv1.2"; 4030 4031 default: 4032 return "unknown"; 4033 } 4034 } 4035 4036 const char *SSL_get_version(const SSL *s) 4037 { 4038 return ssl_protocol_to_string(s->version); 4039 } 4040 4041 static int dup_ca_names(STACK_OF(X509_NAME) **dst, STACK_OF(X509_NAME) *src) 4042 { 4043 STACK_OF(X509_NAME) *sk; 4044 X509_NAME *xn; 4045 int i; 4046 4047 if (src == NULL) { 4048 *dst = NULL; 4049 return 1; 4050 } 4051 4052 if ((sk = sk_X509_NAME_new_null()) == NULL) 4053 return 0; 4054 for (i = 0; i < sk_X509_NAME_num(src); i++) { 4055 xn = X509_NAME_dup(sk_X509_NAME_value(src, i)); 4056 if (xn == NULL) { 4057 sk_X509_NAME_pop_free(sk, X509_NAME_free); 4058 return 0; 4059 } 4060 if (sk_X509_NAME_insert(sk, xn, i) == 0) { 4061 X509_NAME_free(xn); 4062 sk_X509_NAME_pop_free(sk, X509_NAME_free); 4063 return 0; 4064 } 4065 } 4066 *dst = sk; 4067 4068 return 1; 4069 } 4070 4071 SSL *SSL_dup(SSL *s) 4072 { 4073 SSL *ret; 4074 int i; 4075 4076 /* If we're not quiescent, just up_ref! */ 4077 if (!SSL_in_init(s) || !SSL_in_before(s)) { 4078 CRYPTO_UP_REF(&s->references, &i, s->lock); 4079 return s; 4080 } 4081 4082 /* 4083 * Otherwise, copy configuration state, and session if set. 4084 */ 4085 if ((ret = SSL_new(SSL_get_SSL_CTX(s))) == NULL) 4086 return NULL; 4087 4088 if (s->session != NULL) { 4089 /* 4090 * Arranges to share the same session via up_ref. This "copies" 4091 * session-id, SSL_METHOD, sid_ctx, and 'cert' 4092 */ 4093 if (!SSL_copy_session_id(ret, s)) 4094 goto err; 4095 } else { 4096 /* 4097 * No session has been established yet, so we have to expect that 4098 * s->cert or ret->cert will be changed later -- they should not both 4099 * point to the same object, and thus we can't use 4100 * SSL_copy_session_id. 4101 */ 4102 if (!SSL_set_ssl_method(ret, s->method)) 4103 goto err; 4104 4105 if (s->cert != NULL) { 4106 ssl_cert_free(ret->cert); 4107 ret->cert = ssl_cert_dup(s->cert); 4108 if (ret->cert == NULL) 4109 goto err; 4110 } 4111 4112 if (!SSL_set_session_id_context(ret, s->sid_ctx, 4113 (int)s->sid_ctx_length)) 4114 goto err; 4115 } 4116 4117 if (!ssl_dane_dup(ret, s)) 4118 goto err; 4119 ret->version = s->version; 4120 ret->options = s->options; 4121 ret->min_proto_version = s->min_proto_version; 4122 ret->max_proto_version = s->max_proto_version; 4123 ret->mode = s->mode; 4124 SSL_set_max_cert_list(ret, SSL_get_max_cert_list(s)); 4125 SSL_set_read_ahead(ret, SSL_get_read_ahead(s)); 4126 ret->msg_callback = s->msg_callback; 4127 ret->msg_callback_arg = s->msg_callback_arg; 4128 SSL_set_verify(ret, SSL_get_verify_mode(s), SSL_get_verify_callback(s)); 4129 SSL_set_verify_depth(ret, SSL_get_verify_depth(s)); 4130 ret->generate_session_id = s->generate_session_id; 4131 4132 SSL_set_info_callback(ret, SSL_get_info_callback(s)); 4133 4134 /* copy app data, a little dangerous perhaps */ 4135 if (!CRYPTO_dup_ex_data(CRYPTO_EX_INDEX_SSL, &ret->ex_data, &s->ex_data)) 4136 goto err; 4137 4138 ret->server = s->server; 4139 if (s->handshake_func) { 4140 if (s->server) 4141 SSL_set_accept_state(ret); 4142 else 4143 SSL_set_connect_state(ret); 4144 } 4145 ret->shutdown = s->shutdown; 4146 ret->hit = s->hit; 4147 4148 ret->default_passwd_callback = s->default_passwd_callback; 4149 ret->default_passwd_callback_userdata = s->default_passwd_callback_userdata; 4150 4151 X509_VERIFY_PARAM_inherit(ret->param, s->param); 4152 4153 /* dup the cipher_list and cipher_list_by_id stacks */ 4154 if (s->cipher_list != NULL) { 4155 if ((ret->cipher_list = sk_SSL_CIPHER_dup(s->cipher_list)) == NULL) 4156 goto err; 4157 } 4158 if (s->cipher_list_by_id != NULL) 4159 if ((ret->cipher_list_by_id = sk_SSL_CIPHER_dup(s->cipher_list_by_id)) 4160 == NULL) 4161 goto err; 4162 4163 /* Dup the client_CA list */ 4164 if (!dup_ca_names(&ret->ca_names, s->ca_names) 4165 || !dup_ca_names(&ret->client_ca_names, s->client_ca_names)) 4166 goto err; 4167 4168 return ret; 4169 4170 err: 4171 SSL_free(ret); 4172 return NULL; 4173 } 4174 4175 void ssl_clear_cipher_ctx(SSL *s) 4176 { 4177 if (s->enc_read_ctx != NULL) { 4178 EVP_CIPHER_CTX_free(s->enc_read_ctx); 4179 s->enc_read_ctx = NULL; 4180 } 4181 if (s->enc_write_ctx != NULL) { 4182 EVP_CIPHER_CTX_free(s->enc_write_ctx); 4183 s->enc_write_ctx = NULL; 4184 } 4185 #ifndef OPENSSL_NO_COMP 4186 COMP_CTX_free(s->expand); 4187 s->expand = NULL; 4188 COMP_CTX_free(s->compress); 4189 s->compress = NULL; 4190 #endif 4191 } 4192 4193 X509 *SSL_get_certificate(const SSL *s) 4194 { 4195 if (s->cert != NULL) 4196 return s->cert->key->x509; 4197 else 4198 return NULL; 4199 } 4200 4201 EVP_PKEY *SSL_get_privatekey(const SSL *s) 4202 { 4203 if (s->cert != NULL) 4204 return s->cert->key->privatekey; 4205 else 4206 return NULL; 4207 } 4208 4209 X509 *SSL_CTX_get0_certificate(const SSL_CTX *ctx) 4210 { 4211 if (ctx->cert != NULL) 4212 return ctx->cert->key->x509; 4213 else 4214 return NULL; 4215 } 4216 4217 EVP_PKEY *SSL_CTX_get0_privatekey(const SSL_CTX *ctx) 4218 { 4219 if (ctx->cert != NULL) 4220 return ctx->cert->key->privatekey; 4221 else 4222 return NULL; 4223 } 4224 4225 const SSL_CIPHER *SSL_get_current_cipher(const SSL *s) 4226 { 4227 if ((s->session != NULL) && (s->session->cipher != NULL)) 4228 return s->session->cipher; 4229 return NULL; 4230 } 4231 4232 const SSL_CIPHER *SSL_get_pending_cipher(const SSL *s) 4233 { 4234 return s->s3.tmp.new_cipher; 4235 } 4236 4237 const COMP_METHOD *SSL_get_current_compression(const SSL *s) 4238 { 4239 #ifndef OPENSSL_NO_COMP 4240 return s->compress ? COMP_CTX_get_method(s->compress) : NULL; 4241 #else 4242 return NULL; 4243 #endif 4244 } 4245 4246 const COMP_METHOD *SSL_get_current_expansion(const SSL *s) 4247 { 4248 #ifndef OPENSSL_NO_COMP 4249 return s->expand ? COMP_CTX_get_method(s->expand) : NULL; 4250 #else 4251 return NULL; 4252 #endif 4253 } 4254 4255 int ssl_init_wbio_buffer(SSL *s) 4256 { 4257 BIO *bbio; 4258 4259 if (s->bbio != NULL) { 4260 /* Already buffered. */ 4261 return 1; 4262 } 4263 4264 bbio = BIO_new(BIO_f_buffer()); 4265 if (bbio == NULL || BIO_set_read_buffer_size(bbio, 1) <= 0) { 4266 BIO_free(bbio); 4267 ERR_raise(ERR_LIB_SSL, ERR_R_BUF_LIB); 4268 return 0; 4269 } 4270 s->bbio = bbio; 4271 s->wbio = BIO_push(bbio, s->wbio); 4272 4273 return 1; 4274 } 4275 4276 int ssl_free_wbio_buffer(SSL *s) 4277 { 4278 /* callers ensure s is never null */ 4279 if (s->bbio == NULL) 4280 return 1; 4281 4282 s->wbio = BIO_pop(s->wbio); 4283 BIO_free(s->bbio); 4284 s->bbio = NULL; 4285 4286 return 1; 4287 } 4288 4289 void SSL_CTX_set_quiet_shutdown(SSL_CTX *ctx, int mode) 4290 { 4291 ctx->quiet_shutdown = mode; 4292 } 4293 4294 int SSL_CTX_get_quiet_shutdown(const SSL_CTX *ctx) 4295 { 4296 return ctx->quiet_shutdown; 4297 } 4298 4299 void SSL_set_quiet_shutdown(SSL *s, int mode) 4300 { 4301 s->quiet_shutdown = mode; 4302 } 4303 4304 int SSL_get_quiet_shutdown(const SSL *s) 4305 { 4306 return s->quiet_shutdown; 4307 } 4308 4309 void