1 /* 2 * Copyright 1995-2022 The OpenSSL Project Authors. All Rights Reserved. 3 * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved 4 * Copyright 2005 Nokia. All rights reserved. 5 * 6 * Licensed under the OpenSSL license (the "License"). You may not use 7 * this file except in compliance with the License. You can obtain a copy 8 * in the file LICENSE in the source distribution or at 9 * https://www.openssl.org/source/license.html 10 */ 11 12 #include <stdio.h> 13 #include "ssl_local.h" 14 #include "e_os.h" 15 #include <openssl/objects.h> 16 #include <openssl/x509v3.h> 17 #include <openssl/rand.h> 18 #include <openssl/rand_drbg.h> 19 #include <openssl/ocsp.h> 20 #include <openssl/dh.h> 21 #include <openssl/engine.h> 22 #include <openssl/async.h> 23 #include <openssl/ct.h> 24 #include "internal/cryptlib.h" 25 #include "internal/refcount.h" 26 #include "internal/ktls.h" 27 28 const char SSL_version_str[] = OPENSSL_VERSION_TEXT; 29 30 static int ssl_undefined_function_1(SSL *ssl, SSL3_RECORD *r, size_t s, int t) 31 { 32 (void)r; 33 (void)s; 34 (void)t; 35 return ssl_undefined_function(ssl); 36 } 37 38 static int ssl_undefined_function_2(SSL *ssl, SSL3_RECORD *r, unsigned char *s, 39 int t) 40 { 41 (void)r; 42 (void)s; 43 (void)t; 44 return ssl_undefined_function(ssl); 45 } 46 47 static int ssl_undefined_function_3(SSL *ssl, unsigned char *r, 48 unsigned char *s, size_t t, size_t *u) 49 { 50 (void)r; 51 (void)s; 52 (void)t; 53 (void)u; 54 return ssl_undefined_function(ssl); 55 } 56 57 static int ssl_undefined_function_4(SSL *ssl, int r) 58 { 59 (void)r; 60 return ssl_undefined_function(ssl); 61 } 62 63 static size_t ssl_undefined_function_5(SSL *ssl, const char *r, size_t s, 64 unsigned char *t) 65 { 66 (void)r; 67 (void)s; 68 (void)t; 69 return ssl_undefined_function(ssl); 70 } 71 72 static int ssl_undefined_function_6(int r) 73 { 74 (void)r; 75 return ssl_undefined_function(NULL); 76 } 77 78 static int ssl_undefined_function_7(SSL *ssl, unsigned char *r, size_t s, 79 const char *t, size_t u, 80 const unsigned char *v, size_t w, int x) 81 { 82 (void)r; 83 (void)s; 84 (void)t; 85 (void)u; 86 (void)v; 87 (void)w; 88 (void)x; 89 return ssl_undefined_function(ssl); 90 } 91 92 SSL3_ENC_METHOD ssl3_undef_enc_method = { 93 ssl_undefined_function_1, 94 ssl_undefined_function_2, 95 ssl_undefined_function, 96 ssl_undefined_function_3, 97 ssl_undefined_function_4, 98 ssl_undefined_function_5, 99 NULL, /* client_finished_label */ 100 0, /* client_finished_label_len */ 101 NULL, /* server_finished_label */ 102 0, /* server_finished_label_len */ 103 ssl_undefined_function_6, 104 ssl_undefined_function_7, 105 }; 106 107 struct ssl_async_args { 108 SSL *s; 109 void *buf; 110 size_t num; 111 enum { READFUNC, WRITEFUNC, OTHERFUNC } type; 112 union { 113 int (*func_read) (SSL *, void *, size_t, size_t *); 114 int (*func_write) (SSL *, const void *, size_t, size_t *); 115 int (*func_other) (SSL *); 116 } f; 117 }; 118 119 static const struct { 120 uint8_t mtype; 121 uint8_t ord; 122 int nid; 123 } dane_mds[] = { 124 { 125 DANETLS_MATCHING_FULL, 0, NID_undef 126 }, 127 { 128 DANETLS_MATCHING_2256, 1, NID_sha256 129 }, 130 { 131 DANETLS_MATCHING_2512, 2, NID_sha512 132 }, 133 }; 134 135 static int dane_ctx_enable(struct dane_ctx_st *dctx) 136 { 137 const EVP_MD **mdevp; 138 uint8_t *mdord; 139 uint8_t mdmax = DANETLS_MATCHING_LAST; 140 int n = ((int)mdmax) + 1; /* int to handle PrivMatch(255) */ 141 size_t i; 142 143 if (dctx->mdevp != NULL) 144 return 1; 145 146 mdevp = OPENSSL_zalloc(n * sizeof(*mdevp)); 147 mdord = OPENSSL_zalloc(n * sizeof(*mdord)); 148 149 if (mdord == NULL || mdevp == NULL) { 150 OPENSSL_free(mdord); 151 OPENSSL_free(mdevp); 152 SSLerr(SSL_F_DANE_CTX_ENABLE, ERR_R_MALLOC_FAILURE); 153 return 0; 154 } 155 156 /* Install default entries */ 157 for (i = 0; i < OSSL_NELEM(dane_mds); ++i) { 158 const EVP_MD *md; 159 160 if (dane_mds[i].nid == NID_undef || 161 (md = EVP_get_digestbynid(dane_mds[i].nid)) == NULL) 162 continue; 163 mdevp[dane_mds[i].mtype] = md; 164 mdord[dane_mds[i].mtype] = dane_mds[i].ord; 165 } 166 167 dctx->mdevp = mdevp; 168 dctx->mdord = mdord; 169 dctx->mdmax = mdmax; 170 171 return 1; 172 } 173 174 static void dane_ctx_final(struct dane_ctx_st *dctx) 175 { 176 OPENSSL_free(dctx->mdevp); 177 dctx->mdevp = NULL; 178 179 OPENSSL_free(dctx->mdord); 180 dctx->mdord = NULL; 181 dctx->mdmax = 0; 182 } 183 184 static void tlsa_free(danetls_record *t) 185 { 186 if (t == NULL) 187 return; 188 OPENSSL_free(t->data); 189 EVP_PKEY_free(t->spki); 190 OPENSSL_free(t); 191 } 192 193 static void dane_final(SSL_DANE *dane) 194 { 195 sk_danetls_record_pop_free(dane->trecs, tlsa_free); 196 dane->trecs = NULL; 197 198 sk_X509_pop_free(dane->certs, X509_free); 199 dane->certs = NULL; 200 201 X509_free(dane->mcert); 202 dane->mcert = NULL; 203 dane->mtlsa = NULL; 204 dane->mdpth = -1; 205 dane->pdpth = -1; 206 } 207 208 /* 209 * dane_copy - Copy dane configuration, sans verification state. 210 */ 211 static int ssl_dane_dup(SSL *to, SSL *from) 212 { 213 int num; 214 int i; 215 216 if (!DANETLS_ENABLED(&from->dane)) 217 return 1; 218 219 num = sk_danetls_record_num(from->dane.trecs); 220 dane_final(&to->dane); 221 to->dane.flags = from->dane.flags; 222 to->dane.dctx = &to->ctx->dane; 223 to->dane.trecs = sk_danetls_record_new_reserve(NULL, num); 224 225 if (to->dane.trecs == NULL) { 226 SSLerr(SSL_F_SSL_DANE_DUP, ERR_R_MALLOC_FAILURE); 227 return 0; 228 } 229 230 for (i = 0; i < num; ++i) { 231 danetls_record *t = sk_danetls_record_value(from->dane.trecs, i); 232 233 if (SSL_dane_tlsa_add(to, t->usage, t->selector, t->mtype, 234 t->data, t->dlen) <= 0) 235 return 0; 236 } 237 return 1; 238 } 239 240 static int dane_mtype_set(struct dane_ctx_st *dctx, 241 const EVP_MD *md, uint8_t mtype, uint8_t ord) 242 { 243 int i; 244 245 if (mtype == DANETLS_MATCHING_FULL && md != NULL) { 246 SSLerr(SSL_F_DANE_MTYPE_SET, SSL_R_DANE_CANNOT_OVERRIDE_MTYPE_FULL); 247 return 0; 248 } 249 250 if (mtype > dctx->mdmax) { 251 const EVP_MD **mdevp; 252 uint8_t *mdord; 253 int n = ((int)mtype) + 1; 254 255 mdevp = OPENSSL_realloc(dctx->mdevp, n * sizeof(*mdevp)); 256 if (mdevp == NULL) { 257 SSLerr(SSL_F_DANE_MTYPE_SET, ERR_R_MALLOC_FAILURE); 258 return -1; 259 } 260 dctx->mdevp = mdevp; 261 262 mdord = OPENSSL_realloc(dctx->mdord, n * sizeof(*mdord)); 263 if (mdord == NULL) { 264 SSLerr(SSL_F_DANE_MTYPE_SET, ERR_R_MALLOC_FAILURE); 265 return -1; 266 } 267 dctx->mdord = mdord; 268 269 /* Zero-fill any gaps */ 270 for (i = dctx->mdmax + 1; i < mtype; ++i) { 271 mdevp[i] = NULL; 272 mdord[i] = 0; 273 } 274 275 dctx->mdmax = mtype; 276 } 277 278 dctx->mdevp[mtype] = md; 279 /* Coerce ordinal of disabled matching types to 0 */ 280 dctx->mdord[mtype] = (md == NULL) ? 0 : ord; 281 282 return 1; 283 } 284 285 static const EVP_MD *tlsa_md_get(SSL_DANE *dane, uint8_t mtype) 286 { 287 if (mtype > dane->dctx->mdmax) 288 return NULL; 289 return dane->dctx->mdevp[mtype]; 290 } 291 292 static int dane_tlsa_add(SSL_DANE *dane, 293 uint8_t usage, 294 uint8_t selector, 295 uint8_t mtype, unsigned const char *data, size_t dlen) 296 { 297 danetls_record *t; 298 const EVP_MD *md = NULL; 299 int ilen = (int)dlen; 300 int i; 301 int num; 302 303 if (dane->trecs == NULL) { 304 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_NOT_ENABLED); 305 return -1; 306 } 307 308 if (ilen < 0 || dlen != (size_t)ilen) { 309 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_DATA_LENGTH); 310 return 0; 311 } 312 313 if (usage > DANETLS_USAGE_LAST) { 314 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE_USAGE); 315 return 0; 316 } 317 318 if (selector > DANETLS_SELECTOR_LAST) { 319 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_SELECTOR); 320 return 0; 321 } 322 323 if (mtype != DANETLS_MATCHING_FULL) { 324 md = tlsa_md_get(dane, mtype); 325 if (md == NULL) { 326 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_MATCHING_TYPE); 327 return 0; 328 } 329 } 330 331 if (md != NULL && dlen != (size_t)EVP_MD_size(md)) { 332 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_DIGEST_LENGTH); 333 return 0; 334 } 335 if (!data) { 336 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_NULL_DATA); 337 return 0; 338 } 339 340 if ((t = OPENSSL_zalloc(sizeof(*t))) == NULL) { 341 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE); 342 return -1; 343 } 344 345 t->usage = usage; 346 t->selector = selector; 347 t->mtype = mtype; 348 t->data = OPENSSL_malloc(dlen); 349 if (t->data == NULL) { 350 tlsa_free(t); 351 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE); 352 return -1; 353 } 354 memcpy(t->data, data, dlen); 355 t->dlen = dlen; 356 357 /* Validate and cache full certificate or public key */ 358 if (mtype == DANETLS_MATCHING_FULL) { 359 const unsigned char *p = data; 360 X509 *cert = NULL; 361 EVP_PKEY *pkey = NULL; 362 363 switch (selector) { 364 case DANETLS_SELECTOR_CERT: 365 if (!d2i_X509(&cert, &p, ilen) || p < data || 366 dlen != (size_t)(p - data)) { 367 tlsa_free(t); 368 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE); 369 return 0; 370 } 371 if (X509_get0_pubkey(cert) == NULL) { 372 tlsa_free(t); 373 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE); 374 return 0; 375 } 376 377 if ((DANETLS_USAGE_BIT(usage) & DANETLS_TA_MASK) == 0) { 378 X509_free(cert); 379 break; 380 } 381 382 /* 383 * For usage DANE-TA(2), we support authentication via "2 0 0" TLSA 384 * records that contain full certificates of trust-anchors that are 385 * not present in the wire chain. For usage PKIX-TA(0), we augment 386 * the chain with untrusted Full(0) certificates from DNS, in case 387 * they are missing from the chain. 388 */ 389 if ((dane->certs == NULL && 390 (dane->certs = sk_X509_new_null()) == NULL) || 391 !sk_X509_push(dane->certs, cert)) { 392 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE); 393 X509_free(cert); 394 tlsa_free(t); 395 return -1; 396 } 397 break; 398 399 case DANETLS_SELECTOR_SPKI: 400 if (!d2i_PUBKEY(&pkey, &p, ilen) || p < data || 401 dlen != (size_t)(p - data)) { 402 tlsa_free(t); 403 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_PUBLIC_KEY); 404 return 0; 405 } 406 407 /* 408 * For usage DANE-TA(2), we support authentication via "2 1 0" TLSA 409 * records that contain full bare keys of trust-anchors that are 410 * not present in the wire chain. 411 */ 412 if (usage == DANETLS_USAGE_DANE_TA) 413 t->spki = pkey; 414 else 415 EVP_PKEY_free(pkey); 416 break; 417 } 418 } 419 420 /*- 421 * Find the right insertion point for the new record. 422 * 423 * See crypto/x509/x509_vfy.c. We sort DANE-EE(3) records first, so that 424 * they can be processed first, as they require no chain building, and no 425 * expiration or hostname checks. Because DANE-EE(3) is numerically 426 * largest, this is accomplished via descending sort by "usage". 427 * 428 * We also sort in descending order by matching ordinal to simplify 429 * the implementation of digest agility in the verification code. 430 * 431 * The choice of order for the selector is not significant, so we 432 * use the same descending order for consistency. 433 */ 434 num = sk_danetls_record_num(dane->trecs); 435 for (i = 0; i < num; ++i) { 436 danetls_record *rec = sk_danetls_record_value(dane->trecs, i); 437 438 if (rec->usage > usage) 439 continue; 440 if (rec->usage < usage) 441 break; 442 if (rec->selector > selector) 443 continue; 444 if (rec->selector < selector) 445 break; 446 if (dane->dctx->mdord[rec->mtype] > dane->dctx->mdord[mtype]) 447 continue; 448 break; 449 } 450 451 if (!sk_danetls_record_insert(dane->trecs, t, i)) { 452 tlsa_free(t); 453 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE); 454 return -1; 455 } 456 dane->umask |= DANETLS_USAGE_BIT(usage); 457 458 return 1; 459 } 460 461 /* 462 * Return 0 if there is only one version configured and it was disabled 463 * at configure time. Return 1 otherwise. 