1 /* 2 * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved. 3 * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved 4 * Copyright 2005 Nokia. All rights reserved. 5 * 6 * Licensed under the OpenSSL license (the "License"). You may not use 7 * this file except in compliance with the License. You can obtain a copy 8 * in the file LICENSE in the source distribution or at 9 * https://www.openssl.org/source/license.html 10 */ 11 12 #include <stdio.h> 13 #include "ssl_local.h" 14 #include <openssl/objects.h> 15 #include <openssl/x509v3.h> 16 #include <openssl/rand.h> 17 #include <openssl/rand_drbg.h> 18 #include <openssl/ocsp.h> 19 #include <openssl/dh.h> 20 #include <openssl/engine.h> 21 #include <openssl/async.h> 22 #include <openssl/ct.h> 23 #include "internal/cryptlib.h" 24 #include "internal/refcount.h" 25 26 const char SSL_version_str[] = OPENSSL_VERSION_TEXT; 27 28 static int ssl_undefined_function_1(SSL *ssl, SSL3_RECORD *r, size_t s, int t) 29 { 30 (void)r; 31 (void)s; 32 (void)t; 33 return ssl_undefined_function(ssl); 34 } 35 36 static int ssl_undefined_function_2(SSL *ssl, SSL3_RECORD *r, unsigned char *s, 37 int t) 38 { 39 (void)r; 40 (void)s; 41 (void)t; 42 return ssl_undefined_function(ssl); 43 } 44 45 static int ssl_undefined_function_3(SSL *ssl, unsigned char *r, 46 unsigned char *s, size_t t, size_t *u) 47 { 48 (void)r; 49 (void)s; 50 (void)t; 51 (void)u; 52 return ssl_undefined_function(ssl); 53 } 54 55 static int ssl_undefined_function_4(SSL *ssl, int r) 56 { 57 (void)r; 58 return ssl_undefined_function(ssl); 59 } 60 61 static size_t ssl_undefined_function_5(SSL *ssl, const char *r, size_t s, 62 unsigned char *t) 63 { 64 (void)r; 65 (void)s; 66 (void)t; 67 return ssl_undefined_function(ssl); 68 } 69 70 static int ssl_undefined_function_6(int r) 71 { 72 (void)r; 73 return ssl_undefined_function(NULL); 74 } 75 76 static int ssl_undefined_function_7(SSL *ssl, unsigned char *r, size_t s, 77 const char *t, size_t u, 78 const unsigned char *v, size_t w, int x) 79 { 80 (void)r; 81 (void)s; 82 (void)t; 83 (void)u; 84 (void)v; 85 (void)w; 86 (void)x; 87 return ssl_undefined_function(ssl); 88 } 89 90 SSL3_ENC_METHOD ssl3_undef_enc_method = { 91 ssl_undefined_function_1, 92 ssl_undefined_function_2, 93 ssl_undefined_function, 94 ssl_undefined_function_3, 95 ssl_undefined_function_4, 96 ssl_undefined_function_5, 97 NULL, /* client_finished_label */ 98 0, /* client_finished_label_len */ 99 NULL, /* server_finished_label */ 100 0, /* server_finished_label_len */ 101 ssl_undefined_function_6, 102 ssl_undefined_function_7, 103 }; 104 105 struct ssl_async_args { 106 SSL *s; 107 void *buf; 108 size_t num; 109 enum { READFUNC, WRITEFUNC, OTHERFUNC } type; 110 union { 111 int (*func_read) (SSL *, void *, size_t, size_t *); 112 int (*func_write) (SSL *, const void *, size_t, size_t *); 113 int (*func_other) (SSL *); 114 } f; 115 }; 116 117 static const struct { 118 uint8_t mtype; 119 uint8_t ord; 120 int nid; 121 } dane_mds[] = { 122 { 123 DANETLS_MATCHING_FULL, 0, NID_undef 124 }, 125 { 126 DANETLS_MATCHING_2256, 1, NID_sha256 127 }, 128 { 129 DANETLS_MATCHING_2512, 2, NID_sha512 130 }, 131 }; 132 133 static int dane_ctx_enable(struct dane_ctx_st *dctx) 134 { 135 const EVP_MD **mdevp; 136 uint8_t *mdord; 137 uint8_t mdmax = DANETLS_MATCHING_LAST; 138 int n = ((int)mdmax) + 1; /* int to handle PrivMatch(255) */ 139 size_t i; 140 141 if (dctx->mdevp != NULL) 142 return 1; 143 144 mdevp = OPENSSL_zalloc(n * sizeof(*mdevp)); 145 mdord = OPENSSL_zalloc(n * sizeof(*mdord)); 146 147 if (mdord == NULL || mdevp == NULL) { 148 OPENSSL_free(mdord); 149 OPENSSL_free(mdevp); 150 SSLerr(SSL_F_DANE_CTX_ENABLE, ERR_R_MALLOC_FAILURE); 151 return 0; 152 } 153 154 /* Install default entries */ 155 for (i = 0; i < OSSL_NELEM(dane_mds); ++i) { 156 const EVP_MD *md; 157 158 if (dane_mds[i].nid == NID_undef || 159 (md = EVP_get_digestbynid(dane_mds[i].nid)) == NULL) 160 continue; 161 mdevp[dane_mds[i].mtype] = md; 162 mdord[dane_mds[i].mtype] = dane_mds[i].ord; 163 } 164 165 dctx->mdevp = mdevp; 166 dctx->mdord = mdord; 167 dctx->mdmax = mdmax; 168 169 return 1; 170 } 171 172 static void dane_ctx_final(struct dane_ctx_st *dctx) 173 { 174 OPENSSL_free(dctx->mdevp); 175 dctx->mdevp = NULL; 176 177 OPENSSL_free(dctx->mdord); 178 dctx->mdord = NULL; 179 dctx->mdmax = 0; 180 } 181 182 static void tlsa_free(danetls_record *t) 183 { 184 if (t == NULL) 185 return; 186 OPENSSL_free(t->data); 187 EVP_PKEY_free(t->spki); 188 OPENSSL_free(t); 189 } 190 191 static void dane_final(SSL_DANE *dane) 192 { 193 sk_danetls_record_pop_free(dane->trecs, tlsa_free); 194 dane->trecs = NULL; 195 196 sk_X509_pop_free(dane->certs, X509_free); 197 dane->certs = NULL; 198 199 X509_free(dane->mcert); 200 dane->mcert = NULL; 201 dane->mtlsa = NULL; 202 dane->mdpth = -1; 203 dane->pdpth = -1; 204 } 205 206 /* 207 * dane_copy - Copy dane configuration, sans verification state. 208 */ 209 static int ssl_dane_dup(SSL *to, SSL *from) 210 { 211 int num; 212 int i; 213 214 if (!DANETLS_ENABLED(&from->dane)) 215 return 1; 216 217 num = sk_danetls_record_num(from->dane.trecs); 218 dane_final(&to->dane); 219 to->dane.flags = from->dane.flags; 220 to->dane.dctx = &to->ctx->dane; 221 to->dane.trecs = sk_danetls_record_new_reserve(NULL, num); 222 223 if (to->dane.trecs == NULL) { 224 SSLerr(SSL_F_SSL_DANE_DUP, ERR_R_MALLOC_FAILURE); 225 return 0; 226 } 227 228 for (i = 0; i < num; ++i) { 229 danetls_record *t = sk_danetls_record_value(from->dane.trecs, i); 230 231 if (SSL_dane_tlsa_add(to, t->usage, t->selector, t->mtype, 232 t->data, t->dlen) <= 0) 233 return 0; 234 } 235 return 1; 236 } 237 238 static int dane_mtype_set(struct dane_ctx_st *dctx, 239 const EVP_MD *md, uint8_t mtype, uint8_t ord) 240 { 241 int i; 242 243 if (mtype == DANETLS_MATCHING_FULL && md != NULL) { 244 SSLerr(SSL_F_DANE_MTYPE_SET, SSL_R_DANE_CANNOT_OVERRIDE_MTYPE_FULL); 245 return 0; 246 } 247 248 if (mtype > dctx->mdmax) { 249 const EVP_MD **mdevp; 250 uint8_t *mdord; 251 int n = ((int)mtype) + 1; 252 253 mdevp = OPENSSL_realloc(dctx->mdevp, n * sizeof(*mdevp)); 254 if (mdevp == NULL) { 255 SSLerr(SSL_F_DANE_MTYPE_SET, ERR_R_MALLOC_FAILURE); 256 return -1; 257 } 258 dctx->mdevp = mdevp; 259 260 mdord = OPENSSL_realloc(dctx->mdord, n * sizeof(*mdord)); 261 if (mdord == NULL) { 262 SSLerr(SSL_F_DANE_MTYPE_SET, ERR_R_MALLOC_FAILURE); 263 return -1; 264 } 265 dctx->mdord = mdord; 266 267 /* Zero-fill any gaps */ 268 for (i = dctx->mdmax + 1; i < mtype; ++i) { 269 mdevp[i] = NULL; 270 mdord[i] = 0; 271 } 272 273 dctx->mdmax = mtype; 274 } 275 276 dctx->mdevp[mtype] = md; 277 /* Coerce ordinal of disabled matching types to 0 */ 278 dctx->mdord[mtype] = (md == NULL) ? 0 : ord; 279 280 return 1; 281 } 282 283 static const EVP_MD *tlsa_md_get(SSL_DANE *dane, uint8_t mtype) 284 { 285 if (mtype > dane->dctx->mdmax) 286 return NULL; 287 return dane->dctx->mdevp[mtype]; 288 } 289 290 static int dane_tlsa_add(SSL_DANE *dane, 291 uint8_t usage, 292 uint8_t selector, 293 uint8_t mtype, unsigned const char *data, size_t dlen) 294 { 295 danetls_record *t; 296 const EVP_MD *md = NULL; 297 int ilen = (int)dlen; 298 int i; 299 int num; 300 301 if (dane->trecs == NULL) { 302 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_NOT_ENABLED); 303 return -1; 304 } 305 306 if (ilen < 0 || dlen != (size_t)ilen) { 307 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_DATA_LENGTH); 308 return 0; 309 } 310 311 if (usage > DANETLS_USAGE_LAST) { 312 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE_USAGE); 313 return 0; 314 } 315 316 if (selector > DANETLS_SELECTOR_LAST) { 317 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_SELECTOR); 318 return 0; 319 } 320 321 if (mtype != DANETLS_MATCHING_FULL) { 322 md = tlsa_md_get(dane, mtype); 323 if (md == NULL) { 324 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_MATCHING_TYPE); 325 return 0; 326 } 327 } 328 329 if (md != NULL && dlen != (size_t)EVP_MD_size(md)) { 330 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_DIGEST_LENGTH); 331 return 0; 332 } 333 if (!data) { 334 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_NULL_DATA); 335 return 0; 336 } 337 338 if ((t = OPENSSL_zalloc(sizeof(*t))) == NULL) { 339 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE); 340 return -1; 341 } 342 343 t->usage = usage; 344 t->selector = selector; 345 t->mtype = mtype; 346 t->data = OPENSSL_malloc(dlen); 347 if (t->data == NULL) { 348 tlsa_free(t); 349 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE); 350 return -1; 351 } 352 memcpy(t->data, data, dlen); 353 t->dlen = dlen; 354 355 /* Validate and cache full certificate or public key */ 356 if (mtype == DANETLS_MATCHING_FULL) { 357 const unsigned char *p = data; 358 X509 *cert = NULL; 359 EVP_PKEY *pkey = NULL; 360 361 switch (selector) { 362 case DANETLS_SELECTOR_CERT: 363 if (!d2i_X509(&cert, &p, ilen) || p < data || 364 dlen != (size_t)(p - data)) { 365 tlsa_free(t); 366 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE); 367 return 0; 368 } 369 if (X509_get0_pubkey(cert) == NULL) { 370 tlsa_free(t); 371 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE); 372 return 0; 373 } 374 375 if ((DANETLS_USAGE_BIT(usage) & DANETLS_TA_MASK) == 0) { 376 X509_free(cert); 377 break; 378 } 379 380 /* 381 * For usage DANE-TA(2), we support authentication via "2 0 0" TLSA 382 * records that contain full certificates of trust-anchors that are 383 * not present in the wire chain. For usage PKIX-TA(0), we augment 384 * the chain with untrusted Full(0) certificates from DNS, in case 385 * they are missing from the chain. 386 */ 387 if ((dane->certs == NULL && 388 (dane->certs = sk_X509_new_null()) == NULL) || 389 !sk_X509_push(dane->certs, cert)) { 390 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE); 391 X509_free(cert); 392 tlsa_free(t); 393 return -1; 394 } 395 break; 396 397 case DANETLS_SELECTOR_SPKI: 398 if (!d2i_PUBKEY(&pkey, &p, ilen) || p < data || 399 dlen != (size_t)(p - data)) { 400 tlsa_free(t); 401 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_PUBLIC_KEY); 402 return 0; 403 } 404 405 /* 406 * For usage DANE-TA(2), we support authentication via "2 1 0" TLSA 407 * records that contain full bare keys of trust-anchors that are 408 * not present in the wire chain. 409 */ 410 if (usage == DANETLS_USAGE_DANE_TA) 411 t->spki = pkey; 412 else 413 EVP_PKEY_free(pkey); 414 break; 415 } 416 } 417 418 /*- 419 * Find the right insertion point for the new record. 420 * 421 * See crypto/x509/x509_vfy.c. We sort DANE-EE(3) records first, so that 422 * they can be processed first, as they require no chain building, and no 423 * expiration or hostname checks. Because DANE-EE(3) is numerically 424 * largest, this is accomplished via descending sort by "usage". 425 * 426 * We also sort in descending order by matching ordinal to simplify 427 * the implementation of digest agility in the verification code. 428 * 429 * The choice of order for the selector is not significant, so we 430 * use the same descending order for consistency. 431 */ 432 num = sk_danetls_record_num(dane->trecs); 433 for (i = 0; i < num; ++i) { 434 danetls_record *rec = sk_danetls_record_value(dane->trecs, i); 435 436 if (rec->usage > usage) 437 continue; 438 if (rec->usage < usage) 439 break; 440 if (rec->selector > selector) 441 continue; 442 if (rec->selector < selector) 443 break; 444 if (dane->dctx->mdord[rec->mtype] > dane->dctx->mdord[mtype]) 445 continue; 446 break; 447 } 448 449 if (!sk_danetls_record_insert(dane->trecs, t, i)) { 450 tlsa_free(t); 451 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE); 452 return -1; 453 } 454 dane->umask |= DANETLS_USAGE_BIT(usage); 455 456 return 1; 457 } 458 459 /* 460 * Return 0 if there is only one version configured and it was disabled 461 * at configure time. Return 1 otherwise. 462 */ 463 static int ssl_check_allowed_versions(int min_version, int max_version) 464 { 465 int minisdtls = 0, maxisdtls = 0; 466 467 /* Figure out if we're doing DTLS versions or TLS versions */ 468 if (min_version == DTLS1_BAD_VER 469 || min_version >> 8 == DTLS1_VERSION_MAJOR) 470 minisdtls = 1; 471 if (max_version == DTLS1_BAD_VER 472 || max_version >> 8 == DTLS1_VERSION_MAJOR) 473 maxisdtls = 1; 474 /* A wildcard version of 0 could be DTLS or TLS. */ 475 if ((minisdtls && !maxisdtls && max_version != 0) 476 || (maxisdtls && !minisdtls && min_version != 0)) { 477 /* Mixing DTLS and TLS versions will lead to sadness; deny it. */ 478 return 0; 479 } 480 481 if (minisdtls || maxisdtls) { 482 /* Do DTLS version checks. */ 483 if (min_version == 0) 484 /* Ignore DTLS1_BAD_VER */ 485 min_version = DTLS1_VERSION; 486 if (max_version == 0) 487 max_version = DTLS1_2_VERSION; 488 #ifdef OPENSSL_NO_DTLS1_2 489 if (max_version == DTLS1_2_VERSION) 490 max_version = DTLS1_VERSION; 491 #endif 492 #ifdef OPENSSL_NO_DTLS1 493 if (min_version == DTLS1_VERSION) 494 min_version = DTLS1_2_VERSION; 495 #endif 496 /* Done massaging versions; do the check. */ 497 if (0 498 #ifdef OPENSSL_NO_DTLS1 499 || (DTLS_VERSION_GE(min_version, DTLS1_VERSION) 500 && DTLS_VERSION_GE(DTLS1_VERSION, max_version)) 501 #endif 502 #ifdef OPENSSL_NO_DTLS1_2 503 || (DTLS_VERSION_GE(min_version, DTLS1_2_VERSION) 504 && DTLS_VERSION_GE(DTLS1_2_VERSION, max_version)) 505 #endif 506 ) 507 return 0; 508 } else { 509 /* Regular TLS version checks. */ 510 if (min_version == 0) 511 min_version = SSL3_VERSION; 512 if (max_version == 0) 513 max_version = TLS1_3_VERSION; 514 #ifdef OPENSSL_NO_TLS1_3 515 if (max_version == TLS1_3_VERSION) 516 max_version = TLS1_2_VERSION; 517 #endif 518 #ifdef OPENSSL_NO_TLS1_2 519 if (max_version == TLS1_2_VERSION) 520 max_version = TLS1_1_VERSION; 521 #endif 522 #ifdef OPENSSL_NO_TLS1_1 523 if (max_version == TLS1_1_VERSION) 524 max_version = TLS1_VERSION; 525 #endif 526 #ifdef OPENSSL_NO_TLS1 527 if (max_version == TLS1_VERSION) 528 max_version = SSL3_VERSION; 529 #endif 530 #ifdef OPENSSL_NO_SSL3 531 if (min_version == SSL3_VERSION) 532 min_version = TLS1_VERSION; 533 #endif 534 #ifdef OPENSSL_NO_TLS1 535 if (min_version == TLS1_VERSION) 536 min_version = TLS1_1_VERSION; 537 #endif 538 #ifdef OPENSSL_NO_TLS1_1 539 if (min_version == TLS1_1_VERSION) 540 min_version = TLS1_2_VERSION; 541 #endif 542 #ifdef OPENSSL_NO_TLS1_2 543 if (min_version == TLS1_2_VERSION) 544 min_version = TLS1_3_VERSION; 545 #endif 546 /* Done massaging versions; do the check. */ 547 if (0 548 #ifdef OPENSSL_NO_SSL3 549 || (min_version <= SSL3_VERSION && SSL3_VERSION <= max_version) 550 #endif 551 #ifdef OPENSSL_NO_TLS1 552 || (min_version <= TLS1_VERSION && TLS1_VERSION <= max_version) 553 #endif 554 #ifdef OPENSSL_NO_TLS1_1 555 || (min_version <= TLS1_1_VERSION && TLS1_1_VERSION <= max_version) 556 #endif 557 #ifdef OPENSSL_NO_TLS1_2 558 || (min_version <= TLS1_2_VERSION && TLS1_2_VERSION <= max_version) 559 #endif 560 #ifdef OPENSSL_NO_TLS1_3 561 || (min_version <= TLS1_3_VERSION && TLS1_3_VERSION <= max_version) 562 #endif 563 ) 564 return 0; 565 } 566 return 1; 567 } 568 569 static void clear_ciphers(SSL *s) 570 { 571 /* clear the current cipher */ 572 ssl_clear_cipher_ctx(s); 573 ssl_clear_hash_ctx(&s->read_hash); 574 ssl_clear_hash_ctx(&s->write_hash); 575 } 576 577 int SSL_clear(SSL *s) 578 { 579 if (s->method == NULL) { 580 SSLerr(SSL_F_SSL_CLEAR, SSL_R_NO_METHOD_SPECIFIED); 581 return 0; 582 } 583 584 if (ssl_clear_bad_session(s)) { 585 SSL_SESSION_free(s->session); 586 s->session = NULL; 587 } 588 SSL_SESSION_free(s->psksession); 589 s->psksession = NULL; 590 OPENSSL_free(s->psksession_id); 591 s->psksession_id = NULL; 592 s->psksession_id_len = 0; 593 s->hello_retry_request = 0; 594 s->sent_tickets = 0; 595 596 s->error = 0; 597 s->hit = 0; 598 s->shutdown = 0; 599 600 if (s->renegotiate) { 601 SSLerr(SSL_F_SSL_CLEAR, ERR_R_INTERNAL_ERROR); 602 return 0; 603 } 604 605 ossl_statem_clear(s); 606 607 s->version = s->method->version; 608 s->client_version = s->version; 609 s->rwstate = SSL_NOTHING; 610 611 BUF_MEM_free(s->init_buf); 612 s->init_buf = NULL; 613 clear_ciphers(s); 614 s->first_packet = 0; 615 616 s->key_update = SSL_KEY_UPDATE_NONE; 617 618 EVP_MD_CTX_free(s->pha_dgst); 619 s->pha_dgst = NULL; 620 621 /* Reset DANE verification result state */ 622 s->dane.mdpth = -1; 623 s->dane.pdpth = -1; 624 X509_free(s->dane.mcert); 625 s->dane.mcert = NULL; 626 s->dane.mtlsa = NULL; 627 628 /* Clear the verification result peername */ 629 X509_VERIFY_PARAM_move_peername(s->param, NULL); 630 631 /* Clear any shared connection state */ 632 OPENSSL_free(s->shared_sigalgs); 633 s->shared_sigalgs = NULL; 634 s->shared_sigalgslen = 0; 635 636 /* 637 * Check to see if we were changed into a different method, if so, revert 638 * back. 639 */ 640 if (s->method != s->ctx->method) { 641 s->method->ssl_free(s); 642 s->method = s->ctx->method; 643 if (!s->method->ssl_new(s)) 644 return 0; 645 } else { 646 if (!s->method->ssl_clear(s)) 647 return 0; 648 } 649 650 RECORD_LAYER_clear(&s->rlayer); 651 652 return 1; 653 } 654 655 /** Used to change an SSL_CTXs default SSL method type */ 656 int SSL_CTX_set_ssl_version(SSL_CTX *ctx, const SSL_METHOD *meth) 657 { 658 STACK_OF(SSL_CIPHER) *sk; 659 660 ctx->method = meth; 661 662 if (!SSL_CTX_set_ciphersuites(ctx, TLS_DEFAULT_CIPHERSUITES)) { 663 SSLerr(SSL_F_SSL_CTX_SET_SSL_VERSION, SSL_R_SSL_LIBRARY_HAS_NO_CIPHERS); 664 return 0; 665 } 666 sk = ssl_create_cipher_list(ctx->method, 667 ctx->tls13_ciphersuites, 668 &(ctx->cipher_list), 669 &(ctx->cipher_list_by_id), 670 SSL_DEFAULT_CIPHER_LIST, ctx->cert); 671 if ((sk == NULL) || (sk_SSL_CIPHER_num(sk) <= 0)) { 672 SSLerr(SSL_F_SSL_CTX_SET_SSL_VERSION, SSL_R_SSL_LIBRARY_HAS_NO_CIPHERS); 673 return 0; 674 } 675 return 1; 676 } 677 678 SSL *SSL_new(SSL_CTX *ctx) 679 { 680 SSL *s; 681 682 if (ctx == NULL) { 683 SSLerr(SSL_F_SSL_NEW, SSL_R_NULL_SSL_CTX); 684 return NULL; 685 } 686 if (ctx->method == NULL) { 687 SSLerr(SSL_F_SSL_NEW, SSL_R_SSL_CTX_HAS_NO_DEFAULT_SSL_VERSION); 688 return NULL; 689 } 690 691 s = OPENSSL_zalloc(sizeof(*s)); 692 if (s == NULL) 693 goto err; 694 695 s->references = 1; 696 s->lock = CRYPTO_THREAD_lock_new(); 697 if (s->lock == NULL) { 698 OPENSSL_free(s); 699 s = NULL; 700 goto err; 701 } 702 703 RECORD_LAYER_init(&s->rlayer, s); 704 705 s->options = ctx->options; 706 s->dane.flags = ctx->dane.flags; 707 s->min_proto_version = ctx->min_proto_version; 708 s->max_proto_version = ctx->max_proto_version; 709 s->mode = ctx->mode; 710 s->max_cert_list = ctx->max_cert_list; 711 s->max_early_data = ctx->max_early_data; 712 s->recv_max_early_data = ctx->recv_max_early_data; 713 s->num_tickets = ctx->num_tickets; 714 s->pha_enabled = ctx->pha_enabled; 715 716 /* Shallow copy of the ciphersuites stack */ 717 s->tls13_ciphersuites = sk_SSL_CIPHER_dup(ctx->tls13_ciphersuites); 718 if (s->tls13_ciphersuites == NULL) 719 goto err; 720 721 /* 722 * Earlier library versions used to copy the pointer to the CERT, not 723 * its contents; only when setting new parameters for the per-SSL 724 * copy, ssl_cert_new would be called (and the direct reference to 725 * the per-SSL_CTX settings would be lost, but those still were 726 * indirectly accessed for various purposes, and for that reason they 727 * used to be known as s->ctx->default_cert). Now we don't look at the 728 * SSL_CTX's CERT after having duplicated it once. 729 */ 730 s->cert = ssl_cert_dup(ctx->cert); 731 if (s->cert == NULL) 732 goto err; 733 734 RECORD_LAYER_set_read_ahead(&s->rlayer, ctx->read_ahead); 735 s->msg_callback = ctx->msg_callback; 736 s->msg_callback_arg = ctx->msg_callback_arg; 737 s->verify_mode = ctx->verify_mode; 738 s->not_resumable_session_cb = ctx->not_resumable_session_cb; 739 s->record_padding_cb = ctx->record_padding_cb; 740 s->record_padding_arg = ctx->record_padding_arg; 741 s->block_padding = ctx->block_padding; 742 s->sid_ctx_length = ctx->sid_ctx_length; 743 if (!ossl_assert(s->sid_ctx_length <= sizeof(s->sid_ctx))) 744 goto err; 745 memcpy(&s->sid_ctx, &ctx->sid_ctx, sizeof(s->sid_ctx)); 746 s->verify_callback = ctx->default_verify_callback; 747 s->generate_session_id = ctx->generate_session_id; 748 749 s->param = X509_VERIFY_PARAM_new(); 750 if (s->param == NULL) 751 goto err; 752 X509_VERIFY_PARAM_inherit(s->param, ctx->param); 753 s->quiet_shutdown = ctx->quiet_shutdown; 754 755 s->ext.max_fragment_len_mode = ctx->ext.max_fragment_len_mode; 756 s->max_send_fragment = ctx->max_send_fragment; 757 s->split_send_fragment = ctx->split_send_fragment; 758 s->max_pipelines = ctx->max_pipelines; 759 if (s->max_pipelines > 1) 760 RECORD_LAYER_set_read_ahead(&s->rlayer, 1); 761 if (ctx->default_read_buf_len > 0) 762 SSL_set_default_read_buffer_len(s, ctx->default_read_buf_len); 763 764 SSL_CTX_up_ref(ctx); 765 s->ctx = ctx; 766 s->ext.debug_cb = 0; 767 s->ext.debug_arg = NULL; 768 s->ext.ticket_expected = 0; 769 s->ext.status_type = ctx->ext.status_type; 770 s->ext.status_expected = 0; 771 s->ext.ocsp.ids = NULL; 772 s->ext.ocsp.exts = NULL; 773 s->ext.ocsp.resp = NULL; 774 s->ext.ocsp.resp_len = 0; 775 SSL_CTX_up_ref(ctx); 776 s->session_ctx = ctx; 777 #ifndef OPENSSL_NO_EC 778 if (ctx->ext.ecpointformats) { 779 s->ext.ecpointformats = 780 OPENSSL_memdup(ctx->ext.ecpointformats, 781 ctx->ext.ecpointformats_len); 782 if (!s->ext.ecpointformats) 783 goto err; 784 s->ext.ecpointformats_len = 785 ctx->ext.ecpointformats_len; 786 } 787 if (ctx->ext.supportedgroups) { 788 s->ext.supportedgroups = 789 OPENSSL_memdup(ctx->ext.supportedgroups, 790 ctx->ext.supportedgroups_len 791 * sizeof(*ctx->ext.supportedgroups)); 792 if (!s->ext.supportedgroups) 793 goto err; 794 s->ext.supportedgroups_len = ctx->ext.supportedgroups_len; 795 } 796 #endif 797 #ifndef OPENSSL_NO_NEXTPROTONEG 798 s->ext.npn = NULL; 799 #endif 800 801 if (s->ctx->ext.alpn) { 802 s->ext.alpn = OPENSSL_malloc(s->ctx->ext.alpn_len); 803 if (s->ext.alpn == NULL) 804 goto err; 805 memcpy(s->ext.alpn, s->ctx->ext.alpn, s->ctx->ext.alpn_len); 806 s->ext.alpn_len = s->ctx->ext.alpn_len; 807 } 808 809 s->verified_chain = NULL; 810 s->verify_result = X509_V_OK; 811 812 s->default_passwd_callback = ctx->default_passwd_callback; 813 s->default_passwd_callback_userdata = ctx->default_passwd_callback_userdata; 814 815 s->method = ctx->method; 816 817 s->key_update = SSL_KEY_UPDATE_NONE; 818 819 s->allow_early_data_cb = ctx->allow_early_data_cb; 820 s->allow_early_data_cb_data = ctx->allow_early_data_cb_data; 821 822 if (!s->method->ssl_new(s)) 823 goto err; 824 825 s->server = (ctx->method->ssl_accept == ssl_undefined_function) ? 