SSL_set_shutdown(SSL *s, int mode) 4310 { 4311 s->shutdown = mode; 4312 } 4313 4314 int SSL_get_shutdown(const SSL *s) 4315 { 4316 return s->shutdown; 4317 } 4318 4319 int SSL_version(const SSL *s) 4320 { 4321 return s->version; 4322 } 4323 4324 int SSL_client_version(const SSL *s) 4325 { 4326 return s->client_version; 4327 } 4328 4329 SSL_CTX *SSL_get_SSL_CTX(const SSL *ssl) 4330 { 4331 return ssl->ctx; 4332 } 4333 4334 SSL_CTX *SSL_set_SSL_CTX(SSL *ssl, SSL_CTX *ctx) 4335 { 4336 CERT *new_cert; 4337 if (ssl->ctx == ctx) 4338 return ssl->ctx; 4339 if (ctx == NULL) 4340 ctx = ssl->session_ctx; 4341 new_cert = ssl_cert_dup(ctx->cert); 4342 if (new_cert == NULL) { 4343 return NULL; 4344 } 4345 4346 if (!custom_exts_copy_flags(&new_cert->custext, &ssl->cert->custext)) { 4347 ssl_cert_free(new_cert); 4348 return NULL; 4349 } 4350 4351 ssl_cert_free(ssl->cert); 4352 ssl->cert = new_cert; 4353 4354 /* 4355 * Program invariant: |sid_ctx| has fixed size (SSL_MAX_SID_CTX_LENGTH), 4356 * so setter APIs must prevent invalid lengths from entering the system. 4357 */ 4358 if (!ossl_assert(ssl->sid_ctx_length <= sizeof(ssl->sid_ctx))) 4359 return NULL; 4360 4361 /* 4362 * If the session ID context matches that of the parent SSL_CTX, 4363 * inherit it from the new SSL_CTX as well. If however the context does 4364 * not match (i.e., it was set per-ssl with SSL_set_session_id_context), 4365 * leave it unchanged. 4366 */ 4367 if ((ssl->ctx != NULL) && 4368 (ssl->sid_ctx_length == ssl->ctx->sid_ctx_length) && 4369 (memcmp(ssl->sid_ctx, ssl->ctx->sid_ctx, ssl->sid_ctx_length) == 0)) { 4370 ssl->sid_ctx_length = ctx->sid_ctx_length; 4371 memcpy(&ssl->sid_ctx, &ctx->sid_ctx, sizeof(ssl->sid_ctx)); 4372 } 4373 4374 SSL_CTX_up_ref(ctx); 4375 SSL_CTX_free(ssl->ctx); /* decrement reference count */ 4376 ssl->ctx = ctx; 4377 4378 return ssl->ctx; 4379 } 4380 4381 int SSL_CTX_set_default_verify_paths(SSL_CTX *ctx) 4382 { 4383 return X509_STORE_set_default_paths_ex(ctx->cert_store, ctx->libctx, 4384 ctx->propq); 4385 } 4386 4387 int SSL_CTX_set_default_verify_dir(SSL_CTX *ctx) 4388 { 4389 X509_LOOKUP *lookup; 4390 4391 lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_hash_dir()); 4392 if (lookup == NULL) 4393 return 0; 4394 4395 /* We ignore errors, in case the directory doesn't exist */ 4396 ERR_set_mark(); 4397 4398 X509_LOOKUP_add_dir(lookup, NULL, X509_FILETYPE_DEFAULT); 4399 4400 ERR_pop_to_mark(); 4401 4402 return 1; 4403 } 4404 4405 int SSL_CTX_set_default_verify_file(SSL_CTX *ctx) 4406 { 4407 X509_LOOKUP *lookup; 4408 4409 lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_file()); 4410 if (lookup == NULL) 4411 return 0; 4412 4413 /* We ignore errors, in case the file doesn't exist */ 4414 ERR_set_mark(); 4415 4416 X509_LOOKUP_load_file_ex(lookup, NULL, X509_FILETYPE_DEFAULT, ctx->libctx, 4417 ctx->propq); 4418 4419 ERR_pop_to_mark(); 4420 4421 return 1; 4422 } 4423 4424 int SSL_CTX_set_default_verify_store(SSL_CTX *ctx) 4425 { 4426 X509_LOOKUP *lookup; 4427 4428 lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_store()); 4429 if (lookup == NULL) 4430 return 0; 4431 4432 /* We ignore errors, in case the directory doesn't exist */ 4433 ERR_set_mark(); 4434 4435 X509_LOOKUP_add_store_ex(lookup, NULL, ctx->libctx, ctx->propq); 4436 4437 ERR_pop_to_mark(); 4438 4439 return 1; 4440 } 4441 4442 int SSL_CTX_load_verify_file(SSL_CTX *ctx, const char *CAfile) 4443 { 4444 return X509_STORE_load_file_ex(ctx->cert_store, CAfile, ctx->libctx, 4445 ctx->propq); 4446 } 4447 4448 int SSL_CTX_load_verify_dir(SSL_CTX *ctx, const char *CApath) 4449 { 4450 return X509_STORE_load_path(ctx->cert_store, CApath); 4451 } 4452 4453 int SSL_CTX_load_verify_store(SSL_CTX *ctx, const char *CAstore) 4454 { 4455 return X509_STORE_load_store_ex(ctx->cert_store, CAstore, ctx->libctx, 4456 ctx->propq); 4457 } 4458 4459 int SSL_CTX_load_verify_locations(SSL_CTX *ctx, const char *CAfile, 4460 const char *CApath) 4461 { 4462 if (CAfile == NULL && CApath == NULL) 4463 return 0; 4464 if (CAfile != NULL && !SSL_CTX_load_verify_file(ctx, CAfile)) 4465 return 0; 4466 if (CApath != NULL && !SSL_CTX_load_verify_dir(ctx, CApath)) 4467 return 0; 4468 return 1; 4469 } 4470 4471 void SSL_set_info_callback(SSL *ssl, 4472 void (*cb) (const SSL *ssl, int type, int val)) 4473 { 4474 ssl->info_callback = cb; 4475 } 4476 4477 /* 4478 * One compiler (Diab DCC) doesn't like argument names in returned function 4479 * pointer. 4480 */ 4481 void (*SSL_get_info_callback(const SSL *ssl)) (const SSL * /* ssl */ , 4482 int /* type */ , 4483 int /* val */ ) { 4484 return ssl->info_callback; 4485 } 4486 4487 void SSL_set_verify_result(SSL *ssl, long arg) 4488 { 4489 ssl->verify_result = arg; 4490 } 4491 4492 long SSL_get_verify_result(const SSL *ssl) 4493 { 4494 return ssl->verify_result; 4495 } 4496 4497 size_t SSL_get_client_random(const SSL *ssl, unsigned char *out, size_t outlen) 4498 { 4499 if (outlen == 0) 4500 return sizeof(ssl->s3.client_random); 4501 if (outlen > sizeof(ssl->s3.client_random)) 4502 outlen = sizeof(ssl->s3.client_random); 4503 memcpy(out, ssl->s3.client_random, outlen); 4504 return outlen; 4505 } 4506 4507 size_t SSL_get_server_random(const SSL *ssl, unsigned char *out, size_t outlen) 4508 { 4509 if (outlen == 0) 4510 return sizeof(ssl->s3.server_random); 4511 if (outlen > sizeof(ssl->s3.server_random)) 4512 outlen = sizeof(ssl->s3.server_random); 4513 memcpy(out, ssl->s3.server_random, outlen); 4514 return outlen; 4515 } 4516 4517 size_t SSL_SESSION_get_master_key(const SSL_SESSION *session, 4518 unsigned char *out, size_t outlen) 4519 { 4520 if (outlen == 0) 4521 return session->master_key_length; 4522 if (outlen > session->master_key_length) 4523 outlen = session->master_key_length; 4524 memcpy(out, session->master_key, outlen); 4525 return outlen; 4526 } 4527 4528 int SSL_SESSION_set1_master_key(SSL_SESSION *sess, const unsigned char *in, 4529 size_t len) 4530 { 4531 if (len > sizeof(sess->master_key)) 4532 return 0; 4533 4534 memcpy(sess->master_key, in, len); 4535 sess->master_key_length = len; 4536 return 1; 4537 } 4538 4539 4540 int SSL_set_ex_data(SSL *s, int idx, void *arg) 4541 { 4542 return CRYPTO_set_ex_data(&s->ex_data, idx, arg); 4543 } 4544 4545 void *SSL_get_ex_data(const SSL *s, int idx) 4546 { 4547 return CRYPTO_get_ex_data(&s->ex_data, idx); 4548 } 4549 4550 int SSL_CTX_set_ex_data(SSL_CTX *s, int idx, void *arg) 4551 { 4552 return CRYPTO_set_ex_data(&s->ex_data, idx, arg); 4553 } 4554 4555 void *SSL_CTX_get_ex_data(const SSL_CTX *s, int idx) 4556 { 4557 return CRYPTO_get_ex_data(&s->ex_data, idx); 4558 } 4559 4560 X509_STORE *SSL_CTX_get_cert_store(const SSL_CTX *ctx) 4561 { 4562 return ctx->cert_store; 4563 } 4564 4565 void SSL_CTX_set_cert_store(SSL_CTX *ctx, X509_STORE *store) 4566 { 4567 X509_STORE_free(ctx->cert_store); 4568 ctx->cert_store = store; 4569 } 4570 4571 void SSL_CTX_set1_cert_store(SSL_CTX *ctx, X509_STORE *store) 4572 { 4573 if (store != NULL) 4574 X509_STORE_up_ref(store); 4575 SSL_CTX_set_cert_store(ctx, store); 4576 } 4577 4578 int SSL_want(const SSL *s) 4579 { 4580 return s->rwstate; 4581 } 4582 4583 #ifndef OPENSSL_NO_PSK 4584 int SSL_CTX_use_psk_identity_hint(SSL_CTX *ctx, const char *identity_hint) 4585 { 4586 if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) { 4587 ERR_raise(ERR_LIB_SSL, SSL_R_DATA_LENGTH_TOO_LONG); 4588 return 0; 4589 } 4590 OPENSSL_free(ctx->cert->psk_identity_hint); 4591 if (identity_hint != NULL) { 4592 ctx->cert->psk_identity_hint = OPENSSL_strdup(identity_hint); 4593 if (ctx->cert->psk_identity_hint == NULL) 4594 return 0; 4595 } else 4596 ctx->cert->psk_identity_hint = NULL; 4597 return 1; 4598 } 4599 4600 int SSL_use_psk_identity_hint(SSL *s, const char *identity_hint) 4601 { 4602 if (s == NULL) 4603 return 0; 4604 4605 if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) { 4606 ERR_raise(ERR_LIB_SSL, SSL_R_DATA_LENGTH_TOO_LONG); 4607 return 0; 4608 } 4609 OPENSSL_free(s->cert->psk_identity_hint); 4610 if (identity_hint != NULL) { 4611 s->cert->psk_identity_hint = OPENSSL_strdup(identity_hint); 4612 if (s->cert->psk_identity_hint == NULL) 4613 return 0; 4614 } else 4615 s->cert->psk_identity_hint = NULL; 4616 return 1; 4617 } 4618 4619 const char *SSL_get_psk_identity_hint(const SSL *s) 4620 { 4621 if (s == NULL || s->session == NULL) 4622 return NULL; 4623 return s->session->psk_identity_hint; 4624 } 4625 4626 const char *SSL_get_psk_identity(const SSL *s) 4627 { 4628 if (s == NULL || s->session == NULL) 4629 return NULL; 4630 return s->session->psk_identity; 4631 } 4632 4633 void SSL_set_psk_client_callback(SSL *s, SSL_psk_client_cb_func cb) 4634 { 4635 s->psk_client_callback = cb; 4636 } 4637 4638 void SSL_CTX_set_psk_client_callback(SSL_CTX *ctx, SSL_psk_client_cb_func cb) 4639 { 4640 ctx->psk_client_callback = cb; 4641 } 4642 4643 void SSL_set_psk_server_callback(SSL *s, SSL_psk_server_cb_func cb) 4644 { 4645 s->psk_server_callback = cb; 4646 } 4647 4648 void SSL_CTX_set_psk_server_callback(SSL_CTX *ctx, SSL_psk_server_cb_func cb) 4649 { 4650 ctx->psk_server_callback = cb; 4651 } 4652 #endif 4653 4654 void SSL_set_psk_find_session_callback(SSL *s, SSL_psk_find_session_cb_func cb) 4655 { 4656 s->psk_find_session_cb = cb; 4657 } 4658 4659 void SSL_CTX_set_psk_find_session_callback(SSL_CTX *ctx, 4660 SSL_psk_find_session_cb_func cb) 4661 { 4662 ctx->psk_find_session_cb = cb; 4663 } 4664 4665 void SSL_set_psk_use_session_callback(SSL *s, SSL_psk_use_session_cb_func cb) 4666 { 4667 s->psk_use_session_cb = cb; 4668 } 4669 4670 void SSL_CTX_set_psk_use_session_callback(SSL_CTX *ctx, 4671 SSL_psk_use_session_cb_func cb) 4672 { 4673 ctx->psk_use_session_cb = cb; 4674 } 4675 4676 void SSL_CTX_set_msg_callback(SSL_CTX *ctx, 4677 void (*cb) (int write_p, int version, 4678 int content_type, const void *buf, 4679 size_t len, SSL *ssl, void *arg)) 4680 { 4681 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_MSG_CALLBACK, (void (*)(void))cb); 4682 } 4683 4684 void SSL_set_msg_callback(SSL *ssl, 4685 void (*cb) (int write_p, int version, 4686 int content_type, const void *buf, 4687 size_t len, SSL *ssl, void *arg)) 4688 { 4689 SSL_callback_ctrl(ssl, SSL_CTRL_SET_MSG_CALLBACK, (void (*)(void))cb); 4690 } 4691 4692 void SSL_CTX_set_not_resumable_session_callback(SSL_CTX *ctx, 4693 int (*cb) (SSL *ssl, 4694 int 4695 is_forward_secure)) 4696 { 4697 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB, 4698 (void (*)(void))cb); 4699 } 4700 4701 void SSL_set_not_resumable_session_callback(SSL *ssl, 4702 int (*cb) (SSL *ssl, 4703 int is_forward_secure)) 4704 { 4705 SSL_callback_ctrl(ssl, SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB, 4706 (void (*)(void))cb); 4707 } 4708 4709 void SSL_CTX_set_record_padding_callback(SSL_CTX *ctx, 4710 size_t (*cb) (SSL *ssl, int type, 4711 size_t len, void *arg)) 4712 { 4713 ctx->record_padding_cb = cb; 4714 } 4715 4716 void SSL_CTX_set_record_padding_callback_arg(SSL_CTX *ctx, void *arg) 4717 { 4718 ctx->record_padding_arg = arg; 4719 } 4720 4721 void *SSL_CTX_get_record_padding_callback_arg(const SSL_CTX *ctx) 4722 { 4723 return ctx->record_padding_arg; 4724 } 4725 4726 int SSL_CTX_set_block_padding(SSL_CTX *ctx, size_t block_size) 4727 { 4728 /* block size of 0 or 1 is basically no padding */ 4729 if (block_size == 1) 4730 ctx->block_padding = 0; 4731 else if (block_size <= SSL3_RT_MAX_PLAIN_LENGTH) 4732 ctx->block_padding = block_size; 4733 else 4734 return 0; 4735 return 1; 4736 } 4737 4738 int SSL_set_record_padding_callback(SSL *ssl, 4739 size_t (*cb) (SSL *ssl, int type, 4740 size_t len, void *arg)) 4741 { 4742 BIO *b; 4743 4744 b = SSL_get_wbio(ssl); 4745 if (b == NULL || !BIO_get_ktls_send(b)) { 4746 ssl->record_padding_cb = cb; 4747 return 1; 4748 } 4749 return 0; 4750 } 4751 4752 void SSL_set_record_padding_callback_arg(SSL *ssl, void *arg) 4753 { 4754 ssl->record_padding_arg = arg; 4755 } 4756 4757 void *SSL_get_record_padding_callback_arg(const SSL *ssl) 4758 { 4759 return ssl->record_padding_arg; 4760 } 4761 4762 int SSL_set_block_padding(SSL *ssl, size_t block_size) 4763 { 4764 /* block size of 0 or 1 is basically no padding */ 4765 if (block_size == 1) 4766 ssl->block_padding = 0; 4767 else if (block_size <= SSL3_RT_MAX_PLAIN_LENGTH) 4768 ssl->block_padding = block_size; 4769 else 4770 return 0; 4771 return 1; 4772 } 4773 4774 int SSL_set_num_tickets(SSL *s, size_t num_tickets) 4775 { 4776 s->num_tickets = num_tickets; 4777 4778 return 1; 4779 } 4780 4781 size_t SSL_get_num_tickets(const SSL *s) 4782 { 4783 return s->num_tickets; 4784 } 4785 4786 int SSL_CTX_set_num_tickets(SSL_CTX *ctx, size_t num_tickets) 4787 { 4788 ctx->num_tickets = num_tickets; 4789 4790 return 1; 4791 } 4792 4793 size_t SSL_CTX_get_num_tickets(const SSL_CTX *ctx) 4794 { 4795 return ctx->num_tickets; 4796 } 4797 4798 /* 4799 * Allocates new EVP_MD_CTX and sets pointer to it into given pointer 4800 * variable, freeing EVP_MD_CTX previously stored in that variable, if any. 4801 * If EVP_MD pointer is passed, initializes ctx with this |md|. 