464 */ 465 static int ssl_check_allowed_versions(int min_version, int max_version) 466 { 467 int minisdtls = 0, maxisdtls = 0; 468 469 /* Figure out if we're doing DTLS versions or TLS versions */ 470 if (min_version == DTLS1_BAD_VER 471 || min_version >> 8 == DTLS1_VERSION_MAJOR) 472 minisdtls = 1; 473 if (max_version == DTLS1_BAD_VER 474 || max_version >> 8 == DTLS1_VERSION_MAJOR) 475 maxisdtls = 1; 476 /* A wildcard version of 0 could be DTLS or TLS. */ 477 if ((minisdtls && !maxisdtls && max_version != 0) 478 || (maxisdtls && !minisdtls && min_version != 0)) { 479 /* Mixing DTLS and TLS versions will lead to sadness; deny it. */ 480 return 0; 481 } 482 483 if (minisdtls || maxisdtls) { 484 /* Do DTLS version checks. */ 485 if (min_version == 0) 486 /* Ignore DTLS1_BAD_VER */ 487 min_version = DTLS1_VERSION; 488 if (max_version == 0) 489 max_version = DTLS1_2_VERSION; 490 #ifdef OPENSSL_NO_DTLS1_2 491 if (max_version == DTLS1_2_VERSION) 492 max_version = DTLS1_VERSION; 493 #endif 494 #ifdef OPENSSL_NO_DTLS1 495 if (min_version == DTLS1_VERSION) 496 min_version = DTLS1_2_VERSION; 497 #endif 498 /* Done massaging versions; do the check. */ 499 if (0 500 #ifdef OPENSSL_NO_DTLS1 501 || (DTLS_VERSION_GE(min_version, DTLS1_VERSION) 502 && DTLS_VERSION_GE(DTLS1_VERSION, max_version)) 503 #endif 504 #ifdef OPENSSL_NO_DTLS1_2 505 || (DTLS_VERSION_GE(min_version, DTLS1_2_VERSION) 506 && DTLS_VERSION_GE(DTLS1_2_VERSION, max_version)) 507 #endif 508 ) 509 return 0; 510 } else { 511 /* Regular TLS version checks. */ 512 if (min_version == 0) 513 min_version = SSL3_VERSION; 514 if (max_version == 0) 515 max_version = TLS1_3_VERSION; 516 #ifdef OPENSSL_NO_TLS1_3 517 if (max_version == TLS1_3_VERSION) 518 max_version = TLS1_2_VERSION; 519 #endif 520 #ifdef OPENSSL_NO_TLS1_2 521 if (max_version == TLS1_2_VERSION) 522 max_version = TLS1_1_VERSION; 523 #endif 524 #ifdef OPENSSL_NO_TLS1_1 525 if (max_version == TLS1_1_VERSION) 526 max_version = TLS1_VERSION; 527 #endif 528 #ifdef OPENSSL_NO_TLS1 529 if (max_version == TLS1_VERSION) 530 max_version = SSL3_VERSION; 531 #endif 532 #ifdef OPENSSL_NO_SSL3 533 if (min_version == SSL3_VERSION) 534 min_version = TLS1_VERSION; 535 #endif 536 #ifdef OPENSSL_NO_TLS1 537 if (min_version == TLS1_VERSION) 538 min_version = TLS1_1_VERSION; 539 #endif 540 #ifdef OPENSSL_NO_TLS1_1 541 if (min_version == TLS1_1_VERSION) 542 min_version = TLS1_2_VERSION; 543 #endif 544 #ifdef OPENSSL_NO_TLS1_2 545 if (min_version == TLS1_2_VERSION) 546 min_version = TLS1_3_VERSION; 547 #endif 548 /* Done massaging versions; do the check. */ 549 if (0 550 #ifdef OPENSSL_NO_SSL3 551 || (min_version <= SSL3_VERSION && SSL3_VERSION <= max_version) 552 #endif 553 #ifdef OPENSSL_NO_TLS1 554 || (min_version <= TLS1_VERSION && TLS1_VERSION <= max_version) 555 #endif 556 #ifdef OPENSSL_NO_TLS1_1 557 || (min_version <= TLS1_1_VERSION && TLS1_1_VERSION <= max_version) 558 #endif 559 #ifdef OPENSSL_NO_TLS1_2 560 || (min_version <= TLS1_2_VERSION && TLS1_2_VERSION <= max_version) 561 #endif 562 #ifdef OPENSSL_NO_TLS1_3 563 || (min_version <= TLS1_3_VERSION && TLS1_3_VERSION <= max_version) 564 #endif 565 ) 566 return 0; 567 } 568 return 1; 569 } 570 571 static void clear_ciphers(SSL *s) 572 { 573 /* clear the current cipher */ 574 ssl_clear_cipher_ctx(s); 575 ssl_clear_hash_ctx(&s->read_hash); 576 ssl_clear_hash_ctx(&s->write_hash); 577 } 578 579 int SSL_clear(SSL *s) 580 { 581 if (s->method == NULL) { 582 SSLerr(SSL_F_SSL_CLEAR, SSL_R_NO_METHOD_SPECIFIED); 583 return 0; 584 } 585 586 if (ssl_clear_bad_session(s)) { 587 SSL_SESSION_free(s->session); 588 s->session = NULL; 589 } 590 SSL_SESSION_free(s->psksession); 591 s->psksession = NULL; 592 OPENSSL_free(s->psksession_id); 593 s->psksession_id = NULL; 594 s->psksession_id_len = 0; 595 s->hello_retry_request = 0; 596 s->sent_tickets = 0; 597 598 s->error = 0; 599 s->hit = 0; 600 s->shutdown = 0; 601 602 if (s->renegotiate) { 603 SSLerr(SSL_F_SSL_CLEAR, ERR_R_INTERNAL_ERROR); 604 return 0; 605 } 606 607 ossl_statem_clear(s); 608 609 s->version = s->method->version; 610 s->client_version = s->version; 611 s->rwstate = SSL_NOTHING; 612 613 BUF_MEM_free(s->init_buf); 614 s->init_buf = NULL; 615 clear_ciphers(s); 616 s->first_packet = 0; 617 618 s->key_update = SSL_KEY_UPDATE_NONE; 619 620 EVP_MD_CTX_free(s->pha_dgst); 621 s->pha_dgst = NULL; 622 623 /* Reset DANE verification result state */ 624 s->dane.mdpth = -1; 625 s->dane.pdpth = -1; 626 X509_free(s->dane.mcert); 627 s->dane.mcert = NULL; 628 s->dane.mtlsa = NULL; 629 630 /* Clear the verification result peername */ 631 X509_VERIFY_PARAM_move_peername(s->param, NULL); 632 633 /* Clear any shared connection state */ 634 OPENSSL_free(s->shared_sigalgs); 635 s->shared_sigalgs = NULL; 636 s->shared_sigalgslen = 0; 637 638 /* 639 * Check to see if we were changed into a different method, if so, revert 640 * back. 641 */ 642 if (s->method != s->ctx->method) { 643 s->method->ssl_free(s); 644 s->method = s->ctx->method; 645 if (!s->method->ssl_new(s)) 646 return 0; 647 } else { 648 if (!s->method->ssl_clear(s)) 649 return 0; 650 } 651 652 RECORD_LAYER_clear(&s->rlayer); 653 654 return 1; 655 } 656 657 /** Used to change an SSL_CTXs default SSL method type */ 658 int SSL_CTX_set_ssl_version(SSL_CTX *ctx, const SSL_METHOD *meth) 659 { 660 STACK_OF(SSL_CIPHER) *sk; 661 662 ctx->method = meth; 663 664 if (!SSL_CTX_set_ciphersuites(ctx, TLS_DEFAULT_CIPHERSUITES)) { 665 SSLerr(SSL_F_SSL_CTX_SET_SSL_VERSION, SSL_R_SSL_LIBRARY_HAS_NO_CIPHERS); 666 return 0; 667 } 668 sk = ssl_create_cipher_list(ctx->method, 669 ctx->tls13_ciphersuites, 670 &(ctx->cipher_list), 671 &(ctx->cipher_list_by_id), 672 SSL_DEFAULT_CIPHER_LIST, ctx->cert); 673 if ((sk == NULL) || (sk_SSL_CIPHER_num(sk) <= 0)) { 674 SSLerr(SSL_F_SSL_CTX_SET_SSL_VERSION, SSL_R_SSL_LIBRARY_HAS_NO_CIPHERS); 675 return 0; 676 } 677 return 1; 678 } 679 680 SSL *SSL_new(SSL_CTX *ctx) 681 { 682 SSL *s; 683 684 if (ctx == NULL) { 685 SSLerr(SSL_F_SSL_NEW, SSL_R_NULL_SSL_CTX); 686 return NULL; 687 } 688 if (ctx->method == NULL) { 689 SSLerr(SSL_F_SSL_NEW, SSL_R_SSL_CTX_HAS_NO_DEFAULT_SSL_VERSION); 690 return NULL; 691 } 692 693 s = OPENSSL_zalloc(sizeof(*s)); 694 if (s == NULL) 695 goto err; 696 697 s->references = 1; 698 s->lock = CRYPTO_THREAD_lock_new(); 699 if (s->lock == NULL) { 700 OPENSSL_free(s); 701 s = NULL; 702 goto err; 703 } 704 705 RECORD_LAYER_init(&s->rlayer, s); 706 707 s->options = ctx->options; 708 s->dane.flags = ctx->dane.flags; 709 s->min_proto_version = ctx->min_proto_version; 710 s->max_proto_version = ctx->max_proto_version; 711 s->mode = ctx->mode; 712 s->max_cert_list = ctx->max_cert_list; 713 s->max_early_data = ctx->max_early_data; 714 s->recv_max_early_data = ctx->recv_max_early_data; 715 s->num_tickets = ctx->num_tickets; 716 s->pha_enabled = ctx->pha_enabled; 717 718 /* Shallow copy of the ciphersuites stack */ 719 s->tls13_ciphersuites = sk_SSL_CIPHER_dup(ctx->tls13_ciphersuites); 720 if (s->tls13_ciphersuites == NULL) 721 goto err; 722 723 /* 724 * Earlier library versions used to copy the pointer to the CERT, not 725 * its contents; only when setting new parameters for the per-SSL 726 * copy, ssl_cert_new would be called (and the direct reference to 727 * the per-SSL_CTX settings would be lost, but those still were 728 * indirectly accessed for various purposes, and for that reason they 729 * used to be known as s->ctx->default_cert). Now we don't look at the 730 * SSL_CTX's CERT after having duplicated it once. 731 */ 732 s->cert = ssl_cert_dup(ctx->cert); 733 if (s->cert == NULL) 734 goto err; 735 736 RECORD_LAYER_set_read_ahead(&s->rlayer, ctx->read_ahead); 737 s->msg_callback = ctx->msg_callback; 738 s->msg_callback_arg = ctx->msg_callback_arg; 739 s->verify_mode = ctx->verify_mode; 740 s->not_resumable_session_cb = ctx->not_resumable_session_cb; 741 s->record_padding_cb = ctx->record_padding_cb; 742 s->record_padding_arg = ctx->record_padding_arg; 743 s->block_padding = ctx->block_padding; 744 s->sid_ctx_length = ctx->sid_ctx_length; 745 if (!ossl_assert(s->sid_ctx_length <= sizeof(s->sid_ctx))) 746 goto err; 747 memcpy(&s->sid_ctx, &ctx->sid_ctx, sizeof(s->sid_ctx)); 748 s->verify_callback = ctx->default_verify_callback; 749 s->generate_session_id = ctx->generate_session_id; 750 751 s->param = X509_VERIFY_PARAM_new(); 752 if (s->param == NULL) 753 goto err; 754 X509_VERIFY_PARAM_inherit(s->param, ctx->param); 755 s->quiet_shutdown = ctx->quiet_shutdown; 756 757 s->ext.max_fragment_len_mode = ctx->ext.max_fragment_len_mode; 758 s->max_send_fragment = ctx->max_send_fragment; 759 s->split_send_fragment = ctx->split_send_fragment; 760 s->max_pipelines = ctx->max_pipelines; 761 if (s->max_pipelines > 1) 762 RECORD_LAYER_set_read_ahead(&s->rlayer, 1); 763 if (ctx->default_read_buf_len > 0) 764 SSL_set_default_read_buffer_len(s, ctx->default_read_buf_len); 765 766 SSL_CTX_up_ref(ctx); 767 s->ctx = ctx; 768 s->ext.debug_cb = 0; 769 s->ext.debug_arg = NULL; 770 s->ext.ticket_expected = 0; 771 s->ext.status_type = ctx->ext.status_type; 772 s->ext.status_expected = 0; 773 s->ext.ocsp.ids = NULL; 774 s->ext.ocsp.exts = NULL; 775 s->ext.ocsp.resp = NULL; 776 s->ext.ocsp.resp_len = 0; 777 SSL_CTX_up_ref(ctx); 778 s->session_ctx = ctx; 779 #ifndef OPENSSL_NO_EC 780 if (ctx->ext.ecpointformats) { 781 s->ext.ecpointformats = 782 OPENSSL_memdup(ctx->ext.ecpointformats, 783 ctx->ext.ecpointformats_len); 784 if (!s->ext.ecpointformats) { 785 s->ext.ecpointformats_len = 0; 786 goto err; 787 } 788 s->ext.ecpointformats_len = 789 ctx->ext.ecpointformats_len; 790 } 791 if (ctx->ext.supportedgroups) { 792 s->ext.supportedgroups = 793 OPENSSL_memdup(ctx->ext.supportedgroups, 794 ctx->ext.supportedgroups_len 795 * sizeof(*ctx->ext.supportedgroups)); 796 if (!s->ext.supportedgroups) { 797 s->ext.supportedgroups_len = 0; 798 goto err; 799 } 800 s->ext.supportedgroups_len = ctx->ext.supportedgroups_len; 801 } 802 #endif 803 #ifndef OPENSSL_NO_NEXTPROTONEG 804 s->ext.npn = NULL; 805 #endif 806 807 if (s->ctx->ext.alpn) { 808 s->ext.alpn = OPENSSL_malloc(s->ctx->ext.alpn_len); 809 if (s->ext.alpn == NULL) { 810 s->ext.alpn_len = 0; 811 goto err; 812 } 813 memcpy(s->ext.alpn, s->ctx->ext.alpn, s->ctx->ext.alpn_len); 814 s->ext.alpn_len = s->ctx->ext.alpn_len; 815 } 816 817 s->verified_chain = NULL; 818 s->verify_result = X509_V_OK; 819 820 s->default_passwd_callback = ctx->default_passwd_callback; 821 s->default_passwd_callback_userdata = ctx->default_passwd_callback_userdata; 822 823 s->method = ctx->method; 824 825 s->key_update = SSL_KEY_UPDATE_NONE; 826 827 s->allow_early_data_cb = ctx->allow_early_data_cb; 828 s->allow_early_data_cb_data = ctx->allow_early_data_cb_data; 829 830 if (!s->method->ssl_new(s)) 831 goto err; 832 833 s->server = (ctx->method->ssl_accept == ssl_undefined_function) ? 0 : 1; 834 835 if (!SSL_clear(s)) 836 goto err; 837 838 if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL, s, &s->ex_data)) 839 goto err; 840 841 #ifndef OPENSSL_NO_PSK 842 s->psk_client_callback = ctx->psk_client_callback; 843 s->psk_server_callback = ctx->psk_server_callback; 844 #endif 845 s->psk_find_session_cb = ctx->psk_find_session_cb; 846 s->psk_use_session_cb = ctx->psk_use_session_cb; 847 848 s->job = NULL; 849 850 #ifndef OPENSSL_NO_CT 851 if (!SSL_set_ct_validation_callback(s, ctx->ct_validation_callback, 852 ctx->ct_validation_callback_arg)) 853 goto err; 854 #endif 855 856 return s; 857 err: 858 SSL_free(s); 859 SSLerr(SSL_F_SSL_NEW, ERR_R_MALLOC_FAILURE); 860 return NULL; 861 } 862 863 int SSL_is_dtls(const SSL *s) 864 { 865 return SSL_IS_DTLS(s) ? 1 : 0; 866 } 867 868 int SSL_up_ref(SSL *s) 869 { 870 int i; 871 872 if (CRYPTO_UP_REF(&s->references, &i, s->lock) <= 0) 873 return 0; 874 875 REF_PRINT_COUNT("SSL", s); 876 REF_ASSERT_ISNT(i < 2); 877 return ((i > 1) ? 