0 : 1; 826 827 if (!SSL_clear(s)) 828 goto err; 829 830 if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL, s, &s->ex_data)) 831 goto err; 832 833 #ifndef OPENSSL_NO_PSK 834 s->psk_client_callback = ctx->psk_client_callback; 835 s->psk_server_callback = ctx->psk_server_callback; 836 #endif 837 s->psk_find_session_cb = ctx->psk_find_session_cb; 838 s->psk_use_session_cb = ctx->psk_use_session_cb; 839 840 s->job = NULL; 841 842 #ifndef OPENSSL_NO_CT 843 if (!SSL_set_ct_validation_callback(s, ctx->ct_validation_callback, 844 ctx->ct_validation_callback_arg)) 845 goto err; 846 #endif 847 848 return s; 849 err: 850 SSL_free(s); 851 SSLerr(SSL_F_SSL_NEW, ERR_R_MALLOC_FAILURE); 852 return NULL; 853 } 854 855 int SSL_is_dtls(const SSL *s) 856 { 857 return SSL_IS_DTLS(s) ? 1 : 0; 858 } 859 860 int SSL_up_ref(SSL *s) 861 { 862 int i; 863 864 if (CRYPTO_UP_REF(&s->references, &i, s->lock) <= 0) 865 return 0; 866 867 REF_PRINT_COUNT("SSL", s); 868 REF_ASSERT_ISNT(i < 2); 869 return ((i > 1) ? 1 : 0); 870 } 871 872 int SSL_CTX_set_session_id_context(SSL_CTX *ctx, const unsigned char *sid_ctx, 873 unsigned int sid_ctx_len) 874 { 875 if (sid_ctx_len > SSL_MAX_SID_CTX_LENGTH) { 876 SSLerr(SSL_F_SSL_CTX_SET_SESSION_ID_CONTEXT, 877 SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG); 878 return 0; 879 } 880 ctx->sid_ctx_length = sid_ctx_len; 881 memcpy(ctx->sid_ctx, sid_ctx, sid_ctx_len); 882 883 return 1; 884 } 885 886 int SSL_set_session_id_context(SSL *ssl, const unsigned char *sid_ctx, 887 unsigned int sid_ctx_len) 888 { 889 if (sid_ctx_len > SSL_MAX_SID_CTX_LENGTH) { 890 SSLerr(SSL_F_SSL_SET_SESSION_ID_CONTEXT, 891 SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG); 892 return 0; 893 } 894 ssl->sid_ctx_length = sid_ctx_len; 895 memcpy(ssl->sid_ctx, sid_ctx, sid_ctx_len); 896 897 return 1; 898 } 899 900 int SSL_CTX_set_generate_session_id(SSL_CTX *ctx, GEN_SESSION_CB cb) 901 { 902 CRYPTO_THREAD_write_lock(ctx->lock); 903 ctx->generate_session_id = cb; 904 CRYPTO_THREAD_unlock(ctx->lock); 905 return 1; 906 } 907 908 int SSL_set_generate_session_id(SSL *ssl, GEN_SESSION_CB cb) 909 { 910 CRYPTO_THREAD_write_lock(ssl->lock); 911 ssl->generate_session_id = cb; 912 CRYPTO_THREAD_unlock(ssl->lock); 913 return 1; 914 } 915 916 int SSL_has_matching_session_id(const SSL *ssl, const unsigned char *id, 917 unsigned int id_len) 918 { 919 /* 920 * A quick examination of SSL_SESSION_hash and SSL_SESSION_cmp shows how 921 * we can "construct" a session to give us the desired check - i.e. to 922 * find if there's a session in the hash table that would conflict with 923 * any new session built out of this id/id_len and the ssl_version in use 924 * by this SSL. 925 */ 926 SSL_SESSION r, *p; 927 928 if (id_len > sizeof(r.session_id)) 929 return 0; 930 931 r.ssl_version = ssl->version; 932 r.session_id_length = id_len; 933 memcpy(r.session_id, id, id_len); 934 935 CRYPTO_THREAD_read_lock(ssl->session_ctx->lock); 936 p = lh_SSL_SESSION_retrieve(ssl->session_ctx->sessions, &r); 937 CRYPTO_THREAD_unlock(ssl->session_ctx->lock); 938 return (p != NULL); 939 } 940 941 int SSL_CTX_set_purpose(SSL_CTX *s, int purpose) 942 { 943 return X509_VERIFY_PARAM_set_purpose(s->param, purpose); 944 } 945 946 int SSL_set_purpose(SSL *s, int purpose) 947 { 948 return X509_VERIFY_PARAM_set_purpose(s->param, purpose); 949 } 950 951 int SSL_CTX_set_trust(SSL_CTX *s, int trust) 952 { 953 return X509_VERIFY_PARAM_set_trust(s->param, trust); 954 } 955 956 int SSL_set_trust(SSL *s, int trust) 957 { 958 return X509_VERIFY_PARAM_set_trust(s->param, trust); 959 } 960 961 int SSL_set1_host(SSL *s, const char *hostname) 962 { 963 return X509_VERIFY_PARAM_set1_host(s->param, hostname, 0); 964 } 965 966 int SSL_add1_host(SSL *s, const char *hostname) 967 { 968 return X509_VERIFY_PARAM_add1_host(s->param, hostname, 0); 969 } 970 971 void SSL_set_hostflags(SSL *s, unsigned int flags) 972 { 973 X509_VERIFY_PARAM_set_hostflags(s->param, flags); 974 } 975 976 const char *SSL_get0_peername(SSL *s) 977 { 978 return X509_VERIFY_PARAM_get0_peername(s->param); 979 } 980 981 int SSL_CTX_dane_enable(SSL_CTX *ctx) 982 { 983 return dane_ctx_enable(&ctx->dane); 984 } 985 986 unsigned long SSL_CTX_dane_set_flags(SSL_CTX *ctx, unsigned long flags) 987 { 988 unsigned long orig = ctx->dane.flags; 989 990 ctx->dane.flags |= flags; 991 return orig; 992 } 993 994 unsigned long SSL_CTX_dane_clear_flags(SSL_CTX *ctx, unsigned long flags) 995 { 996 unsigned long orig = ctx->dane.flags; 997 998 ctx->dane.flags &= ~flags; 999 return orig; 1000 } 1001 1002 int SSL_dane_enable(SSL *s, const char *basedomain) 1003 { 1004 SSL_DANE *dane = &s->dane; 1005 1006 if (s->ctx->dane.mdmax == 0) { 1007 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_CONTEXT_NOT_DANE_ENABLED); 1008 return 0; 1009 } 1010 if (dane->trecs != NULL) { 1011 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_DANE_ALREADY_ENABLED); 1012 return 0; 1013 } 1014 1015 /* 1016 * Default SNI name. This rejects empty names, while set1_host below 1017 * accepts them and disables host name checks. To avoid side-effects with 1018 * invalid input, set the SNI name first. 1019 */ 1020 if (s->ext.hostname == NULL) { 1021 if (!SSL_set_tlsext_host_name(s, basedomain)) { 1022 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_ERROR_SETTING_TLSA_BASE_DOMAIN); 1023 return -1; 1024 } 1025 } 1026 1027 /* Primary RFC6125 reference identifier */ 1028 if (!X509_VERIFY_PARAM_set1_host(s->param, basedomain, 0)) { 1029 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_ERROR_SETTING_TLSA_BASE_DOMAIN); 1030 return -1; 1031 } 1032 1033 dane->mdpth = -1; 1034 dane->pdpth = -1; 1035 dane->dctx = &s->ctx->dane; 1036 dane->trecs = sk_danetls_record_new_null(); 1037 1038 if (dane->trecs == NULL) { 1039 SSLerr(SSL_F_SSL_DANE_ENABLE, ERR_R_MALLOC_FAILURE); 1040 return -1; 1041 } 1042 return 1; 1043 } 1044 1045 unsigned long SSL_dane_set_flags(SSL *ssl, unsigned long flags) 1046 { 1047 unsigned long orig = ssl->dane.flags; 1048 1049 ssl->dane.flags |= flags; 1050 return orig; 1051 } 1052 1053 unsigned long SSL_dane_clear_flags(SSL *ssl, unsigned long flags) 1054 { 1055 unsigned long orig = ssl->dane.flags; 1056 1057 ssl->dane.flags &= ~flags; 1058 return orig; 1059 } 1060 1061 int SSL_get0_dane_authority(SSL *s, X509 **mcert, EVP_PKEY **mspki) 1062 { 1063 SSL_DANE *dane = &s->dane; 1064 1065 if (!DANETLS_ENABLED(dane) || s->verify_result != X509_V_OK) 1066 return -1; 1067 if (dane->mtlsa) { 1068 if (mcert) 1069 *mcert = dane->mcert; 1070 if (mspki) 1071 *mspki = (dane->mcert == NULL) ? dane->mtlsa->spki : NULL; 1072 } 1073 return dane->mdpth; 1074 } 1075 1076 int SSL_get0_dane_tlsa(SSL *s, uint8_t *usage, uint8_t *selector, 1077 uint8_t *mtype, unsigned const char **data, size_t *dlen) 1078 { 1079 SSL_DANE *dane = &s->dane; 1080 1081 if (!DANETLS_ENABLED(dane) || s->verify_result != X509_V_OK) 1082 return -1; 1083 if (dane->mtlsa) { 1084 if (usage) 1085 *usage = dane->mtlsa->usage; 1086 if (selector) 1087 *selector = dane->mtlsa->selector; 1088 if (mtype) 1089 *mtype = dane->mtlsa->mtype; 1090 if (data) 1091 *data = dane->mtlsa->data; 1092 if (dlen) 1093 *dlen = dane->mtlsa->dlen; 1094 } 1095 return dane->mdpth; 1096 } 1097 1098 SSL_DANE *SSL_get0_dane(SSL *s) 1099 { 1100 return &s->dane; 1101 } 1102 1103 int SSL_dane_tlsa_add(SSL *s, uint8_t usage, uint8_t selector, 1104 uint8_t mtype, unsigned const char *data, size_t dlen) 1105 { 1106 return dane_tlsa_add(&s->dane, usage, selector, mtype, data, dlen); 1107 } 1108 1109 int SSL_CTX_dane_mtype_set(SSL_CTX *ctx, const EVP_MD *md, uint8_t mtype, 1110 uint8_t ord) 1111 { 1112 return dane_mtype_set(&ctx->dane, md, mtype, ord); 1113 } 1114 1115 int SSL_CTX_set1_param(SSL_CTX *ctx, X509_VERIFY_PARAM *vpm) 1116 { 1117 return X509_VERIFY_PARAM_set1(ctx->param, vpm); 1118 } 1119 1120 int SSL_set1_param(SSL *ssl, X509_VERIFY_PARAM *vpm) 1121 { 1122 return X509_VERIFY_PARAM_set1(ssl->param, vpm); 1123 } 1124 1125 X509_VERIFY_PARAM *SSL_CTX_get0_param(SSL_CTX *ctx) 1126 { 1127 return ctx->param; 1128 } 1129 1130 X509_VERIFY_PARAM *SSL_get0_param(SSL *ssl) 1131 { 1132 return ssl->param; 1133 } 1134 1135 void SSL_certs_clear(SSL *s) 1136 { 1137 ssl_cert_clear_certs(s->cert); 1138 } 1139 1140 void SSL_free(SSL *s) 1141 { 1142 int i; 1143 1144 if (s == NULL) 1145 return; 1146 CRYPTO_DOWN_REF(&s->references, &i, s->lock); 1147 REF_PRINT_COUNT("SSL", s); 1148 if (i > 0) 1149 return; 1150 REF_ASSERT_ISNT(i < 0); 1151 1152 X509_VERIFY_PARAM_free(s->param); 1153 dane_final(&s->dane); 1154 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL, s, &s->ex_data); 1155 1156 /* Ignore return value */ 1157 ssl_free_wbio_buffer(s); 1158 1159 BIO_free_all(s->wbio); 1160 BIO_free_all(s->rbio); 1161 1162 BUF_MEM_free(s->init_buf); 1163 1164 /* add extra stuff */ 1165 sk_SSL_CIPHER_free(s->cipher_list); 1166 sk_SSL_CIPHER_free(s->cipher_list_by_id); 1167 sk_SSL_CIPHER_free(s->tls13_ciphersuites); 1168 sk_SSL_CIPHER_free(s->peer_ciphers); 1169 1170 /* Make the next call work :-) */ 1171 if (s->session != NULL) { 1172 ssl_clear_bad_session(s); 1173 SSL_SESSION_free(s->session); 1174 } 1175 SSL_SESSION_free(s->psksession); 1176 OPENSSL_free(s->psksession_id); 1177 1178 clear_ciphers(s); 1179 1180 ssl_cert_free(s->cert); 1181 OPENSSL_free(s->shared_sigalgs); 1182 /* Free up if allocated */ 1183 1184 OPENSSL_free(s->ext.hostname); 1185 SSL_CTX_free(s->session_ctx); 1186 #ifndef OPENSSL_NO_EC 1187 OPENSSL_free(s->ext.ecpointformats); 1188 OPENSSL_free(s->ext.peer_ecpointformats); 1189 OPENSSL_free(s->ext.supportedgroups); 1190 OPENSSL_free(s->ext.peer_supportedgroups); 1191 #endif /* OPENSSL_NO_EC */ 1192 sk_X509_EXTENSION_pop_free(s->ext.ocsp.exts, X509_EXTENSION_free); 1193 #ifndef OPENSSL_NO_OCSP 1194 sk_OCSP_RESPID_pop_free(s->ext.ocsp.ids, OCSP_RESPID_free); 1195 #endif 1196 #ifndef OPENSSL_NO_CT 1197 SCT_LIST_free(s->scts); 1198 OPENSSL_free(s->ext.scts); 1199 #endif 1200 OPENSSL_free(s->ext.ocsp.resp); 1201 OPENSSL_free(s->ext.alpn); 1202 OPENSSL_free(s->ext.tls13_cookie); 1203 OPENSSL_free(s->clienthello); 1204 OPENSSL_free(s->pha_context); 1205 EVP_MD_CTX_free(s->pha_dgst); 1206 1207 sk_X509_NAME_pop_free(s->ca_names, X509_NAME_free); 1208 sk_X509_NAME_pop_free(s->client_ca_names, X509_NAME_free); 1209 1210 sk_X509_pop_free(s->verified_chain, X509_free); 1211 1212 if (s->method != NULL) 1213 s->method->ssl_free(s); 1214 1215 RECORD_LAYER_release(&s->rlayer); 1216 1217 SSL_CTX_free(s->ctx); 1218 1219 ASYNC_WAIT_CTX_free(s->waitctx); 1220 1221 #if !defined(OPENSSL_NO_NEXTPROTONEG) 1222 OPENSSL_free(s->ext.npn); 1223 #endif 1224 1225 #ifndef OPENSSL_NO_SRTP 1226 sk_SRTP_PROTECTION_PROFILE_free(s->srtp_profiles); 1227 #endif 1228 1229 CRYPTO_THREAD_lock_free(s->lock); 1230 1231 OPENSSL_free(s); 1232 } 1233 1234 void SSL_set0_rbio(SSL *s, BIO *rbio) 1235 { 1236 BIO_free_all(s->rbio); 1237 s->rbio = rbio; 1238 } 1239 1240 void SSL_set0_wbio(SSL *s, BIO *wbio) 1241 { 1242 /* 1243 * If the output buffering BIO is still in place, remove it 1244 */ 1245 if (s->bbio != NULL) 1246 s->wbio = BIO_pop(s->wbio); 1247 1248 BIO_free_all(s->wbio); 1249 s->wbio = wbio; 1250 1251 /* Re-attach |bbio| to the new |wbio|. */ 1252 if (s->bbio != NULL) 1253 s->wbio = BIO_push(s->bbio, s->wbio); 1254 } 1255 1256 void SSL_set_bio(SSL *s, BIO *rbio, BIO *wbio) 1257 { 1258 /* 1259 * For historical reasons, this function has many different cases in 1260 * ownership handling. 1261 */ 1262 1263 /* If nothing has changed, do nothing */ 1264 if (rbio == SSL_get_rbio(s) && wbio == SSL_get_wbio(s)) 1265 return; 1266 1267 /* 1268 * If the two arguments are equal then one fewer reference is granted by the 1269 * caller than we want to take 1270 */ 1271 if (rbio != NULL && rbio == wbio) 1272 BIO_up_ref(rbio); 1273 1274 /* 1275 * If only the wbio is changed only adopt one reference. 1276 */ 1277 if (rbio == SSL_get_rbio(s)) { 1278 SSL_set0_wbio(s, wbio); 1279 return; 1280 } 1281 /* 1282 * There is an asymmetry here for historical reasons. If only the rbio is 1283 * changed AND the rbio and wbio were originally different, then we only 1284 * adopt one reference. 1285 */ 1286 if (wbio == SSL_get_wbio(s) && SSL_get_rbio(s) != SSL_get_wbio(s)) { 1287 SSL_set0_rbio(s, rbio); 1288 return; 1289 } 1290 1291 /* Otherwise, adopt both references. */ 1292 SSL_set0_rbio(s, rbio); 1293 SSL_set0_wbio(s, wbio); 1294 } 1295 1296 BIO *SSL_get_rbio(const SSL *s) 1297 { 1298 return s->rbio; 1299 } 1300 1301 BIO *SSL_get_wbio(const SSL *s) 1302 { 1303 if (s->bbio != NULL) { 1304 /* 1305 * If |bbio| is active, the true caller-configured BIO is its 1306 * |next_bio|. 1307 */ 1308 return BIO_next(s->bbio); 1309 } 1310 return s->wbio; 1311 } 1312 1313 int SSL_get_fd(const SSL *s) 1314 { 1315 return SSL_get_rfd(s); 1316 } 1317 1318 int SSL_get_rfd(const SSL *s) 1319 { 1320 int ret = -1; 1321 BIO *b, *r; 1322 1323 b = SSL_get_rbio(s); 1324 r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR); 1325 if (r != NULL) 1326 BIO_get_fd(r, &ret); 1327 return ret; 1328 } 1329 1330 int SSL_get_wfd(const SSL *s) 1331 { 1332 int ret = -1; 1333 BIO *b, *r; 1334 1335 b = SSL_get_wbio(s); 1336 r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR); 1337 if (r != NULL) 1338 BIO_get_fd(r, &ret); 1339 return ret; 1340 } 1341 1342 #ifndef OPENSSL_NO_SOCK 1343 int SSL_set_fd(SSL *s, int fd) 1344 { 1345 int ret = 0; 1346 BIO *bio = NULL; 1347 1348 bio = BIO_new(BIO_s_socket()); 1349 1350 if (bio == NULL) { 1351 SSLerr(SSL_F_SSL_SET_FD, ERR_R_BUF_LIB); 1352 goto err; 1353 } 1354 BIO_set_fd(bio, fd, BIO_NOCLOSE); 1355 SSL_set_bio(s, bio, bio); 1356 ret = 1; 1357 err: 1358 return ret; 1359 } 1360 1361 int SSL_set_wfd(SSL *s, int fd) 1362 { 1363 BIO *rbio = SSL_get_rbio(s); 1364 1365 if (rbio == NULL || BIO_method_type(rbio) != BIO_TYPE_SOCKET 1366 || (int)BIO_get_fd(rbio, NULL) != fd) { 1367 BIO *bio = BIO_new(BIO_s_socket()); 1368 1369 if (bio == NULL) { 1370 SSLerr(SSL_F_SSL_SET_WFD, ERR_R_BUF_LIB); 1371 return 0; 1372 } 1373 BIO_set_fd(bio, fd, BIO_NOCLOSE); 1374 SSL_set0_wbio(s, bio); 1375 } else { 1376 BIO_up_ref(rbio); 1377 SSL_set0_wbio(s, rbio); 1378 } 1379 return 1; 1380 } 1381 1382 int SSL_set_rfd(SSL *s, int fd) 1383 { 1384 BIO *wbio = SSL_get_wbio(s); 1385 1386 if (wbio == NULL || BIO_method_type(wbio) != BIO_TYPE_SOCKET 1387 || ((int)BIO_get_fd(wbio, NULL) != fd)) { 1388 BIO *bio = BIO_new(BIO_s_socket()); 1389 1390 if (bio == NULL) { 1391 SSLerr(SSL_F_SSL_SET_RFD, ERR_R_BUF_LIB); 1392 return 0; 1393 } 1394 BIO_set_fd(bio, fd, BIO_NOCLOSE); 1395 SSL_set0_rbio(s, bio); 1396 } else { 1397 BIO_up_ref(wbio); 1398 SSL_set0_rbio(s, wbio); 1399 } 1400 1401 return 1; 1402 } 1403 #endif 1404 1405 /* return length of latest Finished message we sent, copy to 'buf' */ 1406 size_t SSL_get_finished(const SSL *s, void *buf, size_t count) 1407 { 1408 size_t ret = 0; 1409 1410 if (s->s3 != NULL) { 1411 ret = s->s3->tmp.finish_md_len; 1412 if (count > ret) 1413 count = ret; 1414 memcpy(buf, s->s3->tmp.finish_md, count); 1415 } 1416 return ret; 1417 } 1418 1419 /* return length of latest Finished message we expected, copy to 'buf' */ 1420 size_t SSL_get_peer_finished(const SSL *s, void *buf, size_t count) 1421 { 1422 size_t ret = 0; 1423 1424 if (s->s3 != NULL) { 1425 ret = s->s3->tmp.peer_finish_md_len; 1426 if (count > ret) 1427 count = ret; 1428 memcpy(buf, s->s3->tmp.peer_finish_md, count); 1429 } 1430 return ret; 1431 } 1432 1433 int SSL_get_verify_mode(const SSL *s) 1434 { 1435 return s->verify_mode; 1436 } 1437 1438 int SSL_get_verify_depth(const SSL *s) 1439 { 1440 return X509_VERIFY_PARAM_get_depth(s->param); 1441 } 1442 1443 int (*SSL_get_verify_callback(const SSL *s)) (int, X509_STORE_CTX *) { 1444 return s->verify_callback; 1445 } 1446 1447 int SSL_CTX_get_verify_mode(const SSL_CTX *ctx) 1448 { 1449 return ctx->verify_mode; 1450 } 1451 1452 int SSL_CTX_get_verify_depth(const SSL_CTX *ctx) 1453 { 1454 return X509_VERIFY_PARAM_get_depth(ctx->param); 1455 } 1456 1457 int (*SSL_CTX_get_verify_callback(const SSL_CTX *ctx)) (int, X509_STORE_CTX *) { 1458 return ctx->default_verify_callback; 1459 } 1460 1461 void SSL_set_verify(SSL *s, int mode, 1462 int (*callback) (int ok, X509_STORE_CTX *ctx)) 1463 { 1464 s->verify_mode = mode; 1465 if (callback != NULL) 1466 s->verify_callback = callback; 1467 } 1468 1469 void SSL_set_verify_depth(SSL *s, int depth) 1470 { 1471 X509_VERIFY_PARAM_set_depth(s->param, depth); 1472 } 1473 1474 void SSL_set_read_ahead(SSL *s, int yes) 1475 { 1476 RECORD_LAYER_set_read_ahead(&s->rlayer, yes); 1477 } 1478 1479 int SSL_get_read_ahead(const SSL *s) 1480 { 1481 return RECORD_LAYER_get_read_ahead(&s->rlayer); 1482 } 1483 1484 int SSL_pending(const SSL *s) 1485 { 1486 size_t pending = s->method->ssl_pending(s); 1487 1488 /* 1489 * SSL_pending cannot work properly if read-ahead is enabled 1490 * (SSL_[CTX_]ctrl(..., SSL_CTRL_SET_READ_AHEAD, 1, NULL)), and it is 1491 * impossible to fix since SSL_pending cannot report errors that may be 1492 * observed while scanning the new data. (Note that SSL_pending() is 1493 * often used as a boolean value, so we'd better not return -1.) 