4802 * Returns the newly allocated ctx; 4803 */ 4804 4805 EVP_MD_CTX *ssl_replace_hash(EVP_MD_CTX **hash, const EVP_MD *md) 4806 { 4807 ssl_clear_hash_ctx(hash); 4808 *hash = EVP_MD_CTX_new(); 4809 if (*hash == NULL || (md && EVP_DigestInit_ex(*hash, md, NULL) <= 0)) { 4810 EVP_MD_CTX_free(*hash); 4811 *hash = NULL; 4812 return NULL; 4813 } 4814 return *hash; 4815 } 4816 4817 void ssl_clear_hash_ctx(EVP_MD_CTX **hash) 4818 { 4819 4820 EVP_MD_CTX_free(*hash); 4821 *hash = NULL; 4822 } 4823 4824 /* Retrieve handshake hashes */ 4825 int ssl_handshake_hash(SSL *s, unsigned char *out, size_t outlen, 4826 size_t *hashlen) 4827 { 4828 EVP_MD_CTX *ctx = NULL; 4829 EVP_MD_CTX *hdgst = s->s3.handshake_dgst; 4830 int hashleni = EVP_MD_CTX_get_size(hdgst); 4831 int ret = 0; 4832 4833 if (hashleni < 0 || (size_t)hashleni > outlen) { 4834 SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); 4835 goto err; 4836 } 4837 4838 ctx = EVP_MD_CTX_new(); 4839 if (ctx == NULL) { 4840 SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); 4841 goto err; 4842 } 4843 4844 if (!EVP_MD_CTX_copy_ex(ctx, hdgst) 4845 || EVP_DigestFinal_ex(ctx, out, NULL) <= 0) { 4846 SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); 4847 goto err; 4848 } 4849 4850 *hashlen = hashleni; 4851 4852 ret = 1; 4853 err: 4854 EVP_MD_CTX_free(ctx); 4855 return ret; 4856 } 4857 4858 int SSL_session_reused(const SSL *s) 4859 { 4860 return s->hit; 4861 } 4862 4863 int SSL_is_server(const SSL *s) 4864 { 4865 return s->server; 4866 } 4867 4868 #ifndef OPENSSL_NO_DEPRECATED_1_1_0 4869 void SSL_set_debug(SSL *s, int debug) 4870 { 4871 /* Old function was do-nothing anyway... */ 4872 (void)s; 4873 (void)debug; 4874 } 4875 #endif 4876 4877 void SSL_set_security_level(SSL *s, int level) 4878 { 4879 s->cert->sec_level = level; 4880 } 4881 4882 int SSL_get_security_level(const SSL *s) 4883 { 4884 return s->cert->sec_level; 4885 } 4886 4887 void SSL_set_security_callback(SSL *s, 4888 int (*cb) (const SSL *s, const SSL_CTX *ctx, 4889 int op, int bits, int nid, 4890 void *other, void *ex)) 4891 { 4892 s->cert->sec_cb = cb; 4893 } 4894 4895 int (*SSL_get_security_callback(const SSL *s)) (const SSL *s, 4896 const SSL_CTX *ctx, int op, 4897 int bits, int nid, void *other, 4898 void *ex) { 4899 return s->cert->sec_cb; 4900 } 4901 4902 void SSL_set0_security_ex_data(SSL *s, void *ex) 4903 { 4904 s->cert->sec_ex = ex; 4905 } 4906 4907 void *SSL_get0_security_ex_data(const SSL *s) 4908 { 4909 return s->cert->sec_ex; 4910 } 4911 4912 void SSL_CTX_set_security_level(SSL_CTX *ctx, int level) 4913 { 4914 ctx->cert->sec_level = level; 4915 } 4916 4917 int SSL_CTX_get_security_level(const SSL_CTX *ctx) 4918 { 4919 return ctx->cert->sec_level; 4920 } 4921 4922 void SSL_CTX_set_security_callback(SSL_CTX *ctx, 4923 int (*cb) (const SSL *s, const SSL_CTX *ctx, 4924 int op, int bits, int nid, 4925 void *other, void *ex)) 4926 { 4927 ctx->cert->sec_cb = cb; 4928 } 4929 4930 int (*SSL_CTX_get_security_callback(const SSL_CTX *ctx)) (const SSL *s, 4931 const SSL_CTX *ctx, 4932 int op, int bits, 4933 int nid, 4934 void *other, 4935 void *ex) { 4936 return ctx->cert->sec_cb; 4937 } 4938 4939 void SSL_CTX_set0_security_ex_data(SSL_CTX *ctx, void *ex) 4940 { 4941 ctx->cert->sec_ex = ex; 4942 } 4943 4944 void *SSL_CTX_get0_security_ex_data(const SSL_CTX *ctx) 4945 { 4946 return ctx->cert->sec_ex; 4947 } 4948 4949 uint64_t SSL_CTX_get_options(const SSL_CTX *ctx) 4950 { 4951 return ctx->options; 4952 } 4953 4954 uint64_t SSL_get_options(const SSL *s) 4955 { 4956 return s->options; 4957 } 4958 4959 uint64_t SSL_CTX_set_options(SSL_CTX *ctx, uint64_t op) 4960 { 4961 return ctx->options |= op; 4962 } 4963 4964 uint64_t SSL_set_options(SSL *s, uint64_t op) 4965 { 4966 return s->options |= op; 4967 } 4968 4969 uint64_t SSL_CTX_clear_options(SSL_CTX *ctx, uint64_t op) 4970 { 4971 return ctx->options &= ~op; 4972 } 4973 4974 uint64_t SSL_clear_options(SSL *s, uint64_t op) 4975 { 4976 return s->options &= ~op; 4977 } 4978 4979 STACK_OF(X509) *SSL_get0_verified_chain(const SSL *s) 4980 { 4981 return s->verified_chain; 4982 } 4983 4984 IMPLEMENT_OBJ_BSEARCH_GLOBAL_CMP_FN(SSL_CIPHER, SSL_CIPHER, ssl_cipher_id); 4985 4986 #ifndef OPENSSL_NO_CT 4987 4988 /* 4989 * Moves SCTs from the |src| stack to the |dst| stack. 4990 * The source of each SCT will be set to |origin|. 4991 * If |dst| points to a NULL pointer, a new stack will be created and owned by 4992 * the caller. 4993 * Returns the number of SCTs moved, or a negative integer if an error occurs. 4994 * The |dst| stack is created and possibly partially populated even in case 4995 * of error, likewise the |src| stack may be left in an intermediate state. 4996 */ 4997 static int ct_move_scts(STACK_OF(SCT) **dst, STACK_OF(SCT) *src, 4998 sct_source_t origin) 4999 { 5000 int scts_moved = 0; 5001 SCT *sct = NULL; 5002 5003 if (*dst == NULL) { 5004 *dst = sk_SCT_new_null(); 5005 if (*dst == NULL) { 5006 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); 5007 goto err; 5008 } 5009 } 5010 5011 while ((sct = sk_SCT_pop(src)) != NULL) { 5012 if (SCT_set_source(sct, origin) != 1) 5013 goto err; 5014 5015 if (!sk_SCT_push(*dst, sct)) 5016 goto err; 5017 scts_moved += 1; 5018 } 5019 5020 return scts_moved; 5021 err: 5022 SCT_free(sct); 5023 return -1; 5024 } 5025 5026 /* 5027 * Look for data collected during ServerHello and parse if found. 5028 * Returns the number of SCTs extracted. 5029 */ 5030 static int ct_extract_tls_extension_scts(SSL *s) 5031 { 5032 int scts_extracted = 0; 5033 5034 if (s->ext.scts != NULL) { 5035 const unsigned char *p = s->ext.scts; 5036 STACK_OF(SCT) *scts = o2i_SCT_LIST(NULL, &p, s->ext.scts_len); 5037 5038 scts_extracted = ct_move_scts(&s->scts, scts, SCT_SOURCE_TLS_EXTENSION); 5039 5040 SCT_LIST_free(scts); 5041 } 5042 5043 return scts_extracted; 5044 } 5045 5046 /* 5047 * Checks for an OCSP response and then attempts to extract any SCTs found if it 5048 * contains an SCT X509 extension. They will be stored in |s->scts|. 5049 * Returns: 5050 * - The number of SCTs extracted, assuming an OCSP response exists. 5051 * - 0 if no OCSP response exists or it contains no SCTs. 5052 * - A negative integer if an error occurs. 5053 */ 5054 static int ct_extract_ocsp_response_scts(SSL *s) 5055 { 5056 # ifndef OPENSSL_NO_OCSP 5057 int scts_extracted = 0; 5058 const unsigned char *p; 5059 OCSP_BASICRESP *br = NULL; 5060 OCSP_RESPONSE *rsp = NULL; 5061 STACK_OF(SCT) *scts = NULL; 5062 int i; 5063 5064 if (s->ext.ocsp.resp == NULL || s->ext.ocsp.resp_len == 0) 5065 goto err; 5066 5067 p = s->ext.ocsp.resp; 5068 rsp = d2i_OCSP_RESPONSE(NULL, &p, (int)s->ext.ocsp.resp_len); 5069 if (rsp == NULL) 5070 goto err; 5071 5072 br = OCSP_response_get1_basic(rsp); 5073 if (br == NULL) 5074 goto err; 5075 5076 for (i = 0; i < OCSP_resp_count(br); ++i) { 5077 OCSP_SINGLERESP *single = OCSP_resp_get0(br, i); 5078 5079 if (single == NULL) 5080 continue; 5081 5082 scts = 5083 OCSP_SINGLERESP_get1_ext_d2i(single, NID_ct_cert_scts, NULL, NULL); 5084 scts_extracted = 5085 ct_move_scts(&s->scts, scts, SCT_SOURCE_OCSP_STAPLED_RESPONSE); 5086 if (scts_extracted < 0) 5087 goto err; 5088 } 5089 err: 5090 SCT_LIST_free(scts); 5091 OCSP_BASICRESP_free(br); 5092 OCSP_RESPONSE_free(rsp); 5093 return scts_extracted; 5094 # else 5095 /* Behave as if no OCSP response exists */ 5096 return 0; 5097 # endif 5098 } 5099 5100 /* 5101 * Attempts to extract SCTs from the peer certificate. 5102 * Return the number of SCTs extracted, or a negative integer if an error 5103 * occurs. 