1 : 0); 878 } 879 880 int SSL_CTX_set_session_id_context(SSL_CTX *ctx, const unsigned char *sid_ctx, 881 unsigned int sid_ctx_len) 882 { 883 if (sid_ctx_len > SSL_MAX_SID_CTX_LENGTH) { 884 SSLerr(SSL_F_SSL_CTX_SET_SESSION_ID_CONTEXT, 885 SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG); 886 return 0; 887 } 888 ctx->sid_ctx_length = sid_ctx_len; 889 memcpy(ctx->sid_ctx, sid_ctx, sid_ctx_len); 890 891 return 1; 892 } 893 894 int SSL_set_session_id_context(SSL *ssl, const unsigned char *sid_ctx, 895 unsigned int sid_ctx_len) 896 { 897 if (sid_ctx_len > SSL_MAX_SID_CTX_LENGTH) { 898 SSLerr(SSL_F_SSL_SET_SESSION_ID_CONTEXT, 899 SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG); 900 return 0; 901 } 902 ssl->sid_ctx_length = sid_ctx_len; 903 memcpy(ssl->sid_ctx, sid_ctx, sid_ctx_len); 904 905 return 1; 906 } 907 908 int SSL_CTX_set_generate_session_id(SSL_CTX *ctx, GEN_SESSION_CB cb) 909 { 910 CRYPTO_THREAD_write_lock(ctx->lock); 911 ctx->generate_session_id = cb; 912 CRYPTO_THREAD_unlock(ctx->lock); 913 return 1; 914 } 915 916 int SSL_set_generate_session_id(SSL *ssl, GEN_SESSION_CB cb) 917 { 918 CRYPTO_THREAD_write_lock(ssl->lock); 919 ssl->generate_session_id = cb; 920 CRYPTO_THREAD_unlock(ssl->lock); 921 return 1; 922 } 923 924 int SSL_has_matching_session_id(const SSL *ssl, const unsigned char *id, 925 unsigned int id_len) 926 { 927 /* 928 * A quick examination of SSL_SESSION_hash and SSL_SESSION_cmp shows how 929 * we can "construct" a session to give us the desired check - i.e. to 930 * find if there's a session in the hash table that would conflict with 931 * any new session built out of this id/id_len and the ssl_version in use 932 * by this SSL. 933 */ 934 SSL_SESSION r, *p; 935 936 if (id_len > sizeof(r.session_id)) 937 return 0; 938 939 r.ssl_version = ssl->version; 940 r.session_id_length = id_len; 941 memcpy(r.session_id, id, id_len); 942 943 CRYPTO_THREAD_read_lock(ssl->session_ctx->lock); 944 p = lh_SSL_SESSION_retrieve(ssl->session_ctx->sessions, &r); 945 CRYPTO_THREAD_unlock(ssl->session_ctx->lock); 946 return (p != NULL); 947 } 948 949 int SSL_CTX_set_purpose(SSL_CTX *s, int purpose) 950 { 951 return X509_VERIFY_PARAM_set_purpose(s->param, purpose); 952 } 953 954 int SSL_set_purpose(SSL *s, int purpose) 955 { 956 return X509_VERIFY_PARAM_set_purpose(s->param, purpose); 957 } 958 959 int SSL_CTX_set_trust(SSL_CTX *s, int trust) 960 { 961 return X509_VERIFY_PARAM_set_trust(s->param, trust); 962 } 963 964 int SSL_set_trust(SSL *s, int trust) 965 { 966 return X509_VERIFY_PARAM_set_trust(s->param, trust); 967 } 968 969 int SSL_set1_host(SSL *s, const char *hostname) 970 { 971 return X509_VERIFY_PARAM_set1_host(s->param, hostname, 0); 972 } 973 974 int SSL_add1_host(SSL *s, const char *hostname) 975 { 976 return X509_VERIFY_PARAM_add1_host(s->param, hostname, 0); 977 } 978 979 void SSL_set_hostflags(SSL *s, unsigned int flags) 980 { 981 X509_VERIFY_PARAM_set_hostflags(s->param, flags); 982 } 983 984 const char *SSL_get0_peername(SSL *s) 985 { 986 return X509_VERIFY_PARAM_get0_peername(s->param); 987 } 988 989 int SSL_CTX_dane_enable(SSL_CTX *ctx) 990 { 991 return dane_ctx_enable(&ctx->dane); 992 } 993 994 unsigned long SSL_CTX_dane_set_flags(SSL_CTX *ctx, unsigned long flags) 995 { 996 unsigned long orig = ctx->dane.flags; 997 998 ctx->dane.flags |= flags; 999 return orig; 1000 } 1001 1002 unsigned long SSL_CTX_dane_clear_flags(SSL_CTX *ctx, unsigned long flags) 1003 { 1004 unsigned long orig = ctx->dane.flags; 1005 1006 ctx->dane.flags &= ~flags; 1007 return orig; 1008 } 1009 1010 int SSL_dane_enable(SSL *s, const char *basedomain) 1011 { 1012 SSL_DANE *dane = &s->dane; 1013 1014 if (s->ctx->dane.mdmax == 0) { 1015 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_CONTEXT_NOT_DANE_ENABLED); 1016 return 0; 1017 } 1018 if (dane->trecs != NULL) { 1019 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_DANE_ALREADY_ENABLED); 1020 return 0; 1021 } 1022 1023 /* 1024 * Default SNI name. This rejects empty names, while set1_host below 1025 * accepts them and disables host name checks. To avoid side-effects with 1026 * invalid input, set the SNI name first. 1027 */ 1028 if (s->ext.hostname == NULL) { 1029 if (!SSL_set_tlsext_host_name(s, basedomain)) { 1030 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_ERROR_SETTING_TLSA_BASE_DOMAIN); 1031 return -1; 1032 } 1033 } 1034 1035 /* Primary RFC6125 reference identifier */ 1036 if (!X509_VERIFY_PARAM_set1_host(s->param, basedomain, 0)) { 1037 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_ERROR_SETTING_TLSA_BASE_DOMAIN); 1038 return -1; 1039 } 1040 1041 dane->mdpth = -1; 1042 dane->pdpth = -1; 1043 dane->dctx = &s->ctx->dane; 1044 dane->trecs = sk_danetls_record_new_null(); 1045 1046 if (dane->trecs == NULL) { 1047 SSLerr(SSL_F_SSL_DANE_ENABLE, ERR_R_MALLOC_FAILURE); 1048 return -1; 1049 } 1050 return 1; 1051 } 1052 1053 unsigned long SSL_dane_set_flags(SSL *ssl, unsigned long flags) 1054 { 1055 unsigned long orig = ssl->dane.flags; 1056 1057 ssl->dane.flags |= flags; 1058 return orig; 1059 } 1060 1061 unsigned long SSL_dane_clear_flags(SSL *ssl, unsigned long flags) 1062 { 1063 unsigned long orig = ssl->dane.flags; 1064 1065 ssl->dane.flags &= ~flags; 1066 return orig; 1067 } 1068 1069 int SSL_get0_dane_authority(SSL *s, X509 **mcert, EVP_PKEY **mspki) 1070 { 1071 SSL_DANE *dane = &s->dane; 1072 1073 if (!DANETLS_ENABLED(dane) || s->verify_result != X509_V_OK) 1074 return -1; 1075 if (dane->mtlsa) { 1076 if (mcert) 1077 *mcert = dane->mcert; 1078 if (mspki) 1079 *mspki = (dane->mcert == NULL) ? dane->mtlsa->spki : NULL; 1080 } 1081 return dane->mdpth; 1082 } 1083 1084 int SSL_get0_dane_tlsa(SSL *s, uint8_t *usage, uint8_t *selector, 1085 uint8_t *mtype, unsigned const char **data, size_t *dlen) 1086 { 1087 SSL_DANE *dane = &s->dane; 1088 1089 if (!DANETLS_ENABLED(dane) || s->verify_result != X509_V_OK) 1090 return -1; 1091 if (dane->mtlsa) { 1092 if (usage) 1093 *usage = dane->mtlsa->usage; 1094 if (selector) 1095 *selector = dane->mtlsa->selector; 1096 if (mtype) 1097 *mtype = dane->mtlsa->mtype; 1098 if (data) 1099 *data = dane->mtlsa->data; 1100 if (dlen) 1101 *dlen = dane->mtlsa->dlen; 1102 } 1103 return dane->mdpth; 1104 } 1105 1106 SSL_DANE *SSL_get0_dane(SSL *s) 1107 { 1108 return &s->dane; 1109 } 1110 1111 int SSL_dane_tlsa_add(SSL *s, uint8_t usage, uint8_t selector, 1112 uint8_t mtype, unsigned const char *data, size_t dlen) 1113 { 1114 return dane_tlsa_add(&s->dane, usage, selector, mtype, data, dlen); 1115 } 1116 1117 int SSL_CTX_dane_mtype_set(SSL_CTX *ctx, const EVP_MD *md, uint8_t mtype, 1118 uint8_t ord) 1119 { 1120 return dane_mtype_set(&ctx->dane, md, mtype, ord); 1121 } 1122 1123 int SSL_CTX_set1_param(SSL_CTX *ctx, X509_VERIFY_PARAM *vpm) 1124 { 1125 return X509_VERIFY_PARAM_set1(ctx->param, vpm); 1126 } 1127 1128 int SSL_set1_param(SSL *ssl, X509_VERIFY_PARAM *vpm) 1129 { 1130 return X509_VERIFY_PARAM_set1(ssl->param, vpm); 1131 } 1132 1133 X509_VERIFY_PARAM *SSL_CTX_get0_param(SSL_CTX *ctx) 1134 { 1135 return ctx->param; 1136 } 1137 1138 X509_VERIFY_PARAM *SSL_get0_param(SSL *ssl) 1139 { 1140 return ssl->param; 1141 } 1142 1143 void SSL_certs_clear(SSL *s) 1144 { 1145 ssl_cert_clear_certs(s->cert); 1146 } 1147 1148 void SSL_free(SSL *s) 1149 { 1150 int i; 1151 1152 if (s == NULL) 1153 return; 1154 CRYPTO_DOWN_REF(&s->references, &i, s->lock); 1155 REF_PRINT_COUNT("SSL", s); 1156 if (i > 0) 1157 return; 1158 REF_ASSERT_ISNT(i < 0); 1159 1160 X509_VERIFY_PARAM_free(s->param); 1161 dane_final(&s->dane); 1162 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL, s, &s->ex_data); 1163 1164 RECORD_LAYER_release(&s->rlayer); 1165 1166 /* Ignore return value */ 1167 ssl_free_wbio_buffer(s); 1168 1169 BIO_free_all(s->wbio); 1170 s->wbio = NULL; 1171 BIO_free_all(s->rbio); 1172 s->rbio = NULL; 1173 1174 BUF_MEM_free(s->init_buf); 1175 1176 /* add extra stuff */ 1177 sk_SSL_CIPHER_free(s->cipher_list); 1178 sk_SSL_CIPHER_free(s->cipher_list_by_id); 1179 sk_SSL_CIPHER_free(s->tls13_ciphersuites); 1180 sk_SSL_CIPHER_free(s->peer_ciphers); 1181 1182 /* Make the next call work :-) */ 1183 if (s->session != NULL) { 1184 ssl_clear_bad_session(s); 1185 SSL_SESSION_free(s->session); 1186 } 1187 SSL_SESSION_free(s->psksession); 1188 OPENSSL_free(s->psksession_id); 1189 1190 clear_ciphers(s); 1191 1192 ssl_cert_free(s->cert); 1193 OPENSSL_free(s->shared_sigalgs); 1194 /* Free up if allocated */ 1195 1196 OPENSSL_free(s->ext.hostname); 1197 SSL_CTX_free(s->session_ctx); 1198 #ifndef OPENSSL_NO_EC 1199 OPENSSL_free(s->ext.ecpointformats); 1200 OPENSSL_free(s->ext.peer_ecpointformats); 1201 OPENSSL_free(s->ext.supportedgroups); 1202 OPENSSL_free(s->ext.peer_supportedgroups); 1203 #endif /* OPENSSL_NO_EC */ 1204 sk_X509_EXTENSION_pop_free(s->ext.ocsp.exts, X509_EXTENSION_free); 1205 #ifndef OPENSSL_NO_OCSP 1206 sk_OCSP_RESPID_pop_free(s->ext.ocsp.ids, OCSP_RESPID_free); 1207 #endif 1208 #ifndef OPENSSL_NO_CT 1209 SCT_LIST_free(s->scts); 1210 OPENSSL_free(s->ext.scts); 1211 #endif 1212 OPENSSL_free(s->ext.ocsp.resp); 1213 OPENSSL_free(s->ext.alpn); 1214 OPENSSL_free(s->ext.tls13_cookie); 1215 if (s->clienthello != NULL) 1216 OPENSSL_free(s->clienthello->pre_proc_exts); 1217 OPENSSL_free(s->clienthello); 1218 OPENSSL_free(s->pha_context); 1219 EVP_MD_CTX_free(s->pha_dgst); 1220 1221 sk_X509_NAME_pop_free(s->ca_names, X509_NAME_free); 1222 sk_X509_NAME_pop_free(s->client_ca_names, X509_NAME_free); 1223 1224 sk_X509_pop_free(s->verified_chain, X509_free); 1225 1226 if (s->method != NULL) 1227 s->method->ssl_free(s); 1228 1229 SSL_CTX_free(s->ctx); 1230 1231 ASYNC_WAIT_CTX_free(s->waitctx); 1232 1233 #if !defined(OPENSSL_NO_NEXTPROTONEG) 1234 OPENSSL_free(s->ext.npn); 1235 #endif 1236 1237 #ifndef OPENSSL_NO_SRTP 1238 sk_SRTP_PROTECTION_PROFILE_free(s->srtp_profiles); 1239 #endif 1240 1241 CRYPTO_THREAD_lock_free(s->lock); 1242 1243 OPENSSL_free(s); 1244 } 1245 1246 void SSL_set0_rbio(SSL *s, BIO *rbio) 1247 { 1248 BIO_free_all(s->rbio); 1249 s->rbio = rbio; 1250 } 1251 1252 void SSL_set0_wbio(SSL *s, BIO *wbio) 1253 { 1254 /* 1255 * If the output buffering BIO is still in place, remove it 1256 */ 1257 if (s->bbio != NULL) 1258 s->wbio = BIO_pop(s->wbio); 1259 1260 BIO_free_all(s->wbio); 1261 s->wbio = wbio; 1262 1263 /* Re-attach |bbio| to the new |wbio|. */ 1264 if (s->bbio != NULL) 1265 s->wbio = BIO_push(s->bbio, s->wbio); 1266 } 1267 1268 void SSL_set_bio(SSL *s, BIO *rbio, BIO *wbio) 1269 { 1270 /* 1271 * For historical reasons, this function has many different cases in 1272 * ownership handling. 1273 */ 1274 1275 /* If nothing has changed, do nothing */ 1276 if (rbio == SSL_get_rbio(s) && wbio == SSL_get_wbio(s)) 1277 return; 1278 1279 /* 1280 * If the two arguments are equal then one fewer reference is granted by the 1281 * caller than we want to take 1282 */ 1283 if (rbio != NULL && rbio == wbio) 1284 BIO_up_ref(rbio); 1285 1286 /* 1287 * If only the wbio is changed only adopt one reference. 1288 */ 1289 if (rbio == SSL_get_rbio(s)) { 1290 SSL_set0_wbio(s, wbio); 1291 return; 1292 } 1293 /* 1294 * There is an asymmetry here for historical reasons. If only the rbio is 1295 * changed AND the rbio and wbio were originally different, then we only 1296 * adopt one reference. 1297 */ 1298 if (wbio == SSL_get_wbio(s) && SSL_get_rbio(s) != SSL_get_wbio(s)) { 1299 SSL_set0_rbio(s, rbio); 1300 return; 1301 } 1302 1303 /* Otherwise, adopt both references. */ 1304 SSL_set0_rbio(s, rbio); 1305 SSL_set0_wbio(s, wbio); 1306 } 1307 1308 BIO *SSL_get_rbio(const SSL *s) 1309 { 1310 return s->rbio; 1311 } 1312 1313 BIO *SSL_get_wbio(const SSL *s) 1314 { 1315 if (s->bbio != NULL) { 1316 /* 1317 * If |bbio| is active, the true caller-configured BIO is its 1318 * |next_bio|. 1319 */ 1320 return BIO_next(s->bbio); 1321 } 1322 return s->wbio; 1323 } 1324 1325 int SSL_get_fd(const SSL *s) 1326 { 1327 return SSL_get_rfd(s); 1328 } 1329 1330 int SSL_get_rfd(const SSL *s) 1331 { 1332 int ret = -1; 1333 BIO *b, *r; 1334 1335 b = SSL_get_rbio(s); 1336 r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR); 1337 if (r != NULL) 1338 BIO_get_fd(r, &ret); 1339 return ret; 1340 } 1341 1342 int SSL_get_wfd(const SSL *s) 1343 { 1344 int ret = -1; 1345 BIO *b, *r; 1346 1347 b = SSL_get_wbio(s); 1348 r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR); 1349 if (r != NULL) 1350 BIO_get_fd(r, &ret); 1351 return ret; 1352 } 1353 1354 #ifndef OPENSSL_NO_SOCK 1355 int SSL_set_fd(SSL *s, int fd) 1356 { 1357 int ret = 0; 1358 BIO *bio = NULL; 1359 1360 bio = BIO_new(BIO_s_socket()); 1361 1362 if (bio == NULL) { 1363 SSLerr(SSL_F_SSL_SET_FD, ERR_R_BUF_LIB); 1364 goto err; 1365 } 1366 BIO_set_fd(bio, fd, BIO_NOCLOSE); 1367 SSL_set_bio(s, bio, bio); 1368 #ifndef OPENSSL_NO_KTLS 1369 /* 1370 * The new socket is created successfully regardless of ktls_enable. 1371 * ktls_enable doesn't change any functionality of the socket, except 1372 * changing the setsockopt to enable the processing of ktls_start. 