1494 * 1495 * SSL_pending also cannot work properly if the value >INT_MAX. In that case 1496 * we just return INT_MAX. 1497 */ 1498 return pending < INT_MAX ? (int)pending : INT_MAX; 1499 } 1500 1501 int SSL_has_pending(const SSL *s) 1502 { 1503 /* 1504 * Similar to SSL_pending() but returns a 1 to indicate that we have 1505 * unprocessed data available or 0 otherwise (as opposed to the number of 1506 * bytes available). Unlike SSL_pending() this will take into account 1507 * read_ahead data. A 1 return simply indicates that we have unprocessed 1508 * data. That data may not result in any application data, or we may fail 1509 * to parse the records for some reason. 1510 */ 1511 if (RECORD_LAYER_processed_read_pending(&s->rlayer)) 1512 return 1; 1513 1514 return RECORD_LAYER_read_pending(&s->rlayer); 1515 } 1516 1517 X509 *SSL_get_peer_certificate(const SSL *s) 1518 { 1519 X509 *r; 1520 1521 if ((s == NULL) || (s->session == NULL)) 1522 r = NULL; 1523 else 1524 r = s->session->peer; 1525 1526 if (r == NULL) 1527 return r; 1528 1529 X509_up_ref(r); 1530 1531 return r; 1532 } 1533 1534 STACK_OF(X509) *SSL_get_peer_cert_chain(const SSL *s) 1535 { 1536 STACK_OF(X509) *r; 1537 1538 if ((s == NULL) || (s->session == NULL)) 1539 r = NULL; 1540 else 1541 r = s->session->peer_chain; 1542 1543 /* 1544 * If we are a client, cert_chain includes the peer's own certificate; if 1545 * we are a server, it does not. 1546 */ 1547 1548 return r; 1549 } 1550 1551 /* 1552 * Now in theory, since the calling process own 't' it should be safe to 1553 * modify. We need to be able to read f without being hassled 1554 */ 1555 int SSL_copy_session_id(SSL *t, const SSL *f) 1556 { 1557 int i; 1558 /* Do we need to to SSL locking? */ 1559 if (!SSL_set_session(t, SSL_get_session(f))) { 1560 return 0; 1561 } 1562 1563 /* 1564 * what if we are setup for one protocol version but want to talk another 1565 */ 1566 if (t->method != f->method) { 1567 t->method->ssl_free(t); 1568 t->method = f->method; 1569 if (t->method->ssl_new(t) == 0) 1570 return 0; 1571 } 1572 1573 CRYPTO_UP_REF(&f->cert->references, &i, f->cert->lock); 1574 ssl_cert_free(t->cert); 1575 t->cert = f->cert; 1576 if (!SSL_set_session_id_context(t, f->sid_ctx, (int)f->sid_ctx_length)) { 1577 return 0; 1578 } 1579 1580 return 1; 1581 } 1582 1583 /* Fix this so it checks all the valid key/cert options */ 1584 int SSL_CTX_check_private_key(const SSL_CTX *ctx) 1585 { 1586 if ((ctx == NULL) || (ctx->cert->key->x509 == NULL)) { 1587 SSLerr(SSL_F_SSL_CTX_CHECK_PRIVATE_KEY, SSL_R_NO_CERTIFICATE_ASSIGNED); 1588 return 0; 1589 } 1590 if (ctx->cert->key->privatekey == NULL) { 1591 SSLerr(SSL_F_SSL_CTX_CHECK_PRIVATE_KEY, SSL_R_NO_PRIVATE_KEY_ASSIGNED); 1592 return 0; 1593 } 1594 return X509_check_private_key 1595 (ctx->cert->key->x509, ctx->cert->key->privatekey); 1596 } 1597 1598 /* Fix this function so that it takes an optional type parameter */ 1599 int SSL_check_private_key(const SSL *ssl) 1600 { 1601 if (ssl == NULL) { 1602 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, ERR_R_PASSED_NULL_PARAMETER); 1603 return 0; 1604 } 1605 if (ssl->cert->key->x509 == NULL) { 1606 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, SSL_R_NO_CERTIFICATE_ASSIGNED); 1607 return 0; 1608 } 1609 if (ssl->cert->key->privatekey == NULL) { 1610 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, SSL_R_NO_PRIVATE_KEY_ASSIGNED); 1611 return 0; 1612 } 1613 return X509_check_private_key(ssl->cert->key->x509, 1614 ssl->cert->key->privatekey); 1615 } 1616 1617 int SSL_waiting_for_async(SSL *s) 1618 { 1619 if (s->job) 1620 return 1; 1621 1622 return 0; 1623 } 1624 1625 int SSL_get_all_async_fds(SSL *s, OSSL_ASYNC_FD *fds, size_t *numfds) 1626 { 1627 ASYNC_WAIT_CTX *ctx = s->waitctx; 1628 1629 if (ctx == NULL) 1630 return 0; 1631 return ASYNC_WAIT_CTX_get_all_fds(ctx, fds, numfds); 1632 } 1633 1634 int SSL_get_changed_async_fds(SSL *s, OSSL_ASYNC_FD *addfd, size_t *numaddfds, 1635 OSSL_ASYNC_FD *delfd, size_t *numdelfds) 1636 { 1637 ASYNC_WAIT_CTX *ctx = s->waitctx; 1638 1639 if (ctx == NULL) 1640 return 0; 1641 return ASYNC_WAIT_CTX_get_changed_fds(ctx, addfd, numaddfds, delfd, 1642 numdelfds); 1643 } 1644 1645 int SSL_accept(SSL *s) 1646 { 1647 if (s->handshake_func == NULL) { 1648 /* Not properly initialized yet */ 1649 SSL_set_accept_state(s); 1650 } 1651 1652 return SSL_do_handshake(s); 1653 } 1654 1655 int SSL_connect(SSL *s) 1656 { 1657 if (s->handshake_func == NULL) { 1658 /* Not properly initialized yet */ 1659 SSL_set_connect_state(s); 1660 } 1661 1662 return SSL_do_handshake(s); 1663 } 1664 1665 long SSL_get_default_timeout(const SSL *s) 1666 { 1667 return s->method->get_timeout(); 1668 } 1669 1670 static int ssl_start_async_job(SSL *s, struct ssl_async_args *args, 1671 int (*func) (void *)) 1672 { 1673 int ret; 1674 if (s->waitctx == NULL) { 1675 s->waitctx = ASYNC_WAIT_CTX_new(); 1676 if (s->waitctx == NULL) 1677 return -1; 1678 } 1679 switch (ASYNC_start_job(&s->job, s->waitctx, &ret, func, args, 1680 sizeof(struct ssl_async_args))) { 1681 case ASYNC_ERR: 1682 s->rwstate = SSL_NOTHING; 1683 SSLerr(SSL_F_SSL_START_ASYNC_JOB, SSL_R_FAILED_TO_INIT_ASYNC); 1684 return -1; 1685 case ASYNC_PAUSE: 1686 s->rwstate = SSL_ASYNC_PAUSED; 1687 return -1; 1688 case ASYNC_NO_JOBS: 1689 s->rwstate = SSL_ASYNC_NO_JOBS; 1690 return -1; 1691 case ASYNC_FINISH: 1692 s->job = NULL; 1693 return ret; 1694 default: 1695 s->rwstate = SSL_NOTHING; 1696 SSLerr(SSL_F_SSL_START_ASYNC_JOB, ERR_R_INTERNAL_ERROR); 1697 /* Shouldn't happen */ 1698 return -1; 1699 } 1700 } 1701 1702 static int ssl_io_intern(void *vargs) 1703 { 1704 struct ssl_async_args *args; 1705 SSL *s; 1706 void *buf; 1707 size_t num; 1708 1709 args = (struct ssl_async_args *)vargs; 1710 s = args->s; 1711 buf = args->buf; 1712 num = args->num; 1713 switch (args->type) { 1714 case READFUNC: 1715 return args->f.func_read(s, buf, num, &s->asyncrw); 1716 case WRITEFUNC: 1717 return args->f.func_write(s, buf, num, &s->asyncrw); 1718 case OTHERFUNC: 1719 return args->f.func_other(s); 1720 } 1721 return -1; 1722 } 1723 1724 int ssl_read_internal(SSL *s, void *buf, size_t num, size_t *readbytes) 1725 { 1726 if (s->handshake_func == NULL) { 1727 SSLerr(SSL_F_SSL_READ_INTERNAL, SSL_R_UNINITIALIZED); 1728 return -1; 1729 } 1730 1731 if (s->shutdown & SSL_RECEIVED_SHUTDOWN) { 1732 s->rwstate = SSL_NOTHING; 1733 return 0; 1734 } 1735 1736 if (s->early_data_state == SSL_EARLY_DATA_CONNECT_RETRY 1737 || s->early_data_state == SSL_EARLY_DATA_ACCEPT_RETRY) { 1738 SSLerr(SSL_F_SSL_READ_INTERNAL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 1739 return 0; 1740 } 1741 /* 1742 * If we are a client and haven't received the ServerHello etc then we 1743 * better do that 1744 */ 1745 ossl_statem_check_finish_init(s, 0); 1746 1747 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) { 1748 struct ssl_async_args args; 1749 int ret; 1750 1751 args.s = s; 1752 args.buf = buf; 1753 args.num = num; 1754 args.type = READFUNC; 1755 args.f.func_read = s->method->ssl_read; 1756 1757 ret = ssl_start_async_job(s, &args, ssl_io_intern); 1758 *readbytes = s->asyncrw; 1759 return ret; 1760 } else { 1761 return s->method->ssl_read(s, buf, num, readbytes); 1762 } 1763 } 1764 1765 int SSL_read(SSL *s, void *buf, int num) 1766 { 1767 int ret; 1768 size_t readbytes; 1769 1770 if (num < 0) { 1771 SSLerr(SSL_F_SSL_READ, SSL_R_BAD_LENGTH); 1772 return -1; 1773 } 1774 1775 ret = ssl_read_internal(s, buf, (size_t)num, &readbytes); 1776 1777 /* 1778 * The cast is safe here because ret should be <= INT_MAX because num is 1779 * <= INT_MAX 1780 */ 1781 if (ret > 0) 1782 ret = (int)readbytes; 1783 1784 return ret; 1785 } 1786 1787 int SSL_read_ex(SSL *s, void *buf, size_t num, size_t *readbytes) 1788 { 1789 int ret = ssl_read_internal(s, buf, num, readbytes); 1790 1791 if (ret < 0) 1792 ret = 0; 1793 return ret; 1794 } 1795 1796 int SSL_read_early_data(SSL *s, void *buf, size_t num, size_t *readbytes) 1797 { 1798 int ret; 1799 1800 if (!s->server) { 1801 SSLerr(SSL_F_SSL_READ_EARLY_DATA, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 1802 return SSL_READ_EARLY_DATA_ERROR; 1803 } 1804 1805 switch (s->early_data_state) { 1806 case SSL_EARLY_DATA_NONE: 1807 if (!SSL_in_before(s)) { 1808 SSLerr(SSL_F_SSL_READ_EARLY_DATA, 1809 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 1810 return SSL_READ_EARLY_DATA_ERROR; 1811 } 1812 /* fall through */ 1813 1814 case SSL_EARLY_DATA_ACCEPT_RETRY: 1815 s->early_data_state = SSL_EARLY_DATA_ACCEPTING; 1816 ret = SSL_accept(s); 1817 if (ret <= 0) { 1818 /* NBIO or error */ 1819 s->early_data_state = SSL_EARLY_DATA_ACCEPT_RETRY; 1820 return SSL_READ_EARLY_DATA_ERROR; 1821 } 1822 /* fall through */ 1823 1824 case SSL_EARLY_DATA_READ_RETRY: 1825 if (s->ext.early_data == SSL_EARLY_DATA_ACCEPTED) { 1826 s->early_data_state = SSL_EARLY_DATA_READING; 1827 ret = SSL_read_ex(s, buf, num, readbytes); 1828 /* 1829 * State machine will update early_data_state to 1830 * SSL_EARLY_DATA_FINISHED_READING if we get an EndOfEarlyData 1831 * message 1832 */ 1833 if (ret > 0 || (ret <= 0 && s->early_data_state 1834 != SSL_EARLY_DATA_FINISHED_READING)) { 1835 s->early_data_state = SSL_EARLY_DATA_READ_RETRY; 1836 return ret > 0 ? SSL_READ_EARLY_DATA_SUCCESS 1837 : SSL_READ_EARLY_DATA_ERROR; 1838 } 1839 } else { 1840 s->early_data_state = SSL_EARLY_DATA_FINISHED_READING; 1841 } 1842 *readbytes = 0; 1843 return SSL_READ_EARLY_DATA_FINISH; 1844 1845 default: 1846 SSLerr(SSL_F_SSL_READ_EARLY_DATA, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 1847 return SSL_READ_EARLY_DATA_ERROR; 1848 } 1849 } 1850 1851 int SSL_get_early_data_status(const SSL *s) 1852 { 1853 return s->ext.early_data; 1854 } 1855 1856 static int ssl_peek_internal(SSL *s, void *buf, size_t num, size_t *readbytes) 1857 { 1858 if (s->handshake_func == NULL) { 1859 SSLerr(SSL_F_SSL_PEEK_INTERNAL, SSL_R_UNINITIALIZED); 1860 return -1; 1861 } 1862 1863 if (s->shutdown & SSL_RECEIVED_SHUTDOWN) { 1864 return 0; 1865 } 1866 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) { 1867 struct ssl_async_args args; 1868 int ret; 1869 1870 args.s = s; 1871 args.buf = buf; 1872 args.num = num; 1873 args.type = READFUNC; 1874 args.f.func_read = s->method->ssl_peek; 1875 1876 ret = ssl_start_async_job(s, &args, ssl_io_intern); 1877 *readbytes = s->asyncrw; 1878 return ret; 1879 } else { 1880 return s->method->ssl_peek(s, buf, num, readbytes); 1881 } 1882 } 1883 1884 int SSL_peek(SSL *s, void *buf, int num) 1885 { 1886 int ret; 1887 size_t readbytes; 1888 1889 if (num < 0) { 1890 SSLerr(SSL_F_SSL_PEEK, SSL_R_BAD_LENGTH); 1891 return -1; 1892 } 1893 1894 ret = ssl_peek_internal(s, buf, (size_t)num, &readbytes); 1895 1896 /* 1897 * The cast is safe here because ret should be <= INT_MAX because num is 1898 * <= INT_MAX 1899 */ 1900 if (ret > 0) 1901 ret = (int)readbytes; 1902 1903 return ret; 1904 } 1905 1906 1907 int SSL_peek_ex(SSL *s, void *buf, size_t num, size_t *readbytes) 1908 { 1909 int ret = ssl_peek_internal(s, buf, num, readbytes); 1910 1911 if (ret < 0) 1912 ret = 0; 1913 return ret; 1914 } 1915 1916 int ssl_write_internal(SSL *s, const void *buf, size_t num, size_t *written) 1917 { 1918 if (s->handshake_func == NULL) { 1919 SSLerr(SSL_F_SSL_WRITE_INTERNAL, SSL_R_UNINITIALIZED); 1920 return -1; 1921 } 1922 1923 if (s->shutdown & SSL_SENT_SHUTDOWN) { 1924 s->rwstate = SSL_NOTHING; 1925 SSLerr(SSL_F_SSL_WRITE_INTERNAL, SSL_R_PROTOCOL_IS_SHUTDOWN); 1926 return -1; 1927 } 1928 1929 if (s->early_data_state == SSL_EARLY_DATA_CONNECT_RETRY 1930 || s->early_data_state == SSL_EARLY_DATA_ACCEPT_RETRY 1931 || s->early_data_state == SSL_EARLY_DATA_READ_RETRY) { 1932 SSLerr(SSL_F_SSL_WRITE_INTERNAL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 1933 return 0; 1934 } 1935 /* If we are a client and haven't sent the Finished we better do that */ 1936 ossl_statem_check_finish_init(s, 1); 1937 1938 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) { 1939 int ret; 1940 struct ssl_async_args args; 1941 1942 args.s = s; 1943 args.buf = (void *)buf; 1944 args.num = num; 1945 args.type = WRITEFUNC; 1946 args.f.func_write = s->method->ssl_write; 1947 1948 ret = ssl_start_async_job(s, &args, ssl_io_intern); 1949 *written = s->asyncrw; 1950 return ret; 1951 } else { 1952 return s->method->ssl_write(s, buf, num, written); 1953 } 1954 } 1955 1956 int SSL_write(SSL *s, const void *buf, int num) 1957 { 1958 int ret; 1959 size_t written; 1960 1961 if (num < 0) { 1962 SSLerr(SSL_F_SSL_WRITE, SSL_R_BAD_LENGTH); 1963 return -1; 1964 } 1965 1966 ret = ssl_write_internal(s, buf, (size_t)num, &written); 1967 1968 /* 1969 * The cast is safe here because ret should be <= INT_MAX because num is 1970 * <= INT_MAX 1971 */ 1972 if (ret > 0) 1973 ret = (int)written; 1974 1975 return ret; 1976 } 1977 1978 int SSL_write_ex(SSL *s, const void *buf, size_t num, size_t *written) 1979 { 1980 int ret = ssl_write_internal(s, buf, num, written); 1981 1982 if (ret < 0) 1983 ret = 0; 1984 return ret; 1985 } 1986 1987 int SSL_write_early_data(SSL *s, const void *buf, size_t num, size_t *written) 1988 { 1989 int ret, early_data_state; 1990 size_t writtmp; 1991 uint32_t partialwrite; 1992 1993 switch (s->early_data_state) { 1994 case SSL_EARLY_DATA_NONE: 1995 if (s->server 1996 || !SSL_in_before(s) 1997 || ((s->session == NULL || s->session->ext.max_early_data == 0) 1998 && (s->psk_use_session_cb == NULL))) { 1999 SSLerr(SSL_F_SSL_WRITE_EARLY_DATA, 2000 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 2001 return 0; 2002 } 2003 /* fall through */ 2004 2005 case SSL_EARLY_DATA_CONNECT_RETRY: 2006 s->early_data_state = SSL_EARLY_DATA_CONNECTING; 2007 ret = SSL_connect(s); 2008 if (ret <= 0) { 2009 /* NBIO or error */ 2010 s->early_data_state = SSL_EARLY_DATA_CONNECT_RETRY; 2011 return 0; 2012 } 2013 /* fall through */ 2014 2015 case SSL_EARLY_DATA_WRITE_RETRY: 2016 s->early_data_state = SSL_EARLY_DATA_WRITING; 2017 /* 2018 * We disable partial write for early data because we don't keep track 2019 * of how many bytes we've written between the SSL_write_ex() call and 2020 * the flush if the flush needs to be retried) 2021 */ 2022 partialwrite = s->mode & SSL_MODE_ENABLE_PARTIAL_WRITE; 2023 s->mode &= ~SSL_MODE_ENABLE_PARTIAL_WRITE; 2024 ret = SSL_write_ex(s, buf, num, &writtmp); 2025 s->mode |= partialwrite; 2026 if (!ret) { 2027 s->early_data_state = SSL_EARLY_DATA_WRITE_RETRY; 2028 return ret; 2029 } 2030 s->early_data_state = SSL_EARLY_DATA_WRITE_FLUSH; 2031 /* fall through */ 2032 2033 case SSL_EARLY_DATA_WRITE_FLUSH: 2034 /* The buffering BIO is still in place so we need to flush it */ 2035 if (statem_flush(s) != 1) 2036 return 0; 2037 *written = num; 2038 s->early_data_state = SSL_EARLY_DATA_WRITE_RETRY; 2039 return 1; 2040 2041 case SSL_EARLY_DATA_FINISHED_READING: 2042 case SSL_EARLY_DATA_READ_RETRY: 2043 early_data_state = s->early_data_state; 2044 /* We are a server writing to an unauthenticated client */ 2045 s->early_data_state = SSL_EARLY_DATA_UNAUTH_WRITING; 2046 ret = SSL_write_ex(s, buf, num, written); 2047 /* The buffering BIO is still in place */ 2048 if (ret) 2049 (void)BIO_flush(s->wbio); 2050 s->early_data_state = early_data_state; 2051 return ret; 2052 2053 default: 2054 SSLerr(SSL_F_SSL_WRITE_EARLY_DATA, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 2055 return 0; 2056 } 2057 } 2058 2059 int SSL_shutdown(SSL *s) 2060 { 2061 /* 2062 * Note that this function behaves differently from what one might 2063 * expect. Return values are 0 for no success (yet), 1 for success; but 2064 * calling it once is usually not enough, even if blocking I/O is used 2065 * (see ssl3_shutdown). 2066 */ 2067 2068 if (s->handshake_func == NULL) { 2069 SSLerr(SSL_F_SSL_SHUTDOWN, SSL_R_UNINITIALIZED); 2070 return -1; 2071 } 2072 2073 if (!SSL_in_init(s)) { 2074 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) { 2075 struct ssl_async_args args; 2076 2077 args.s = s; 2078 args.type = OTHERFUNC; 2079 args.f.func_other = s->method->ssl_shutdown; 2080 2081 return ssl_start_async_job(s, &args, ssl_io_intern); 2082 } else { 2083 return s->method->ssl_shutdown(s); 2084 } 2085 } else { 2086 SSLerr(SSL_F_SSL_SHUTDOWN, SSL_R_SHUTDOWN_WHILE_IN_INIT); 2087 return -1; 2088 } 2089 } 2090 2091 int SSL_key_update(SSL *s, int updatetype) 2092 { 2093 /* 2094 * TODO(TLS1.3): How will applications know whether TLSv1.3 has been 2095 * negotiated, and that it is appropriate to call SSL_key_update() instead 2096 * of SSL_renegotiate(). 2097 */ 2098 if (!SSL_IS_TLS13(s)) { 2099 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_WRONG_SSL_VERSION); 2100 return 0; 2101 } 2102 2103 if (updatetype != SSL_KEY_UPDATE_NOT_REQUESTED 2104 && updatetype != SSL_KEY_UPDATE_REQUESTED) { 2105 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_INVALID_KEY_UPDATE_TYPE); 2106 return 0; 2107 } 2108 2109 if (!SSL_is_init_finished(s)) { 2110 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_STILL_IN_INIT); 2111 return 0; 2112 } 2113 2114 ossl_statem_set_in_init(s, 1); 2115 s->key_update = updatetype; 2116 return 1; 2117 } 2118 2119 int SSL_get_key_update_type(const SSL *s) 2120 { 2121 return s->key_update; 2122 } 2123 2124 int SSL_renegotiate(SSL *s) 2125 { 2126 if (SSL_IS_TLS13(s)) { 2127 SSLerr(SSL_F_SSL_RENEGOTIATE, SSL_R_WRONG_SSL_VERSION); 2128 return 0; 2129 } 2130 2131 if ((s->options & SSL_OP_NO_RENEGOTIATION)) { 2132 SSLerr(SSL_F_SSL_RENEGOTIATE, SSL_R_NO_RENEGOTIATION); 2133 return 0; 2134 } 2135 2136 s->renegotiate = 1; 2137 s->new_session = 1; 2138 2139 return s->method->ssl_renegotiate(s); 2140 } 2141 2142 int SSL_renegotiate_abbreviated(SSL *s) 2143 { 2144 if (SSL_IS_TLS13(s)) { 2145 SSLerr(SSL_F_SSL_RENEGOTIATE_ABBREVIATED, SSL_R_WRONG_SSL_VERSION); 2146 return 0; 2147 } 2148 2149 if ((s->options & SSL_OP_NO_RENEGOTIATION)) { 2150 SSLerr(SSL_F_SSL_RENEGOTIATE_ABBREVIATED, SSL_R_NO_RENEGOTIATION); 2151 return 0; 2152 } 2153 2154 s->renegotiate = 1; 2155 s->new_session = 0; 2156 2157 return s->method->ssl_renegotiate(s); 2158 } 2159 2160 int SSL_renegotiate_pending(const SSL *s) 2161 { 2162 /* 2163 * becomes true when negotiation is requested; false again once a 2164 * handshake has finished 2165 */ 2166 return (s->renegotiate != 0); 2167 } 2168 2169 long SSL_ctrl(SSL *s, int cmd, long larg, void *parg) 2170 { 2171 long l; 2172 2173 switch (cmd) { 2174 case SSL_CTRL_GET_READ_AHEAD: 2175 return RECORD_LAYER_get_read_ahead(&s->rlayer); 2176 case SSL_CTRL_SET_READ_AHEAD: 2177 l = RECORD_LAYER_get_read_ahead(&s->rlayer); 2178 RECORD_LAYER_set_read_ahead(&s->rlayer, larg); 2179 return l; 2180 2181 case SSL_CTRL_SET_MSG_CALLBACK_ARG: 2182 s->msg_callback_arg = parg; 2183 return 1; 2184 2185 case SSL_CTRL_MODE: 2186 return (s->mode |= larg); 2187 case SSL_CTRL_CLEAR_MODE: 2188 return (s->mode &= ~larg); 2189 case SSL_CTRL_GET_MAX_CERT_LIST: 2190 return (long)s->max_cert_list; 2191 case SSL_CTRL_SET_MAX_CERT_LIST: 2192 if (larg < 0) 2193 return 0; 2194 l = (long)s->max_cert_list; 2195 s->max_cert_list = (size_t)larg; 2196 return l; 2197 case SSL_CTRL_SET_MAX_SEND_FRAGMENT: 2198 if (larg < 512 || larg > SSL3_RT_MAX_PLAIN_LENGTH) 2199 return 0; 2200 s->max_send_fragment = larg; 2201 if (s->max_send_fragment < s->split_send_fragment) 2202 s->split_send_fragment = s->max_send_fragment; 2203 return 1; 2204 case SSL_CTRL_SET_SPLIT_SEND_FRAGMENT: 2205 if ((size_t)larg > s->max_send_fragment || larg == 0) 2206 return 0; 2207 s->split_send_fragment = larg; 2208 return 1; 2209 case SSL_CTRL_SET_MAX_PIPELINES: 2210 if (larg < 1 || larg > SSL_MAX_PIPELINES) 2211 return 0; 2212 s->max_pipelines = larg; 2213 if (larg > 1) 2214 RECORD_LAYER_set_read_ahead(&s->rlayer, 1); 2215 return 1; 2216 case SSL_CTRL_GET_RI_SUPPORT: 2217 if (s->s3) 2218 return s->s3->send_connection_binding; 2219 else 2220 return 0; 2221 case SSL_CTRL_CERT_FLAGS: 2222 return (s->cert->cert_flags |= larg); 2223 case SSL_CTRL_CLEAR_CERT_FLAGS: 2224 return (s->cert->cert_flags &= ~larg); 2225 2226 case SSL_CTRL_GET_RAW_CIPHERLIST: 2227 if (parg) { 2228 if (s->s3->tmp.ciphers_raw == NULL) 2229 return 0; 2230 *(unsigned char **)parg = s->s3->tmp.ciphers_raw; 2231 return (int)s->s3->tmp.ciphers_rawlen; 2232 } else { 2233 return TLS_CIPHER_LEN; 2234 } 2235 case SSL_CTRL_GET_EXTMS_SUPPORT: 2236 if (!s->session || SSL_in_init(s) || ossl_statem_get_in_handshake(s)) 