5104 */ 5105 static int ct_extract_x509v3_extension_scts(SSL *s) 5106 { 5107 int scts_extracted = 0; 5108 X509 *cert = s->session != NULL ? s->session->peer : NULL; 5109 5110 if (cert != NULL) { 5111 STACK_OF(SCT) *scts = 5112 X509_get_ext_d2i(cert, NID_ct_precert_scts, NULL, NULL); 5113 5114 scts_extracted = 5115 ct_move_scts(&s->scts, scts, SCT_SOURCE_X509V3_EXTENSION); 5116 5117 SCT_LIST_free(scts); 5118 } 5119 5120 return scts_extracted; 5121 } 5122 5123 /* 5124 * Attempts to find all received SCTs by checking TLS extensions, the OCSP 5125 * response (if it exists) and X509v3 extensions in the certificate. 5126 * Returns NULL if an error occurs. 5127 */ 5128 const STACK_OF(SCT) *SSL_get0_peer_scts(SSL *s) 5129 { 5130 if (!s->scts_parsed) { 5131 if (ct_extract_tls_extension_scts(s) < 0 || 5132 ct_extract_ocsp_response_scts(s) < 0 || 5133 ct_extract_x509v3_extension_scts(s) < 0) 5134 goto err; 5135 5136 s->scts_parsed = 1; 5137 } 5138 return s->scts; 5139 err: 5140 return NULL; 5141 } 5142 5143 static int ct_permissive(const CT_POLICY_EVAL_CTX * ctx, 5144 const STACK_OF(SCT) *scts, void *unused_arg) 5145 { 5146 return 1; 5147 } 5148 5149 static int ct_strict(const CT_POLICY_EVAL_CTX * ctx, 5150 const STACK_OF(SCT) *scts, void *unused_arg) 5151 { 5152 int count = scts != NULL ? sk_SCT_num(scts) : 0; 5153 int i; 5154 5155 for (i = 0; i < count; ++i) { 5156 SCT *sct = sk_SCT_value(scts, i); 5157 int status = SCT_get_validation_status(sct); 5158 5159 if (status == SCT_VALIDATION_STATUS_VALID) 5160 return 1; 5161 } 5162 ERR_raise(ERR_LIB_SSL, SSL_R_NO_VALID_SCTS); 5163 return 0; 5164 } 5165 5166 int SSL_set_ct_validation_callback(SSL *s, ssl_ct_validation_cb callback, 5167 void *arg) 5168 { 5169 /* 5170 * Since code exists that uses the custom extension handler for CT, look 5171 * for this and throw an error if they have already registered to use CT. 5172 */ 5173 if (callback != NULL && SSL_CTX_has_client_custom_ext(s->ctx, 5174 TLSEXT_TYPE_signed_certificate_timestamp)) 5175 { 5176 ERR_raise(ERR_LIB_SSL, SSL_R_CUSTOM_EXT_HANDLER_ALREADY_INSTALLED); 5177 return 0; 5178 } 5179 5180 if (callback != NULL) { 5181 /* 5182 * If we are validating CT, then we MUST accept SCTs served via OCSP 5183 */ 5184 if (!SSL_set_tlsext_status_type(s, TLSEXT_STATUSTYPE_ocsp)) 5185 return 0; 5186 } 5187 5188 s->ct_validation_callback = callback; 5189 s->ct_validation_callback_arg = arg; 5190 5191 return 1; 5192 } 5193 5194 int SSL_CTX_set_ct_validation_callback(SSL_CTX *ctx, 5195 ssl_ct_validation_cb callback, void *arg) 5196 { 5197 /* 5198 * Since code exists that uses the custom extension handler for CT, look for 5199 * this and throw an error if they have already registered to use CT. 5200 */ 5201 if (callback != NULL && SSL_CTX_has_client_custom_ext(ctx, 5202 TLSEXT_TYPE_signed_certificate_timestamp)) 5203 { 5204 ERR_raise(ERR_LIB_SSL, SSL_R_CUSTOM_EXT_HANDLER_ALREADY_INSTALLED); 5205 return 0; 5206 } 5207 5208 ctx->ct_validation_callback = callback; 5209 ctx->ct_validation_callback_arg = arg; 5210 return 1; 5211 } 5212 5213 int SSL_ct_is_enabled(const SSL *s) 5214 { 5215 return s->ct_validation_callback != NULL; 5216 } 5217 5218 int SSL_CTX_ct_is_enabled(const SSL_CTX *ctx) 5219 { 5220 return ctx->ct_validation_callback != NULL; 5221 } 5222 5223 int ssl_validate_ct(SSL *s) 5224 { 5225 int ret = 0; 5226 X509 *cert = s->session != NULL ? s->session->peer : NULL; 5227 X509 *issuer; 5228 SSL_DANE *dane = &s->dane; 5229 CT_POLICY_EVAL_CTX *ctx = NULL; 5230 const STACK_OF(SCT) *scts; 5231 5232 /* 5233 * If no callback is set, the peer is anonymous, or its chain is invalid, 5234 * skip SCT validation - just return success. Applications that continue 5235 * handshakes without certificates, with unverified chains, or pinned leaf 5236 * certificates are outside the scope of the WebPKI and CT. 5237 * 5238 * The above exclusions notwithstanding the vast majority of peers will 5239 * have rather ordinary certificate chains validated by typical 5240 * applications that perform certificate verification and therefore will 5241 * process SCTs when enabled. 5242 */ 5243 if (s->ct_validation_callback == NULL || cert == NULL || 5244 s->verify_result != X509_V_OK || 5245 s->verified_chain == NULL || sk_X509_num(s->verified_chain) <= 1) 5246 return 1; 5247 5248 /* 5249 * CT not applicable for chains validated via DANE-TA(2) or DANE-EE(3) 5250 * trust-anchors. See https://tools.ietf.org/html/rfc7671#section-4.2 5251 */ 5252 if (DANETLS_ENABLED(dane) && dane->mtlsa != NULL) { 5253 switch (dane->mtlsa->usage) { 5254 case DANETLS_USAGE_DANE_TA: 5255 case DANETLS_USAGE_DANE_EE: 5256 return 1; 5257 } 5258 } 5259 5260 ctx = CT_POLICY_EVAL_CTX_new_ex(s->ctx->libctx, s->ctx->propq); 5261 if (ctx == NULL) { 5262 SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_MALLOC_FAILURE); 5263 goto end; 5264 } 5265 5266 issuer = sk_X509_value(s->verified_chain, 1); 5267 CT_POLICY_EVAL_CTX_set1_cert(ctx, cert); 5268 CT_POLICY_EVAL_CTX_set1_issuer(ctx, issuer); 5269 CT_POLICY_EVAL_CTX_set_shared_CTLOG_STORE(ctx, s->ctx->ctlog_store); 5270 CT_POLICY_EVAL_CTX_set_time( 5271 ctx, (uint64_t)SSL_SESSION_get_time(SSL_get0_session(s)) * 1000); 5272 5273 scts = SSL_get0_peer_scts(s); 5274 5275 /* 5276 * This function returns success (> 0) only when all the SCTs are valid, 0 5277 * when some are invalid, and < 0 on various internal errors (out of 5278 * memory, etc.). Having some, or even all, invalid SCTs is not sufficient 5279 * reason to abort the handshake, that decision is up to the callback. 5280 * Therefore, we error out only in the unexpected case that the return 5281 * value is negative. 5282 * 5283 * XXX: One might well argue that the return value of this function is an 5284 * unfortunate design choice. Its job is only to determine the validation 5285 * status of each of the provided SCTs. So long as it correctly separates 5286 * the wheat from the chaff it should return success. Failure in this case 5287 * ought to correspond to an inability to carry out its duties. 5288 */ 5289 if (SCT_LIST_validate(scts, ctx) < 0) { 5290 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_SCT_VERIFICATION_FAILED); 5291 goto end; 5292 } 5293 5294 ret = s->ct_validation_callback(ctx, scts, s->ct_validation_callback_arg); 5295 if (ret < 0) 5296 ret = 0; /* This function returns 0 on failure */ 5297 if (!ret) 5298 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_CALLBACK_FAILED); 5299 5300 end: 5301 CT_POLICY_EVAL_CTX_free(ctx); 5302 /* 5303 * With SSL_VERIFY_NONE the session may be cached and re-used despite a 5304 * failure return code here. Also the application may wish the complete 5305 * the handshake, and then disconnect cleanly at a higher layer, after 5306 * checking the verification status of the completed connection. 5307 * 5308 * We therefore force a certificate verification failure which will be 5309 * visible via SSL_get_verify_result() and cached as part of any resumed 5310 * session. 