1373 * Thus, it is not a problem to call it for non-TLS sockets. 1374 */ 1375 ktls_enable(fd); 1376 #endif /* OPENSSL_NO_KTLS */ 1377 ret = 1; 1378 err: 1379 return ret; 1380 } 1381 1382 int SSL_set_wfd(SSL *s, int fd) 1383 { 1384 BIO *rbio = SSL_get_rbio(s); 1385 1386 if (rbio == NULL || BIO_method_type(rbio) != BIO_TYPE_SOCKET 1387 || (int)BIO_get_fd(rbio, NULL) != fd) { 1388 BIO *bio = BIO_new(BIO_s_socket()); 1389 1390 if (bio == NULL) { 1391 SSLerr(SSL_F_SSL_SET_WFD, ERR_R_BUF_LIB); 1392 return 0; 1393 } 1394 BIO_set_fd(bio, fd, BIO_NOCLOSE); 1395 SSL_set0_wbio(s, bio); 1396 #ifndef OPENSSL_NO_KTLS 1397 /* 1398 * The new socket is created successfully regardless of ktls_enable. 1399 * ktls_enable doesn't change any functionality of the socket, except 1400 * changing the setsockopt to enable the processing of ktls_start. 1401 * Thus, it is not a problem to call it for non-TLS sockets. 1402 */ 1403 ktls_enable(fd); 1404 #endif /* OPENSSL_NO_KTLS */ 1405 } else { 1406 BIO_up_ref(rbio); 1407 SSL_set0_wbio(s, rbio); 1408 } 1409 return 1; 1410 } 1411 1412 int SSL_set_rfd(SSL *s, int fd) 1413 { 1414 BIO *wbio = SSL_get_wbio(s); 1415 1416 if (wbio == NULL || BIO_method_type(wbio) != BIO_TYPE_SOCKET 1417 || ((int)BIO_get_fd(wbio, NULL) != fd)) { 1418 BIO *bio = BIO_new(BIO_s_socket()); 1419 1420 if (bio == NULL) { 1421 SSLerr(SSL_F_SSL_SET_RFD, ERR_R_BUF_LIB); 1422 return 0; 1423 } 1424 BIO_set_fd(bio, fd, BIO_NOCLOSE); 1425 SSL_set0_rbio(s, bio); 1426 } else { 1427 BIO_up_ref(wbio); 1428 SSL_set0_rbio(s, wbio); 1429 } 1430 1431 return 1; 1432 } 1433 #endif 1434 1435 /* return length of latest Finished message we sent, copy to 'buf' */ 1436 size_t SSL_get_finished(const SSL *s, void *buf, size_t count) 1437 { 1438 size_t ret = 0; 1439 1440 if (s->s3 != NULL) { 1441 ret = s->s3->tmp.finish_md_len; 1442 if (count > ret) 1443 count = ret; 1444 memcpy(buf, s->s3->tmp.finish_md, count); 1445 } 1446 return ret; 1447 } 1448 1449 /* return length of latest Finished message we expected, copy to 'buf' */ 1450 size_t SSL_get_peer_finished(const SSL *s, void *buf, size_t count) 1451 { 1452 size_t ret = 0; 1453 1454 if (s->s3 != NULL) { 1455 ret = s->s3->tmp.peer_finish_md_len; 1456 if (count > ret) 1457 count = ret; 1458 memcpy(buf, s->s3->tmp.peer_finish_md, count); 1459 } 1460 return ret; 1461 } 1462 1463 int SSL_get_verify_mode(const SSL *s) 1464 { 1465 return s->verify_mode; 1466 } 1467 1468 int SSL_get_verify_depth(const SSL *s) 1469 { 1470 return X509_VERIFY_PARAM_get_depth(s->param); 1471 } 1472 1473 int (*SSL_get_verify_callback(const SSL *s)) (int, X509_STORE_CTX *) { 1474 return s->verify_callback; 1475 } 1476 1477 int SSL_CTX_get_verify_mode(const SSL_CTX *ctx) 1478 { 1479 return ctx->verify_mode; 1480 } 1481 1482 int SSL_CTX_get_verify_depth(const SSL_CTX *ctx) 1483 { 1484 return X509_VERIFY_PARAM_get_depth(ctx->param); 1485 } 1486 1487 int (*SSL_CTX_get_verify_callback(const SSL_CTX *ctx)) (int, X509_STORE_CTX *) { 1488 return ctx->default_verify_callback; 1489 } 1490 1491 void SSL_set_verify(SSL *s, int mode, 1492 int (*callback) (int ok, X509_STORE_CTX *ctx)) 1493 { 1494 s->verify_mode = mode; 1495 if (callback != NULL) 1496 s->verify_callback = callback; 1497 } 1498 1499 void SSL_set_verify_depth(SSL *s, int depth) 1500 { 1501 X509_VERIFY_PARAM_set_depth(s->param, depth); 1502 } 1503 1504 void SSL_set_read_ahead(SSL *s, int yes) 1505 { 1506 RECORD_LAYER_set_read_ahead(&s->rlayer, yes); 1507 } 1508 1509 int SSL_get_read_ahead(const SSL *s) 1510 { 1511 return RECORD_LAYER_get_read_ahead(&s->rlayer); 1512 } 1513 1514 int SSL_pending(const SSL *s) 1515 { 1516 size_t pending = s->method->ssl_pending(s); 1517 1518 /* 1519 * SSL_pending cannot work properly if read-ahead is enabled 1520 * (SSL_[CTX_]ctrl(..., SSL_CTRL_SET_READ_AHEAD, 1, NULL)), and it is 1521 * impossible to fix since SSL_pending cannot report errors that may be 1522 * observed while scanning the new data. (Note that SSL_pending() is 1523 * often used as a boolean value, so we'd better not return -1.) 1524 * 1525 * SSL_pending also cannot work properly if the value >INT_MAX. In that case 1526 * we just return INT_MAX. 1527 */ 1528 return pending < INT_MAX ? (int)pending : INT_MAX; 1529 } 1530 1531 int SSL_has_pending(const SSL *s) 1532 { 1533 /* 1534 * Similar to SSL_pending() but returns a 1 to indicate that we have 1535 * unprocessed data available or 0 otherwise (as opposed to the number of 1536 * bytes available). Unlike SSL_pending() this will take into account 1537 * read_ahead data. A 1 return simply indicates that we have unprocessed 1538 * data. That data may not result in any application data, or we may fail 1539 * to parse the records for some reason. 1540 */ 1541 if (RECORD_LAYER_processed_read_pending(&s->rlayer)) 1542 return 1; 1543 1544 return RECORD_LAYER_read_pending(&s->rlayer); 1545 } 1546 1547 X509 *SSL_get_peer_certificate(const SSL *s) 1548 { 1549 X509 *r; 1550 1551 if ((s == NULL) || (s->session == NULL)) 1552 r = NULL; 1553 else 1554 r = s->session->peer; 1555 1556 if (r == NULL) 1557 return r; 1558 1559 X509_up_ref(r); 1560 1561 return r; 1562 } 1563 1564 STACK_OF(X509) *SSL_get_peer_cert_chain(const SSL *s) 1565 { 1566 STACK_OF(X509) *r; 1567 1568 if ((s == NULL) || (s->session == NULL)) 1569 r = NULL; 1570 else 1571 r = s->session->peer_chain; 1572 1573 /* 1574 * If we are a client, cert_chain includes the peer's own certificate; if 1575 * we are a server, it does not. 1576 */ 1577 1578 return r; 1579 } 1580 1581 /* 1582 * Now in theory, since the calling process own 't' it should be safe to 1583 * modify. We need to be able to read f without being hassled 1584 */ 1585 int SSL_copy_session_id(SSL *t, const SSL *f) 1586 { 1587 int i; 1588 /* Do we need to to SSL locking? */ 1589 if (!SSL_set_session(t, SSL_get_session(f))) { 1590 return 0; 1591 } 1592 1593 /* 1594 * what if we are setup for one protocol version but want to talk another 1595 */ 1596 if (t->method != f->method) { 1597 t->method->ssl_free(t); 1598 t->method = f->method; 1599 if (t->method->ssl_new(t) == 0) 1600 return 0; 1601 } 1602 1603 CRYPTO_UP_REF(&f->cert->references, &i, f->cert->lock); 1604 ssl_cert_free(t->cert); 1605 t->cert = f->cert; 1606 if (!SSL_set_session_id_context(t, f->sid_ctx, (int)f->sid_ctx_length)) { 1607 return 0; 1608 } 1609 1610 return 1; 1611 } 1612 1613 /* Fix this so it checks all the valid key/cert options */ 1614 int SSL_CTX_check_private_key(const SSL_CTX *ctx) 1615 { 1616 if ((ctx == NULL) || (ctx->cert->key->x509 == NULL)) { 1617 SSLerr(SSL_F_SSL_CTX_CHECK_PRIVATE_KEY, SSL_R_NO_CERTIFICATE_ASSIGNED); 1618 return 0; 1619 } 1620 if (ctx->cert->key->privatekey == NULL) { 1621 SSLerr(SSL_F_SSL_CTX_CHECK_PRIVATE_KEY, SSL_R_NO_PRIVATE_KEY_ASSIGNED); 1622 return 0; 1623 } 1624 return X509_check_private_key 1625 (ctx->cert->key->x509, ctx->cert->key->privatekey); 1626 } 1627 1628 /* Fix this function so that it takes an optional type parameter */ 1629 int SSL_check_private_key(const SSL *ssl) 1630 { 1631 if (ssl == NULL) { 1632 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, ERR_R_PASSED_NULL_PARAMETER); 1633 return 0; 1634 } 1635 if (ssl->cert->key->x509 == NULL) { 1636 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, SSL_R_NO_CERTIFICATE_ASSIGNED); 1637 return 0; 1638 } 1639 if (ssl->cert->key->privatekey == NULL) { 1640 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, SSL_R_NO_PRIVATE_KEY_ASSIGNED); 1641 return 0; 1642 } 1643 return X509_check_private_key(ssl->cert->key->x509, 1644 ssl->cert->key->privatekey); 1645 } 1646 1647 int SSL_waiting_for_async(SSL *s) 1648 { 1649 if (s->job) 1650 return 1; 1651 1652 return 0; 1653 } 1654 1655 int SSL_get_all_async_fds(SSL *s, OSSL_ASYNC_FD *fds, size_t *numfds) 1656 { 1657 ASYNC_WAIT_CTX *ctx = s->waitctx; 1658 1659 if (ctx == NULL) 1660 return 0; 1661 return ASYNC_WAIT_CTX_get_all_fds(ctx, fds, numfds); 1662 } 1663 1664 int SSL_get_changed_async_fds(SSL *s, OSSL_ASYNC_FD *addfd, size_t *numaddfds, 1665 OSSL_ASYNC_FD *delfd, size_t *numdelfds) 1666 { 1667 ASYNC_WAIT_CTX *ctx = s->waitctx; 1668 1669 if (ctx == NULL) 1670 return 0; 1671 return ASYNC_WAIT_CTX_get_changed_fds(ctx, addfd, numaddfds, delfd, 1672 numdelfds); 1673 } 1674 1675 int SSL_accept(SSL *s) 1676 { 1677 if (s->handshake_func == NULL) { 1678 /* Not properly initialized yet */ 1679 SSL_set_accept_state(s); 1680 } 1681 1682 return SSL_do_handshake(s); 1683 } 1684 1685 int SSL_connect(SSL *s) 1686 { 1687 if (s->handshake_func == NULL) { 1688 /* Not properly initialized yet */ 1689 SSL_set_connect_state(s); 1690 } 1691 1692 return SSL_do_handshake(s); 1693 } 1694 1695 long SSL_get_default_timeout(const SSL *s) 1696 { 1697 return s->method->get_timeout(); 1698 } 1699 1700 static int ssl_start_async_job(SSL *s, struct ssl_async_args *args, 1701 int (*func) (void *)) 1702 { 1703 int ret; 1704 if (s->waitctx == NULL) { 1705 s->waitctx = ASYNC_WAIT_CTX_new(); 1706 if (s->waitctx == NULL) 1707 return -1; 1708 } 1709 1710 s->rwstate = SSL_NOTHING; 1711 switch (ASYNC_start_job(&s->job, s->waitctx, &ret, func, args, 1712 sizeof(struct ssl_async_args))) { 1713 case ASYNC_ERR: 1714 s->rwstate = SSL_NOTHING; 1715 SSLerr(SSL_F_SSL_START_ASYNC_JOB, SSL_R_FAILED_TO_INIT_ASYNC); 1716 return -1; 1717 case ASYNC_PAUSE: 1718 s->rwstate = SSL_ASYNC_PAUSED; 1719 return -1; 1720 case ASYNC_NO_JOBS: 1721 s->rwstate = SSL_ASYNC_NO_JOBS; 1722 return -1; 1723 case ASYNC_FINISH: 1724 s->job = NULL; 1725 return ret; 1726 default: 1727 s->rwstate = SSL_NOTHING; 1728 SSLerr(SSL_F_SSL_START_ASYNC_JOB, ERR_R_INTERNAL_ERROR); 1729 /* Shouldn't happen */ 1730 return -1; 1731 } 1732 } 1733 1734 static int ssl_io_intern(void *vargs) 1735 { 1736 struct ssl_async_args *args; 1737 SSL *s; 1738 void *buf; 1739 size_t num; 1740 1741 args = (struct ssl_async_args *)vargs; 1742 s = args->s; 1743 buf = args->buf; 1744 num = args->num; 1745 switch (args->type) { 1746 case READFUNC: 1747 return args->f.func_read(s, buf, num, &s->asyncrw); 1748 case WRITEFUNC: 1749 return args->f.func_write(s, buf, num, &s->asyncrw); 1750 case OTHERFUNC: 1751 return args->f.func_other(s); 1752 } 1753 return -1; 1754 } 1755 1756 int ssl_read_internal(SSL *s, void *buf, size_t num, size_t *readbytes) 1757 { 1758 if (s->handshake_func == NULL) { 1759 SSLerr(SSL_F_SSL_READ_INTERNAL, SSL_R_UNINITIALIZED); 1760 return -1; 1761 } 1762 1763 if (s->shutdown & SSL_RECEIVED_SHUTDOWN) { 1764 s->rwstate = SSL_NOTHING; 1765 return 0; 1766 } 1767 1768 if (s->early_data_state == SSL_EARLY_DATA_CONNECT_RETRY 1769 || s->early_data_state == SSL_EARLY_DATA_ACCEPT_RETRY) { 1770 SSLerr(SSL_F_SSL_READ_INTERNAL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 1771 return 0; 1772 } 1773 /* 1774 * If we are a client and haven't received the ServerHello etc then we 1775 * better do that 1776 */ 1777 ossl_statem_check_finish_init(s, 0); 1778 1779 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) { 1780 struct ssl_async_args args; 1781 int ret; 1782 1783 args.s = s; 1784 args.buf = buf; 1785 args.num = num; 1786 args.type = READFUNC; 1787 args.f.func_read = s->method->ssl_read; 1788 1789 ret = ssl_start_async_job(s, &args, ssl_io_intern); 1790 *readbytes = s->asyncrw; 1791 return ret; 1792 } else { 1793 return s->method->ssl_read(s, buf, num, readbytes); 1794 } 1795 } 1796 1797 int SSL_read(SSL *s, void *buf, int num) 1798 { 1799 int ret; 1800 size_t readbytes; 1801 1802 if (num < 0) { 1803 SSLerr(SSL_F_SSL_READ, SSL_R_BAD_LENGTH); 1804 return -1; 1805 } 1806 1807 ret = ssl_read_internal(s, buf, (size_t)num, &readbytes); 1808 1809 /* 1810 * The cast is safe here because ret should be <= INT_MAX because num is 1811 * <= INT_MAX 1812 */ 1813 if (ret > 0) 1814 ret = (int)readbytes; 1815 1816 return ret; 1817 } 1818 1819 int SSL_read_ex(SSL *s, void *buf, size_t num, size_t *readbytes) 1820 { 1821 int ret = ssl_read_internal(s, buf, num, readbytes); 1822 1823 if (ret < 0) 1824 ret = 0; 1825 return ret; 1826 } 1827 1828 int SSL_read_early_data(SSL *s, void *buf, size_t num, size_t *readbytes) 1829 { 1830 int ret; 1831 1832 if (!s->server) { 1833 SSLerr(SSL_F_SSL_READ_EARLY_DATA, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 1834 return SSL_READ_EARLY_DATA_ERROR; 1835 } 1836 1837 switch (s->early_data_state) { 