2237 return -1; 2238 if (s->session->flags & SSL_SESS_FLAG_EXTMS) 2239 return 1; 2240 else 2241 return 0; 2242 case SSL_CTRL_SET_MIN_PROTO_VERSION: 2243 return ssl_check_allowed_versions(larg, s->max_proto_version) 2244 && ssl_set_version_bound(s->ctx->method->version, (int)larg, 2245 &s->min_proto_version); 2246 case SSL_CTRL_GET_MIN_PROTO_VERSION: 2247 return s->min_proto_version; 2248 case SSL_CTRL_SET_MAX_PROTO_VERSION: 2249 return ssl_check_allowed_versions(s->min_proto_version, larg) 2250 && ssl_set_version_bound(s->ctx->method->version, (int)larg, 2251 &s->max_proto_version); 2252 case SSL_CTRL_GET_MAX_PROTO_VERSION: 2253 return s->max_proto_version; 2254 default: 2255 return s->method->ssl_ctrl(s, cmd, larg, parg); 2256 } 2257 } 2258 2259 long SSL_callback_ctrl(SSL *s, int cmd, void (*fp) (void)) 2260 { 2261 switch (cmd) { 2262 case SSL_CTRL_SET_MSG_CALLBACK: 2263 s->msg_callback = (void (*) 2264 (int write_p, int version, int content_type, 2265 const void *buf, size_t len, SSL *ssl, 2266 void *arg))(fp); 2267 return 1; 2268 2269 default: 2270 return s->method->ssl_callback_ctrl(s, cmd, fp); 2271 } 2272 } 2273 2274 LHASH_OF(SSL_SESSION) *SSL_CTX_sessions(SSL_CTX *ctx) 2275 { 2276 return ctx->sessions; 2277 } 2278 2279 long SSL_CTX_ctrl(SSL_CTX *ctx, int cmd, long larg, void *parg) 2280 { 2281 long l; 2282 /* For some cases with ctx == NULL perform syntax checks */ 2283 if (ctx == NULL) { 2284 switch (cmd) { 2285 #ifndef OPENSSL_NO_EC 2286 case SSL_CTRL_SET_GROUPS_LIST: 2287 return tls1_set_groups_list(NULL, NULL, parg); 2288 #endif 2289 case SSL_CTRL_SET_SIGALGS_LIST: 2290 case SSL_CTRL_SET_CLIENT_SIGALGS_LIST: 2291 return tls1_set_sigalgs_list(NULL, parg, 0); 2292 default: 2293 return 0; 2294 } 2295 } 2296 2297 switch (cmd) { 2298 case SSL_CTRL_GET_READ_AHEAD: 2299 return ctx->read_ahead; 2300 case SSL_CTRL_SET_READ_AHEAD: 2301 l = ctx->read_ahead; 2302 ctx->read_ahead = larg; 2303 return l; 2304 2305 case SSL_CTRL_SET_MSG_CALLBACK_ARG: 2306 ctx->msg_callback_arg = parg; 2307 return 1; 2308 2309 case SSL_CTRL_GET_MAX_CERT_LIST: 2310 return (long)ctx->max_cert_list; 2311 case SSL_CTRL_SET_MAX_CERT_LIST: 2312 if (larg < 0) 2313 return 0; 2314 l = (long)ctx->max_cert_list; 2315 ctx->max_cert_list = (size_t)larg; 2316 return l; 2317 2318 case SSL_CTRL_SET_SESS_CACHE_SIZE: 2319 if (larg < 0) 2320 return 0; 2321 l = (long)ctx->session_cache_size; 2322 ctx->session_cache_size = (size_t)larg; 2323 return l; 2324 case SSL_CTRL_GET_SESS_CACHE_SIZE: 2325 return (long)ctx->session_cache_size; 2326 case SSL_CTRL_SET_SESS_CACHE_MODE: 2327 l = ctx->session_cache_mode; 2328 ctx->session_cache_mode = larg; 2329 return l; 2330 case SSL_CTRL_GET_SESS_CACHE_MODE: 2331 return ctx->session_cache_mode; 2332 2333 case SSL_CTRL_SESS_NUMBER: 2334 return lh_SSL_SESSION_num_items(ctx->sessions); 2335 case SSL_CTRL_SESS_CONNECT: 2336 return tsan_load(&ctx->stats.sess_connect); 2337 case SSL_CTRL_SESS_CONNECT_GOOD: 2338 return tsan_load(&ctx->stats.sess_connect_good); 2339 case SSL_CTRL_SESS_CONNECT_RENEGOTIATE: 2340 return tsan_load(&ctx->stats.sess_connect_renegotiate); 2341 case SSL_CTRL_SESS_ACCEPT: 2342 return tsan_load(&ctx->stats.sess_accept); 2343 case SSL_CTRL_SESS_ACCEPT_GOOD: 2344 return tsan_load(&ctx->stats.sess_accept_good); 2345 case SSL_CTRL_SESS_ACCEPT_RENEGOTIATE: 2346 return tsan_load(&ctx->stats.sess_accept_renegotiate); 2347 case SSL_CTRL_SESS_HIT: 2348 return tsan_load(&ctx->stats.sess_hit); 2349 case SSL_CTRL_SESS_CB_HIT: 2350 return tsan_load(&ctx->stats.sess_cb_hit); 2351 case SSL_CTRL_SESS_MISSES: 2352 return tsan_load(&ctx->stats.sess_miss); 2353 case SSL_CTRL_SESS_TIMEOUTS: 2354 return tsan_load(&ctx->stats.sess_timeout); 2355 case SSL_CTRL_SESS_CACHE_FULL: 2356 return tsan_load(&ctx->stats.sess_cache_full); 2357 case SSL_CTRL_MODE: 2358 return (ctx->mode |= larg); 2359 case SSL_CTRL_CLEAR_MODE: 2360 return (ctx->mode &= ~larg); 2361 case SSL_CTRL_SET_MAX_SEND_FRAGMENT: 2362 if (larg < 512 || larg > SSL3_RT_MAX_PLAIN_LENGTH) 2363 return 0; 2364 ctx->max_send_fragment = larg; 2365 if (ctx->max_send_fragment < ctx->split_send_fragment) 2366 ctx->split_send_fragment = ctx->max_send_fragment; 2367 return 1; 2368 case SSL_CTRL_SET_SPLIT_SEND_FRAGMENT: 2369 if ((size_t)larg > ctx->max_send_fragment || larg == 0) 2370 return 0; 2371 ctx->split_send_fragment = larg; 2372 return 1; 2373 case SSL_CTRL_SET_MAX_PIPELINES: 2374 if (larg < 1 || larg > SSL_MAX_PIPELINES) 2375 return 0; 2376 ctx->max_pipelines = larg; 2377 return 1; 2378 case SSL_CTRL_CERT_FLAGS: 2379 return (ctx->cert->cert_flags |= larg); 2380 case SSL_CTRL_CLEAR_CERT_FLAGS: 2381 return (ctx->cert->cert_flags &= ~larg); 2382 case SSL_CTRL_SET_MIN_PROTO_VERSION: 2383 return ssl_check_allowed_versions(larg, ctx->max_proto_version) 2384 && ssl_set_version_bound(ctx->method->version, (int)larg, 2385 &ctx->min_proto_version); 2386 case SSL_CTRL_GET_MIN_PROTO_VERSION: 2387 return ctx->min_proto_version; 2388 case SSL_CTRL_SET_MAX_PROTO_VERSION: 2389 return ssl_check_allowed_versions(ctx->min_proto_version, larg) 2390 && ssl_set_version_bound(ctx->method->version, (int)larg, 2391 &ctx->max_proto_version); 2392 case SSL_CTRL_GET_MAX_PROTO_VERSION: 2393 return ctx->max_proto_version; 2394 default: 2395 return ctx->method->ssl_ctx_ctrl(ctx, cmd, larg, parg); 2396 } 2397 } 2398 2399 long SSL_CTX_callback_ctrl(SSL_CTX *ctx, int cmd, void (*fp) (void)) 2400 { 2401 switch (cmd) { 2402 case SSL_CTRL_SET_MSG_CALLBACK: 2403 ctx->msg_callback = (void (*) 2404 (int write_p, int version, int content_type, 2405 const void *buf, size_t len, SSL *ssl, 2406 void *arg))(fp); 2407 return 1; 2408 2409 default: 2410 return ctx->method->ssl_ctx_callback_ctrl(ctx, cmd, fp); 2411 } 2412 } 2413 2414 int ssl_cipher_id_cmp(const SSL_CIPHER *a, const SSL_CIPHER *b) 2415 { 2416 if (a->id > b->id) 2417 return 1; 2418 if (a->id < b->id) 2419 return -1; 2420 return 0; 2421 } 2422 2423 int ssl_cipher_ptr_id_cmp(const SSL_CIPHER *const *ap, 2424 const SSL_CIPHER *const *bp) 2425 { 2426 if ((*ap)->id > (*bp)->id) 2427 return 1; 2428 if ((*ap)->id < (*bp)->id) 2429 return -1; 2430 return 0; 2431 } 2432 2433 /** return a STACK of the ciphers available for the SSL and in order of 2434 * preference */ 2435 STACK_OF(SSL_CIPHER) *SSL_get_ciphers(const SSL *s) 2436 { 2437 if (s != NULL) { 2438 if (s->cipher_list != NULL) { 2439 return s->cipher_list; 2440 } else if ((s->ctx != NULL) && (s->ctx->cipher_list != NULL)) { 2441 return s->ctx->cipher_list; 2442 } 2443 } 2444 return NULL; 2445 } 2446 2447 STACK_OF(SSL_CIPHER) *SSL_get_client_ciphers(const SSL *s) 2448 { 2449 if ((s == NULL) || !s->server) 2450 return NULL; 2451 return s->peer_ciphers; 2452 } 2453 2454 STACK_OF(SSL_CIPHER) *SSL_get1_supported_ciphers(SSL *s) 2455 { 2456 STACK_OF(SSL_CIPHER) *sk = NULL, *ciphers; 2457 int i; 2458 2459 ciphers = SSL_get_ciphers(s); 2460 if (!ciphers) 2461 return NULL; 2462 if (!ssl_set_client_disabled(s)) 2463 return NULL; 2464 for (i = 0; i < sk_SSL_CIPHER_num(ciphers); i++) { 2465 const SSL_CIPHER *c = sk_SSL_CIPHER_value(ciphers, i); 2466 if (!ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0)) { 2467 if (!sk) 2468 sk = sk_SSL_CIPHER_new_null(); 2469 if (!sk) 2470 return NULL; 2471 if (!sk_SSL_CIPHER_push(sk, c)) { 2472 sk_SSL_CIPHER_free(sk); 2473 return NULL; 2474 } 2475 } 2476 } 2477 return sk; 2478 } 2479 2480 /** return a STACK of the ciphers available for the SSL and in order of 2481 * algorithm id */ 2482 STACK_OF(SSL_CIPHER) *ssl_get_ciphers_by_id(SSL *s) 2483 { 2484 if (s != NULL) { 2485 if (s->cipher_list_by_id != NULL) { 2486 return s->cipher_list_by_id; 2487 } else if ((s->ctx != NULL) && (s->ctx->cipher_list_by_id != NULL)) { 2488 return s->ctx->cipher_list_by_id; 2489 } 2490 } 2491 return NULL; 2492 } 2493 2494 /** The old interface to get the same thing as SSL_get_ciphers() */ 2495 const char *SSL_get_cipher_list(const SSL *s, int n) 2496 { 2497 const SSL_CIPHER *c; 2498 STACK_OF(SSL_CIPHER) *sk; 2499 2500 if (s == NULL) 2501 return NULL; 2502 sk = SSL_get_ciphers(s); 2503 if ((sk == NULL) || (sk_SSL_CIPHER_num(sk) <= n)) 2504 return NULL; 2505 c = sk_SSL_CIPHER_value(sk, n); 2506 if (c == NULL) 2507 return NULL; 2508 return c->name; 2509 } 2510 2511 /** return a STACK of the ciphers available for the SSL_CTX and in order of 2512 * preference */ 2513 STACK_OF(SSL_CIPHER) *SSL_CTX_get_ciphers(const SSL_CTX *ctx) 2514 { 2515 if (ctx != NULL) 2516 return ctx->cipher_list; 2517 return NULL; 2518 } 2519 2520 /* 2521 * Distinguish between ciphers controlled by set_ciphersuite() and 2522 * set_cipher_list() when counting. 2523 */ 2524 static int cipher_list_tls12_num(STACK_OF(SSL_CIPHER) *sk) 2525 { 2526 int i, num = 0; 2527 const SSL_CIPHER *c; 2528 2529 if (sk == NULL) 2530 return 0; 2531 for (i = 0; i < sk_SSL_CIPHER_num(sk); ++i) { 2532 c = sk_SSL_CIPHER_value(sk, i); 2533 if (c->min_tls >= TLS1_3_VERSION) 2534 continue; 2535 num++; 2536 } 2537 return num; 2538 } 2539 2540 /** specify the ciphers to be used by default by the SSL_CTX */ 2541 int SSL_CTX_set_cipher_list(SSL_CTX *ctx, const char *str) 2542 { 2543 STACK_OF(SSL_CIPHER) *sk; 2544 2545 sk = ssl_create_cipher_list(ctx->method, ctx->tls13_ciphersuites, 2546 &ctx->cipher_list, &ctx->cipher_list_by_id, str, 2547 ctx->cert); 2548 /* 2549 * ssl_create_cipher_list may return an empty stack if it was unable to 2550 * find a cipher matching the given rule string (for example if the rule 2551 * string specifies a cipher which has been disabled). This is not an 2552 * error as far as ssl_create_cipher_list is concerned, and hence 2553 * ctx->cipher_list and ctx->cipher_list_by_id has been updated. 2554 */ 2555 if (sk == NULL) 2556 return 0; 2557 else if (cipher_list_tls12_num(sk) == 0) { 2558 SSLerr(SSL_F_SSL_CTX_SET_CIPHER_LIST, SSL_R_NO_CIPHER_MATCH); 2559 return 0; 2560 } 2561 return 1; 2562 } 2563 2564 /** specify the ciphers to be used by the SSL */ 2565 int SSL_set_cipher_list(SSL *s, const char *str) 2566 { 2567 STACK_OF(SSL_CIPHER) *sk; 2568 2569 sk = ssl_create_cipher_list(s->ctx->method, s->tls13_ciphersuites, 2570 &s->cipher_list, &s->cipher_list_by_id, str, 2571 s->cert); 2572 /* see comment in SSL_CTX_set_cipher_list */ 2573 if (sk == NULL) 2574 return 0; 2575 else if (cipher_list_tls12_num(sk) == 0) { 2576 SSLerr(SSL_F_SSL_SET_CIPHER_LIST, SSL_R_NO_CIPHER_MATCH); 2577 return 0; 2578 } 2579 return 1; 2580 } 2581 2582 char *SSL_get_shared_ciphers(const SSL *s, char *buf, int size) 2583 { 2584 char *p; 2585 STACK_OF(SSL_CIPHER) *clntsk, *srvrsk; 2586 const SSL_CIPHER *c; 2587 int i; 2588 2589 if (!s->server 2590 || s->peer_ciphers == NULL 2591 || size < 2) 2592 return NULL; 2593 2594 p = buf; 2595 clntsk = s->peer_ciphers; 2596 srvrsk = SSL_get_ciphers(s); 2597 if (clntsk == NULL || srvrsk == NULL) 2598 return NULL; 2599 2600 if (sk_SSL_CIPHER_num(clntsk) == 0 || sk_SSL_CIPHER_num(srvrsk) == 0) 2601 return NULL; 2602 2603 for (i = 0; i < sk_SSL_CIPHER_num(clntsk); i++) { 2604 int n; 2605 2606 c = sk_SSL_CIPHER_value(clntsk, i); 2607 if (sk_SSL_CIPHER_find(srvrsk, c) < 0) 2608 continue; 2609 2610 n = strlen(c->name); 2611 if (n + 1 > size) { 2612 if (p != buf) 2613 --p; 2614 *p = '\0'; 2615 return buf; 2616 } 2617 strcpy(p, c->name); 2618 p += n; 2619 *(p++) = ':'; 2620 size -= n + 1; 2621 } 2622 p[-1] = '\0'; 2623 return buf; 2624 } 2625 2626 /** 2627 * Return the requested servername (SNI) value. Note that the behaviour varies 2628 * depending on: 2629 * - whether this is called by the client or the server, 2630 * - if we are before or during/after the handshake, 2631 * - if a resumption or normal handshake is being attempted/has occurred 2632 * - whether we have negotiated TLSv1.2 (or below) or TLSv1.3 2633 * 2634 * Note that only the host_name type is defined (RFC 3546). 2635 */ 2636 const char *SSL_get_servername(const SSL *s, const int type) 2637 { 2638 /* 2639 * If we don't know if we are the client or the server yet then we assume 2640 * client. 2641 */ 2642 int server = s->handshake_func == NULL ? 0 : s->server; 2643 if (type != TLSEXT_NAMETYPE_host_name) 2644 return NULL; 2645 2646 if (server) { 2647 /** 2648 * Server side 2649 * In TLSv1.3 on the server SNI is not associated with the session 2650 * but in TLSv1.2 or below it is. 2651 * 2652 * Before the handshake: 2653 * - return NULL 2654 * 2655 * During/after the handshake (TLSv1.2 or below resumption occurred): 2656 * - If a servername was accepted by the server in the original 2657 * handshake then it will return that servername, or NULL otherwise. 2658 * 2659 * During/after the handshake (TLSv1.2 or below resumption did not occur): 2660 * - The function will return the servername requested by the client in 2661 * this handshake or NULL if none was requested. 2662 */ 2663 if (s->hit && !SSL_IS_TLS13(s)) 2664 return s->session->ext.hostname; 2665 } else { 2666 /** 2667 * Client side 2668 * 2669 * Before the handshake: 2670 * - If a servername has been set via a call to 2671 * SSL_set_tlsext_host_name() then it will return that servername 2672 * - If one has not been set, but a TLSv1.2 resumption is being 2673 * attempted and the session from the original handshake had a 2674 * servername accepted by the server then it will return that 2675 * servername 2676 * - Otherwise it returns NULL 2677 * 2678 * During/after the handshake (TLSv1.2 or below resumption occurred): 2679 * - If the session from the orignal handshake had a servername accepted 2680 * by the server then it will return that servername. 2681 * - Otherwise it returns the servername set via 2682 * SSL_set_tlsext_host_name() (or NULL if it was not called). 2683 * 2684 * During/after the handshake (TLSv1.2 or below resumption did not occur): 2685 * - It will return the servername set via SSL_set_tlsext_host_name() 2686 * (or NULL if it was not called). 2687 */ 2688 if (SSL_in_before(s)) { 2689 if (s->ext.hostname == NULL 2690 && s->session != NULL 2691 && s->session->ssl_version != TLS1_3_VERSION) 2692 return s->session->ext.hostname; 2693 } else { 2694 if (!SSL_IS_TLS13(s) && s->hit && s->session->ext.hostname != NULL) 2695 return s->session->ext.hostname; 2696 } 2697 } 2698 2699 return s->ext.hostname; 2700 } 2701 2702 int SSL_get_servername_type(const SSL *s) 2703 { 2704 if (SSL_get_servername(s, TLSEXT_NAMETYPE_host_name) != NULL) 2705 return TLSEXT_NAMETYPE_host_name; 2706 return -1; 2707 } 2708 2709 /* 2710 * SSL_select_next_proto implements the standard protocol selection. It is 2711 * expected that this function is called from the callback set by 2712 * SSL_CTX_set_next_proto_select_cb. The protocol data is assumed to be a 2713 * vector of 8-bit, length prefixed byte strings. The length byte itself is 2714 * not included in the length. A byte string of length 0 is invalid. No byte 2715 * string may be truncated. The current, but experimental algorithm for 2716 * selecting the protocol is: 1) If the server doesn't support NPN then this 2717 * is indicated to the callback. In this case, the client application has to 2718 * abort the connection or have a default application level protocol. 2) If 2719 * the server supports NPN, but advertises an empty list then the client 2720 * selects the first protocol in its list, but indicates via the API that this 2721 * fallback case was enacted. 3) Otherwise, the client finds the first 2722 * protocol in the server's list that it supports and selects this protocol. 2723 * This is because it's assumed that the server has better information about 2724 * which protocol a client should use. 4) If the client doesn't support any 2725 * of the server's advertised protocols, then this is treated the same as 2726 * case 2. It returns either OPENSSL_NPN_NEGOTIATED if a common protocol was 2727 * found, or OPENSSL_NPN_NO_OVERLAP if the fallback case was reached. 2728 */ 2729 int SSL_select_next_proto(unsigned char **out, unsigned char *outlen, 2730 const unsigned char *server, 2731 unsigned int server_len, 2732 const unsigned char *client, unsigned int client_len) 2733 { 2734 unsigned int i, j; 2735 const unsigned char *result; 2736 int status = OPENSSL_NPN_UNSUPPORTED; 2737 2738 /* 2739 * For each protocol in server preference order, see if we support it. 2740 */ 2741 for (i = 0; i < server_len;) { 2742 for (j = 0; j < client_len;) { 2743 if (server[i] == client[j] && 2744 memcmp(&server[i + 1], &client[j + 1], server[i]) == 0) { 2745 /* We found a match */ 2746 result = &server[i]; 2747 status = OPENSSL_NPN_NEGOTIATED; 2748 goto found; 2749 } 2750 j += client[j]; 2751 j++; 2752 } 2753 i += server[i]; 2754 i++; 2755 } 2756 2757 /* There's no overlap between our protocols and the server's list. */ 2758 result = client; 2759 status = OPENSSL_NPN_NO_OVERLAP; 2760 2761 found: 2762 *out = (unsigned char *)result + 1; 2763 *outlen = result[0]; 2764 return status; 2765 } 2766 2767 #ifndef OPENSSL_NO_NEXTPROTONEG 2768 /* 2769 * SSL_get0_next_proto_negotiated sets *data and *len to point to the 2770 * client's requested protocol for this connection and returns 0. If the 2771 * client didn't request any protocol, then *data is set to NULL. Note that 2772 * the client can request any protocol it chooses. The value returned from 2773 * this function need not be a member of the list of supported protocols 2774 * provided by the callback. 2775 */ 2776 void SSL_get0_next_proto_negotiated(const SSL *s, const unsigned char **data, 2777 unsigned *len) 2778 { 2779 *data = s->ext.npn; 2780 if (!*data) { 2781 *len = 0; 2782 } else { 2783 *len = (unsigned int)s->ext.npn_len; 2784 } 2785 } 2786 2787 /* 2788 * SSL_CTX_set_npn_advertised_cb sets a callback that is called when 2789 * a TLS server needs a list of supported protocols for Next Protocol 2790 * Negotiation. The returned list must be in wire format. The list is 2791 * returned by setting |out| to point to it and |outlen| to its length. This 2792 * memory will not be modified, but one should assume that the SSL* keeps a 2793 * reference to it. The callback should return SSL_TLSEXT_ERR_OK if it 2794 * wishes to advertise. Otherwise, no such extension will be included in the 2795 * ServerHello. 2796 */ 2797 void SSL_CTX_set_npn_advertised_cb(SSL_CTX *ctx, 2798 SSL_CTX_npn_advertised_cb_func cb, 2799 void *arg) 2800 { 2801 ctx->ext.npn_advertised_cb = cb; 2802 ctx->ext.npn_advertised_cb_arg = arg; 2803 } 2804 2805 /* 2806 * SSL_CTX_set_next_proto_select_cb sets a callback that is called when a 2807 * client needs to select a protocol from the server's provided list. |out| 2808 * must be set to point to the selected protocol (which may be within |in|). 2809 * The length of the protocol name must be written into |outlen|. The 2810 * server's advertised protocols are provided in |in| and |inlen|. The 2811 * callback can assume that |in| is syntactically valid. The client must 2812 * select a protocol. It is fatal to the connection if this callback returns 2813 * a value other than SSL_TLSEXT_ERR_OK. 2814 */ 2815 void SSL_CTX_set_npn_select_cb(SSL_CTX *ctx, 2816 SSL_CTX_npn_select_cb_func cb, 2817 void *arg) 2818 { 2819 ctx->ext.npn_select_cb = cb; 2820 ctx->ext.npn_select_cb_arg = arg; 2821 } 2822 #endif 2823 2824 /* 2825 * SSL_CTX_set_alpn_protos sets the ALPN protocol list on |ctx| to |protos|. 2826 * |protos| must be in wire-format (i.e. a series of non-empty, 8-bit 2827 * length-prefixed strings). Returns 0 on success. 2828 */ 2829 int SSL_CTX_set_alpn_protos(SSL_CTX *ctx, const unsigned char *protos, 2830 unsigned int protos_len) 2831 { 2832 OPENSSL_free(ctx->ext.alpn); 2833 ctx->ext.alpn = OPENSSL_memdup(protos, protos_len); 2834 if (ctx->ext.alpn == NULL) { 2835 SSLerr(SSL_F_SSL_CTX_SET_ALPN_PROTOS, ERR_R_MALLOC_FAILURE); 2836 return 1; 2837 } 2838 ctx->ext.alpn_len = protos_len; 2839 2840 return 0; 2841 } 2842 2843 /* 2844 * SSL_set_alpn_protos sets the ALPN protocol list on |ssl| to |protos|. 2845 * |protos| must be in wire-format (i.e. a series of non-empty, 8-bit 2846 * length-prefixed strings). Returns 0 on success. 