5311 * 5312 * Note: the permissive callback is for information gathering only, always 5313 * returns success, and does not affect verification status. Only the 5314 * strict callback or a custom application-specified callback can trigger 5315 * connection failure or record a verification error. 5316 */ 5317 if (ret <= 0) 5318 s->verify_result = X509_V_ERR_NO_VALID_SCTS; 5319 return ret; 5320 } 5321 5322 int SSL_CTX_enable_ct(SSL_CTX *ctx, int validation_mode) 5323 { 5324 switch (validation_mode) { 5325 default: 5326 ERR_raise(ERR_LIB_SSL, SSL_R_INVALID_CT_VALIDATION_TYPE); 5327 return 0; 5328 case SSL_CT_VALIDATION_PERMISSIVE: 5329 return SSL_CTX_set_ct_validation_callback(ctx, ct_permissive, NULL); 5330 case SSL_CT_VALIDATION_STRICT: 5331 return SSL_CTX_set_ct_validation_callback(ctx, ct_strict, NULL); 5332 } 5333 } 5334 5335 int SSL_enable_ct(SSL *s, int validation_mode) 5336 { 5337 switch (validation_mode) { 5338 default: 5339 ERR_raise(ERR_LIB_SSL, SSL_R_INVALID_CT_VALIDATION_TYPE); 5340 return 0; 5341 case SSL_CT_VALIDATION_PERMISSIVE: 5342 return SSL_set_ct_validation_callback(s, ct_permissive, NULL); 5343 case SSL_CT_VALIDATION_STRICT: 5344 return SSL_set_ct_validation_callback(s, ct_strict, NULL); 5345 } 5346 } 5347 5348 int SSL_CTX_set_default_ctlog_list_file(SSL_CTX *ctx) 5349 { 5350 return CTLOG_STORE_load_default_file(ctx->ctlog_store); 5351 } 5352 5353 int SSL_CTX_set_ctlog_list_file(SSL_CTX *ctx, const char *path) 5354 { 5355 return CTLOG_STORE_load_file(ctx->ctlog_store, path); 5356 } 5357 5358 void SSL_CTX_set0_ctlog_store(SSL_CTX *ctx, CTLOG_STORE * logs) 5359 { 5360 CTLOG_STORE_free(ctx->ctlog_store); 5361 ctx->ctlog_store = logs; 5362 } 5363 5364 const CTLOG_STORE *SSL_CTX_get0_ctlog_store(const SSL_CTX *ctx) 5365 { 5366 return ctx->ctlog_store; 5367 } 5368 5369 #endif /* OPENSSL_NO_CT */ 5370 5371 void SSL_CTX_set_client_hello_cb(SSL_CTX *c, SSL_client_hello_cb_fn cb, 5372 void *arg) 5373 { 5374 c->client_hello_cb = cb; 5375 c->client_hello_cb_arg = arg; 5376 } 5377 5378 int SSL_client_hello_isv2(SSL *s) 5379 { 5380 if (s->clienthello == NULL) 5381 return 0; 5382 return s->clienthello->isv2; 5383 } 5384 5385 unsigned int SSL_client_hello_get0_legacy_version(SSL *s) 5386 { 5387 if (s->clienthello == NULL) 5388 return 0; 5389 return s->clienthello->legacy_version; 5390 } 5391 5392 size_t SSL_client_hello_get0_random(SSL *s, const unsigned char **out) 5393 { 5394 if (s->clienthello == NULL) 5395 return 0; 5396 if (out != NULL) 5397 *out = s->clienthello->random; 5398 return SSL3_RANDOM_SIZE; 5399 } 5400 5401 size_t SSL_client_hello_get0_session_id(SSL *s, const unsigned char **out) 5402 { 5403 if (s->clienthello == NULL) 5404 return 0; 5405 if (out != NULL) 5406 *out = s->clienthello->session_id; 5407 return s->clienthello->session_id_len; 5408 } 5409 5410 size_t SSL_client_hello_get0_ciphers(SSL *s, const unsigned char **out) 5411 { 5412 if (s->clienthello == NULL) 5413 return 0; 5414 if (out != NULL) 5415 *out = PACKET_data(&s->clienthello->ciphersuites); 5416 return PACKET_remaining(&s->clienthello->ciphersuites); 5417 } 5418 5419 size_t SSL_client_hello_get0_compression_methods(SSL *s, const unsigned char **out) 5420 { 5421 if (s->clienthello == NULL) 5422 return 0; 5423 if (out != NULL) 5424 *out = s->clienthello->compressions; 5425 return s->clienthello->compressions_len; 5426 } 5427 5428 int SSL_client_hello_get1_extensions_present(SSL *s, int **out, size_t *outlen) 5429 { 5430 RAW_EXTENSION *ext; 5431 int *present; 5432 size_t num = 0, i; 5433 5434 if (s->clienthello == NULL || out == NULL || outlen == NULL) 5435 return 0; 5436 for (i = 0; i < s->clienthello->pre_proc_exts_len; i++) { 5437 ext = s->clienthello->pre_proc_exts + i; 5438 if (ext->present) 5439 num++; 5440 } 5441 if (num == 0) { 5442 *out = NULL; 5443 *outlen = 0; 5444 return 1; 5445 } 5446 if ((present = OPENSSL_malloc(sizeof(*present) * num)) == NULL) { 5447 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); 5448 return 0; 5449 } 5450 for (i = 0; i < s->clienthello->pre_proc_exts_len; i++) { 5451 ext = s->clienthello->pre_proc_exts + i; 5452 if (ext->present) { 5453 if (ext->received_order >= num) 5454 goto err; 5455 present[ext->received_order] = ext->type; 5456 } 5457 } 5458 *out = present; 5459 *outlen = num; 5460 return 1; 5461 err: 5462 OPENSSL_free(present); 5463 return 0; 5464 } 5465 5466 int SSL_client_hello_get0_ext(SSL *s, unsigned int type, const unsigned char **out, 5467 size_t *outlen) 5468 { 5469 size_t i; 5470 RAW_EXTENSION *r; 5471 5472 if (s->clienthello == NULL) 5473 return 0; 5474 for (i = 0; i < s->clienthello->pre_proc_exts_len; ++i) { 5475 r = s->clienthello->pre_proc_exts + i; 5476 if (r->present && r->type == type) { 5477 if (out != NULL) 5478 *out = PACKET_data(&r->data); 5479 if (outlen != NULL) 5480 *outlen = PACKET_remaining(&r->data); 5481 return 1; 5482 } 5483 } 5484 return 0; 5485 } 5486 5487 int SSL_free_buffers(SSL *ssl) 5488 { 5489 RECORD_LAYER *rl = &ssl->rlayer; 5490 5491 if (RECORD_LAYER_read_pending(rl) || RECORD_LAYER_write_pending(rl)) 5492 return 0; 5493 5494 RECORD_LAYER_release(rl); 5495 return 1; 5496 } 5497 5498 int SSL_alloc_buffers(SSL *ssl) 5499 { 5500 return ssl3_setup_buffers(ssl); 5501 } 5502 5503 void SSL_CTX_set_keylog_callback(SSL_CTX *ctx, SSL_CTX_keylog_cb_func cb) 5504 { 5505 ctx->keylog_callback = cb; 5506 } 5507 5508 SSL_CTX_keylog_cb_func SSL_CTX_get_keylog_callback(const SSL_CTX *ctx) 5509 { 5510 return ctx->keylog_callback; 5511 } 5512 5513 static int nss_keylog_int(const char *prefix, 5514 SSL *ssl, 5515 const uint8_t *parameter_1, 5516 size_t parameter_1_len, 5517 const uint8_t *parameter_2, 5518 size_t parameter_2_len) 5519 { 5520 char *out = NULL; 5521 char *cursor = NULL; 5522 size_t out_len = 0; 5523 size_t i; 5524 size_t prefix_len; 5525 5526 if (ssl->ctx->keylog_callback == NULL) 5527 return 1; 5528 5529 /* 5530 * Our output buffer will contain the following strings, rendered with 5531 * space characters in between, terminated by a NULL character: first the 5532 * prefix, then the first parameter, then the second parameter. The 5533 * meaning of each parameter depends on the specific key material being 5534 * logged. Note that the first and second parameters are encoded in 5535 * hexadecimal, so we need a buffer that is twice their lengths. 