1838 case SSL_EARLY_DATA_NONE: 1839 if (!SSL_in_before(s)) { 1840 SSLerr(SSL_F_SSL_READ_EARLY_DATA, 1841 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 1842 return SSL_READ_EARLY_DATA_ERROR; 1843 } 1844 /* fall through */ 1845 1846 case SSL_EARLY_DATA_ACCEPT_RETRY: 1847 s->early_data_state = SSL_EARLY_DATA_ACCEPTING; 1848 ret = SSL_accept(s); 1849 if (ret <= 0) { 1850 /* NBIO or error */ 1851 s->early_data_state = SSL_EARLY_DATA_ACCEPT_RETRY; 1852 return SSL_READ_EARLY_DATA_ERROR; 1853 } 1854 /* fall through */ 1855 1856 case SSL_EARLY_DATA_READ_RETRY: 1857 if (s->ext.early_data == SSL_EARLY_DATA_ACCEPTED) { 1858 s->early_data_state = SSL_EARLY_DATA_READING; 1859 ret = SSL_read_ex(s, buf, num, readbytes); 1860 /* 1861 * State machine will update early_data_state to 1862 * SSL_EARLY_DATA_FINISHED_READING if we get an EndOfEarlyData 1863 * message 1864 */ 1865 if (ret > 0 || (ret <= 0 && s->early_data_state 1866 != SSL_EARLY_DATA_FINISHED_READING)) { 1867 s->early_data_state = SSL_EARLY_DATA_READ_RETRY; 1868 return ret > 0 ? SSL_READ_EARLY_DATA_SUCCESS 1869 : SSL_READ_EARLY_DATA_ERROR; 1870 } 1871 } else { 1872 s->early_data_state = SSL_EARLY_DATA_FINISHED_READING; 1873 } 1874 *readbytes = 0; 1875 return SSL_READ_EARLY_DATA_FINISH; 1876 1877 default: 1878 SSLerr(SSL_F_SSL_READ_EARLY_DATA, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 1879 return SSL_READ_EARLY_DATA_ERROR; 1880 } 1881 } 1882 1883 int SSL_get_early_data_status(const SSL *s) 1884 { 1885 return s->ext.early_data; 1886 } 1887 1888 static int ssl_peek_internal(SSL *s, void *buf, size_t num, size_t *readbytes) 1889 { 1890 if (s->handshake_func == NULL) { 1891 SSLerr(SSL_F_SSL_PEEK_INTERNAL, SSL_R_UNINITIALIZED); 1892 return -1; 1893 } 1894 1895 if (s->shutdown & SSL_RECEIVED_SHUTDOWN) { 1896 return 0; 1897 } 1898 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) { 1899 struct ssl_async_args args; 1900 int ret; 1901 1902 args.s = s; 1903 args.buf = buf; 1904 args.num = num; 1905 args.type = READFUNC; 1906 args.f.func_read = s->method->ssl_peek; 1907 1908 ret = ssl_start_async_job(s, &args, ssl_io_intern); 1909 *readbytes = s->asyncrw; 1910 return ret; 1911 } else { 1912 return s->method->ssl_peek(s, buf, num, readbytes); 1913 } 1914 } 1915 1916 int SSL_peek(SSL *s, void *buf, int num) 1917 { 1918 int ret; 1919 size_t readbytes; 1920 1921 if (num < 0) { 1922 SSLerr(SSL_F_SSL_PEEK, SSL_R_BAD_LENGTH); 1923 return -1; 1924 } 1925 1926 ret = ssl_peek_internal(s, buf, (size_t)num, &readbytes); 1927 1928 /* 1929 * The cast is safe here because ret should be <= INT_MAX because num is 1930 * <= INT_MAX 1931 */ 1932 if (ret > 0) 1933 ret = (int)readbytes; 1934 1935 return ret; 1936 } 1937 1938 1939 int SSL_peek_ex(SSL *s, void *buf, size_t num, size_t *readbytes) 1940 { 1941 int ret = ssl_peek_internal(s, buf, num, readbytes); 1942 1943 if (ret < 0) 1944 ret = 0; 1945 return ret; 1946 } 1947 1948 int ssl_write_internal(SSL *s, const void *buf, size_t num, size_t *written) 1949 { 1950 if (s->handshake_func == NULL) { 1951 SSLerr(SSL_F_SSL_WRITE_INTERNAL, SSL_R_UNINITIALIZED); 1952 return -1; 1953 } 1954 1955 if (s->shutdown & SSL_SENT_SHUTDOWN) { 1956 s->rwstate = SSL_NOTHING; 1957 SSLerr(SSL_F_SSL_WRITE_INTERNAL, SSL_R_PROTOCOL_IS_SHUTDOWN); 1958 return -1; 1959 } 1960 1961 if (s->early_data_state == SSL_EARLY_DATA_CONNECT_RETRY 1962 || s->early_data_state == SSL_EARLY_DATA_ACCEPT_RETRY 1963 || s->early_data_state == SSL_EARLY_DATA_READ_RETRY) { 1964 SSLerr(SSL_F_SSL_WRITE_INTERNAL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 1965 return 0; 1966 } 1967 /* If we are a client and haven't sent the Finished we better do that */ 1968 ossl_statem_check_finish_init(s, 1); 1969 1970 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) { 1971 int ret; 1972 struct ssl_async_args args; 1973 1974 args.s = s; 1975 args.buf = (void *)buf; 1976 args.num = num; 1977 args.type = WRITEFUNC; 1978 args.f.func_write = s->method->ssl_write; 1979 1980 ret = ssl_start_async_job(s, &args, ssl_io_intern); 1981 *written = s->asyncrw; 1982 return ret; 1983 } else { 1984 return s->method->ssl_write(s, buf, num, written); 1985 } 1986 } 1987 1988 ossl_ssize_t SSL_sendfile(SSL *s, int fd, off_t offset, size_t size, int flags) 1989 { 1990 ossl_ssize_t ret; 1991 1992 if (s->handshake_func == NULL) { 1993 SSLerr(SSL_F_SSL_SENDFILE, SSL_R_UNINITIALIZED); 1994 return -1; 1995 } 1996 1997 if (s->shutdown & SSL_SENT_SHUTDOWN) { 1998 s->rwstate = SSL_NOTHING; 1999 SSLerr(SSL_F_SSL_SENDFILE, SSL_R_PROTOCOL_IS_SHUTDOWN); 2000 return -1; 2001 } 2002 2003 if (!BIO_get_ktls_send(s->wbio)) { 2004 SSLerr(SSL_F_SSL_SENDFILE, SSL_R_UNINITIALIZED); 2005 return -1; 2006 } 2007 2008 /* If we have an alert to send, lets send it */ 2009 if (s->s3->alert_dispatch) { 2010 ret = (ossl_ssize_t)s->method->ssl_dispatch_alert(s); 2011 if (ret <= 0) { 2012 /* SSLfatal() already called if appropriate */ 2013 return ret; 2014 } 2015 /* if it went, fall through and send more stuff */ 2016 } 2017 2018 s->rwstate = SSL_WRITING; 2019 if (BIO_flush(s->wbio) <= 0) { 2020 if (!BIO_should_retry(s->wbio)) { 2021 s->rwstate = SSL_NOTHING; 2022 } else { 2023 #ifdef EAGAIN 2024 set_sys_error(EAGAIN); 2025 #endif 2026 } 2027 return -1; 2028 } 2029 2030 #ifdef OPENSSL_NO_KTLS 2031 SYSerr(SSL_F_SSL_SENDFILE, ERR_R_INTERNAL_ERROR); 2032 ERR_add_error_data(1, "calling sendfile()"); 2033 return -1; 2034 #else 2035 ret = ktls_sendfile(SSL_get_wfd(s), fd, offset, size, flags); 2036 if (ret < 0) { 2037 #if defined(EAGAIN) && defined(EINTR) && defined(EBUSY) 2038 if ((get_last_sys_error() == EAGAIN) || 2039 (get_last_sys_error() == EINTR) || 2040 (get_last_sys_error() == EBUSY)) 2041 BIO_set_retry_write(s->wbio); 2042 else 2043 #endif 2044 SSLerr(SSL_F_SSL_SENDFILE, SSL_R_UNINITIALIZED); 2045 return ret; 2046 } 2047 s->rwstate = SSL_NOTHING; 2048 return ret; 2049 #endif 2050 } 2051 2052 int SSL_write(SSL *s, const void *buf, int num) 2053 { 2054 int ret; 2055 size_t written; 2056 2057 if (num < 0) { 2058 SSLerr(SSL_F_SSL_WRITE, SSL_R_BAD_LENGTH); 2059 return -1; 2060 } 2061 2062 ret = ssl_write_internal(s, buf, (size_t)num, &written); 2063 2064 /* 2065 * The cast is safe here because ret should be <= INT_MAX because num is 2066 * <= INT_MAX 2067 */ 2068 if (ret > 0) 2069 ret = (int)written; 2070 2071 return ret; 2072 } 2073 2074 int SSL_write_ex(SSL *s, const void *buf, size_t num, size_t *written) 2075 { 2076 int ret = ssl_write_internal(s, buf, num, written); 2077 2078 if (ret < 0) 2079 ret = 0; 2080 return ret; 2081 } 2082 2083 int SSL_write_early_data(SSL *s, const void *buf, size_t num, size_t *written) 2084 { 2085 int ret, early_data_state; 2086 size_t writtmp; 2087 uint32_t partialwrite; 2088 2089 switch (s->early_data_state) { 2090 case SSL_EARLY_DATA_NONE: 2091 if (s->server 2092 || !SSL_in_before(s) 2093 || ((s->session == NULL || s->session->ext.max_early_data == 0) 2094 && (s->psk_use_session_cb == NULL))) { 2095 SSLerr(SSL_F_SSL_WRITE_EARLY_DATA, 2096 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 2097 return 0; 2098 } 2099 /* fall through */ 2100 2101 case SSL_EARLY_DATA_CONNECT_RETRY: 2102 s->early_data_state = SSL_EARLY_DATA_CONNECTING; 2103 ret = SSL_connect(s); 2104 if (ret <= 0) { 2105 /* NBIO or error */ 2106 s->early_data_state = SSL_EARLY_DATA_CONNECT_RETRY; 2107 return 0; 2108 } 2109 /* fall through */ 2110 2111 case SSL_EARLY_DATA_WRITE_RETRY: 2112 s->early_data_state = SSL_EARLY_DATA_WRITING; 2113 /* 2114 * We disable partial write for early data because we don't keep track 2115 * of how many bytes we've written between the SSL_write_ex() call and 2116 * the flush if the flush needs to be retried) 2117 */ 2118 partialwrite = s->mode & SSL_MODE_ENABLE_PARTIAL_WRITE; 2119 s->mode &= ~SSL_MODE_ENABLE_PARTIAL_WRITE; 2120 ret = SSL_write_ex(s, buf, num, &writtmp); 2121 s->mode |= partialwrite; 2122 if (!ret) { 2123 s->early_data_state = SSL_EARLY_DATA_WRITE_RETRY; 2124 return ret; 2125 } 2126 s->early_data_state = SSL_EARLY_DATA_WRITE_FLUSH; 2127 /* fall through */ 2128 2129 case SSL_EARLY_DATA_WRITE_FLUSH: 2130 /* The buffering BIO is still in place so we need to flush it */ 2131 if (statem_flush(s) != 1) 2132 return 0; 2133 *written = num; 2134 s->early_data_state = SSL_EARLY_DATA_WRITE_RETRY; 2135 return 1; 2136 2137 case SSL_EARLY_DATA_FINISHED_READING: 2138 case SSL_EARLY_DATA_READ_RETRY: 2139 early_data_state = s->early_data_state; 2140 /* We are a server writing to an unauthenticated client */ 2141 s->early_data_state = SSL_EARLY_DATA_UNAUTH_WRITING; 2142 ret = SSL_write_ex(s, buf, num, written); 2143 /* The buffering BIO is still in place */ 2144 if (ret) 2145 (void)BIO_flush(s->wbio); 2146 s->early_data_state = early_data_state; 2147 return ret; 2148 2149 default: 2150 SSLerr(SSL_F_SSL_WRITE_EARLY_DATA, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 2151 return 0; 2152 } 2153 } 2154 2155 int SSL_shutdown(SSL *s) 2156 { 2157 /* 2158 * Note that this function behaves differently from what one might 2159 * expect. Return values are 0 for no success (yet), 1 for success; but 2160 * calling it once is usually not enough, even if blocking I/O is used 2161 * (see ssl3_shutdown). 2162 */ 2163 2164 if (s->handshake_func == NULL) { 2165 SSLerr(SSL_F_SSL_SHUTDOWN, SSL_R_UNINITIALIZED); 2166 return -1; 2167 } 2168 2169 if (!SSL_in_init(s)) { 2170 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) { 2171 struct ssl_async_args args; 2172 2173 memset(&args, 0, sizeof(args)); 2174 args.s = s; 2175 args.type = OTHERFUNC; 2176 args.f.func_other = s->method->ssl_shutdown; 2177 2178 return ssl_start_async_job(s, &args, ssl_io_intern); 2179 } else { 2180 return s->method->ssl_shutdown(s); 2181 } 2182 } else { 2183 SSLerr(SSL_F_SSL_SHUTDOWN, SSL_R_SHUTDOWN_WHILE_IN_INIT); 2184 return -1; 2185 } 2186 } 2187 2188 int SSL_key_update(SSL *s, int updatetype) 2189 { 2190 /* 2191 * TODO(TLS1.3): How will applications know whether TLSv1.3 has been 2192 * negotiated, and that it is appropriate to call SSL_key_update() instead 2193 * of SSL_renegotiate(). 2194 */ 2195 if (!SSL_IS_TLS13(s)) { 2196 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_WRONG_SSL_VERSION); 2197 return 0; 2198 } 2199 2200 if (updatetype != SSL_KEY_UPDATE_NOT_REQUESTED 2201 && updatetype != SSL_KEY_UPDATE_REQUESTED) { 2202 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_INVALID_KEY_UPDATE_TYPE); 2203 return 0; 2204 } 2205 2206 if (!SSL_is_init_finished(s)) { 2207 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_STILL_IN_INIT); 2208 return 0; 2209 } 2210 2211 if (RECORD_LAYER_write_pending(&s->rlayer)) { 2212 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_BAD_WRITE_RETRY); 2213 return 0; 2214 } 2215 2216 ossl_statem_set_in_init(s, 1); 2217 s->key_update = updatetype; 2218 return 1; 2219 } 2220 2221 int SSL_get_key_update_type(const SSL *s) 2222 { 2223 return s->key_update; 2224 } 2225 2226 int SSL_renegotiate(SSL *s) 2227 { 2228 if (SSL_IS_TLS13(s)) { 2229 SSLerr(SSL_F_SSL_RENEGOTIATE, SSL_R_WRONG_SSL_VERSION); 2230 return 0; 2231 } 2232 2233 if ((s->options & SSL_OP_NO_RENEGOTIATION)) { 2234 SSLerr(SSL_F_SSL_RENEGOTIATE, SSL_R_NO_RENEGOTIATION); 2235 return 0; 2236 } 2237 2238 s->renegotiate = 1; 2239 s->new_session = 1; 2240 2241 return s->method->ssl_renegotiate(s); 2242 } 2243 2244 int SSL_renegotiate_abbreviated(SSL *s) 2245 { 2246 if (SSL_IS_TLS13(s)) { 2247 SSLerr(SSL_F_SSL_RENEGOTIATE_ABBREVIATED, SSL_R_WRONG_SSL_VERSION); 2248 return 0; 2249 } 2250 2251 if ((s->options & SSL_OP_NO_RENEGOTIATION)) { 2252 SSLerr(SSL_F_SSL_RENEGOTIATE_ABBREVIATED, SSL_R_NO_RENEGOTIATION); 2253 return 0; 2254 } 2255 2256 s->renegotiate = 1; 2257 s->new_session = 0; 2258 2259 return s->method->ssl_renegotiate(s); 2260 } 2261 2262 int SSL_renegotiate_pending(const SSL *s) 2263 { 2264 /* 2265 * becomes true when negotiation is requested; false again once a 2266 * handshake has finished 2267 */ 2268 return (s->renegotiate != 0); 2269 } 2270 2271 long SSL_ctrl(SSL *s, int cmd, long larg, void *parg) 2272 { 2273 long l; 2274 2275 switch (cmd) { 2276 case SSL_CTRL_GET_READ_AHEAD: 2277 return RECORD_LAYER_get_read_ahead(&s->rlayer); 2278 case SSL_CTRL_SET_READ_AHEAD: 2279 l = RECORD_LAYER_get_read_ahead(&s->rlayer); 2280 