2847 */ 2848 int SSL_set_alpn_protos(SSL *ssl, const unsigned char *protos, 2849 unsigned int protos_len) 2850 { 2851 OPENSSL_free(ssl->ext.alpn); 2852 ssl->ext.alpn = OPENSSL_memdup(protos, protos_len); 2853 if (ssl->ext.alpn == NULL) { 2854 SSLerr(SSL_F_SSL_SET_ALPN_PROTOS, ERR_R_MALLOC_FAILURE); 2855 return 1; 2856 } 2857 ssl->ext.alpn_len = protos_len; 2858 2859 return 0; 2860 } 2861 2862 /* 2863 * SSL_CTX_set_alpn_select_cb sets a callback function on |ctx| that is 2864 * called during ClientHello processing in order to select an ALPN protocol 2865 * from the client's list of offered protocols. 2866 */ 2867 void SSL_CTX_set_alpn_select_cb(SSL_CTX *ctx, 2868 SSL_CTX_alpn_select_cb_func cb, 2869 void *arg) 2870 { 2871 ctx->ext.alpn_select_cb = cb; 2872 ctx->ext.alpn_select_cb_arg = arg; 2873 } 2874 2875 /* 2876 * SSL_get0_alpn_selected gets the selected ALPN protocol (if any) from |ssl|. 2877 * On return it sets |*data| to point to |*len| bytes of protocol name 2878 * (not including the leading length-prefix byte). If the server didn't 2879 * respond with a negotiated protocol then |*len| will be zero. 2880 */ 2881 void SSL_get0_alpn_selected(const SSL *ssl, const unsigned char **data, 2882 unsigned int *len) 2883 { 2884 *data = NULL; 2885 if (ssl->s3) 2886 *data = ssl->s3->alpn_selected; 2887 if (*data == NULL) 2888 *len = 0; 2889 else 2890 *len = (unsigned int)ssl->s3->alpn_selected_len; 2891 } 2892 2893 int SSL_export_keying_material(SSL *s, unsigned char *out, size_t olen, 2894 const char *label, size_t llen, 2895 const unsigned char *context, size_t contextlen, 2896 int use_context) 2897 { 2898 if (s->version < TLS1_VERSION && s->version != DTLS1_BAD_VER) 2899 return -1; 2900 2901 return s->method->ssl3_enc->export_keying_material(s, out, olen, label, 2902 llen, context, 2903 contextlen, use_context); 2904 } 2905 2906 int SSL_export_keying_material_early(SSL *s, unsigned char *out, size_t olen, 2907 const char *label, size_t llen, 2908 const unsigned char *context, 2909 size_t contextlen) 2910 { 2911 if (s->version != TLS1_3_VERSION) 2912 return 0; 2913 2914 return tls13_export_keying_material_early(s, out, olen, label, llen, 2915 context, contextlen); 2916 } 2917 2918 static unsigned long ssl_session_hash(const SSL_SESSION *a) 2919 { 2920 const unsigned char *session_id = a->session_id; 2921 unsigned long l; 2922 unsigned char tmp_storage[4]; 2923 2924 if (a->session_id_length < sizeof(tmp_storage)) { 2925 memset(tmp_storage, 0, sizeof(tmp_storage)); 2926 memcpy(tmp_storage, a->session_id, a->session_id_length); 2927 session_id = tmp_storage; 2928 } 2929 2930 l = (unsigned long) 2931 ((unsigned long)session_id[0]) | 2932 ((unsigned long)session_id[1] << 8L) | 2933 ((unsigned long)session_id[2] << 16L) | 2934 ((unsigned long)session_id[3] << 24L); 2935 return l; 2936 } 2937 2938 /* 2939 * NB: If this function (or indeed the hash function which uses a sort of 2940 * coarser function than this one) is changed, ensure 2941 * SSL_CTX_has_matching_session_id() is checked accordingly. It relies on 2942 * being able to construct an SSL_SESSION that will collide with any existing 2943 * session with a matching session ID. 2944 */ 2945 static int ssl_session_cmp(const SSL_SESSION *a, const SSL_SESSION *b) 2946 { 2947 if (a->ssl_version != b->ssl_version) 2948 return 1; 2949 if (a->session_id_length != b->session_id_length) 2950 return 1; 2951 return memcmp(a->session_id, b->session_id, a->session_id_length); 2952 } 2953 2954 /* 2955 * These wrapper functions should remain rather than redeclaring 2956 * SSL_SESSION_hash and SSL_SESSION_cmp for void* types and casting each 2957 * variable. The reason is that the functions aren't static, they're exposed 2958 * via ssl.h. 2959 */ 2960 2961 SSL_CTX *SSL_CTX_new(const SSL_METHOD *meth) 2962 { 2963 SSL_CTX *ret = NULL; 2964 2965 if (meth == NULL) { 2966 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_NULL_SSL_METHOD_PASSED); 2967 return NULL; 2968 } 2969 2970 if (!OPENSSL_init_ssl(OPENSSL_INIT_LOAD_SSL_STRINGS, NULL)) 2971 return NULL; 2972 2973 if (SSL_get_ex_data_X509_STORE_CTX_idx() < 0) { 2974 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_X509_VERIFICATION_SETUP_PROBLEMS); 2975 goto err; 2976 } 2977 ret = OPENSSL_zalloc(sizeof(*ret)); 2978 if (ret == NULL) 2979 goto err; 2980 2981 ret->method = meth; 2982 ret->min_proto_version = 0; 2983 ret->max_proto_version = 0; 2984 ret->mode = SSL_MODE_AUTO_RETRY; 2985 ret->session_cache_mode = SSL_SESS_CACHE_SERVER; 2986 ret->session_cache_size = SSL_SESSION_CACHE_MAX_SIZE_DEFAULT; 2987 /* We take the system default. */ 2988 ret->session_timeout = meth->get_timeout(); 2989 ret->references = 1; 2990 ret->lock = CRYPTO_THREAD_lock_new(); 2991 if (ret->lock == NULL) { 2992 SSLerr(SSL_F_SSL_CTX_NEW, ERR_R_MALLOC_FAILURE); 2993 OPENSSL_free(ret); 2994 return NULL; 2995 } 2996 ret->max_cert_list = SSL_MAX_CERT_LIST_DEFAULT; 2997 ret->verify_mode = SSL_VERIFY_NONE; 2998 if ((ret->cert = ssl_cert_new()) == NULL) 2999 goto err; 3000 3001 ret->sessions = lh_SSL_SESSION_new(ssl_session_hash, ssl_session_cmp); 3002 if (ret->sessions == NULL) 3003 goto err; 3004 ret->cert_store = X509_STORE_new(); 3005 if (ret->cert_store == NULL) 3006 goto err; 3007 #ifndef OPENSSL_NO_CT 3008 ret->ctlog_store = CTLOG_STORE_new(); 3009 if (ret->ctlog_store == NULL) 3010 goto err; 3011 #endif 3012 3013 if (!SSL_CTX_set_ciphersuites(ret, TLS_DEFAULT_CIPHERSUITES)) 3014 goto err; 3015 3016 if (!ssl_create_cipher_list(ret->method, 3017 ret->tls13_ciphersuites, 3018 &ret->cipher_list, &ret->cipher_list_by_id, 3019 SSL_DEFAULT_CIPHER_LIST, ret->cert) 3020 || sk_SSL_CIPHER_num(ret->cipher_list) <= 0) { 3021 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_LIBRARY_HAS_NO_CIPHERS); 3022 goto err2; 3023 } 3024 3025 ret->param = X509_VERIFY_PARAM_new(); 3026 if (ret->param == NULL) 3027 goto err; 3028 3029 if ((ret->md5 = EVP_get_digestbyname("ssl3-md5")) == NULL) { 3030 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_UNABLE_TO_LOAD_SSL3_MD5_ROUTINES); 3031 goto err2; 3032 } 3033 if ((ret->sha1 = EVP_get_digestbyname("ssl3-sha1")) == NULL) { 3034 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_UNABLE_TO_LOAD_SSL3_SHA1_ROUTINES); 3035 goto err2; 3036 } 3037 3038 if ((ret->ca_names = sk_X509_NAME_new_null()) == NULL) 3039 goto err; 3040 3041 if ((ret->client_ca_names = sk_X509_NAME_new_null()) == NULL) 3042 goto err; 3043 3044 if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL_CTX, ret, &ret->ex_data)) 3045 goto err; 3046 3047 if ((ret->ext.secure = OPENSSL_secure_zalloc(sizeof(*ret->ext.secure))) == NULL) 3048 goto err; 3049 3050 /* No compression for DTLS */ 3051 if (!(meth->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS)) 3052 ret->comp_methods = SSL_COMP_get_compression_methods(); 3053 3054 ret->max_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH; 3055 ret->split_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH; 3056 3057 /* Setup RFC5077 ticket keys */ 3058 if ((RAND_bytes(ret->ext.tick_key_name, 3059 sizeof(ret->ext.tick_key_name)) <= 0) 3060 || (RAND_priv_bytes(ret->ext.secure->tick_hmac_key, 3061 sizeof(ret->ext.secure->tick_hmac_key)) <= 0) 3062 || (RAND_priv_bytes(ret->ext.secure->tick_aes_key, 3063 sizeof(ret->ext.secure->tick_aes_key)) <= 0)) 3064 ret->options |= SSL_OP_NO_TICKET; 3065 3066 if (RAND_priv_bytes(ret->ext.cookie_hmac_key, 3067 sizeof(ret->ext.cookie_hmac_key)) <= 0) 3068 goto err; 3069 3070 #ifndef OPENSSL_NO_SRP 3071 if (!SSL_CTX_SRP_CTX_init(ret)) 3072 goto err; 3073 #endif 3074 #ifndef OPENSSL_NO_ENGINE 3075 # ifdef OPENSSL_SSL_CLIENT_ENGINE_AUTO 3076 # define eng_strx(x) #x 3077 # define eng_str(x) eng_strx(x) 3078 /* Use specific client engine automatically... ignore errors */ 3079 { 3080 ENGINE *eng; 3081 eng = ENGINE_by_id(eng_str(OPENSSL_SSL_CLIENT_ENGINE_AUTO)); 3082 if (!eng) { 3083 ERR_clear_error(); 3084 ENGINE_load_builtin_engines(); 3085 eng = ENGINE_by_id(eng_str(OPENSSL_SSL_CLIENT_ENGINE_AUTO)); 3086 } 3087 if (!eng || !SSL_CTX_set_client_cert_engine(ret, eng)) 3088 ERR_clear_error(); 3089 } 3090 # endif 3091 #endif 3092 /* 3093 * Default is to connect to non-RI servers. When RI is more widely 3094 * deployed might change this. 3095 */ 3096 ret->options |= SSL_OP_LEGACY_SERVER_CONNECT; 3097 /* 3098 * Disable compression by default to prevent CRIME. Applications can 3099 * re-enable compression by configuring 3100 * SSL_CTX_clear_options(ctx, SSL_OP_NO_COMPRESSION); 3101 * or by using the SSL_CONF library. Similarly we also enable TLSv1.3 3102 * middlebox compatibility by default. This may be disabled by default in 3103 * a later OpenSSL version. 3104 */ 3105 ret->options |= SSL_OP_NO_COMPRESSION | SSL_OP_ENABLE_MIDDLEBOX_COMPAT; 3106 3107 ret->ext.status_type = TLSEXT_STATUSTYPE_nothing; 3108 3109 /* 3110 * We cannot usefully set a default max_early_data here (which gets 3111 * propagated in SSL_new(), for the following reason: setting the 3112 * SSL field causes tls_construct_stoc_early_data() to tell the 3113 * client that early data will be accepted when constructing a TLS 1.3 3114 * session ticket, and the client will accordingly send us early data 3115 * when using that ticket (if the client has early data to send). 3116 * However, in order for the early data to actually be consumed by 3117 * the application, the application must also have calls to 3118 * SSL_read_early_data(); otherwise we'll just skip past the early data 3119 * and ignore it. So, since the application must add calls to 3120 * SSL_read_early_data(), we also require them to add 3121 * calls to SSL_CTX_set_max_early_data() in order to use early data, 3122 * eliminating the bandwidth-wasting early data in the case described 3123 * above. 3124 */ 3125 ret->max_early_data = 0; 3126 3127 /* 3128 * Default recv_max_early_data is a fully loaded single record. Could be 3129 * split across multiple records in practice. We set this differently to 3130 * max_early_data so that, in the default case, we do not advertise any 3131 * support for early_data, but if a client were to send us some (e.g. 3132 * because of an old, stale ticket) then we will tolerate it and skip over 3133 * it. 3134 */ 3135 ret->recv_max_early_data = SSL3_RT_MAX_PLAIN_LENGTH; 3136 3137 /* By default we send two session tickets automatically in TLSv1.3 */ 3138 ret->num_tickets = 2; 3139 3140 ssl_ctx_system_config(ret); 3141 3142 return ret; 3143 err: 3144 SSLerr(SSL_F_SSL_CTX_NEW, ERR_R_MALLOC_FAILURE); 3145 err2: 3146 SSL_CTX_free(ret); 3147 return NULL; 3148 } 3149 3150 int SSL_CTX_up_ref(SSL_CTX *ctx) 3151 { 3152 int i; 3153 3154 if (CRYPTO_UP_REF(&ctx->references, &i, ctx->lock) <= 0) 3155 return 0; 3156 3157 REF_PRINT_COUNT("SSL_CTX", ctx); 3158 REF_ASSERT_ISNT(i < 2); 3159 return ((i > 1) ? 1 : 0); 3160 } 3161 3162 void SSL_CTX_free(SSL_CTX *a) 3163 { 3164 int i; 3165 3166 if (a == NULL) 3167 return; 3168 3169 CRYPTO_DOWN_REF(&a->references, &i, a->lock); 3170 REF_PRINT_COUNT("SSL_CTX", a); 3171 if (i > 0) 3172 return; 3173 REF_ASSERT_ISNT(i < 0); 3174 3175 X509_VERIFY_PARAM_free(a->param); 3176 dane_ctx_final(&a->dane); 3177 3178 /* 3179 * Free internal session cache. However: the remove_cb() may reference 3180 * the ex_data of SSL_CTX, thus the ex_data store can only be removed 3181 * after the sessions were flushed. 3182 * As the ex_data handling routines might also touch the session cache, 3183 * the most secure solution seems to be: empty (flush) the cache, then 3184 * free ex_data, then finally free the cache. 3185 * (See ticket [openssl.org #212].) 3186 */ 3187 if (a->sessions != NULL) 3188 SSL_CTX_flush_sessions(a, 0); 3189 3190 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL_CTX, a, &a->ex_data); 3191 lh_SSL_SESSION_free(a->sessions); 3192 X509_STORE_free(a->cert_store); 3193 #ifndef OPENSSL_NO_CT 3194 CTLOG_STORE_free(a->ctlog_store); 3195 #endif 3196 sk_SSL_CIPHER_free(a->cipher_list); 3197 sk_SSL_CIPHER_free(a->cipher_list_by_id); 3198 sk_SSL_CIPHER_free(a->tls13_ciphersuites); 3199 ssl_cert_free(a->cert); 3200 sk_X509_NAME_pop_free(a->ca_names, X509_NAME_free); 3201 sk_X509_NAME_pop_free(a->client_ca_names, X509_NAME_free); 3202 sk_X509_pop_free(a->extra_certs, X509_free); 3203 a->comp_methods = NULL; 3204 #ifndef OPENSSL_NO_SRTP 3205 sk_SRTP_PROTECTION_PROFILE_free(a->srtp_profiles); 3206 #endif 3207 #ifndef OPENSSL_NO_SRP 3208 SSL_CTX_SRP_CTX_free(a); 3209 #endif 3210 #ifndef OPENSSL_NO_ENGINE 3211 ENGINE_finish(a->client_cert_engine); 3212 #endif 3213 3214 #ifndef OPENSSL_NO_EC 3215 OPENSSL_free(a->ext.ecpointformats); 3216 OPENSSL_free(a->ext.supportedgroups); 3217 #endif 3218 OPENSSL_free(a->ext.alpn); 3219 OPENSSL_secure_free(a->ext.secure); 3220 3221 CRYPTO_THREAD_lock_free(a->lock); 3222 3223 OPENSSL_free(a); 3224 } 3225 3226 void SSL_CTX_set_default_passwd_cb(SSL_CTX *ctx, pem_password_cb *cb) 3227 { 3228 ctx->default_passwd_callback = cb; 3229 } 3230 3231 void SSL_CTX_set_default_passwd_cb_userdata(SSL_CTX *ctx, void *u) 3232 { 3233 ctx->default_passwd_callback_userdata = u; 3234 } 3235 3236 pem_password_cb *SSL_CTX_get_default_passwd_cb(SSL_CTX *ctx) 3237 { 3238 return ctx->default_passwd_callback; 3239 } 3240 3241 void *SSL_CTX_get_default_passwd_cb_userdata(SSL_CTX *ctx) 3242 { 3243 return ctx->default_passwd_callback_userdata; 3244 } 3245 3246 void SSL_set_default_passwd_cb(SSL *s, pem_password_cb *cb) 3247 { 3248 s->default_passwd_callback = cb; 3249 } 3250 3251 void SSL_set_default_passwd_cb_userdata(SSL *s, void *u) 3252 { 3253 s->default_passwd_callback_userdata = u; 3254 } 3255 3256 pem_password_cb *SSL_get_default_passwd_cb(SSL *s) 3257 { 3258 return s->default_passwd_callback; 3259 } 3260 3261 void *SSL_get_default_passwd_cb_userdata(SSL *s) 3262 { 3263 return s->default_passwd_callback_userdata; 3264 } 3265 3266 void SSL_CTX_set_cert_verify_callback(SSL_CTX *ctx, 3267 int (*cb) (X509_STORE_CTX *, void *), 3268 void *arg) 3269 { 3270 ctx->app_verify_callback = cb; 3271 ctx->app_verify_arg = arg; 3272 } 3273 3274 void SSL_CTX_set_verify(SSL_CTX *ctx, int mode, 3275 int (*cb) (int, X509_STORE_CTX *)) 3276 { 3277 ctx->verify_mode = mode; 3278 ctx->default_verify_callback = cb; 3279 } 3280 3281 void SSL_CTX_set_verify_depth(SSL_CTX *ctx, int depth) 3282 { 3283 X509_VERIFY_PARAM_set_depth(ctx->param, depth); 3284 } 3285 3286 void SSL_CTX_set_cert_cb(SSL_CTX *c, int (*cb) (SSL *ssl, void *arg), void *arg) 3287 { 3288 ssl_cert_set_cert_cb(c->cert, cb, arg); 3289 } 3290 3291 void SSL_set_cert_cb(SSL *s, int (*cb) (SSL *ssl, void *arg), void *arg) 3292 { 3293 ssl_cert_set_cert_cb(s->cert, cb, arg); 3294 } 3295 3296 void ssl_set_masks(SSL *s) 3297 { 3298 CERT *c = s->cert; 3299 uint32_t *pvalid = s->s3->tmp.valid_flags; 3300 int rsa_enc, rsa_sign, dh_tmp, dsa_sign; 3301 unsigned long mask_k, mask_a; 3302 #ifndef OPENSSL_NO_EC 3303 int have_ecc_cert, ecdsa_ok; 3304 #endif 3305 if (c == NULL) 3306 return; 3307 3308 #ifndef OPENSSL_NO_DH 3309 dh_tmp = (c->dh_tmp != NULL || c->dh_tmp_cb != NULL || c->dh_tmp_auto); 3310 #else 3311 dh_tmp = 0; 3312 #endif 3313 3314 rsa_enc = pvalid[SSL_PKEY_RSA] & CERT_PKEY_VALID; 3315 rsa_sign = pvalid[SSL_PKEY_RSA] & CERT_PKEY_VALID; 3316 dsa_sign = pvalid[SSL_PKEY_DSA_SIGN] & CERT_PKEY_VALID; 3317 #ifndef OPENSSL_NO_EC 3318 have_ecc_cert = pvalid[SSL_PKEY_ECC] & CERT_PKEY_VALID; 3319 #endif 3320 mask_k = 0; 3321 mask_a = 0; 3322 3323 #ifdef CIPHER_DEBUG 3324 fprintf(stderr, "dht=%d re=%d rs=%d ds=%d\n", 3325 dh_tmp, rsa_enc, rsa_sign, dsa_sign); 3326 #endif 3327 3328 #ifndef OPENSSL_NO_GOST 3329 if (ssl_has_cert(s, SSL_PKEY_GOST12_512)) { 3330 mask_k |= SSL_kGOST; 3331 mask_a |= SSL_aGOST12; 3332 } 3333 if (ssl_has_cert(s, SSL_PKEY_GOST12_256)) { 3334 mask_k |= SSL_kGOST; 3335 mask_a |= SSL_aGOST12; 3336 } 3337 if (ssl_has_cert(s, SSL_PKEY_GOST01)) { 3338 mask_k |= SSL_kGOST; 3339 mask_a |= SSL_aGOST01; 3340 } 3341 #endif 3342 3343 if (rsa_enc) 3344 mask_k |= SSL_kRSA; 3345 3346 if (dh_tmp) 3347 mask_k |= SSL_kDHE; 3348 3349 /* 3350 * If we only have an RSA-PSS certificate allow RSA authentication 3351 * if TLS 1.2 and peer supports it. 3352 */ 3353 3354 if (rsa_enc || rsa_sign || (ssl_has_cert(s, SSL_PKEY_RSA_PSS_SIGN) 3355 && pvalid[SSL_PKEY_RSA_PSS_SIGN] & CERT_PKEY_EXPLICIT_SIGN 3356 && TLS1_get_version(s) == TLS1_2_VERSION)) 3357 mask_a |= SSL_aRSA; 3358 3359 if (dsa_sign) { 3360 mask_a |= SSL_aDSS; 3361 } 3362 3363 mask_a |= SSL_aNULL; 3364 3365 /* 3366 * An ECC certificate may be usable for ECDH and/or ECDSA cipher suites 3367 * depending on the key usage extension. 3368 */ 3369 #ifndef OPENSSL_NO_EC 3370 if (have_ecc_cert) { 3371 uint32_t ex_kusage; 3372 ex_kusage = X509_get_key_usage(c->pkeys[SSL_PKEY_ECC].x509); 3373 ecdsa_ok = ex_kusage & X509v3_KU_DIGITAL_SIGNATURE; 3374 if (!(pvalid[SSL_PKEY_ECC] & CERT_PKEY_SIGN)) 3375 ecdsa_ok = 0; 3376 if (ecdsa_ok) 3377 mask_a |= SSL_aECDSA; 3378 } 3379 /* Allow Ed25519 for TLS 1.2 if peer supports it */ 3380 if (!(mask_a & SSL_aECDSA) && ssl_has_cert(s, SSL_PKEY_ED25519) 3381 && pvalid[SSL_PKEY_ED25519] & CERT_PKEY_EXPLICIT_SIGN 3382 && TLS1_get_version(s) == TLS1_2_VERSION) 3383 mask_a |= SSL_aECDSA; 3384 3385 /* Allow Ed448 for TLS 1.2 if peer supports it */ 3386 if (!(mask_a & SSL_aECDSA) && ssl_has_cert(s, SSL_PKEY_ED448) 3387 && pvalid[SSL_PKEY_ED448] & CERT_PKEY_EXPLICIT_SIGN 3388 && TLS1_get_version(s) == TLS1_2_VERSION) 3389 mask_a |= SSL_aECDSA; 3390 #endif 3391 3392 #ifndef OPENSSL_NO_EC 3393 mask_k |= SSL_kECDHE; 3394 #endif 3395 3396 #ifndef OPENSSL_NO_PSK 3397 mask_k |= SSL_kPSK; 3398 mask_a |= SSL_aPSK; 3399 if (mask_k & SSL_kRSA) 3400 mask_k |= SSL_kRSAPSK; 3401 if (mask_k & SSL_kDHE) 3402 mask_k |= SSL_kDHEPSK; 3403 if (mask_k & SSL_kECDHE) 3404 mask_k |= SSL_kECDHEPSK; 3405 #endif 3406 3407 s->s3->tmp.mask_k = mask_k; 3408 s->s3->tmp.mask_a = mask_a; 3409 } 3410 3411 #ifndef OPENSSL_NO_EC 3412 3413 int ssl_check_srvr_ecc_cert_and_alg(X509 *x, SSL *s) 3414 { 3415 if (s->s3->tmp.new_cipher->algorithm_auth & SSL_aECDSA) { 3416 /* key usage, if present, must allow signing */ 3417 if (!(X509_get_key_usage(x) & X509v3_KU_DIGITAL_SIGNATURE)) { 3418 SSLerr(SSL_F_SSL_CHECK_SRVR_ECC_CERT_AND_ALG, 3419 SSL_R_ECC_CERT_NOT_FOR_SIGNING); 3420 return 0; 3421 } 3422 } 3423 return 1; /* all checks are ok */ 3424 } 3425 3426 #endif 3427 3428 int ssl_get_server_cert_serverinfo(SSL *s, const unsigned char **serverinfo, 3429 size_t *serverinfo_length) 3430 { 3431 CERT_PKEY *cpk = s->s3->tmp.cert; 3432 *serverinfo_length = 0; 3433 3434 if (cpk == NULL || cpk->serverinfo == NULL) 3435 return 0; 3436 3437 *serverinfo = cpk->serverinfo; 3438 *serverinfo_length = cpk->serverinfo_length; 3439 return 1; 3440 } 3441 3442 void ssl_update_cache(SSL *s, int mode) 3443 { 3444 int i; 3445 3446 /* 3447 * If the session_id_length is 0, we are not supposed to cache it, and it 3448 * would be rather hard to do anyway :-) 3449 */ 3450 if (s->session->session_id_length == 0) 3451 return; 3452 3453 /* 3454 * If sid_ctx_length is 0 there is no specific application context 3455 * associated with this session, so when we try to resume it and 3456 * SSL_VERIFY_PEER is requested to verify the client identity, we have no 3457 * indication that this is actually a session for the proper application 3458 * context, and the *handshake* will fail, not just the resumption attempt. 3459 * Do not cache (on the server) these sessions that are not resumable 3460 * (clients can set SSL_VERIFY_PEER without needing a sid_ctx set). 