5536 */ 5537 prefix_len = strlen(prefix); 5538 out_len = prefix_len + (2 * parameter_1_len) + (2 * parameter_2_len) + 3; 5539 if ((out = cursor = OPENSSL_malloc(out_len)) == NULL) { 5540 SSLfatal(ssl, SSL_AD_INTERNAL_ERROR, ERR_R_MALLOC_FAILURE); 5541 return 0; 5542 } 5543 5544 strcpy(cursor, prefix); 5545 cursor += prefix_len; 5546 *cursor++ = ' '; 5547 5548 for (i = 0; i < parameter_1_len; i++) { 5549 sprintf(cursor, "%02x", parameter_1[i]); 5550 cursor += 2; 5551 } 5552 *cursor++ = ' '; 5553 5554 for (i = 0; i < parameter_2_len; i++) { 5555 sprintf(cursor, "%02x", parameter_2[i]); 5556 cursor += 2; 5557 } 5558 *cursor = '\0'; 5559 5560 ssl->ctx->keylog_callback(ssl, (const char *)out); 5561 OPENSSL_clear_free(out, out_len); 5562 return 1; 5563 5564 } 5565 5566 int ssl_log_rsa_client_key_exchange(SSL *ssl, 5567 const uint8_t *encrypted_premaster, 5568 size_t encrypted_premaster_len, 5569 const uint8_t *premaster, 5570 size_t premaster_len) 5571 { 5572 if (encrypted_premaster_len < 8) { 5573 SSLfatal(ssl, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); 5574 return 0; 5575 } 5576 5577 /* We only want the first 8 bytes of the encrypted premaster as a tag. */ 5578 return nss_keylog_int("RSA", 5579 ssl, 5580 encrypted_premaster, 5581 8, 5582 premaster, 5583 premaster_len); 5584 } 5585 5586 int ssl_log_secret(SSL *ssl, 5587 const char *label, 5588 const uint8_t *secret, 5589 size_t secret_len) 5590 { 5591 return nss_keylog_int(label, 5592 ssl, 5593 ssl->s3.client_random, 5594 SSL3_RANDOM_SIZE, 5595 secret, 5596 secret_len); 5597 } 5598 5599 #define SSLV2_CIPHER_LEN 3 5600 5601 int ssl_cache_cipherlist(SSL *s, PACKET *cipher_suites, int sslv2format) 5602 { 5603 int n; 5604 5605 n = sslv2format ? SSLV2_CIPHER_LEN : TLS_CIPHER_LEN; 5606 5607 if (PACKET_remaining(cipher_suites) == 0) { 5608 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_NO_CIPHERS_SPECIFIED); 5609 return 0; 5610 } 5611 5612 if (PACKET_remaining(cipher_suites) % n != 0) { 5613 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST); 5614 return 0; 5615 } 5616 5617 OPENSSL_free(s->s3.tmp.ciphers_raw); 5618 s->s3.tmp.ciphers_raw = NULL; 5619 s->s3.tmp.ciphers_rawlen = 0; 5620 5621 if (sslv2format) { 5622 size_t numciphers = PACKET_remaining(cipher_suites) / n; 5623 PACKET sslv2ciphers = *cipher_suites; 5624 unsigned int leadbyte; 5625 unsigned char *raw; 5626 5627 /* 5628 * We store the raw ciphers list in SSLv3+ format so we need to do some 5629 * preprocessing to convert the list first. If there are any SSLv2 only 5630 * ciphersuites with a non-zero leading byte then we are going to 5631 * slightly over allocate because we won't store those. But that isn't a 5632 * problem. 5633 */ 5634 raw = OPENSSL_malloc(numciphers * TLS_CIPHER_LEN); 5635 s->s3.tmp.ciphers_raw = raw; 5636 if (raw == NULL) { 5637 SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_MALLOC_FAILURE); 5638 return 0; 5639 } 5640 for (s->s3.tmp.ciphers_rawlen = 0; 5641 PACKET_remaining(&sslv2ciphers) > 0; 5642 raw += TLS_CIPHER_LEN) { 5643 if (!PACKET_get_1(&sslv2ciphers, &leadbyte) 5644 || (leadbyte == 0 5645 && !PACKET_copy_bytes(&sslv2ciphers, raw, 5646 TLS_CIPHER_LEN)) 5647 || (leadbyte != 0 5648 && !PACKET_forward(&sslv2ciphers, TLS_CIPHER_LEN))) { 5649 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_R_BAD_PACKET); 5650 OPENSSL_free(s->s3.tmp.ciphers_raw); 5651 s->s3.tmp.ciphers_raw = NULL; 5652 s->s3.tmp.ciphers_rawlen = 0; 5653 return 0; 5654 } 5655 if (leadbyte == 0) 5656 s->s3.tmp.ciphers_rawlen += TLS_CIPHER_LEN; 5657 } 5658 } else if (!PACKET_memdup(cipher_suites, &s->s3.tmp.ciphers_raw, 5659 &s->s3.tmp.ciphers_rawlen)) { 5660 SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); 5661 return 0; 5662 } 5663 return 1; 5664 } 5665 5666 int SSL_bytes_to_cipher_list(SSL *s, const unsigned char *bytes, size_t len, 5667 int isv2format, STACK_OF(SSL_CIPHER) **sk, 5668 STACK_OF(SSL_CIPHER) **scsvs) 5669 { 5670 PACKET pkt; 5671 5672 if (!PACKET_buf_init(&pkt, bytes, len)) 5673 return 0; 5674 return bytes_to_cipher_list(s, &pkt, sk, scsvs, isv2format, 0); 5675 } 5676 5677 int bytes_to_cipher_list(SSL *s, PACKET *cipher_suites, 5678 STACK_OF(SSL_CIPHER) **skp, 5679 STACK_OF(SSL_CIPHER) **scsvs_out, 5680 int sslv2format, int fatal) 5681 { 5682 const SSL_CIPHER *c; 5683 STACK_OF(SSL_CIPHER) *sk = NULL; 5684 STACK_OF(SSL_CIPHER) *scsvs = NULL; 5685 int n; 5686 /* 3 = SSLV2_CIPHER_LEN > TLS_CIPHER_LEN = 2. */ 5687 unsigned char cipher[SSLV2_CIPHER_LEN]; 5688 5689 n = sslv2format ? SSLV2_CIPHER_LEN : TLS_CIPHER_LEN; 5690 5691 if (PACKET_remaining(cipher_suites) == 0) { 5692 if (fatal) 5693 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_NO_CIPHERS_SPECIFIED); 5694 else 5695 ERR_raise(ERR_LIB_SSL, SSL_R_NO_CIPHERS_SPECIFIED); 5696 return 0; 5697 } 5698 5699 if (PACKET_remaining(cipher_suites) % n != 0) { 5700 if (fatal) 5701 SSLfatal(s, SSL_AD_DECODE_ERROR, 5702 SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST); 5703 else 5704 ERR_raise(ERR_LIB_SSL, SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST); 5705 return 0; 5706 } 5707 5708 sk = sk_SSL_CIPHER_new_null(); 5709 scsvs = sk_SSL_CIPHER_new_null(); 5710 if (sk == NULL || scsvs == NULL) { 5711 if (fatal) 5712 SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_MALLOC_FAILURE); 5713 else 5714 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); 5715 goto err; 5716 } 5717 5718 while (PACKET_copy_bytes(cipher_suites, cipher, n)) { 5719 /* 5720 * SSLv3 ciphers wrapped in an SSLv2-compatible ClientHello have the 5721 * first byte set to zero, while true SSLv2 ciphers have a non-zero 5722 * first byte. We don't support any true SSLv2 ciphers, so skip them. 5723 */ 5724 if (sslv2format && cipher[0] != '\0') 5725 continue; 5726 5727 /* For SSLv2-compat, ignore leading 0-byte. */ 5728 c = ssl_get_cipher_by_char(s, sslv2format ? &cipher[1] : cipher, 1); 5729 if (c != NULL) { 5730 if ((c->valid && !sk_SSL_CIPHER_push(sk, c)) || 5731 (!c->valid && !sk_SSL_CIPHER_push(scsvs, c))) { 5732 if (fatal) 5733 SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_MALLOC_FAILURE); 5734 else 5735 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); 5736 goto err; 5737 } 5738 } 5739 } 5740 if (PACKET_remaining(cipher_suites) > 0) { 5741 if (fatal) 5742 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_R_BAD_LENGTH); 5743 else 5744 ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH); 5745 goto err; 5746 } 5747 5748 if (skp != NULL) 5749 *skp = sk; 5750 else 5751 sk_SSL_CIPHER_free(sk); 5752 if (scsvs_out != NULL) 5753 *scsvs_out = scsvs; 5754 else 5755 sk_SSL_CIPHER_free(scsvs); 5756 return 1; 5757 err: 5758 sk_SSL_CIPHER_free(sk); 5759 sk_SSL_CIPHER_free(scsvs); 5760 return 0; 5761 } 5762 5763 int SSL_CTX_set_max_early_data(SSL_CTX *ctx, uint32_t max_early_data) 5764 { 5765 ctx->max_early_data = max_early_data; 5766 5767 return 1; 5768 } 5769 5770 uint32_t SSL_CTX_get_max_early_data(const SSL_CTX *ctx) 5771 { 5772 return ctx->max_early_data; 5773 } 5774 5775 int SSL_set_max_early_data(SSL *s, uint32_t max_early_data) 5776 { 5777 s->max_early_data = max_early_data; 5778 5779 return 1; 5780 } 5781 5782 uint32_t SSL_get_max_early_data(const SSL *s) 5783 { 5784 return s->max_early_data; 5785 } 5786 5787 int SSL_CTX_set_recv_max_early_data(SSL_CTX *ctx, uint32_t recv_max_early_data) 5788 { 5789 ctx->recv_max_early_data = recv_max_early_data; 5790 5791 return 1; 5792 } 5793 5794 uint32_t SSL_CTX_get_recv_max_early_data(const SSL_CTX *ctx) 5795 { 5796 return