RECORD_LAYER_set_read_ahead(&s->rlayer, larg); 2281 return l; 2282 2283 case SSL_CTRL_SET_MSG_CALLBACK_ARG: 2284 s->msg_callback_arg = parg; 2285 return 1; 2286 2287 case SSL_CTRL_MODE: 2288 return (s->mode |= larg); 2289 case SSL_CTRL_CLEAR_MODE: 2290 return (s->mode &= ~larg); 2291 case SSL_CTRL_GET_MAX_CERT_LIST: 2292 return (long)s->max_cert_list; 2293 case SSL_CTRL_SET_MAX_CERT_LIST: 2294 if (larg < 0) 2295 return 0; 2296 l = (long)s->max_cert_list; 2297 s->max_cert_list = (size_t)larg; 2298 return l; 2299 case SSL_CTRL_SET_MAX_SEND_FRAGMENT: 2300 if (larg < 512 || larg > SSL3_RT_MAX_PLAIN_LENGTH) 2301 return 0; 2302 #ifndef OPENSSL_NO_KTLS 2303 if (s->wbio != NULL && BIO_get_ktls_send(s->wbio)) 2304 return 0; 2305 #endif /* OPENSSL_NO_KTLS */ 2306 s->max_send_fragment = larg; 2307 if (s->max_send_fragment < s->split_send_fragment) 2308 s->split_send_fragment = s->max_send_fragment; 2309 return 1; 2310 case SSL_CTRL_SET_SPLIT_SEND_FRAGMENT: 2311 if ((size_t)larg > s->max_send_fragment || larg == 0) 2312 return 0; 2313 s->split_send_fragment = larg; 2314 return 1; 2315 case SSL_CTRL_SET_MAX_PIPELINES: 2316 if (larg < 1 || larg > SSL_MAX_PIPELINES) 2317 return 0; 2318 s->max_pipelines = larg; 2319 if (larg > 1) 2320 RECORD_LAYER_set_read_ahead(&s->rlayer, 1); 2321 return 1; 2322 case SSL_CTRL_GET_RI_SUPPORT: 2323 if (s->s3) 2324 return s->s3->send_connection_binding; 2325 else 2326 return 0; 2327 case SSL_CTRL_CERT_FLAGS: 2328 return (s->cert->cert_flags |= larg); 2329 case SSL_CTRL_CLEAR_CERT_FLAGS: 2330 return (s->cert->cert_flags &= ~larg); 2331 2332 case SSL_CTRL_GET_RAW_CIPHERLIST: 2333 if (parg) { 2334 if (s->s3->tmp.ciphers_raw == NULL) 2335 return 0; 2336 *(unsigned char **)parg = s->s3->tmp.ciphers_raw; 2337 return (int)s->s3->tmp.ciphers_rawlen; 2338 } else { 2339 return TLS_CIPHER_LEN; 2340 } 2341 case SSL_CTRL_GET_EXTMS_SUPPORT: 2342 if (!s->session || SSL_in_init(s) || ossl_statem_get_in_handshake(s)) 2343 return -1; 2344 if (s->session->flags & SSL_SESS_FLAG_EXTMS) 2345 return 1; 2346 else 2347 return 0; 2348 case SSL_CTRL_SET_MIN_PROTO_VERSION: 2349 return ssl_check_allowed_versions(larg, s->max_proto_version) 2350 && ssl_set_version_bound(s->ctx->method->version, (int)larg, 2351 &s->min_proto_version); 2352 case SSL_CTRL_GET_MIN_PROTO_VERSION: 2353 return s->min_proto_version; 2354 case SSL_CTRL_SET_MAX_PROTO_VERSION: 2355 return ssl_check_allowed_versions(s->min_proto_version, larg) 2356 && ssl_set_version_bound(s->ctx->method->version, (int)larg, 2357 &s->max_proto_version); 2358 case SSL_CTRL_GET_MAX_PROTO_VERSION: 2359 return s->max_proto_version; 2360 default: 2361 return s->method->ssl_ctrl(s, cmd, larg, parg); 2362 } 2363 } 2364 2365 long SSL_callback_ctrl(SSL *s, int cmd, void (*fp) (void)) 2366 { 2367 switch (cmd) { 2368 case SSL_CTRL_SET_MSG_CALLBACK: 2369 s->msg_callback = (void (*) 2370 (int write_p, int version, int content_type, 2371 const void *buf, size_t len, SSL *ssl, 2372 void *arg))(fp); 2373 return 1; 2374 2375 default: 2376 return s->method->ssl_callback_ctrl(s, cmd, fp); 2377 } 2378 } 2379 2380 LHASH_OF(SSL_SESSION) *SSL_CTX_sessions(SSL_CTX *ctx) 2381 { 2382 return ctx->sessions; 2383 } 2384 2385 long SSL_CTX_ctrl(SSL_CTX *ctx, int cmd, long larg, void *parg) 2386 { 2387 long l; 2388 /* For some cases with ctx == NULL perform syntax checks */ 2389 if (ctx == NULL) { 2390 switch (cmd) { 2391 #ifndef OPENSSL_NO_EC 2392 case SSL_CTRL_SET_GROUPS_LIST: 2393 return tls1_set_groups_list(NULL, NULL, parg); 2394 #endif 2395 case SSL_CTRL_SET_SIGALGS_LIST: 2396 case SSL_CTRL_SET_CLIENT_SIGALGS_LIST: 2397 return tls1_set_sigalgs_list(NULL, parg, 0); 2398 default: 2399 return 0; 2400 } 2401 } 2402 2403 switch (cmd) { 2404 case SSL_CTRL_GET_READ_AHEAD: 2405 return ctx->read_ahead; 2406 case SSL_CTRL_SET_READ_AHEAD: 2407 l = ctx->read_ahead; 2408 ctx->read_ahead = larg; 2409 return l; 2410 2411 case SSL_CTRL_SET_MSG_CALLBACK_ARG: 2412 ctx->msg_callback_arg = parg; 2413 return 1; 2414 2415 case SSL_CTRL_GET_MAX_CERT_LIST: 2416 return (long)ctx->max_cert_list; 2417 case SSL_CTRL_SET_MAX_CERT_LIST: 2418 if (larg < 0) 2419 return 0; 2420 l = (long)ctx->max_cert_list; 2421 ctx->max_cert_list = (size_t)larg; 2422 return l; 2423 2424 case SSL_CTRL_SET_SESS_CACHE_SIZE: 2425 if (larg < 0) 2426 return 0; 2427 l = (long)ctx->session_cache_size; 2428 ctx->session_cache_size = (size_t)larg; 2429 return l; 2430 case SSL_CTRL_GET_SESS_CACHE_SIZE: 2431 return (long)ctx->session_cache_size; 2432 case SSL_CTRL_SET_SESS_CACHE_MODE: 2433 l = ctx->session_cache_mode; 2434 ctx->session_cache_mode = larg; 2435 return l; 2436 case SSL_CTRL_GET_SESS_CACHE_MODE: 2437 return ctx->session_cache_mode; 2438 2439 case SSL_CTRL_SESS_NUMBER: 2440 return lh_SSL_SESSION_num_items(ctx->sessions); 2441 case SSL_CTRL_SESS_CONNECT: 2442 return tsan_load(&ctx->stats.sess_connect); 2443 case SSL_CTRL_SESS_CONNECT_GOOD: 2444 return tsan_load(&ctx->stats.sess_connect_good); 2445 case SSL_CTRL_SESS_CONNECT_RENEGOTIATE: 2446 return tsan_load(&ctx->stats.sess_connect_renegotiate); 2447 case SSL_CTRL_SESS_ACCEPT: 2448 return tsan_load(&ctx->stats.sess_accept); 2449 case SSL_CTRL_SESS_ACCEPT_GOOD: 2450 return tsan_load(&ctx->stats.sess_accept_good); 2451 case SSL_CTRL_SESS_ACCEPT_RENEGOTIATE: 2452 return tsan_load(&ctx->stats.sess_accept_renegotiate); 2453 case SSL_CTRL_SESS_HIT: 2454 return tsan_load(&ctx->stats.sess_hit); 2455 case SSL_CTRL_SESS_CB_HIT: 2456 return tsan_load(&ctx->stats.sess_cb_hit); 2457 case SSL_CTRL_SESS_MISSES: 2458 return tsan_load(&ctx->stats.sess_miss); 2459 case SSL_CTRL_SESS_TIMEOUTS: 2460 return tsan_load(&ctx->stats.sess_timeout); 2461 case SSL_CTRL_SESS_CACHE_FULL: 2462 return tsan_load(&ctx->stats.sess_cache_full); 2463 case SSL_CTRL_MODE: 2464 return (ctx->mode |= larg); 2465 case SSL_CTRL_CLEAR_MODE: 2466 return (ctx->mode &= ~larg); 2467 case SSL_CTRL_SET_MAX_SEND_FRAGMENT: 2468 if (larg < 512 || larg > SSL3_RT_MAX_PLAIN_LENGTH) 2469 return 0; 2470 ctx->max_send_fragment = larg; 2471 if (ctx->max_send_fragment < ctx->split_send_fragment) 2472 ctx->split_send_fragment = ctx->max_send_fragment; 2473 return 1; 2474 case SSL_CTRL_SET_SPLIT_SEND_FRAGMENT: 2475 if ((size_t)larg > ctx->max_send_fragment || larg == 0) 2476 return 0; 2477 ctx->split_send_fragment = larg; 2478 return 1; 2479 case SSL_CTRL_SET_MAX_PIPELINES: 2480 if (larg < 1 || larg > SSL_MAX_PIPELINES) 2481 return 0; 2482 ctx->max_pipelines = larg; 2483 return 1; 2484 case SSL_CTRL_CERT_FLAGS: 2485 return (ctx->cert->cert_flags |= larg); 2486 case SSL_CTRL_CLEAR_CERT_FLAGS: 2487 return (ctx->cert->cert_flags &= ~larg); 2488 case SSL_CTRL_SET_MIN_PROTO_VERSION: 2489 return ssl_check_allowed_versions(larg, ctx->max_proto_version) 2490 && ssl_set_version_bound(ctx->method->version, (int)larg, 2491 &ctx->min_proto_version); 2492 case SSL_CTRL_GET_MIN_PROTO_VERSION: 2493 return ctx->min_proto_version; 2494 case SSL_CTRL_SET_MAX_PROTO_VERSION: 2495 return ssl_check_allowed_versions(ctx->min_proto_version, larg) 2496 && ssl_set_version_bound(ctx->method->version, (int)larg, 2497 &ctx->max_proto_version); 2498 case SSL_CTRL_GET_MAX_PROTO_VERSION: 2499 return ctx->max_proto_version; 2500 default: 2501 return ctx->method->ssl_ctx_ctrl(ctx, cmd, larg, parg); 2502 } 2503 } 2504 2505 long SSL_CTX_callback_ctrl(SSL_CTX *ctx, int cmd, void (*fp) (void)) 2506 { 2507 switch (cmd) { 2508 case SSL_CTRL_SET_MSG_CALLBACK: 2509 ctx->msg_callback = (void (*) 2510 (int write_p, int version, int content_type, 2511 const void *buf, size_t len, SSL *ssl, 2512 void *arg))(fp); 2513 return 1; 2514 2515 default: 2516 return ctx->method->ssl_ctx_callback_ctrl(ctx, cmd, fp); 2517 } 2518 } 2519 2520 int ssl_cipher_id_cmp(const SSL_CIPHER *a, const SSL_CIPHER *b) 2521 { 2522 if (a->id > b->id) 2523 return 1; 2524 if (a->id < b->id) 2525 return -1; 2526 return 0; 2527 } 2528 2529 int ssl_cipher_ptr_id_cmp(const SSL_CIPHER *const *ap, 2530 const SSL_CIPHER *const *bp) 2531 { 2532 if ((*ap)->id > (*bp)->id) 2533 return 1; 2534 if ((*ap)->id < (*bp)->id) 2535 return -1; 2536 return 0; 2537 } 2538 2539 /** return a STACK of the ciphers available for the SSL and in order of 2540 * preference */ 2541 STACK_OF(SSL_CIPHER) *SSL_get_ciphers(const SSL *s) 2542 { 2543 if (s != NULL) { 2544 if (s->cipher_list != NULL) { 2545 return s->cipher_list; 2546 } else if ((s->ctx != NULL) && (s->ctx->cipher_list != NULL)) { 2547 return s->ctx->cipher_list; 2548 } 2549 } 2550 return NULL; 2551 } 2552 2553 STACK_OF(SSL_CIPHER) *SSL_get_client_ciphers(const SSL *s) 2554 { 2555 if ((s == NULL) || !s->server) 2556 return NULL; 2557 return s->peer_ciphers; 2558 } 2559 2560 STACK_OF(SSL_CIPHER) *SSL_get1_supported_ciphers(SSL *s) 2561 { 2562 STACK_OF(SSL_CIPHER) *sk = NULL, *ciphers; 2563 int i; 2564 2565 ciphers = SSL_get_ciphers(s); 2566 if (!ciphers) 2567 return NULL; 2568 if (!ssl_set_client_disabled(s)) 2569 return NULL; 2570 for (i = 0; i < sk_SSL_CIPHER_num(ciphers); i++) { 2571 const SSL_CIPHER *c = sk_SSL_CIPHER_value(ciphers, i); 2572 if (!ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0)) { 2573 if (!sk) 2574 sk = sk_SSL_CIPHER_new_null(); 2575 if (!sk) 2576 return NULL; 2577 if (!sk_SSL_CIPHER_push(sk, c)) { 2578 sk_SSL_CIPHER_free(sk); 2579 return NULL; 2580 } 2581 } 2582 } 2583 return sk; 2584 } 2585 2586 /** return a STACK of the ciphers available for the SSL and in order of 2587 * algorithm id */ 2588 STACK_OF(SSL_CIPHER) *ssl_get_ciphers_by_id(SSL *s) 2589 { 2590 if (s != NULL) { 2591 if (s->cipher_list_by_id != NULL) { 2592 return s->cipher_list_by_id; 2593 } else if ((s->ctx != NULL) && (s->ctx->cipher_list_by_id != NULL)) { 2594 return s->ctx->cipher_list_by_id; 2595 } 2596 } 2597 return NULL; 2598 } 2599 2600 /** The old interface to get the same thing as SSL_get_ciphers() */ 2601 const char *SSL_get_cipher_list(const SSL *s, int n) 2602 { 2603 const SSL_CIPHER *c; 2604 STACK_OF(SSL_CIPHER) *sk; 2605 2606 if (s == NULL) 2607 return NULL; 2608 sk = SSL_get_ciphers(s); 2609 if ((sk == NULL) || (sk_SSL_CIPHER_num(sk) <= n)) 2610 return NULL; 2611 c = sk_SSL_CIPHER_value(sk, n); 2612 if (c == NULL) 2613 return NULL; 2614 return c->name; 2615 } 2616 2617 /** return a STACK of the ciphers available for the SSL_CTX and in order of 2618 * preference */ 2619 STACK_OF(SSL_CIPHER) *SSL_CTX_get_ciphers(const SSL_CTX *ctx) 2620 { 2621 if (ctx != NULL) 2622 return ctx->cipher_list; 2623 return NULL; 2624 } 2625 2626 /* 2627 * Distinguish between ciphers controlled by set_ciphersuite() and 2628 * set_cipher_list() when counting. 2629 */ 2630 static int cipher_list_tls12_num(STACK_OF(SSL_CIPHER) *sk) 2631 { 2632 int i, num = 0; 2633 const SSL_CIPHER *c; 2634 2635 if (sk == NULL) 2636 return 0; 2637 for (i = 0; i < sk_SSL_CIPHER_num(sk); ++i) { 2638 c = sk_SSL_CIPHER_value(sk, i); 2639 if (c->min_tls >= TLS1_3_VERSION) 2640 continue; 2641 num++; 2642 } 2643 return num; 2644 } 2645 2646 /** specify the ciphers to be used by default by the SSL_CTX */ 2647 int SSL_CTX_set_cipher_list(SSL_CTX *ctx, const char *str) 2648 { 2649 STACK_OF(SSL_CIPHER) *sk; 2650 2651 sk = ssl_create_cipher_list(ctx->method, ctx->tls13_ciphersuites, 2652 &ctx->cipher_list, &ctx->cipher_list_by_id, str, 2653 ctx->cert); 2654 /* 2655 * ssl_create_cipher_list may return an empty stack if it was unable to 2656 * find a cipher matching the given rule string (for example if the rule 2657 * string specifies a cipher which has been disabled). This is not an 2658 * error as far as ssl_create_cipher_list is concerned, and hence 2659 * ctx->cipher_list and ctx->cipher_list_by_id has been updated. 