3461 */ 3462 if (s->server && s->session->sid_ctx_length == 0 3463 && (s->verify_mode & SSL_VERIFY_PEER) != 0) 3464 return; 3465 3466 i = s->session_ctx->session_cache_mode; 3467 if ((i & mode) != 0 3468 && (!s->hit || SSL_IS_TLS13(s))) { 3469 /* 3470 * Add the session to the internal cache. In server side TLSv1.3 we 3471 * normally don't do this because by default it's a full stateless ticket 3472 * with only a dummy session id so there is no reason to cache it, 3473 * unless: 3474 * - we are doing early_data, in which case we cache so that we can 3475 * detect replays 3476 * - the application has set a remove_session_cb so needs to know about 3477 * session timeout events 3478 * - SSL_OP_NO_TICKET is set in which case it is a stateful ticket 3479 */ 3480 if ((i & SSL_SESS_CACHE_NO_INTERNAL_STORE) == 0 3481 && (!SSL_IS_TLS13(s) 3482 || !s->server 3483 || (s->max_early_data > 0 3484 && (s->options & SSL_OP_NO_ANTI_REPLAY) == 0) 3485 || s->session_ctx->remove_session_cb != NULL 3486 || (s->options & SSL_OP_NO_TICKET) != 0)) 3487 SSL_CTX_add_session(s->session_ctx, s->session); 3488 3489 /* 3490 * Add the session to the external cache. We do this even in server side 3491 * TLSv1.3 without early data because some applications just want to 3492 * know about the creation of a session and aren't doing a full cache. 3493 */ 3494 if (s->session_ctx->new_session_cb != NULL) { 3495 SSL_SESSION_up_ref(s->session); 3496 if (!s->session_ctx->new_session_cb(s, s->session)) 3497 SSL_SESSION_free(s->session); 3498 } 3499 } 3500 3501 /* auto flush every 255 connections */ 3502 if ((!(i & SSL_SESS_CACHE_NO_AUTO_CLEAR)) && ((i & mode) == mode)) { 3503 TSAN_QUALIFIER int *stat; 3504 if (mode & SSL_SESS_CACHE_CLIENT) 3505 stat = &s->session_ctx->stats.sess_connect_good; 3506 else 3507 stat = &s->session_ctx->stats.sess_accept_good; 3508 if ((tsan_load(stat) & 0xff) == 0xff) 3509 SSL_CTX_flush_sessions(s->session_ctx, (unsigned long)time(NULL)); 3510 } 3511 } 3512 3513 const SSL_METHOD *SSL_CTX_get_ssl_method(const SSL_CTX *ctx) 3514 { 3515 return ctx->method; 3516 } 3517 3518 const SSL_METHOD *SSL_get_ssl_method(const SSL *s) 3519 { 3520 return s->method; 3521 } 3522 3523 int SSL_set_ssl_method(SSL *s, const SSL_METHOD *meth) 3524 { 3525 int ret = 1; 3526 3527 if (s->method != meth) { 3528 const SSL_METHOD *sm = s->method; 3529 int (*hf) (SSL *) = s->handshake_func; 3530 3531 if (sm->version == meth->version) 3532 s->method = meth; 3533 else { 3534 sm->ssl_free(s); 3535 s->method = meth; 3536 ret = s->method->ssl_new(s); 3537 } 3538 3539 if (hf == sm->ssl_connect) 3540 s->handshake_func = meth->ssl_connect; 3541 else if (hf == sm->ssl_accept) 3542 s->handshake_func = meth->ssl_accept; 3543 } 3544 return ret; 3545 } 3546 3547 int SSL_get_error(const SSL *s, int i) 3548 { 3549 int reason; 3550 unsigned long l; 3551 BIO *bio; 3552 3553 if (i > 0) 3554 return SSL_ERROR_NONE; 3555 3556 /* 3557 * Make things return SSL_ERROR_SYSCALL when doing SSL_do_handshake etc, 3558 * where we do encode the error 3559 */ 3560 if ((l = ERR_peek_error()) != 0) { 3561 if (ERR_GET_LIB(l) == ERR_LIB_SYS) 3562 return SSL_ERROR_SYSCALL; 3563 else 3564 return SSL_ERROR_SSL; 3565 } 3566 3567 if (SSL_want_read(s)) { 3568 bio = SSL_get_rbio(s); 3569 if (BIO_should_read(bio)) 3570 return SSL_ERROR_WANT_READ; 3571 else if (BIO_should_write(bio)) 3572 /* 3573 * This one doesn't make too much sense ... We never try to write 3574 * to the rbio, and an application program where rbio and wbio 3575 * are separate couldn't even know what it should wait for. 3576 * However if we ever set s->rwstate incorrectly (so that we have 3577 * SSL_want_read(s) instead of SSL_want_write(s)) and rbio and 3578 * wbio *are* the same, this test works around that bug; so it 3579 * might be safer to keep it. 3580 */ 3581 return SSL_ERROR_WANT_WRITE; 3582 else if (BIO_should_io_special(bio)) { 3583 reason = BIO_get_retry_reason(bio); 3584 if (reason == BIO_RR_CONNECT) 3585 return SSL_ERROR_WANT_CONNECT; 3586 else if (reason == BIO_RR_ACCEPT) 3587 return SSL_ERROR_WANT_ACCEPT; 3588 else 3589 return SSL_ERROR_SYSCALL; /* unknown */ 3590 } 3591 } 3592 3593 if (SSL_want_write(s)) { 3594 /* Access wbio directly - in order to use the buffered bio if present */ 3595 bio = s->wbio; 3596 if (BIO_should_write(bio)) 3597 return SSL_ERROR_WANT_WRITE; 3598 else if (BIO_should_read(bio)) 3599 /* 3600 * See above (SSL_want_read(s) with BIO_should_write(bio)) 3601 */ 3602 return SSL_ERROR_WANT_READ; 3603 else if (BIO_should_io_special(bio)) { 3604 reason = BIO_get_retry_reason(bio); 3605 if (reason == BIO_RR_CONNECT) 3606 return SSL_ERROR_WANT_CONNECT; 3607 else if (reason == BIO_RR_ACCEPT) 3608 return SSL_ERROR_WANT_ACCEPT; 3609 else 3610 return SSL_ERROR_SYSCALL; 3611 } 3612 } 3613 if (SSL_want_x509_lookup(s)) 3614 return SSL_ERROR_WANT_X509_LOOKUP; 3615 if (SSL_want_async(s)) 3616 return SSL_ERROR_WANT_ASYNC; 3617 if (SSL_want_async_job(s)) 3618 return SSL_ERROR_WANT_ASYNC_JOB; 3619 if (SSL_want_client_hello_cb(s)) 3620 return SSL_ERROR_WANT_CLIENT_HELLO_CB; 3621 3622 if ((s->shutdown & SSL_RECEIVED_SHUTDOWN) && 3623 (s->s3->warn_alert == SSL_AD_CLOSE_NOTIFY)) 3624 return SSL_ERROR_ZERO_RETURN; 3625 3626 return SSL_ERROR_SYSCALL; 3627 } 3628 3629 static int ssl_do_handshake_intern(void *vargs) 3630 { 3631 struct ssl_async_args *args; 3632 SSL *s; 3633 3634 args = (struct ssl_async_args *)vargs; 3635 s = args->s; 3636 3637 return s->handshake_func(s); 3638 } 3639 3640 int SSL_do_handshake(SSL *s) 3641 { 3642 int ret = 1; 3643 3644 if (s->handshake_func == NULL) { 3645 SSLerr(SSL_F_SSL_DO_HANDSHAKE, SSL_R_CONNECTION_TYPE_NOT_SET); 3646 return -1; 3647 } 3648 3649 ossl_statem_check_finish_init(s, -1); 3650 3651 s->method->ssl_renegotiate_check(s, 0); 3652 3653 if (SSL_in_init(s) || SSL_in_before(s)) { 3654 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) { 3655 struct ssl_async_args args; 3656 3657 args.s = s; 3658 3659 ret = ssl_start_async_job(s, &args, ssl_do_handshake_intern); 3660 } else { 3661 ret = s->handshake_func(s); 3662 } 3663 } 3664 return ret; 3665 } 3666 3667 void SSL_set_accept_state(SSL *s) 3668 { 3669 s->server = 1; 3670 s->shutdown = 0; 3671 ossl_statem_clear(s); 3672 s->handshake_func = s->method->ssl_accept; 3673 clear_ciphers(s); 3674 } 3675 3676 void SSL_set_connect_state(SSL *s) 3677 { 3678 s->server = 0; 3679 s->shutdown = 0; 3680 ossl_statem_clear(s); 3681 s->handshake_func = s->method->ssl_connect; 3682 clear_ciphers(s); 3683 } 3684 3685 int ssl_undefined_function(SSL *s) 3686 { 3687 SSLerr(SSL_F_SSL_UNDEFINED_FUNCTION, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 3688 return 0; 3689 } 3690 3691 int ssl_undefined_void_function(void) 3692 { 3693 SSLerr(SSL_F_SSL_UNDEFINED_VOID_FUNCTION, 3694 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 3695 return 0; 3696 } 3697 3698 int ssl_undefined_const_function(const SSL *s) 3699 { 3700 return 0; 3701 } 3702 3703 const SSL_METHOD *ssl_bad_method(int ver) 3704 { 3705 SSLerr(SSL_F_SSL_BAD_METHOD, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 3706 return NULL; 3707 } 3708 3709 const char *ssl_protocol_to_string(int version) 3710 { 3711 switch(version) 3712 { 3713 case TLS1_3_VERSION: 3714 return "TLSv1.3"; 3715 3716 case TLS1_2_VERSION: 3717 return "TLSv1.2"; 3718 3719 case TLS1_1_VERSION: 3720 return "TLSv1.1"; 3721 3722 case TLS1_VERSION: 3723 return "TLSv1"; 3724 3725 case SSL3_VERSION: 3726 return "SSLv3"; 3727 3728 case DTLS1_BAD_VER: 3729 return "DTLSv0.9"; 3730 3731 case DTLS1_VERSION: 3732 return "DTLSv1"; 3733 3734 case DTLS1_2_VERSION: 3735 return "DTLSv1.2"; 3736 3737 default: 3738 return "unknown"; 3739 } 3740 } 3741 3742 const char *SSL_get_version(const SSL *s) 3743 { 3744 return ssl_protocol_to_string(s->version); 3745 } 3746 3747 static int dup_ca_names(STACK_OF(X509_NAME) **dst, STACK_OF(X509_NAME) *src) 3748 { 3749 STACK_OF(X509_NAME) *sk; 3750 X509_NAME *xn; 3751 int i; 3752 3753 if (src == NULL) { 3754 *dst = NULL; 3755 return 1; 3756 } 3757 3758 if ((sk = sk_X509_NAME_new_null()) == NULL) 3759 return 0; 3760 for (i = 0; i < sk_X509_NAME_num(src); i++) { 3761 xn = X509_NAME_dup(sk_X509_NAME_value(src, i)); 3762 if (xn == NULL) { 3763 sk_X509_NAME_pop_free(sk, X509_NAME_free); 3764 return 0; 3765 } 3766 if (sk_X509_NAME_insert(sk, xn, i) == 0) { 3767 X509_NAME_free(xn); 3768 sk_X509_NAME_pop_free(sk, X509_NAME_free); 3769 return 0; 3770 } 3771 } 3772 *dst = sk; 3773 3774 return 1; 3775 } 3776 3777 SSL *SSL_dup(SSL *s) 3778 { 3779 SSL *ret; 3780 int i; 3781 3782 /* If we're not quiescent, just up_ref! */ 3783 if (!SSL_in_init(s) || !SSL_in_before(s)) { 3784 CRYPTO_UP_REF(&s->references, &i, s->lock); 3785 return s; 3786 } 3787 3788 /* 3789 * Otherwise, copy configuration state, and session if set. 3790 */ 3791 if ((ret = SSL_new(SSL_get_SSL_CTX(s))) == NULL) 3792 return NULL; 3793 3794 if (s->session != NULL) { 3795 /* 3796 * Arranges to share the same session via up_ref. This "copies" 3797 * session-id, SSL_METHOD, sid_ctx, and 'cert' 3798 */ 3799 if (!SSL_copy_session_id(ret, s)) 3800 goto err; 3801 } else { 3802 /* 3803 * No session has been established yet, so we have to expect that 3804 * s->cert or ret->cert will be changed later -- they should not both 3805 * point to the same object, and thus we can't use 3806 * SSL_copy_session_id. 3807 */ 3808 if (!SSL_set_ssl_method(ret, s->method)) 3809 goto err; 3810 3811 if (s->cert != NULL) { 3812 ssl_cert_free(ret->cert); 3813 ret->cert = ssl_cert_dup(s->cert); 3814 if (ret->cert == NULL) 3815 goto err; 3816 } 3817 3818 if (!SSL_set_session_id_context(ret, s->sid_ctx, 3819 (int)s->sid_ctx_length)) 3820 goto err; 3821 } 3822 3823 if (!ssl_dane_dup(ret, s)) 3824 goto err; 3825 ret->version = s->version; 3826 ret->options = s->options; 3827 ret->mode = s->mode; 3828 SSL_set_max_cert_list(ret, SSL_get_max_cert_list(s)); 3829 SSL_set_read_ahead(ret, SSL_get_read_ahead(s)); 3830 ret->msg_callback = s->msg_callback; 3831 ret->msg_callback_arg = s->msg_callback_arg; 3832 SSL_set_verify(ret, SSL_get_verify_mode(s), SSL_get_verify_callback(s)); 3833 SSL_set_verify_depth(ret, SSL_get_verify_depth(s)); 3834 ret->generate_session_id = s->generate_session_id; 3835 3836 SSL_set_info_callback(ret, SSL_get_info_callback(s)); 3837 3838 /* copy app data, a little dangerous perhaps */ 3839 if (!CRYPTO_dup_ex_data(CRYPTO_EX_INDEX_SSL, &ret->ex_data, &s->ex_data)) 3840 goto err; 3841 3842 /* setup rbio, and wbio */ 3843 if (s->rbio != NULL) { 3844 if (!BIO_dup_state(s->rbio, (char *)&ret->rbio)) 3845 goto err; 3846 } 3847 if (s->wbio != NULL) { 3848 if (s->wbio != s->rbio) { 3849 if (!BIO_dup_state(s->wbio, (char *)&ret->wbio)) 3850 goto err; 3851 } else { 3852 BIO_up_ref(ret->rbio); 3853 ret->wbio = ret->rbio; 3854 } 3855 } 3856 3857 ret->server = s->server; 3858 if (s->handshake_func) { 3859 if (s->server) 3860 SSL_set_accept_state(ret); 3861 else 3862 SSL_set_connect_state(ret); 3863 } 3864 ret->shutdown = s->shutdown; 3865 ret->hit = s->hit; 3866 3867 ret->default_passwd_callback = s->default_passwd_callback; 3868 ret->default_passwd_callback_userdata = s->default_passwd_callback_userdata; 3869 3870 X509_VERIFY_PARAM_inherit(ret->param, s->param); 3871 3872 /* dup the cipher_list and cipher_list_by_id stacks */ 3873 if (s->cipher_list != NULL) { 3874 if ((ret->cipher_list = sk_SSL_CIPHER_dup(s->cipher_list)) == NULL) 3875 goto err; 3876 } 3877 if (s->cipher_list_by_id != NULL) 3878 if ((ret->cipher_list_by_id = sk_SSL_CIPHER_dup(s->cipher_list_by_id)) 3879 == NULL) 3880 goto err; 3881 3882 /* Dup the client_CA list */ 3883 if (!dup_ca_names(&ret->ca_names, s->ca_names) 3884 || !dup_ca_names(&ret->client_ca_names, s->client_ca_names)) 3885 goto err; 3886 3887 return ret; 3888 3889 err: 3890 SSL_free(ret); 3891 return NULL; 3892 } 3893 3894 void ssl_clear_cipher_ctx(SSL *s) 3895 { 3896 if (s->enc_read_ctx != NULL) { 3897 EVP_CIPHER_CTX_free(s->enc_read_ctx); 3898 s->enc_read_ctx = NULL; 3899 } 3900 if (s->enc_write_ctx != NULL) { 3901 EVP_CIPHER_CTX_free(s->enc_write_ctx); 3902 s->enc_write_ctx = NULL; 3903 } 3904 #ifndef OPENSSL_NO_COMP 3905 COMP_CTX_free(s->expand); 3906 s->expand = NULL; 3907 COMP_CTX_free(s->compress); 3908 s->compress = NULL; 3909 #endif 3910 } 3911 3912 X509 *SSL_get_certificate(const SSL *s) 3913 { 3914 if (s->cert != NULL) 3915 return s->cert->key->x509; 3916 else 3917 return NULL; 3918 } 3919 3920 EVP_PKEY *SSL_get_privatekey(const SSL *s) 3921 { 3922 if (s->cert != NULL) 3923 return s->cert->key->privatekey; 3924 else 3925 return NULL; 3926 } 3927 3928 X509 *SSL_CTX_get0_certificate(const SSL_CTX *ctx) 3929 { 3930 if (ctx->cert != NULL) 3931 return ctx->cert->key->x509; 3932 else 3933 return NULL; 3934 } 3935 3936 EVP_PKEY *SSL_CTX_get0_privatekey(const SSL_CTX *ctx) 3937 { 3938 if (ctx->cert != NULL) 3939 return ctx->cert->key->privatekey; 3940 else 3941 return NULL; 3942 } 3943 3944 const SSL_CIPHER *SSL_get_current_cipher(const SSL *s) 3945 { 3946 if ((s->session != NULL) && (s->session->cipher != NULL)) 3947 return s->session->cipher; 3948 return NULL; 3949 } 3950 3951 const SSL_CIPHER *SSL_get_pending_cipher(const SSL *s) 3952 { 3953 return s->s3->tmp.new_cipher; 3954 } 3955 3956 const COMP_METHOD *SSL_get_current_compression(const SSL *s) 3957 { 3958 #ifndef OPENSSL_NO_COMP 3959 return s->compress ? COMP_CTX_get_method(s->compress) : NULL; 3960 #else 3961 return NULL; 3962 #endif 3963 } 3964 3965 const COMP_METHOD *SSL_get_current_expansion(const SSL *s) 3966 { 3967 #ifndef OPENSSL_NO_COMP 3968 return s->expand ? COMP_CTX_get_method(s->expand) : NULL; 3969 #else 3970 return NULL; 3971 #endif 3972 } 3973 3974 int ssl_init_wbio_buffer(SSL *s) 3975 { 3976 BIO *bbio; 3977 3978 if (s->bbio != NULL) { 3979 /* Already buffered. */ 3980 return 1; 3981 } 3982 3983 bbio = BIO_new(BIO_f_buffer()); 3984 if (bbio == NULL || !BIO_set_read_buffer_size(bbio, 1)) { 3985 BIO_free(bbio); 3986 SSLerr(SSL_F_SSL_INIT_WBIO_BUFFER, ERR_R_BUF_LIB); 3987 return 0; 3988 } 3989 s->bbio = bbio; 3990 s->wbio = BIO_push(bbio, s->wbio); 3991 3992 return 1; 3993 } 3994 3995 int ssl_free_wbio_buffer(SSL *s) 3996 { 3997 /* callers ensure s is never null */ 3998 if (s->bbio == NULL) 3999 return 1; 4000 4001 s->wbio = BIO_pop(s->wbio); 4002 BIO_free(s->bbio); 4003 s->bbio = NULL; 4004 4005 return 1; 4006 } 4007 4008 void SSL_CTX_set_quiet_shutdown(SSL_CTX *ctx, int mode) 4009 { 4010 ctx->quiet_shutdown = mode; 4011 } 4012 4013 int SSL_CTX_get_quiet_shutdown(const SSL_CTX *ctx) 4014 { 4015 return ctx->quiet_shutdown; 4016 } 4017 4018 void SSL_set_quiet_shutdown(SSL *s, int mode) 4019 { 4020 s->quiet_shutdown = mode; 4021 } 4022 4023 int SSL_get_quiet_shutdown(const SSL *s) 4024 { 4025 return s->quiet_shutdown; 4026 } 4027 4028 void SSL_set_shutdown(SSL *s, int mode) 4029 { 4030 s->shutdown = mode; 4031 } 4032 4033 int SSL_get_shutdown(const SSL *s) 4034 { 4035 return s->shutdown; 4036 } 4037 4038 int SSL_version(const SSL *s) 4039 { 4040 return s->version; 4041 } 4042 4043 int SSL_client_version(const SSL *s) 4044 { 4045 return s->client_version; 4046 } 4047 4048 SSL_CTX *SSL_get_SSL_CTX(const SSL *ssl) 4049 { 4050 return ssl->ctx; 4051 } 4052 4053 SSL_CTX *SSL_set_SSL_CTX(SSL *ssl, SSL_CTX *ctx) 4054 { 4055 CERT *new_cert; 4056 if (ssl->ctx == ctx) 4057 return ssl->ctx; 4058 if (ctx == NULL) 4059 ctx = ssl->session_ctx; 4060 new_cert = ssl_cert_dup(ctx->cert); 4061 if (new_cert == NULL) { 4062 return NULL; 4063 } 4064 4065 if (!custom_exts_copy_flags(&new_cert->custext, &ssl->cert->custext)) { 4066 ssl_cert_free(new_cert); 4067 return NULL; 4068 } 4069 4070 ssl_cert_free(ssl->cert); 4071 ssl->cert = new_cert; 4072 4073 /* 4074 * Program invariant: |sid_ctx| has fixed size (SSL_MAX_SID_CTX_LENGTH), 4075 * so setter APIs must prevent invalid lengths from entering the system. 4076 */ 4077 if (!ossl_assert(ssl->sid_ctx_length <= sizeof(ssl->sid_ctx))) 4078 return NULL; 4079 4080 /* 4081 * If the session ID context matches that of the parent SSL_CTX, 4082 * inherit it from the new SSL_CTX as well. If however the context does 4083 * not match (i.e., it was set per-ssl with SSL_set_session_id_context), 4084 * leave it unchanged. 4085 */ 4086 if ((ssl->ctx != NULL) && 4087 (ssl->sid_ctx_length == ssl->ctx->sid_ctx_length) && 4088 (memcmp(ssl->sid_ctx, ssl->ctx->sid_ctx, ssl->sid_ctx_length) == 0)) { 4089 ssl->sid_ctx_length = ctx->sid_ctx_length; 4090 memcpy(&ssl->sid_ctx, &ctx->sid_ctx, sizeof(ssl->sid_ctx)); 4091 } 4092 4093 SSL_CTX_up_ref(ctx); 4094 SSL_CTX_free(ssl->ctx); /* decrement reference count */ 4095 ssl->ctx = ctx; 4096 4097 return ssl->ctx; 4098 } 4099 4100 int SSL_CTX_set_default_verify_paths(SSL_CTX *ctx) 4101 { 4102 return X509_STORE_set_default_paths(ctx->cert_store); 4103 } 4104 4105 int SSL_CTX_set_default_verify_dir(SSL_CTX *ctx) 4106 { 4107 X509_LOOKUP *lookup; 4108 4109 lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_hash_dir()); 4110 if (lookup == NULL) 4111 return 0; 4112 X509_LOOKUP_add_dir(lookup, NULL, X509_FILETYPE_DEFAULT); 4113 4114 /* Clear any errors if the default directory does not exist */ 4115 ERR_clear_error(); 4116 4117 return 1; 4118 } 4119 4120 int SSL_CTX_set_default_verify_file(SSL_CTX *ctx) 4121 { 4122 X509_LOOKUP *lookup; 4123 4124 lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_file()); 4125 if (lookup == NULL) 4126 return 0; 4127 4128 X509_LOOKUP_load_file(lookup, NULL, X509_FILETYPE_DEFAULT); 4129 4130 /* Clear any errors if the default file does not exist */ 4131 ERR_clear_error(); 4132 4133 return 1; 4134 } 4135 4136 int SSL_CTX_load_verify_locations(SSL_CTX *ctx, const char *CAfile, 4137 const char *CApath) 4138 { 4139 return X509_STORE_load_locations(ctx->cert_store, CAfile, CApath); 4140 } 4141 4142 void SSL_set_info_callback(SSL *ssl, 4143 void (*cb) (const SSL *ssl, int type, int val)) 4144 { 4145 ssl->info_callback = cb; 4146 } 4147 4148 /* 4149 * One compiler (Diab DCC) doesn't like argument names in returned function 4150 * pointer. 4151 */ 4152 void (*SSL_get_info_callback(const SSL *ssl)) (const SSL * /* ssl */ , 4153 int /* type */ , 4154 int /* val */ ) { 4155 return ssl->info_callback; 4156 } 4157 4158 void SSL_set_verify_result(SSL *ssl, long arg) 4159 { 4160 ssl->verify_result = arg; 4161 } 4162 4163 long SSL_get_verify_result(const SSL *ssl) 4164 { 4165 return ssl->verify_result; 4166 } 4167 4168 size_t SSL_get_client_random(const SSL *ssl, unsigned char *out, size_t outlen) 4169 { 4170 if (outlen == 0) 4171 return sizeof(ssl->s3->client_random); 4172 if (outlen > sizeof(ssl->s3->client_random)) 4173 outlen = sizeof(ssl->s3->client_random); 4174 memcpy(out, ssl->s3->client_random, outlen); 4175 return outlen; 4176 } 4177 4178 size_t SSL_get_server_random(const SSL *ssl, unsigned char *out, size_t outlen) 4179 { 4180 if (outlen == 0) 4181 return sizeof(ssl->s3->server_random); 4182 if (outlen > sizeof(ssl->s3->server_random)) 4183 outlen = sizeof(ssl->s3->server_random); 4184 memcpy(out, ssl->s3->server_random, outlen); 4185 return outlen; 4186 } 4187 4188 size_t SSL_SESSION_get_master_key(const SSL_SESSION *session, 4189 unsigned char *out, size_t outlen) 4190 { 4191 if (outlen == 0) 4192 return session->master_key_length; 4193 if (outlen > session->master_key_length) 4194 outlen = session->master_key_length; 4195 memcpy(out, session->master_key, outlen); 4196 return outlen; 4197 } 4198 4199 int SSL_SESSION_set1_master_key(SSL_SESSION *sess, const unsigned char *in, 4200 size_t len) 4201 { 4202 if (len > sizeof(sess->master_key)) 4203 return 0; 4204 4205 memcpy(sess->master_key, in, len); 4206 sess->master_key_length = len; 4207 return 1; 4208 } 4209 4210 4211 int SSL_set_ex_data(SSL *s, int idx, void *arg) 4212 { 4213 return CRYPTO_set_ex_data(&s->ex_data, idx, arg); 4214 } 4215 4216 void *SSL_get_ex_data(const SSL *s, int idx) 4217 { 4218 return CRYPTO_get_ex_data(&s->ex_data, idx); 4219 } 4220 4221 int SSL_CTX_set_ex_data(SSL_CTX *s, int idx, void *arg) 4222 { 4223 return CRYPTO_set_ex_data(&s->ex_data, idx, arg); 4224 } 4225 4226 void *SSL_CTX_get_ex_data(const SSL_CTX *s, int idx) 4227 { 4228 return CRYPTO_get_ex_data(&s->ex_data, idx); 4229 } 4230 4231 X509_STORE *SSL_CTX_get_cert_store(const SSL_CTX *ctx) 4232 { 4233 return ctx->cert_store; 4234 } 4235 4236 void SSL_CTX_set_cert_store(SSL_CTX *ctx, X509_STORE *store) 4237 { 4238 X509_STORE_free(ctx->cert_store); 4239 ctx->cert_store = store; 4240 } 4241 4242 void SSL_CTX_set1_cert_store(SSL_CTX *ctx, X509_STORE *store) 4243 { 4244 if (store != NULL) 4245 X509_STORE_up_ref(store); 4246 SSL_CTX_set_cert_store(ctx, store); 4247 } 4248 4249 int SSL_want(const SSL *s) 4250 { 4251 return s->rwstate; 4252 } 4253 4254 /** 4255 * \brief Set the callback for generating temporary DH keys. 4256 * \param ctx the SSL context. 