ctx->recv_max_early_data; 5797 } 5798 5799 int SSL_set_recv_max_early_data(SSL *s, uint32_t recv_max_early_data) 5800 { 5801 s->recv_max_early_data = recv_max_early_data; 5802 5803 return 1; 5804 } 5805 5806 uint32_t SSL_get_recv_max_early_data(const SSL *s) 5807 { 5808 return s->recv_max_early_data; 5809 } 5810 5811 __owur unsigned int ssl_get_max_send_fragment(const SSL *ssl) 5812 { 5813 /* Return any active Max Fragment Len extension */ 5814 if (ssl->session != NULL && USE_MAX_FRAGMENT_LENGTH_EXT(ssl->session)) 5815 return GET_MAX_FRAGMENT_LENGTH(ssl->session); 5816 5817 /* return current SSL connection setting */ 5818 return ssl->max_send_fragment; 5819 } 5820 5821 __owur unsigned int ssl_get_split_send_fragment(const SSL *ssl) 5822 { 5823 /* Return a value regarding an active Max Fragment Len extension */ 5824 if (ssl->session != NULL && USE_MAX_FRAGMENT_LENGTH_EXT(ssl->session) 5825 && ssl->split_send_fragment > GET_MAX_FRAGMENT_LENGTH(ssl->session)) 5826 return GET_MAX_FRAGMENT_LENGTH(ssl->session); 5827 5828 /* else limit |split_send_fragment| to current |max_send_fragment| */ 5829 if (ssl->split_send_fragment > ssl->max_send_fragment) 5830 return ssl->max_send_fragment; 5831 5832 /* return current SSL connection setting */ 5833 return ssl->split_send_fragment; 5834 } 5835 5836 int SSL_stateless(SSL *s) 5837 { 5838 int ret; 5839 5840 /* Ensure there is no state left over from a previous invocation */ 5841 if (!SSL_clear(s)) 5842 return 0; 5843 5844 ERR_clear_error(); 5845 5846 s->s3.flags |= TLS1_FLAGS_STATELESS; 5847 ret = SSL_accept(s); 5848 s->s3.flags &= ~TLS1_FLAGS_STATELESS; 5849 5850 if (ret > 0 && s->ext.cookieok) 5851 return 1; 5852 5853 if (s->hello_retry_request == SSL_HRR_PENDING && !ossl_statem_in_error(s)) 5854 return 0; 5855 5856 return -1; 5857 } 5858 5859 void SSL_CTX_set_post_handshake_auth(SSL_CTX *ctx, int val) 5860 { 5861 ctx->pha_enabled = val; 5862 } 5863 5864 void SSL_set_post_handshake_auth(SSL *ssl, int val) 5865 { 5866 ssl->pha_enabled = val; 5867 } 5868 5869 int SSL_verify_client_post_handshake(SSL *ssl) 5870 { 5871 if (!SSL_IS_TLS13(ssl)) { 5872 ERR_raise(ERR_LIB_SSL, SSL_R_WRONG_SSL_VERSION); 5873 return 0; 5874 } 5875 if (!ssl->server) { 5876 ERR_raise(ERR_LIB_SSL, SSL_R_NOT_SERVER); 5877 return 0; 5878 } 5879 5880 if (!SSL_is_init_finished(ssl)) { 5881 ERR_raise(ERR_LIB_SSL, SSL_R_STILL_IN_INIT); 5882 return 0; 5883 } 5884 5885 switch (ssl->post_handshake_auth) { 5886 case SSL_PHA_NONE: 5887 ERR_raise(ERR_LIB_SSL, SSL_R_EXTENSION_NOT_RECEIVED); 5888 return 0; 5889 default: 5890 case SSL_PHA_EXT_SENT: 5891 ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR); 5892 return 0; 5893 case SSL_PHA_EXT_RECEIVED: 5894 break; 5895 case SSL_PHA_REQUEST_PENDING: 5896 ERR_raise(ERR_LIB_SSL, SSL_R_REQUEST_PENDING); 5897 return 0; 5898 case SSL_PHA_REQUESTED: 5899 ERR_raise(ERR_LIB_SSL, SSL_R_REQUEST_SENT); 5900 return 0; 5901 } 5902 5903 ssl->post_handshake_auth = SSL_PHA_REQUEST_PENDING; 5904 5905 /* checks verify_mode and algorithm_auth */ 5906 if (!send_certificate_request(ssl)) { 5907 ssl->post_handshake_auth = SSL_PHA_EXT_RECEIVED; /* restore on error */ 5908 ERR_raise(ERR_LIB_SSL, SSL_R_INVALID_CONFIG); 5909 return 0; 5910 } 5911 5912 ossl_statem_set_in_init(ssl, 1); 5913 return 1; 5914 } 5915 5916 int SSL_CTX_set_session_ticket_cb(SSL_CTX *ctx, 5917 SSL_CTX_generate_session_ticket_fn gen_cb, 5918 SSL_CTX_decrypt_session_ticket_fn dec_cb, 5919 void *arg) 5920 { 5921 ctx->generate_ticket_cb = gen_cb; 5922 ctx->decrypt_ticket_cb = dec_cb; 5923 ctx->ticket_cb_data = arg; 5924 return 1; 5925 } 5926 5927 void SSL_CTX_set_allow_early_data_cb(SSL_CTX *ctx, 5928 SSL_allow_early_data_cb_fn cb, 5929 void *arg) 5930 { 5931 ctx->allow_early_data_cb = cb; 5932 ctx->allow_early_data_cb_data = arg; 5933 } 5934 5935 void SSL_set_allow_early_data_cb(SSL *s, 5936 SSL_allow_early_data_cb_fn cb, 5937 void *arg) 5938 { 5939 s->allow_early_data_cb = cb; 5940 s->allow_early_data_cb_data = arg; 5941 } 5942 5943 const EVP_CIPHER *ssl_evp_cipher_fetch(OSSL_LIB_CTX *libctx, 5944 int nid, 5945 const char *properties) 5946 { 5947 const EVP_CIPHER *ciph; 5948 5949 ciph = tls_get_cipher_from_engine(nid); 5950 if (ciph != NULL) 5951 return ciph; 5952 5953 /* 5954 * If there is no engine cipher then we do an explicit fetch. This may fail 5955 * and that could be ok 5956 */ 5957 ERR_set_mark(); 5958 ciph = EVP_CIPHER_fetch(libctx, OBJ_nid2sn(nid), properties); 5959 ERR_pop_to_mark(); 5960 return ciph; 5961 } 5962 5963 5964 int ssl_evp_cipher_up_ref(const EVP_CIPHER *cipher) 5965 { 5966 /* Don't up-ref an implicit EVP_CIPHER */ 5967 if (EVP_CIPHER_get0_provider(cipher) == NULL) 5968 return 1; 5969 5970 /* 5971 * The cipher was explicitly fetched and therefore it is safe to cast 5972 * away the const 5973 */ 5974 return EVP_CIPHER_up_ref((EVP_CIPHER *)cipher); 5975 } 5976 5977 void ssl_evp_cipher_free(const EVP_CIPHER *cipher) 5978 { 5979 if (cipher == NULL) 5980 return; 5981 5982 if (EVP_CIPHER_get0_provider(cipher) != NULL) { 5983 /* 5984 * The cipher was explicitly fetched and therefore it is safe to cast 5985 * away the const 5986 */ 5987 EVP_CIPHER_free((EVP_CIPHER *)cipher); 5988 } 5989 } 5990 5991 const EVP_MD *ssl_evp_md_fetch(OSSL_LIB_CTX *libctx, 5992 int nid, 5993 const char *properties) 5994 { 5995 const EVP_MD *md; 5996 5997 md = tls_get_digest_from_engine(nid); 5998 if (md != NULL) 5999 return md; 6000 6001 /* Otherwise we do an explicit fetch */ 6002 ERR_set_mark(); 6003 md = EVP_MD_fetch(libctx, OBJ_nid2sn(nid), properties); 6004 ERR_pop_to_mark(); 6005 return md; 6006 } 6007 6008 int ssl_evp_md_up_ref(const EVP_MD *md) 6009 { 6010 /* Don't up-ref an implicit EVP_MD */ 6011 if (EVP_MD_get0_provider(md) == NULL) 6012 return 1; 6013 6014 /* 6015 * The digest was explicitly fetched and therefore it is safe to cast 6016 * away the const 6017 */ 6018 return EVP_MD_up_ref((EVP_MD *)md); 6019 } 6020 6021 void ssl_evp_md_free(const EVP_MD *md) 6022 { 6023 if (md == NULL) 6024 return; 6025 6026 if (EVP_MD_get0_provider(md) != NULL) { 6027 /* 6028 * The digest was explicitly fetched and therefore it is safe to cast 6029 * away the const 6030 */ 6031 EVP_MD_free((EVP_MD *)md); 6032 } 6033 } 6034 6035 int SSL_set0_tmp_dh_pkey(SSL *s, EVP_PKEY *dhpkey) 6036 { 6037 if (!ssl_security(s, SSL_SECOP_TMP_DH, 6038 EVP_PKEY_get_security_bits(dhpkey), 0, dhpkey)) { 6039 ERR_raise(ERR_LIB_SSL, SSL_R_DH_KEY_TOO_SMALL); 6040 return 0; 6041 } 6042 EVP_PKEY_free(s->cert->dh_tmp); 6043 s->cert->dh_tmp = dhpkey; 6044 return 1; 6045 } 6046 6047 int SSL_CTX_set0_tmp_dh_pkey(SSL_CTX *ctx, EVP_PKEY *dhpkey) 6048 { 6049 if (!ssl_ctx_security(ctx, SSL_SECOP_TMP_DH, 6050 EVP_PKEY_get_security_bits(dhpkey), 0, dhpkey)) { 6051 ERR_raise(ERR_LIB_SSL, SSL_R_DH_KEY_TOO_SMALL); 6052 return 0; 6053 } 6054 EVP_PKEY_free(ctx->cert->dh_tmp); 6055 ctx->cert->dh_tmp = dhpkey; 6056 return 1; 6057 } 6058