2660 */ 2661 if (sk == NULL) 2662 return 0; 2663 else if (cipher_list_tls12_num(sk) == 0) { 2664 SSLerr(SSL_F_SSL_CTX_SET_CIPHER_LIST, SSL_R_NO_CIPHER_MATCH); 2665 return 0; 2666 } 2667 return 1; 2668 } 2669 2670 /** specify the ciphers to be used by the SSL */ 2671 int SSL_set_cipher_list(SSL *s, const char *str) 2672 { 2673 STACK_OF(SSL_CIPHER) *sk; 2674 2675 sk = ssl_create_cipher_list(s->ctx->method, s->tls13_ciphersuites, 2676 &s->cipher_list, &s->cipher_list_by_id, str, 2677 s->cert); 2678 /* see comment in SSL_CTX_set_cipher_list */ 2679 if (sk == NULL) 2680 return 0; 2681 else if (cipher_list_tls12_num(sk) == 0) { 2682 SSLerr(SSL_F_SSL_SET_CIPHER_LIST, SSL_R_NO_CIPHER_MATCH); 2683 return 0; 2684 } 2685 return 1; 2686 } 2687 2688 char *SSL_get_shared_ciphers(const SSL *s, char *buf, int size) 2689 { 2690 char *p; 2691 STACK_OF(SSL_CIPHER) *clntsk, *srvrsk; 2692 const SSL_CIPHER *c; 2693 int i; 2694 2695 if (!s->server 2696 || s->peer_ciphers == NULL 2697 || size < 2) 2698 return NULL; 2699 2700 p = buf; 2701 clntsk = s->peer_ciphers; 2702 srvrsk = SSL_get_ciphers(s); 2703 if (clntsk == NULL || srvrsk == NULL) 2704 return NULL; 2705 2706 if (sk_SSL_CIPHER_num(clntsk) == 0 || sk_SSL_CIPHER_num(srvrsk) == 0) 2707 return NULL; 2708 2709 for (i = 0; i < sk_SSL_CIPHER_num(clntsk); i++) { 2710 int n; 2711 2712 c = sk_SSL_CIPHER_value(clntsk, i); 2713 if (sk_SSL_CIPHER_find(srvrsk, c) < 0) 2714 continue; 2715 2716 n = strlen(c->name); 2717 if (n + 1 > size) { 2718 if (p != buf) 2719 --p; 2720 *p = '\0'; 2721 return buf; 2722 } 2723 strcpy(p, c->name); 2724 p += n; 2725 *(p++) = ':'; 2726 size -= n + 1; 2727 } 2728 p[-1] = '\0'; 2729 return buf; 2730 } 2731 2732 /** 2733 * Return the requested servername (SNI) value. Note that the behaviour varies 2734 * depending on: 2735 * - whether this is called by the client or the server, 2736 * - if we are before or during/after the handshake, 2737 * - if a resumption or normal handshake is being attempted/has occurred 2738 * - whether we have negotiated TLSv1.2 (or below) or TLSv1.3 2739 * 2740 * Note that only the host_name type is defined (RFC 3546). 2741 */ 2742 const char *SSL_get_servername(const SSL *s, const int type) 2743 { 2744 /* 2745 * If we don't know if we are the client or the server yet then we assume 2746 * client. 2747 */ 2748 int server = s->handshake_func == NULL ? 0 : s->server; 2749 if (type != TLSEXT_NAMETYPE_host_name) 2750 return NULL; 2751 2752 if (server) { 2753 /** 2754 * Server side 2755 * In TLSv1.3 on the server SNI is not associated with the session 2756 * but in TLSv1.2 or below it is. 2757 * 2758 * Before the handshake: 2759 * - return NULL 2760 * 2761 * During/after the handshake (TLSv1.2 or below resumption occurred): 2762 * - If a servername was accepted by the server in the original 2763 * handshake then it will return that servername, or NULL otherwise. 2764 * 2765 * During/after the handshake (TLSv1.2 or below resumption did not occur): 2766 * - The function will return the servername requested by the client in 2767 * this handshake or NULL if none was requested. 2768 */ 2769 if (s->hit && !SSL_IS_TLS13(s)) 2770 return s->session->ext.hostname; 2771 } else { 2772 /** 2773 * Client side 2774 * 2775 * Before the handshake: 2776 * - If a servername has been set via a call to 2777 * SSL_set_tlsext_host_name() then it will return that servername 2778 * - If one has not been set, but a TLSv1.2 resumption is being 2779 * attempted and the session from the original handshake had a 2780 * servername accepted by the server then it will return that 2781 * servername 2782 * - Otherwise it returns NULL 2783 * 2784 * During/after the handshake (TLSv1.2 or below resumption occurred): 2785 * - If the session from the original handshake had a servername accepted 2786 * by the server then it will return that servername. 2787 * - Otherwise it returns the servername set via 2788 * SSL_set_tlsext_host_name() (or NULL if it was not called). 2789 * 2790 * During/after the handshake (TLSv1.2 or below resumption did not occur): 2791 * - It will return the servername set via SSL_set_tlsext_host_name() 2792 * (or NULL if it was not called). 2793 */ 2794 if (SSL_in_before(s)) { 2795 if (s->ext.hostname == NULL 2796 && s->session != NULL 2797 && s->session->ssl_version != TLS1_3_VERSION) 2798 return s->session->ext.hostname; 2799 } else { 2800 if (!SSL_IS_TLS13(s) && s->hit && s->session->ext.hostname != NULL) 2801 return s->session->ext.hostname; 2802 } 2803 } 2804 2805 return s->ext.hostname; 2806 } 2807 2808 int SSL_get_servername_type(const SSL *s) 2809 { 2810 if (SSL_get_servername(s, TLSEXT_NAMETYPE_host_name) != NULL) 2811 return TLSEXT_NAMETYPE_host_name; 2812 return -1; 2813 } 2814 2815 /* 2816 * SSL_select_next_proto implements the standard protocol selection. It is 2817 * expected that this function is called from the callback set by 2818 * SSL_CTX_set_next_proto_select_cb. The protocol data is assumed to be a 2819 * vector of 8-bit, length prefixed byte strings. The length byte itself is 2820 * not included in the length. A byte string of length 0 is invalid. No byte 2821 * string may be truncated. The current, but experimental algorithm for 2822 * selecting the protocol is: 1) If the server doesn't support NPN then this 2823 * is indicated to the callback. In this case, the client application has to 2824 * abort the connection or have a default application level protocol. 2) If 2825 * the server supports NPN, but advertises an empty list then the client 2826 * selects the first protocol in its list, but indicates via the API that this 2827 * fallback case was enacted. 3) Otherwise, the client finds the first 2828 * protocol in the server's list that it supports and selects this protocol. 2829 * This is because it's assumed that the server has better information about 2830 * which protocol a client should use. 4) If the client doesn't support any 2831 * of the server's advertised protocols, then this is treated the same as 2832 * case 2. It returns either OPENSSL_NPN_NEGOTIATED if a common protocol was 2833 * found, or OPENSSL_NPN_NO_OVERLAP if the fallback case was reached. 2834 */ 2835 int SSL_select_next_proto(unsigned char **out, unsigned char *outlen, 2836 const unsigned char *server, 2837 unsigned int server_len, 2838 const unsigned char *client, unsigned int client_len) 2839 { 2840 unsigned int i, j; 2841 const unsigned char *result; 2842 int status = OPENSSL_NPN_UNSUPPORTED; 2843 2844 /* 2845 * For each protocol in server preference order, see if we support it. 2846 */ 2847 for (i = 0; i < server_len;) { 2848 for (j = 0; j < client_len;) { 2849 if (server[i] == client[j] && 2850 memcmp(&server[i + 1], &client[j + 1], server[i]) == 0) { 2851 /* We found a match */ 2852 result = &server[i]; 2853 status = OPENSSL_NPN_NEGOTIATED; 2854 goto found; 2855 } 2856 j += client[j]; 2857 j++; 2858 } 2859 i += server[i]; 2860 i++; 2861 } 2862 2863 /* There's no overlap between our protocols and the server's list. */ 2864 result = client; 2865 status = OPENSSL_NPN_NO_OVERLAP; 2866 2867 found: 2868 *out = (unsigned char *)result + 1; 2869 *outlen = result[0]; 2870 return status; 2871 } 2872 2873 #ifndef OPENSSL_NO_NEXTPROTONEG 2874 /* 2875 * SSL_get0_next_proto_negotiated sets *data and *len to point to the 2876 * client's requested protocol for this connection and returns 0. If the 2877 * client didn't request any protocol, then *data is set to NULL. Note that 2878 * the client can request any protocol it chooses. The value returned from 2879 * this function need not be a member of the list of supported protocols 2880 * provided by the callback. 2881 */ 2882 void SSL_get0_next_proto_negotiated(const SSL *s, const unsigned char **data, 2883 unsigned *len) 2884 { 2885 *data = s->ext.npn; 2886 if (!*data) { 2887 *len = 0; 2888 } else { 2889 *len = (unsigned int)s->ext.npn_len; 2890 } 2891 } 2892 2893 /* 2894 * SSL_CTX_set_npn_advertised_cb sets a callback that is called when 2895 * a TLS server needs a list of supported protocols for Next Protocol 2896 * Negotiation. The returned list must be in wire format. The list is 2897 * returned by setting |out| to point to it and |outlen| to its length. This 2898 * memory will not be modified, but one should assume that the SSL* keeps a 2899 * reference to it. The callback should return SSL_TLSEXT_ERR_OK if it 2900 * wishes to advertise. Otherwise, no such extension will be included in the 2901 * ServerHello. 2902 */ 2903 void SSL_CTX_set_npn_advertised_cb(SSL_CTX *ctx, 2904 SSL_CTX_npn_advertised_cb_func cb, 2905 void *arg) 2906 { 2907 ctx->ext.npn_advertised_cb = cb; 2908 ctx->ext.npn_advertised_cb_arg = arg; 2909 } 2910 2911 /* 2912 * SSL_CTX_set_next_proto_select_cb sets a callback that is called when a 2913 * client needs to select a protocol from the server's provided list. |out| 2914 * must be set to point to the selected protocol (which may be within |in|). 2915 * The length of the protocol name must be written into |outlen|. The 2916 * server's advertised protocols are provided in |in| and |inlen|. The 2917 * callback can assume that |in| is syntactically valid. The client must 2918 * select a protocol. It is fatal to the connection if this callback returns 2919 * a value other than SSL_TLSEXT_ERR_OK. 2920 */ 2921 void SSL_CTX_set_npn_select_cb(SSL_CTX *ctx, 2922 SSL_CTX_npn_select_cb_func cb, 2923 void *arg) 2924 { 2925 ctx->ext.npn_select_cb = cb; 2926 ctx->ext.npn_select_cb_arg = arg; 2927 } 2928 #endif 2929 2930 static int alpn_value_ok(const unsigned char *protos, unsigned int protos_len) 2931 { 2932 unsigned int idx; 2933 2934 if (protos_len < 2 || protos == NULL) 2935 return 0; 2936 2937 for (idx = 0; idx < protos_len; idx += protos[idx] + 1) { 2938 if (protos[idx] == 0) 2939 return 0; 2940 } 2941 return idx == protos_len; 2942 } 2943 /* 2944 * SSL_CTX_set_alpn_protos sets the ALPN protocol list on |ctx| to |protos|. 2945 * |protos| must be in wire-format (i.e. a series of non-empty, 8-bit 2946 * length-prefixed strings). Returns 0 on success. 2947 */ 2948 int SSL_CTX_set_alpn_protos(SSL_CTX *ctx, const unsigned char *protos, 2949 unsigned int protos_len) 2950 { 2951 unsigned char *alpn; 2952 2953 if (protos_len == 0 || protos == NULL) { 2954 OPENSSL_free(ctx->ext.alpn); 2955 ctx->ext.alpn = NULL; 2956 ctx->ext.alpn_len = 0; 2957 return 0; 2958 } 2959 /* Not valid per RFC */ 2960 if (!alpn_value_ok(protos, protos_len)) 2961 return 1; 2962 2963 alpn = OPENSSL_memdup(protos, protos_len); 2964 if (alpn == NULL) { 2965 SSLerr(SSL_F_SSL_CTX_SET_ALPN_PROTOS, ERR_R_MALLOC_FAILURE); 2966 return 1; 2967 } 2968 OPENSSL_free(ctx->ext.alpn); 2969 ctx->ext.alpn = alpn; 2970 ctx->ext.alpn_len = protos_len; 2971 2972 return 0; 2973 } 2974 2975 /* 2976 * SSL_set_alpn_protos sets the ALPN protocol list on |ssl| to |protos|. 2977 * |protos| must be in wire-format (i.e. a series of non-empty, 8-bit 2978 * length-prefixed strings). Returns 0 on success. 2979 */ 2980 int SSL_set_alpn_protos(SSL *ssl, const unsigned char *protos, 2981 unsigned int protos_len) 2982 { 2983 unsigned char *alpn; 2984 2985 if (protos_len == 0 || protos == NULL) { 2986 OPENSSL_free(ssl->ext.alpn); 2987 ssl->ext.alpn = NULL; 2988 ssl->ext.alpn_len = 0; 2989 return 0; 2990 } 2991 /* Not valid per RFC */ 2992 if (!alpn_value_ok(protos, protos_len)) 2993 return 1; 2994 2995 alpn = OPENSSL_memdup(protos, protos_len); 2996 if (alpn == NULL) { 2997 SSLerr(SSL_F_SSL_SET_ALPN_PROTOS, ERR_R_MALLOC_FAILURE); 2998 return 1; 2999 } 3000 OPENSSL_free(ssl->ext.alpn); 3001 ssl->ext.alpn = alpn; 3002 ssl->ext.alpn_len = protos_len; 3003 3004 return 0; 3005 } 3006 3007 /* 3008 * SSL_CTX_set_alpn_select_cb sets a callback function on |ctx| that is 3009 * called during ClientHello processing in order to select an ALPN protocol 3010 * from the client's list of offered protocols. 3011 */ 3012 void SSL_CTX_set_alpn_select_cb(SSL_CTX *ctx, 3013 SSL_CTX_alpn_select_cb_func cb, 3014 void *arg) 3015 { 3016 ctx->ext.alpn_select_cb = cb; 3017 ctx->ext.alpn_select_cb_arg = arg; 3018 } 3019 3020 /* 3021 * SSL_get0_alpn_selected gets the selected ALPN protocol (if any) from |ssl|. 