4257 * \param dh the callback 4258 */ 4259 4260 #ifndef OPENSSL_NO_DH 4261 void SSL_CTX_set_tmp_dh_callback(SSL_CTX *ctx, 4262 DH *(*dh) (SSL *ssl, int is_export, 4263 int keylength)) 4264 { 4265 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_TMP_DH_CB, (void (*)(void))dh); 4266 } 4267 4268 void SSL_set_tmp_dh_callback(SSL *ssl, DH *(*dh) (SSL *ssl, int is_export, 4269 int keylength)) 4270 { 4271 SSL_callback_ctrl(ssl, SSL_CTRL_SET_TMP_DH_CB, (void (*)(void))dh); 4272 } 4273 #endif 4274 4275 #ifndef OPENSSL_NO_PSK 4276 int SSL_CTX_use_psk_identity_hint(SSL_CTX *ctx, const char *identity_hint) 4277 { 4278 if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) { 4279 SSLerr(SSL_F_SSL_CTX_USE_PSK_IDENTITY_HINT, SSL_R_DATA_LENGTH_TOO_LONG); 4280 return 0; 4281 } 4282 OPENSSL_free(ctx->cert->psk_identity_hint); 4283 if (identity_hint != NULL) { 4284 ctx->cert->psk_identity_hint = OPENSSL_strdup(identity_hint); 4285 if (ctx->cert->psk_identity_hint == NULL) 4286 return 0; 4287 } else 4288 ctx->cert->psk_identity_hint = NULL; 4289 return 1; 4290 } 4291 4292 int SSL_use_psk_identity_hint(SSL *s, const char *identity_hint) 4293 { 4294 if (s == NULL) 4295 return 0; 4296 4297 if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) { 4298 SSLerr(SSL_F_SSL_USE_PSK_IDENTITY_HINT, SSL_R_DATA_LENGTH_TOO_LONG); 4299 return 0; 4300 } 4301 OPENSSL_free(s->cert->psk_identity_hint); 4302 if (identity_hint != NULL) { 4303 s->cert->psk_identity_hint = OPENSSL_strdup(identity_hint); 4304 if (s->cert->psk_identity_hint == NULL) 4305 return 0; 4306 } else 4307 s->cert->psk_identity_hint = NULL; 4308 return 1; 4309 } 4310 4311 const char *SSL_get_psk_identity_hint(const SSL *s) 4312 { 4313 if (s == NULL || s->session == NULL) 4314 return NULL; 4315 return s->session->psk_identity_hint; 4316 } 4317 4318 const char *SSL_get_psk_identity(const SSL *s) 4319 { 4320 if (s == NULL || s->session == NULL) 4321 return NULL; 4322 return s->session->psk_identity; 4323 } 4324 4325 void SSL_set_psk_client_callback(SSL *s, SSL_psk_client_cb_func cb) 4326 { 4327 s->psk_client_callback = cb; 4328 } 4329 4330 void SSL_CTX_set_psk_client_callback(SSL_CTX *ctx, SSL_psk_client_cb_func cb) 4331 { 4332 ctx->psk_client_callback = cb; 4333 } 4334 4335 void SSL_set_psk_server_callback(SSL *s, SSL_psk_server_cb_func cb) 4336 { 4337 s->psk_server_callback = cb; 4338 } 4339 4340 void SSL_CTX_set_psk_server_callback(SSL_CTX *ctx, SSL_psk_server_cb_func cb) 4341 { 4342 ctx->psk_server_callback = cb; 4343 } 4344 #endif 4345 4346 void SSL_set_psk_find_session_callback(SSL *s, SSL_psk_find_session_cb_func cb) 4347 { 4348 s->psk_find_session_cb = cb; 4349 } 4350 4351 void SSL_CTX_set_psk_find_session_callback(SSL_CTX *ctx, 4352 SSL_psk_find_session_cb_func cb) 4353 { 4354 ctx->psk_find_session_cb = cb; 4355 } 4356 4357 void SSL_set_psk_use_session_callback(SSL *s, SSL_psk_use_session_cb_func cb) 4358 { 4359 s->psk_use_session_cb = cb; 4360 } 4361 4362 void SSL_CTX_set_psk_use_session_callback(SSL_CTX *ctx, 4363 SSL_psk_use_session_cb_func cb) 4364 { 4365 ctx->psk_use_session_cb = cb; 4366 } 4367 4368 void SSL_CTX_set_msg_callback(SSL_CTX *ctx, 4369 void (*cb) (int write_p, int version, 4370 int content_type, const void *buf, 4371 size_t len, SSL *ssl, void *arg)) 4372 { 4373 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_MSG_CALLBACK, (void (*)(void))cb); 4374 } 4375 4376 void SSL_set_msg_callback(SSL *ssl, 4377 void (*cb) (int write_p, int version, 4378 int content_type, const void *buf, 4379 size_t len, SSL *ssl, void *arg)) 4380 { 4381 SSL_callback_ctrl(ssl, SSL_CTRL_SET_MSG_CALLBACK, (void (*)(void))cb); 4382 } 4383 4384 void SSL_CTX_set_not_resumable_session_callback(SSL_CTX *ctx, 4385 int (*cb) (SSL *ssl, 4386 int 4387 is_forward_secure)) 4388 { 4389 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB, 4390 (void (*)(void))cb); 4391 } 4392 4393 void SSL_set_not_resumable_session_callback(SSL *ssl, 4394 int (*cb) (SSL *ssl, 4395 int is_forward_secure)) 4396 { 4397 SSL_callback_ctrl(ssl, SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB, 4398 (void (*)(void))cb); 4399 } 4400 4401 void SSL_CTX_set_record_padding_callback(SSL_CTX *ctx, 4402 size_t (*cb) (SSL *ssl, int type, 4403 size_t len, void *arg)) 4404 { 4405 ctx->record_padding_cb = cb; 4406 } 4407 4408 void SSL_CTX_set_record_padding_callback_arg(SSL_CTX *ctx, void *arg) 4409 { 4410 ctx->record_padding_arg = arg; 4411 } 4412 4413 void *SSL_CTX_get_record_padding_callback_arg(const SSL_CTX *ctx) 4414 { 4415 return ctx->record_padding_arg; 4416 } 4417 4418 int SSL_CTX_set_block_padding(SSL_CTX *ctx, size_t block_size) 4419 { 4420 /* block size of 0 or 1 is basically no padding */ 4421 if (block_size == 1) 4422 ctx->block_padding = 0; 4423 else if (block_size <= SSL3_RT_MAX_PLAIN_LENGTH) 4424 ctx->block_padding = block_size; 4425 else 4426 return 0; 4427 return 1; 4428 } 4429 4430 void SSL_set_record_padding_callback(SSL *ssl, 4431 size_t (*cb) (SSL *ssl, int type, 4432 size_t len, void *arg)) 4433 { 4434 ssl->record_padding_cb = cb; 4435 } 4436 4437 void SSL_set_record_padding_callback_arg(SSL *ssl, void *arg) 4438 { 4439 ssl->record_padding_arg = arg; 4440 } 4441 4442 void *SSL_get_record_padding_callback_arg(const SSL *ssl) 4443 { 4444 return ssl->record_padding_arg; 4445 } 4446 4447 int SSL_set_block_padding(SSL *ssl, size_t block_size) 4448 { 4449 /* block size of 0 or 1 is basically no padding */ 4450 if (block_size == 1) 4451 ssl->block_padding = 0; 4452 else if (block_size <= SSL3_RT_MAX_PLAIN_LENGTH) 4453 ssl->block_padding = block_size; 4454 else 4455 return 0; 4456 return 1; 4457 } 4458 4459 int SSL_set_num_tickets(SSL *s, size_t num_tickets) 4460 { 4461 s->num_tickets = num_tickets; 4462 4463 return 1; 4464 } 4465 4466 size_t SSL_get_num_tickets(const SSL *s) 4467 { 4468 return s->num_tickets; 4469 } 4470 4471 int SSL_CTX_set_num_tickets(SSL_CTX *ctx, size_t num_tickets) 4472 { 4473 ctx->num_tickets = num_tickets; 4474 4475 return 1; 4476 } 4477 4478 size_t SSL_CTX_get_num_tickets(const SSL_CTX *ctx) 4479 { 4480 return ctx->num_tickets; 4481 } 4482 4483 /* 4484 * Allocates new EVP_MD_CTX and sets pointer to it into given pointer 4485 * variable, freeing EVP_MD_CTX previously stored in that variable, if any. 4486 * If EVP_MD pointer is passed, initializes ctx with this |md|. 4487 * Returns the newly allocated ctx; 4488 */ 4489 4490 EVP_MD_CTX *ssl_replace_hash(EVP_MD_CTX **hash, const EVP_MD *md) 4491 { 4492 ssl_clear_hash_ctx(hash); 4493 *hash = EVP_MD_CTX_new(); 4494 if (*hash == NULL || (md && EVP_DigestInit_ex(*hash, md, NULL) <= 0)) { 4495 EVP_MD_CTX_free(*hash); 4496 *hash = NULL; 4497 return NULL; 4498 } 4499 return *hash; 4500 } 4501 4502 void ssl_clear_hash_ctx(EVP_MD_CTX **hash) 4503 { 4504 4505 EVP_MD_CTX_free(*hash); 4506 *hash = NULL; 4507 } 4508 4509 /* Retrieve handshake hashes */ 4510 int ssl_handshake_hash(SSL *s, unsigned char *out, size_t outlen, 4511 size_t *hashlen) 4512 { 4513 EVP_MD_CTX *ctx = NULL; 4514 EVP_MD_CTX *hdgst = s->s3->handshake_dgst; 4515 int hashleni = EVP_MD_CTX_size(hdgst); 4516 int ret = 0; 4517 4518 if (hashleni < 0 || (size_t)hashleni > outlen) { 4519 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_HANDSHAKE_HASH, 4520 ERR_R_INTERNAL_ERROR); 4521 goto err; 4522 } 4523 4524 ctx = EVP_MD_CTX_new(); 4525 if (ctx == NULL) 4526 goto err; 4527 4528 if (!EVP_MD_CTX_copy_ex(ctx, hdgst) 4529 || EVP_DigestFinal_ex(ctx, out, NULL) <= 0) { 4530 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_HANDSHAKE_HASH, 4531 ERR_R_INTERNAL_ERROR); 4532 goto err; 4533 } 4534 4535 *hashlen = hashleni; 4536 4537 ret = 1; 4538 err: 4539 EVP_MD_CTX_free(ctx); 4540 return ret; 4541 } 4542 4543 int SSL_session_reused(const SSL *s) 4544 { 4545 return s->hit; 4546 } 4547 4548 int SSL_is_server(const SSL *s) 4549 { 4550 return s->server; 4551 } 4552 4553 #if OPENSSL_API_COMPAT < 0x10100000L 4554 void SSL_set_debug(SSL *s, int debug) 4555 { 4556 /* Old function was do-nothing anyway... */ 4557 (void)s; 4558 (void)debug; 4559 } 4560 #endif 4561 4562 void SSL_set_security_level(SSL *s, int level) 4563 { 4564 s->cert->sec_level = level; 4565 } 4566 4567 int SSL_get_security_level(const SSL *s) 4568 { 4569 return s->cert->sec_level; 4570 } 4571 4572 void SSL_set_security_callback(SSL *s, 4573 int (*cb) (const SSL *s, const SSL_CTX *ctx, 4574 int op, int bits, int nid, 4575 void *other, void *ex)) 4576 { 4577 s->cert->sec_cb = cb; 4578 } 4579 4580 int (*SSL_get_security_callback(const SSL *s)) (const SSL *s, 4581 const SSL_CTX *ctx, int op, 4582 int bits, int nid, void *other, 4583 void *ex) { 4584 return s->cert->sec_cb; 4585 } 4586 4587 void SSL_set0_security_ex_data(SSL *s, void *ex) 4588 { 4589 s->cert->sec_ex = ex; 4590 } 4591 4592 void *SSL_get0_security_ex_data(const SSL *s) 4593 { 4594 return s->cert->sec_ex; 4595 } 4596 4597 void SSL_CTX_set_security_level(SSL_CTX *ctx, int level) 4598 { 4599 ctx->cert->sec_level = level; 4600 } 4601 4602 int SSL_CTX_get_security_level(const SSL_CTX *ctx) 4603 { 4604 return ctx->cert->sec_level; 4605 } 4606 4607 void SSL_CTX_set_security_callback(SSL_CTX *ctx, 4608 int (*cb) (const SSL *s, const SSL_CTX *ctx, 4609 int op, int bits, int nid, 4610 void *other, void *ex)) 4611 { 4612 ctx->cert->sec_cb = cb; 4613 } 4614 4615 int (*SSL_CTX_get_security_callback(const SSL_CTX *ctx)) (const SSL *s, 4616 const SSL_CTX *ctx, 4617 int op, int bits, 4618 int nid, 4619 void *other, 4620 void *ex) { 4621 return ctx->cert->sec_cb; 4622 } 4623 4624 void SSL_CTX_set0_security_ex_data(SSL_CTX *ctx, void *ex) 4625 { 4626 ctx->cert->sec_ex = ex; 4627 } 4628 4629 void *SSL_CTX_get0_security_ex_data(const SSL_CTX *ctx) 4630 { 4631 return ctx->cert->sec_ex; 4632 } 4633 4634 /* 4635 * Get/Set/Clear options in SSL_CTX or SSL, formerly macros, now functions that 4636 * can return unsigned long, instead of the generic long return value from the 4637 * control interface. 4638 */ 4639 unsigned long SSL_CTX_get_options(const SSL_CTX *ctx) 4640 { 4641 return ctx->options; 4642 } 4643 4644 unsigned long SSL_get_options(const SSL *s) 4645 { 4646 return s->options; 4647 } 4648 4649 unsigned long SSL_CTX_set_options(SSL_CTX *ctx, unsigned long op) 4650 { 4651 return ctx->options |= op; 4652 } 4653 4654 unsigned long SSL_set_options(SSL *s, unsigned long op) 4655 { 4656 return s->options |= op; 4657 } 4658 4659 unsigned long SSL_CTX_clear_options(SSL_CTX *ctx, unsigned long op) 4660 { 4661 return ctx->options &= ~op; 4662 } 4663 4664 unsigned long SSL_clear_options(SSL *s, unsigned long op) 4665 { 4666 return s->options &= ~op; 4667 } 4668 4669 STACK_OF(X509) *SSL_get0_verified_chain(const SSL *s) 4670 { 4671 return s->verified_chain; 4672 } 4673 4674 IMPLEMENT_OBJ_BSEARCH_GLOBAL_CMP_FN(SSL_CIPHER, SSL_CIPHER, ssl_cipher_id); 4675 4676 #ifndef OPENSSL_NO_CT 4677 4678 /* 4679 * Moves SCTs from the |src| stack to the |dst| stack. 4680 * The source of each SCT will be set to |origin|. 4681 * If |dst| points to a NULL pointer, a new stack will be created and owned by 4682 * the caller. 4683 * Returns the number of SCTs moved, or a negative integer if an error occurs. 4684 */ 4685 static int ct_move_scts(STACK_OF(SCT) **dst, STACK_OF(SCT) *src, 4686 sct_source_t origin) 4687 { 4688 int scts_moved = 0; 4689 SCT *sct = NULL; 4690 4691 if (*dst == NULL) { 4692 *dst = sk_SCT_new_null(); 4693 if (*dst == NULL) { 4694 SSLerr(SSL_F_CT_MOVE_SCTS, ERR_R_MALLOC_FAILURE); 4695 goto err; 4696 } 4697 } 4698 4699 while ((sct = sk_SCT_pop(src)) != NULL) { 4700 if (SCT_set_source(sct, origin) != 1) 4701 goto err; 4702 4703 if (sk_SCT_push(*dst, sct) <= 0) 4704 goto err; 4705 scts_moved += 1; 4706 } 4707 4708 return scts_moved; 4709 err: 4710 if (sct != NULL) 4711 sk_SCT_push(src, sct); /* Put the SCT back */ 4712 return -1; 4713 } 4714 4715 /* 4716 * Look for data collected during ServerHello and parse if found. 4717 * Returns the number of SCTs extracted. 4718 */ 4719 static int ct_extract_tls_extension_scts(SSL *s) 4720 { 4721 int scts_extracted = 0; 4722 4723 if (s->ext.scts != NULL) { 4724 const unsigned char *p = s->ext.scts; 4725 STACK_OF(SCT) *scts = o2i_SCT_LIST(NULL, &p, s->ext.scts_len); 4726 4727 scts_extracted = ct_move_scts(&s->scts, scts, SCT_SOURCE_TLS_EXTENSION); 4728 4729 SCT_LIST_free(scts); 4730 } 4731 4732 return scts_extracted; 4733 } 4734 4735 /* 4736 * Checks for an OCSP response and then attempts to extract any SCTs found if it 4737 * contains an SCT X509 extension. They will be stored in |s->scts|. 4738 * Returns: 4739 * - The number of SCTs extracted, assuming an OCSP response exists. 4740 * - 0 if no OCSP response exists or it contains no SCTs. 4741 * - A negative integer if an error occurs. 4742 */ 4743 static int ct_extract_ocsp_response_scts(SSL *s) 4744 { 4745 # ifndef OPENSSL_NO_OCSP 4746 int scts_extracted = 0; 4747 const unsigned char *p; 4748 OCSP_BASICRESP *br = NULL; 4749 OCSP_RESPONSE *rsp = NULL; 4750 STACK_OF(SCT) *scts = NULL; 4751 int i; 4752 4753 if (s->ext.ocsp.resp == NULL || s->ext.ocsp.resp_len == 0) 4754 goto err; 4755 4756 p = s->ext.ocsp.resp; 4757 rsp = d2i_OCSP_RESPONSE(NULL, &p, (int)s->ext.ocsp.resp_len); 4758 if (rsp == NULL) 4759 goto err; 4760 4761 br = OCSP_response_get1_basic(rsp); 4762 if (br == NULL) 4763 goto err; 4764 4765 for (i = 0; i < OCSP_resp_count(br); ++i) { 4766 OCSP_SINGLERESP *single = OCSP_resp_get0(br, i); 4767 4768 if (single == NULL) 4769 continue; 4770 4771 scts = 4772 OCSP_SINGLERESP_get1_ext_d2i(single, NID_ct_cert_scts, NULL, NULL); 4773 scts_extracted = 4774 ct_move_scts(&s->scts, scts, SCT_SOURCE_OCSP_STAPLED_RESPONSE); 4775 if (scts_extracted < 0) 4776 goto err; 4777 } 4778 err: 4779 SCT_LIST_free(scts); 4780 OCSP_BASICRESP_free(br); 4781 OCSP_RESPONSE_free(rsp); 4782 return scts_extracted; 4783 # else 4784 /* Behave as if no OCSP response exists */ 4785 return 0; 4786 # endif 4787 } 4788 4789 /* 4790 * Attempts to extract SCTs from the peer certificate. 4791 * Return the number of SCTs extracted, or a negative integer if an error 4792 * occurs. 4793 */ 4794 static int ct_extract_x509v3_extension_scts(SSL *s) 4795 { 4796 int scts_extracted = 0; 4797 X509 *cert = s->session != NULL ? s->session->peer : NULL; 4798 4799 if (cert != NULL) { 4800 STACK_OF(SCT) *scts = 4801 X509_get_ext_d2i(cert, NID_ct_precert_scts, NULL, NULL); 4802 4803 scts_extracted = 4804 ct_move_scts(&s->scts, scts, SCT_SOURCE_X509V3_EXTENSION); 4805 4806 SCT_LIST_free(scts); 4807 } 4808 4809 return scts_extracted; 4810 } 4811 4812 /* 4813 * Attempts to find all received SCTs by checking TLS extensions, the OCSP 4814 * response (if it exists) and X509v3 extensions in the certificate. 4815 * Returns NULL if an error occurs. 4816 */ 4817 const STACK_OF(SCT) *SSL_get0_peer_scts(SSL *s) 4818 { 4819 if (!s->scts_parsed) { 4820 if (ct_extract_tls_extension_scts(s) < 0 || 4821 ct_extract_ocsp_response_scts(s) < 0 || 4822 ct_extract_x509v3_extension_scts(s) < 0) 4823 goto err; 4824 4825 s->scts_parsed = 1; 4826 } 4827 return s->scts; 4828 err: 4829 return NULL; 4830 } 4831 4832 static int ct_permissive(const CT_POLICY_EVAL_CTX * ctx, 4833 const STACK_OF(SCT) *scts, void *unused_arg) 4834 { 4835 return 1; 4836 } 4837 4838 static int ct_strict(const CT_POLICY_EVAL_CTX * ctx, 4839 const STACK_OF(SCT) *scts, void *unused_arg) 4840 { 4841 int count = scts != NULL ? sk_SCT_num(scts) : 0; 4842 int i; 4843 4844 for (i = 0; i < count; ++i) { 4845 SCT *sct = sk_SCT_value(scts, i); 4846 int status = SCT_get_validation_status(sct); 4847 4848 if (status == SCT_VALIDATION_STATUS_VALID) 4849 return 1; 4850 } 4851 SSLerr(SSL_F_CT_STRICT, SSL_R_NO_VALID_SCTS); 4852 return 0; 4853 } 4854 4855 int SSL_set_ct_validation_callback(SSL *s, ssl_ct_validation_cb callback, 4856 void *arg) 4857 { 4858 /* 4859 * Since code exists that uses the custom extension handler for CT, look 4860 * for this and throw an error if they have already registered to use CT. 4861 */ 4862 if (callback != NULL && SSL_CTX_has_client_custom_ext(s->ctx, 4863 TLSEXT_TYPE_signed_certificate_timestamp)) 4864 { 4865 SSLerr(SSL_F_SSL_SET_CT_VALIDATION_CALLBACK, 4866 SSL_R_CUSTOM_EXT_HANDLER_ALREADY_INSTALLED); 4867 return 0; 4868 } 4869 4870 if (callback != NULL) { 4871 /* 4872 * If we are validating CT, then we MUST accept SCTs served via OCSP 4873 */ 4874 if (!SSL_set_tlsext_status_type(s, TLSEXT_STATUSTYPE_ocsp)) 4875 return 0; 4876 } 4877 4878 s->ct_validation_callback = callback; 4879 s->ct_validation_callback_arg = arg; 4880 4881 return 1; 4882 } 4883 4884 int SSL_CTX_set_ct_validation_callback(SSL_CTX *ctx, 4885 ssl_ct_validation_cb callback, void *arg) 4886 { 4887 /* 4888 * Since code exists that uses the custom extension handler for CT, look for 4889 * this and throw an error if they have already registered to use CT. 4890 */ 4891 if (callback != NULL && SSL_CTX_has_client_custom_ext(ctx, 4892 TLSEXT_TYPE_signed_certificate_timestamp)) 4893 { 4894 SSLerr(SSL_F_SSL_CTX_SET_CT_VALIDATION_CALLBACK, 4895 SSL_R_CUSTOM_EXT_HANDLER_ALREADY_INSTALLED); 4896 return 0; 4897 } 4898 4899 ctx->ct_validation_callback = callback; 4900 ctx->ct_validation_callback_arg = arg; 4901 return 1; 4902 } 4903 4904 int SSL_ct_is_enabled(const SSL *s) 4905 { 4906 return s->ct_validation_callback != NULL; 4907 } 4908 4909 int SSL_CTX_ct_is_enabled(const SSL_CTX *ctx) 4910 { 4911 return ctx->ct_validation_callback != NULL; 4912 } 4913 4914 int ssl_validate_ct(SSL *s) 4915 { 4916 int ret = 0; 4917 X509 *cert = s->session != NULL ? s->session->peer : NULL; 4918 X509 *issuer; 4919 SSL_DANE *dane = &s->dane; 4920 CT_POLICY_EVAL_CTX *ctx = NULL; 4921 const STACK_OF(SCT) *scts; 4922 4923 /* 4924 * If no callback is set, the peer is anonymous, or its chain is invalid, 4925 * skip SCT validation - just return success. Applications that continue 4926 * handshakes without certificates, with unverified chains, or pinned leaf 4927 * certificates are outside the scope of the WebPKI and CT. 4928 * 4929 * The above exclusions notwithstanding the vast majority of peers will 4930 * have rather ordinary certificate chains validated by typical 4931 * applications that perform certificate verification and therefore will 4932 * process SCTs when enabled. 4933 */ 4934 if (s->ct_validation_callback == NULL || cert == NULL || 4935 s->verify_result != X509_V_OK || 4936 s->verified_chain == NULL || sk_X509_num(s->verified_chain) <= 1) 4937 return 1; 4938 4939 /* 4940 * CT not applicable for chains validated via DANE-TA(2) or DANE-EE(3) 4941 * trust-anchors. See https://tools.ietf.org/html/rfc7671#section-4.2 4942 */ 4943 if (DANETLS_ENABLED(dane) && dane->mtlsa != NULL) { 4944 switch (dane->mtlsa->usage) { 4945 case DANETLS_USAGE_DANE_TA: 4946 case DANETLS_USAGE_DANE_EE: 4947 return 1; 4948 } 4949 } 4950 4951 ctx = CT_POLICY_EVAL_CTX_new(); 4952 if (ctx == NULL) { 4953 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_VALIDATE_CT, 4954 ERR_R_MALLOC_FAILURE); 4955 goto end; 4956 } 4957 4958 issuer = sk_X509_value(s->verified_chain, 1); 4959 CT_POLICY_EVAL_CTX_set1_cert(ctx, cert); 4960 CT_POLICY_EVAL_CTX_set1_issuer(ctx, issuer); 4961 CT_POLICY_EVAL_CTX_set_shared_CTLOG_STORE(ctx, s->ctx->ctlog_store); 4962 CT_POLICY_EVAL_CTX_set_time( 4963 ctx, (uint64_t)SSL_SESSION_get_time(SSL_get0_session(s)) * 1000); 4964 4965 scts = SSL_get0_peer_scts(s); 4966 4967 /* 4968 * This function returns success (> 0) only when all the SCTs are valid, 0 4969 * when some are invalid, and < 0 on various internal errors (out of 4970 * memory, etc.). Having some, or even all, invalid SCTs is not sufficient 4971 * reason to abort the handshake, that decision is up to the callback. 4972 * Therefore, we error out only in the unexpected case that the return 4973 * value is negative. 4974 * 4975 * XXX: One might well argue that the return value of this function is an 4976 * unfortunate design choice. Its job is only to determine the validation 4977 * status of each of the provided SCTs. So long as it correctly separates 4978 * the wheat from the chaff it should return success. Failure in this case 4979 * ought to correspond to an inability to carry out its duties. 4980 */ 4981 if (SCT_LIST_validate(scts, ctx) < 0) { 4982 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_SSL_VALIDATE_CT, 4983 SSL_R_SCT_VERIFICATION_FAILED); 4984 goto end; 4985 } 4986 4987 ret = s->ct_validation_callback(ctx, scts, s->ct_validation_callback_arg); 4988 if (ret < 0) 4989 ret = 0; /* This function returns 0 on failure */ 4990 if (!ret) 4991 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_SSL_VALIDATE_CT, 4992 SSL_R_CALLBACK_FAILED); 4993 4994 end: 4995 CT_POLICY_EVAL_CTX_free(ctx); 4996 /* 4997 * With SSL_VERIFY_NONE the session may be cached and re-used despite a 4998 * failure return code here. Also the application may wish the complete 4999 * the handshake, and then disconnect cleanly at a higher layer, after 5000 * checking the verification status of the completed connection. 5001 * 5002 * We therefore force a certificate verification failure which will be 5003 * visible via SSL_get_verify_result() and cached as part of any resumed 5004 * session. 5005 * 5006 * Note: the permissive callback is for information gathering only, always 5007 * returns success, and does not affect verification status. Only the 5008 * strict callback or a custom application-specified callback can trigger 5009 * connection failure or record a verification error. 5010 */ 5011 if (ret <= 0) 5012 s->verify_result = X509_V_ERR_NO_VALID_SCTS; 5013 return ret; 5014 } 5015 5016 int SSL_CTX_enable_ct(SSL_CTX *ctx, int validation_mode) 5017 { 5018 switch (validation_mode) { 5019 default: 5020 SSLerr(SSL_F_SSL_CTX_ENABLE_CT, SSL_R_INVALID_CT_VALIDATION_TYPE); 5021 return 0; 5022 case SSL_CT_VALIDATION_PERMISSIVE: 5023 return SSL_CTX_set_ct_validation_callback(ctx, ct_permissive, NULL); 5024 case SSL_CT_VALIDATION_STRICT: 5025 return SSL_CTX_set_ct_validation_callback(ctx, ct_strict, NULL); 5026 } 5027 } 5028 5029 int SSL_enable_ct(SSL *s, int validation_mode) 5030 { 5031 switch (validation_mode) { 5032 default: 5033 SSLerr(SSL_F_SSL_ENABLE_CT, SSL_R_INVALID_CT_VALIDATION_TYPE); 5034 return 0; 5035 case SSL_CT_VALIDATION_PERMISSIVE: 5036 return SSL_set_ct_validation_callback(s, ct_permissive, NULL); 5037 case SSL_CT_VALIDATION_STRICT: 5038 return SSL_set_ct_validation_callback(s, ct_strict, NULL); 5039 } 5040 } 5041 5042 int SSL_CTX_set_default_ctlog_list_file(SSL_CTX *ctx) 5043 { 5044 return CTLOG_STORE_load_default_file(ctx->ctlog_store); 5045 } 5046 5047 int SSL_CTX_set_ctlog_list_file(SSL_CTX *ctx, const char *path) 5048 { 5049 return CTLOG_STORE_load_file(ctx->ctlog_store, path); 5050 } 5051 5052 void SSL_CTX_set0_ctlog_store(SSL_CTX *ctx, CTLOG_STORE * logs) 5053 { 5054 CTLOG_STORE_free(ctx->ctlog_store); 5055 ctx->ctlog_store = logs; 5056 } 5057 5058 const CTLOG_STORE *SSL_CTX_get0_ctlog_store(const SSL_CTX *ctx) 5059 { 5060 return ctx->ctlog_store; 5061 } 5062 5063 #endif /* OPENSSL_NO_CT */ 5064 5065 void SSL_CTX_set_client_hello_cb(SSL_CTX *c, SSL_client_hello_cb_fn cb, 5066 void *arg) 5067 { 5068 c->client_hello_cb = cb; 5069 c->client_hello_cb_arg = arg; 5070 } 5071 5072 int SSL_client_hello_isv2(SSL *s) 5073 { 5074 if (s->clienthello == NULL) 5075 return 0; 5076 return s->clienthello->isv2; 5077 } 5078 5079 unsigned int SSL_client_hello_get0_legacy_version(SSL *s) 5080 { 5081 if (s->clienthello == NULL) 5082 return 0; 5083 return s->clienthello->legacy_version; 5084 } 5085 5086 size_t SSL_client_hello_get0_random(SSL *s, const unsigned char **out) 5087 { 5088 if (s->clienthello == NULL) 5089 return 0; 5090 if (out != NULL) 5091 *out = s->clienthello->random; 5092 return SSL3_RANDOM_SIZE; 5093 } 5094 5095 size_t SSL_client_hello_get0_session_id(SSL *s, const unsigned char **out) 5096 { 5097 if (s->clienthello == NULL) 5098 return 0; 5099 if (out != NULL) 5100 *out = s->clienthello->session_id; 5101 return s->clienthello->session_id_len; 5102 } 5103 5104 size_t SSL_client_hello_get0_ciphers(SSL *s, const unsigned char **out) 5105 { 5106 if (s->clienthello == NULL) 5107 return 0; 5108 if (out != NULL) 5109 *out = PACKET_data(&s->clienthello->ciphersuites); 5110 return PACKET_remaining(&s->clienthello->ciphersuites); 5111 } 5112 5113 size_t SSL_client_hello_get0_compression_methods(SSL *s, const unsigned char **out) 5114 { 5115 if (s->clienthello == NULL) 5116 return 0; 5117 if (out != NULL) 5118 *out = s->clienthello->compressions; 5119 return s->clienthello->compressions_len; 5120 } 5121 5122 int SSL_client_hello_get1_extensions_present(SSL *s, int **out, size_t *outlen) 5123 { 5124 RAW_EXTENSION *ext; 5125 int *present; 5126 size_t num = 0, i; 5127 5128 if (s->clienthello == NULL || out == NULL || outlen == NULL) 5129 return 0; 5130 for (i = 0; i < s->clienthello->pre_proc_exts_len; i++) { 5131 ext = s->clienthello->pre_proc_exts + i; 5132 if (ext->present) 5133 num++; 5134 } 5135 if (num == 0) { 5136 *out = NULL; 5137 *outlen = 0; 5138 return 1; 5139 } 5140 if ((present = OPENSSL_malloc(sizeof(*present) * num)) == NULL) { 5141 SSLerr(SSL_F_SSL_CLIENT_HELLO_GET1_EXTENSIONS_PRESENT, 5142 ERR_R_MALLOC_FAILURE); 5143 return 0; 5144 } 5145 for (i = 0; i < s->clienthello->pre_proc_exts_len; i++) { 5146 ext = s->clienthello->pre_proc_exts + i; 5147 if (ext->present) { 5148 if (ext->received_order >= num) 5149 goto err; 5150 present[ext->received_order] = ext->type; 5151 } 5152 } 5153 *out = present; 5154 *outlen = num; 5155 return 1; 5156 err: 5157 OPENSSL_free(present); 5158 return 0; 5159 } 5160 5161 int SSL_client_hello_get0_ext(SSL *s, unsigned int type, const unsigned char **out, 5162 size_t *outlen) 5163 { 5164 size_t i; 5165 RAW_EXTENSION *r; 5166 5167 if (s->clienthello == NULL) 5168 return 0; 5169 for (i = 0; i < s->clienthello->pre_proc_exts_len; ++i) { 5170 r = s->clienthello->pre_proc_exts + i; 5171 if (r->present && r->type == type) { 5172 if (out != NULL) 5173 *out = PACKET_data(&r->data); 5174 if (outlen != NULL) 5175 *outlen = PACKET_remaining(&r->data); 5176 return 1; 5177 } 5178 } 5179 return 0; 5180 } 5181 5182 int SSL_free_buffers(SSL *ssl) 5183 { 5184 RECORD_LAYER *rl = &ssl->rlayer; 5185 5186 if (RECORD_LAYER_read_pending(rl) || RECORD_LAYER_write_pending(rl)) 5187 return 0; 5188 5189 RECORD_LAYER_release(rl); 5190 return 1; 5191 } 5192 5193 int SSL_alloc_buffers(SSL *ssl) 5194 { 5195 return ssl3_setup_buffers(ssl); 5196 } 5197 5198 void SSL_CTX_set_keylog_callback(SSL_CTX *ctx, SSL_CTX_keylog_cb_func cb) 5199 { 5200 ctx->keylog_callback = cb; 5201 } 5202 5203 SSL_CTX_keylog_cb_func SSL_CTX_get_keylog_callback(const SSL_CTX *ctx) 5204 { 5205 return ctx->keylog_callback; 5206 } 5207 5208 static int nss_keylog_int(const char *prefix, 5209 SSL *ssl, 5210 const uint8_t *parameter_1, 5211 size_t parameter_1_len, 5212 const uint8_t *parameter_2, 5213 size_t parameter_2_len) 5214 { 5215 char *out = NULL; 5216 char *cursor = NULL; 5217 size_t out_len = 0; 5218 size_t i; 5219 size_t prefix_len; 5220 5221 if (ssl->ctx->keylog_callback == NULL) 5222 return 1; 5223 5224 /* 5225 * Our output buffer will contain the following strings, rendered with 5226 * space characters in between, terminated by a NULL character: first the 5227 * prefix, then the first parameter, then the second parameter. The 5228 * meaning of each parameter depends on the specific key material being 5229 * logged. Note that the first and second parameters are encoded in 5230 * hexadecimal, so we need a buffer that is twice their lengths. 5231 */ 5232 prefix_len = strlen(prefix); 5233 out_len = prefix_len + (2 * parameter_1_len) + (2 * parameter_2_len) + 3; 5234 if ((out = cursor = OPENSSL_malloc(out_len)) == NULL) { 5235 SSLfatal(ssl, SSL_AD_INTERNAL_ERROR, SSL_F_NSS_KEYLOG_INT, 5236 ERR_R_MALLOC_FAILURE); 5237 return 0; 5238 } 5239 5240 strcpy(cursor, prefix); 5241 cursor += prefix_len; 5242 *cursor++ = ' '; 5243 5244 for (i = 0; i < parameter_1_len; i++) { 5245 sprintf(cursor, "%02x", parameter_1[i]); 5246 cursor += 2; 5247 } 5248 *cursor++ = ' '; 5249 5250 for (i = 0; i < parameter_2_len; i++) { 5251 sprintf(cursor, "%02x", parameter_2[i]); 5252 cursor += 2; 5253 } 5254 *cursor = '\0'; 5255 5256 ssl->ctx->keylog_callback(ssl, (const char *)out); 5257 OPENSSL_clear_free(out, out_len); 5258 return 1; 5259 5260 } 5261 5262 int ssl_log_rsa_client_key_exchange(SSL *ssl, 5263 const uint8_t *encrypted_premaster, 5264 size_t encrypted_premaster_len, 5265 const uint8_t *premaster, 5266 size_t premaster_len) 5267 { 5268 if (encrypted_premaster_len < 8) { 5269 SSLfatal(ssl, SSL_AD_INTERNAL_ERROR, 5270 SSL_F_SSL_LOG_RSA_CLIENT_KEY_EXCHANGE, ERR_R_INTERNAL_ERROR); 5271 return 0; 5272 } 5273 5274 /* We only want the first 8 bytes of the encrypted premaster as a tag. */ 5275 return nss_keylog_int("RSA", 5276 ssl, 5277 encrypted_premaster, 5278 8, 5279 premaster, 5280 premaster_len); 5281 } 5282 5283 int ssl_log_secret(SSL *ssl, 5284 const char *label, 5285 const uint8_t *secret, 5286 size_t secret_len) 5287 { 5288 return nss_keylog_int(label, 5289 ssl, 5290 ssl->s3->client_random, 5291 SSL3_RANDOM_SIZE, 5292 secret, 5293 secret_len); 5294 } 5295 5296 #define SSLV2_CIPHER_LEN 3 5297 5298 int ssl_cache_cipherlist(SSL *s, PACKET *cipher_suites, int sslv2format) 5299 { 5300 int n; 5301 5302 n = sslv2format ? SSLV2_CIPHER_LEN : TLS_CIPHER_LEN; 5303 5304 if (PACKET_remaining(cipher_suites) == 0) { 5305 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_SSL_CACHE_CIPHERLIST, 5306 SSL_R_NO_CIPHERS_SPECIFIED); 5307 return 0; 5308 } 5309 5310 if (PACKET_remaining(cipher_suites) % n != 0) { 5311 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_SSL_CACHE_CIPHERLIST, 5312 SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST); 5313 return 0; 5314 } 5315 5316 OPENSSL_free(s->s3->tmp.ciphers_raw); 5317 s->s3->tmp.ciphers_raw = NULL; 5318 s->s3->tmp.ciphers_rawlen = 0; 5319 5320 if (sslv2format) { 5321 size_t numciphers = PACKET_remaining(cipher_suites) / n; 5322 PACKET sslv2ciphers = *cipher_suites; 5323 unsigned int leadbyte; 5324 unsigned char *raw; 5325 5326 /* 5327 * We store the raw ciphers list in SSLv3+ format so we need to do some 5328 * preprocessing to convert the list first. If there are any SSLv2 only 5329 * ciphersuites with a non-zero leading byte then we are going to 5330 * slightly over allocate because we won't store those. But that isn't a 5331 * problem. 5332 */ 5333 raw = OPENSSL_malloc(numciphers * TLS_CIPHER_LEN); 5334 s->s3->tmp.ciphers_raw = raw; 5335 if (raw == NULL) { 5336 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_CACHE_CIPHERLIST, 5337 ERR_R_MALLOC_FAILURE); 5338 return 0; 5339 } 5340 for (s->s3->tmp.ciphers_rawlen = 0; 5341 PACKET_remaining(&sslv2ciphers) > 0; 5342 raw += TLS_CIPHER_LEN) { 5343 if (!PACKET_get_1(&sslv2ciphers, &leadbyte) 5344 || (leadbyte == 0 5345 && !PACKET_copy_bytes(&sslv2ciphers, raw, 5346 TLS_CIPHER_LEN)) 5347 || (leadbyte != 0 5348 && !PACKET_forward(&sslv2ciphers, TLS_CIPHER_LEN))) { 5349 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_SSL_CACHE_CIPHERLIST, 5350 SSL_R_BAD_PACKET); 5351 OPENSSL_free(s->s3->tmp.ciphers_raw); 5352 s->s3->tmp.ciphers_raw = NULL; 5353 s->s3->tmp.ciphers_rawlen = 0; 5354 return 0; 5355 } 5356 if (leadbyte == 0) 5357 s->s3->tmp.ciphers_rawlen += TLS_CIPHER_LEN; 5358 } 5359 } else if (!PACKET_memdup(cipher_suites, &s->s3->tmp.ciphers_raw, 5360 &s->s3->tmp.ciphers_rawlen)) { 5361 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_CACHE_CIPHERLIST, 5362 ERR_R_INTERNAL_ERROR); 5363 return 0; 5364 } 5365 return 1; 5366 } 5367 5368 int SSL_bytes_to_cipher_list(SSL *s, const unsigned char *bytes, size_t len, 5369 int isv2format, STACK_OF(SSL_CIPHER) **sk, 5370 STACK_OF(SSL_CIPHER) **scsvs) 5371 { 5372 PACKET pkt; 5373 5374 if (!PACKET_buf_init(&pkt, bytes, len)) 5375 return 0; 5376 return bytes_to_cipher_list(s, &pkt, sk, scsvs, isv2format, 0); 5377 } 5378 5379 int bytes_to_cipher_list(SSL *s, PACKET *cipher_suites, 5380 STACK_OF(SSL_CIPHER) **skp, 5381 STACK_OF(SSL_CIPHER) **scsvs_out, 5382 int sslv2format, int fatal) 5383 { 5384 const SSL_CIPHER *c; 5385 STACK_OF(SSL_CIPHER) *sk = NULL; 5386 STACK_OF(SSL_CIPHER) *scsvs = NULL; 5387 int n; 5388 /* 3 = SSLV2_CIPHER_LEN > TLS_CIPHER_LEN = 2. */ 5389 unsigned char cipher[SSLV2_CIPHER_LEN]; 5390 5391 n = sslv2format ? SSLV2_CIPHER_LEN : TLS_CIPHER_LEN; 5392 5393 if (PACKET_remaining(cipher_suites) == 0) { 5394 if (fatal) 5395 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_BYTES_TO_CIPHER_LIST, 5396 SSL_R_NO_CIPHERS_SPECIFIED); 5397 else 5398 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, SSL_R_NO_CIPHERS_SPECIFIED); 5399 return 0; 5400 } 5401 5402 if (PACKET_remaining(cipher_suites) % n != 0) { 5403 if (fatal) 5404 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_BYTES_TO_CIPHER_LIST, 5405 SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST); 5406 else 5407 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, 5408 SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST); 5409 return 0; 5410 } 5411 5412 sk = sk_SSL_CIPHER_new_null(); 5413 scsvs = sk_SSL_CIPHER_new_null(); 5414 if (sk == NULL || scsvs == NULL) { 5415 if (fatal) 5416 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_BYTES_TO_CIPHER_LIST, 5417 ERR_R_MALLOC_FAILURE); 5418 else 5419 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, ERR_R_MALLOC_FAILURE); 5420 goto err; 5421 } 5422 5423 while (PACKET_copy_bytes(cipher_suites, cipher, n)) { 5424 /* 5425 * SSLv3 ciphers wrapped in an SSLv2-compatible ClientHello have the 5426 * first byte set to zero, while true SSLv2 ciphers have a non-zero 5427 * first byte. We don't support any true SSLv2 ciphers, so skip them. 5428 */ 5429 if (sslv2format && cipher[0] != '\0') 5430 continue; 5431 5432 /* For SSLv2-compat, ignore leading 0-byte. */ 5433 c = ssl_get_cipher_by_char(s, sslv2format ? &cipher[1] : cipher, 1); 5434 if (c != NULL) { 5435 if ((c->valid && !sk_SSL_CIPHER_push(sk, c)) || 5436 (!c->valid && !sk_SSL_CIPHER_push(scsvs, c))) { 5437 if (fatal) 5438 SSLfatal(s, SSL_AD_INTERNAL_ERROR, 5439 SSL_F_BYTES_TO_CIPHER_LIST, ERR_R_MALLOC_FAILURE); 5440 else 5441 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, ERR_R_MALLOC_FAILURE); 5442 goto err; 5443 } 5444 } 5445 } 5446 if (PACKET_remaining(cipher_suites) > 0) { 5447 if (fatal) 5448 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_BYTES_TO_CIPHER_LIST, 5449 SSL_R_BAD_LENGTH); 5450 else 5451 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, SSL_R_BAD_LENGTH); 5452 goto err; 5453 } 5454 5455 if (skp != NULL) 5456 *skp = sk; 5457 else 5458 sk_SSL_CIPHER_free(sk); 5459 if (scsvs_out != NULL) 5460 *scsvs_out = scsvs; 5461 else 5462 sk_SSL_CIPHER_free(scsvs); 5463 return 1; 5464 err: 5465 sk_SSL_CIPHER_free(sk); 5466 sk_SSL_CIPHER_free(scsvs); 5467 return 0; 5468 } 5469 5470 int SSL_CTX_set_max_early_data(SSL_CTX *ctx, uint32_t max_early_data) 5471 { 5472 ctx->max_early_data = max_early_data; 5473 5474 return 1; 5475 } 5476 5477 uint32_t SSL_CTX_get_max_early_data(const SSL_CTX *ctx) 5478 { 5479 return ctx->max_early_data; 5480 } 5481 5482 int SSL_set_max_early_data(SSL *s, uint32_t max_early_data) 5483 { 5484 s->max_early_data = max_early_data; 5485 5486 return 1; 5487 } 5488 5489 uint32_t SSL_get_max_early_data(const SSL *s) 5490 { 5491 return s->max_early_data; 5492 } 5493 5494 int SSL_CTX_set_recv_max_early_data(SSL_CTX *ctx, uint32_t recv_max_early_data) 5495 { 5496 ctx->recv_max_early_data = recv_max_early_data; 5497 5498 return 1; 5499 } 5500 5501 uint32_t SSL_CTX_get_recv_max_early_data(const SSL_CTX *ctx) 5502 { 5503 return ctx->recv_max_early_data; 5504 } 5505 5506 int SSL_set_recv_max_early_data(SSL *s, uint32_t recv_max_early_data) 5507 { 5508 s->recv_max_early_data = recv_max_early_data; 5509 5510 return 1; 5511 } 5512 5513 uint32_t SSL_get_recv_max_early_data(const SSL *s) 5514 { 5515 return s->recv_max_early_data; 5516 } 5517 5518 __owur unsigned int ssl_get_max_send_fragment(const SSL *ssl) 5519 { 5520 /* Return any active Max Fragment Len extension */ 5521 if (ssl->session != NULL && USE_MAX_FRAGMENT_LENGTH_EXT(ssl->session)) 5522 return GET_MAX_FRAGMENT_LENGTH(ssl->session); 5523 5524 /* return current SSL connection setting */ 5525 return ssl->max_send_fragment; 5526 } 5527 5528 __owur unsigned int ssl_get_split_send_fragment(const SSL *ssl) 5529 { 5530 /* Return a value regarding an active Max Fragment Len extension */ 5531 if (ssl->session != NULL && USE_MAX_FRAGMENT_LENGTH_EXT(ssl->session) 5532 && ssl->split_send_fragment > GET_MAX_FRAGMENT_LENGTH(ssl->session)) 5533 return GET_MAX_FRAGMENT_LENGTH(ssl->session); 5534 5535 /* else limit |split_send_fragment| to current |max_send_fragment| */ 5536 if (ssl->split_send_fragment > ssl->max_send_fragment) 5537 return ssl->max_send_fragment; 5538 5539 /* return current SSL connection setting */ 5540 return ssl->split_send_fragment; 5541 } 5542 5543 int SSL_stateless(SSL *s) 5544 { 5545 int ret; 5546 5547 /* Ensure there is no state left over from a previous invocation */ 5548 if (!SSL_clear(s)) 5549 return 0; 5550 5551 ERR_clear_error(); 5552 5553 s->s3->flags |= TLS1_FLAGS_STATELESS; 5554 ret = SSL_accept(s); 5555 s->s3->flags &= ~TLS1_FLAGS_STATELESS; 5556 5557 if (ret > 0 && s->ext.cookieok) 5558 return 1; 5559 5560 if (s->hello_retry_request == SSL_HRR_PENDING && !ossl_statem_in_error(s)) 5561 return 0; 5562 5563 return -1; 5564 } 5565 5566 void SSL_CTX_set_post_handshake_auth(SSL_CTX *ctx, int val) 5567 { 5568 ctx->pha_enabled = val; 5569 } 5570 5571 void SSL_set_post_handshake_auth(SSL *ssl, int val) 5572 { 5573 ssl->pha_enabled = val; 5574 } 5575 5576 int SSL_verify_client_post_handshake(SSL *ssl) 5577 { 5578 if (!SSL_IS_TLS13(ssl)) { 5579 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_WRONG_SSL_VERSION); 5580 return 0; 5581 } 5582 if (!ssl->server) { 5583 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_NOT_SERVER); 5584 return 0; 5585 } 5586 5587 if (!SSL_is_init_finished(ssl)) { 5588 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_STILL_IN_INIT); 5589 return 0; 5590 } 5591 5592 switch (ssl->post_handshake_auth) { 5593 case SSL_PHA_NONE: 5594 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_EXTENSION_NOT_RECEIVED); 5595 return 0; 5596 default: 5597 case SSL_PHA_EXT_SENT: 5598 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, ERR_R_INTERNAL_ERROR); 5599 return 0; 5600 case SSL_PHA_EXT_RECEIVED: 5601 break; 5602 case SSL_PHA_REQUEST_PENDING: 5603 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_REQUEST_PENDING); 5604 return 0; 5605 case SSL_PHA_REQUESTED: 5606 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_REQUEST_SENT); 5607 return 0; 5608 } 5609 5610 ssl->post_handshake_auth = SSL_PHA_REQUEST_PENDING; 5611 5612 /* checks verify_mode and algorithm_auth */ 5613 if (!send_certificate_request(ssl)) { 5614 ssl->post_handshake_auth = SSL_PHA_EXT_RECEIVED; /* restore on error */ 5615 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_INVALID_CONFIG); 5616 return 0; 5617 } 5618 5619 ossl_statem_set_in_init(ssl, 1); 5620 return 1; 5621 } 5622 5623 int SSL_CTX_set_session_ticket_cb(SSL_CTX *ctx, 5624 SSL_CTX_generate_session_ticket_fn gen_cb, 5625 SSL_CTX_decrypt_session_ticket_fn dec_cb, 5626 void *arg) 5627 { 5628 ctx->generate_ticket_cb = gen_cb; 5629 ctx->decrypt_ticket_cb = dec_cb; 5630 ctx->ticket_cb_data = arg; 5631 return 1; 5632 } 5633 5634 void SSL_CTX_set_allow_early_data_cb(SSL_CTX *ctx, 5635 SSL_allow_early_data_cb_fn cb, 5636 void *arg) 5637 { 5638 ctx->allow_early_data_cb = cb; 5639 ctx->allow_early_data_cb_data = arg; 5640 } 5641 5642 void SSL_set_allow_early_data_cb(SSL *s, 5643 SSL_allow_early_data_cb_fn cb, 5644 void *arg) 5645 { 5646 s->allow_early_data_cb = cb; 5647 s->allow_early_data_cb_data = arg; 5648 } 5649