3022 * On return it sets |*data| to point to |*len| bytes of protocol name 3023 * (not including the leading length-prefix byte). If the server didn't 3024 * respond with a negotiated protocol then |*len| will be zero. 3025 */ 3026 void SSL_get0_alpn_selected(const SSL *ssl, const unsigned char **data, 3027 unsigned int *len) 3028 { 3029 *data = NULL; 3030 if (ssl->s3) 3031 *data = ssl->s3->alpn_selected; 3032 if (*data == NULL) 3033 *len = 0; 3034 else 3035 *len = (unsigned int)ssl->s3->alpn_selected_len; 3036 } 3037 3038 int SSL_export_keying_material(SSL *s, unsigned char *out, size_t olen, 3039 const char *label, size_t llen, 3040 const unsigned char *context, size_t contextlen, 3041 int use_context) 3042 { 3043 if (s->session == NULL 3044 || (s->version < TLS1_VERSION && s->version != DTLS1_BAD_VER)) 3045 return -1; 3046 3047 return s->method->ssl3_enc->export_keying_material(s, out, olen, label, 3048 llen, context, 3049 contextlen, use_context); 3050 } 3051 3052 int SSL_export_keying_material_early(SSL *s, unsigned char *out, size_t olen, 3053 const char *label, size_t llen, 3054 const unsigned char *context, 3055 size_t contextlen) 3056 { 3057 if (s->version != TLS1_3_VERSION) 3058 return 0; 3059 3060 return tls13_export_keying_material_early(s, out, olen, label, llen, 3061 context, contextlen); 3062 } 3063 3064 static unsigned long ssl_session_hash(const SSL_SESSION *a) 3065 { 3066 const unsigned char *session_id = a->session_id; 3067 unsigned long l; 3068 unsigned char tmp_storage[4]; 3069 3070 if (a->session_id_length < sizeof(tmp_storage)) { 3071 memset(tmp_storage, 0, sizeof(tmp_storage)); 3072 memcpy(tmp_storage, a->session_id, a->session_id_length); 3073 session_id = tmp_storage; 3074 } 3075 3076 l = (unsigned long) 3077 ((unsigned long)session_id[0]) | 3078 ((unsigned long)session_id[1] << 8L) | 3079 ((unsigned long)session_id[2] << 16L) | 3080 ((unsigned long)session_id[3] << 24L); 3081 return l; 3082 } 3083 3084 /* 3085 * NB: If this function (or indeed the hash function which uses a sort of 3086 * coarser function than this one) is changed, ensure 3087 * SSL_CTX_has_matching_session_id() is checked accordingly. It relies on 3088 * being able to construct an SSL_SESSION that will collide with any existing 3089 * session with a matching session ID. 3090 */ 3091 static int ssl_session_cmp(const SSL_SESSION *a, const SSL_SESSION *b) 3092 { 3093 if (a->ssl_version != b->ssl_version) 3094 return 1; 3095 if (a->session_id_length != b->session_id_length) 3096 return 1; 3097 return memcmp(a->session_id, b->session_id, a->session_id_length); 3098 } 3099 3100 /* 3101 * These wrapper functions should remain rather than redeclaring 3102 * SSL_SESSION_hash and SSL_SESSION_cmp for void* types and casting each 3103 * variable. The reason is that the functions aren't static, they're exposed 3104 * via ssl.h. 3105 */ 3106 3107 SSL_CTX *SSL_CTX_new(const SSL_METHOD *meth) 3108 { 3109 SSL_CTX *ret = NULL; 3110 3111 if (meth == NULL) { 3112 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_NULL_SSL_METHOD_PASSED); 3113 return NULL; 3114 } 3115 3116 if (!OPENSSL_init_ssl(OPENSSL_INIT_LOAD_SSL_STRINGS, NULL)) 3117 return NULL; 3118 3119 if (SSL_get_ex_data_X509_STORE_CTX_idx() < 0) { 3120 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_X509_VERIFICATION_SETUP_PROBLEMS); 3121 goto err; 3122 } 3123 ret = OPENSSL_zalloc(sizeof(*ret)); 3124 if (ret == NULL) 3125 goto err; 3126 3127 ret->method = meth; 3128 ret->min_proto_version = 0; 3129 ret->max_proto_version = 0; 3130 ret->mode = SSL_MODE_AUTO_RETRY; 3131 ret->session_cache_mode = SSL_SESS_CACHE_SERVER; 3132 ret->session_cache_size = SSL_SESSION_CACHE_MAX_SIZE_DEFAULT; 3133 /* We take the system default. */ 3134 ret->session_timeout = meth->get_timeout(); 3135 ret->references = 1; 3136 ret->lock = CRYPTO_THREAD_lock_new(); 3137 if (ret->lock == NULL) { 3138 SSLerr(SSL_F_SSL_CTX_NEW, ERR_R_MALLOC_FAILURE); 3139 OPENSSL_free(ret); 3140 return NULL; 3141 } 3142 ret->max_cert_list = SSL_MAX_CERT_LIST_DEFAULT; 3143 ret->verify_mode = SSL_VERIFY_NONE; 3144 if ((ret->cert = ssl_cert_new()) == NULL) 3145 goto err; 3146 3147 ret->sessions = lh_SSL_SESSION_new(ssl_session_hash, ssl_session_cmp); 3148 if (ret->sessions == NULL) 3149 goto err; 3150 ret->cert_store = X509_STORE_new(); 3151 if (ret->cert_store == NULL) 3152 goto err; 3153 #ifndef OPENSSL_NO_CT 3154 ret->ctlog_store = CTLOG_STORE_new(); 3155 if (ret->ctlog_store == NULL) 3156 goto err; 3157 #endif 3158 3159 if (!SSL_CTX_set_ciphersuites(ret, TLS_DEFAULT_CIPHERSUITES)) 3160 goto err; 3161 3162 if (!ssl_create_cipher_list(ret->method, 3163 ret->tls13_ciphersuites, 3164 &ret->cipher_list, &ret->cipher_list_by_id, 3165 SSL_DEFAULT_CIPHER_LIST, ret->cert) 3166 || sk_SSL_CIPHER_num(ret->cipher_list) <= 0) { 3167 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_LIBRARY_HAS_NO_CIPHERS); 3168 goto err2; 3169 } 3170 3171 ret->param = X509_VERIFY_PARAM_new(); 3172 if (ret->param == NULL) 3173 goto err; 3174 3175 if ((ret->md5 = EVP_get_digestbyname("ssl3-md5")) == NULL) { 3176 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_UNABLE_TO_LOAD_SSL3_MD5_ROUTINES); 3177 goto err2; 3178 } 3179 if ((ret->sha1 = EVP_get_digestbyname("ssl3-sha1")) == NULL) { 3180 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_UNABLE_TO_LOAD_SSL3_SHA1_ROUTINES); 3181 goto err2; 3182 } 3183 3184 if ((ret->ca_names = sk_X509_NAME_new_null()) == NULL) 3185 goto err; 3186 3187 if ((ret->client_ca_names = sk_X509_NAME_new_null()) == NULL) 3188 goto err; 3189 3190 if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL_CTX, ret, &ret->ex_data)) 3191 goto err; 3192 3193 if ((ret->ext.secure = OPENSSL_secure_zalloc(sizeof(*ret->ext.secure))) == NULL) 3194 goto err; 3195 3196 /* No compression for DTLS */ 3197 if (!(meth->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS)) 3198 ret->comp_methods = SSL_COMP_get_compression_methods(); 3199 3200 ret->max_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH; 3201 ret->split_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH; 3202 3203 /* Setup RFC5077 ticket keys */ 3204 if ((RAND_bytes(ret->ext.tick_key_name, 3205 sizeof(ret->ext.tick_key_name)) <= 0) 3206 || (RAND_priv_bytes(ret->ext.secure->tick_hmac_key, 3207 sizeof(ret->ext.secure->tick_hmac_key)) <= 0) 3208 || (RAND_priv_bytes(ret->ext.secure->tick_aes_key, 3209 sizeof(ret->ext.secure->tick_aes_key)) <= 0)) 3210 ret->options |= SSL_OP_NO_TICKET; 3211 3212 if (RAND_priv_bytes(ret->ext.cookie_hmac_key, 3213 sizeof(ret->ext.cookie_hmac_key)) <= 0) 3214 goto err; 3215 3216 #ifndef OPENSSL_NO_SRP 3217 if (!SSL_CTX_SRP_CTX_init(ret)) 3218 goto err; 3219 #endif 3220 #ifndef OPENSSL_NO_ENGINE 3221 # ifdef OPENSSL_SSL_CLIENT_ENGINE_AUTO 3222 # define eng_strx(x) #x 3223 # define eng_str(x) eng_strx(x) 3224 /* Use specific client engine automatically... ignore errors */ 3225 { 3226 ENGINE *eng; 3227 eng = ENGINE_by_id(eng_str(OPENSSL_SSL_CLIENT_ENGINE_AUTO)); 3228 if (!eng) { 3229 ERR_clear_error(); 3230 ENGINE_load_builtin_engines(); 3231 eng = ENGINE_by_id(eng_str(OPENSSL_SSL_CLIENT_ENGINE_AUTO)); 3232 } 3233 if (!eng || !SSL_CTX_set_client_cert_engine(ret, eng)) 3234 ERR_clear_error(); 3235 } 3236 # endif 3237 #endif 3238 /* 3239 * Default is to connect to non-RI servers. When RI is more widely 3240 * deployed might change this. 3241 */ 3242 ret->options |= SSL_OP_LEGACY_SERVER_CONNECT; 3243 /* 3244 * Disable compression by default to prevent CRIME. Applications can 3245 * re-enable compression by configuring 3246 * SSL_CTX_clear_options(ctx, SSL_OP_NO_COMPRESSION); 3247 * or by using the SSL_CONF library. Similarly we also enable TLSv1.3 3248 * middlebox compatibility by default. This may be disabled by default in 3249 * a later OpenSSL version. 3250 */ 3251 ret->options |= SSL_OP_NO_COMPRESSION | SSL_OP_ENABLE_MIDDLEBOX_COMPAT; 3252 3253 ret->ext.status_type = TLSEXT_STATUSTYPE_nothing; 3254 3255 /* 3256 * We cannot usefully set a default max_early_data here (which gets 3257 * propagated in SSL_new(), for the following reason: setting the 3258 * SSL field causes tls_construct_stoc_early_data() to tell the 3259 * client that early data will be accepted when constructing a TLS 1.3 3260 * session ticket, and the client will accordingly send us early data 3261 * when using that ticket (if the client has early data to send). 3262 * However, in order for the early data to actually be consumed by 3263 * the application, the application must also have calls to 3264 * SSL_read_early_data(); otherwise we'll just skip past the early data 3265 * and ignore it. So, since the application must add calls to 3266 * SSL_read_early_data(), we also require them to add 3267 * calls to SSL_CTX_set_max_early_data() in order to use early data, 3268 * eliminating the bandwidth-wasting early data in the case described 3269 * above. 3270 */ 3271 ret->max_early_data = 0; 3272 3273 /* 3274 * Default recv_max_early_data is a fully loaded single record. Could be 3275 * split across multiple records in practice. We set this differently to 3276 * max_early_data so that, in the default case, we do not advertise any 3277 * support for early_data, but if a client were to send us some (e.g. 3278 * because of an old, stale ticket) then we will tolerate it and skip over 3279 * it. 3280 */ 3281 ret->recv_max_early_data = SSL3_RT_MAX_PLAIN_LENGTH; 3282 3283 /* By default we send two session tickets automatically in TLSv1.3 */ 3284 ret->num_tickets = 2; 3285 3286 ssl_ctx_system_config(ret); 3287 3288 return ret; 3289 err: 3290 SSLerr(SSL_F_SSL_CTX_NEW, ERR_R_MALLOC_FAILURE); 3291 err2: 3292 SSL_CTX_free(ret); 3293 return NULL; 3294 } 3295 3296 int SSL_CTX_up_ref(SSL_CTX *ctx) 3297 { 3298 int i; 3299 3300 if (CRYPTO_UP_REF(&ctx->references, &i, ctx->lock) <= 0) 3301 return 0; 3302 3303 REF_PRINT_COUNT("SSL_CTX", ctx); 3304 REF_ASSERT_ISNT(i < 2); 3305 return ((i > 1) ? 1 : 0); 3306 } 3307 3308 void SSL_CTX_free(SSL_CTX *a) 3309 { 3310 int i; 3311 3312 if (a == NULL) 3313 return; 3314 3315 CRYPTO_DOWN_REF(&a->references, &i, a->lock); 3316 REF_PRINT_COUNT("SSL_CTX", a); 3317 if (i > 0) 3318 return; 3319 REF_ASSERT_ISNT(i < 0); 3320 3321 X509_VERIFY_PARAM_free(a->param); 3322 dane_ctx_final(&a->dane); 3323 3324 /* 3325 * Free internal session cache. However: the remove_cb() may reference 3326 * the ex_data of SSL_CTX, thus the ex_data store can only be removed 3327 * after the sessions were flushed. 3328 * As the ex_data handling routines might also touch the session cache, 3329 * the most secure solution seems to be: empty (flush) the cache, then 3330 * free ex_data, then finally free the cache. 3331 * (See ticket [openssl.org #212].) 3332 */ 3333 if (a->sessions != NULL) 3334 SSL_CTX_flush_sessions(a, 0); 3335 3336 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL_CTX, a, &a->ex_data); 3337 lh_SSL_SESSION_free(a->sessions); 3338 X509_STORE_free(a->cert_store); 3339 #ifndef OPENSSL_NO_CT 3340 CTLOG_STORE_free(a->ctlog_store); 3341 #endif 3342 sk_SSL_CIPHER_free(a->cipher_list); 3343 sk_SSL_CIPHER_free(a->cipher_list_by_id); 3344 sk_SSL_CIPHER_free(a->tls13_ciphersuites); 3345 ssl_cert_free(a->cert); 3346 sk_X509_NAME_pop_free(a->ca_names, X509_NAME_free); 3347 sk_X509_NAME_pop_free(a->client_ca_names, X509_NAME_free); 3348 sk_X509_pop_free(a->extra_certs, X509_free); 3349 a->comp_methods = NULL; 3350 #ifndef OPENSSL_NO_SRTP 3351 sk_SRTP_PROTECTION_PROFILE_free(a->srtp_profiles); 3352 #endif 3353 #ifndef OPENSSL_NO_SRP 3354 SSL_CTX_SRP_CTX_free(a); 3355 #endif 3356 #ifndef OPENSSL_NO_ENGINE 3357 ENGINE_finish(a->client_cert_engine); 3358 #endif 3359 3360 #ifndef OPENSSL_NO_EC 3361 OPENSSL_free(a->ext.ecpointformats); 3362 OPENSSL_free(a->ext.supportedgroups); 3363 #endif 3364 OPENSSL_free(a->ext.alpn); 3365 OPENSSL_secure_free(a->ext.secure); 3366 3367 CRYPTO_THREAD_lock_free(a->lock); 3368 3369 OPENSSL_free(a); 3370 } 3371 3372 void SSL_CTX_set_default_passwd_cb(SSL_CTX *ctx, pem_password_cb *cb) 3373 { 3374 ctx->default_passwd_callback = cb; 3375 } 3376 3377 void SSL_CTX_set_default_passwd_cb_userdata(SSL_CTX *ctx, void *u) 3378 { 3379 ctx->default_passwd_callback_userdata = u; 3380 } 3381 3382 pem_password_cb *SSL_CTX_get_default_passwd_cb(SSL_CTX *ctx) 3383 { 3384 return ctx->default_passwd_callback; 3385 } 3386 3387 void *SSL_CTX_get_default_passwd_cb_userdata(SSL_CTX *ctx) 3388 { 3389 return ctx->default_passwd_callback_userdata; 3390 } 3391 3392 void SSL_set_default_passwd_cb(SSL *s, pem_password_cb *cb) 3393 { 3394 s->default_passwd_callback = cb; 3395 } 3396 3397 void SSL_set_default_passwd_cb_userdata(SSL *s, void *u) 3398 { 3399 s->default_passwd_callback_userdata = u; 3400 } 3401 3402 pem_password_cb *SSL_get_default_passwd_cb(SSL *s) 3403 { 3404 return s->default_passwd_callback; 3405 } 3406 3407 void *SSL_get_default_passwd_cb_userdata(SSL *s) 3408 { 3409 return s->default_passwd_callback_userdata; 3410 } 3411 3412 void SSL_CTX_set_cert_verify_callback(SSL_CTX *ctx, 3413 int (*cb) (X509_STORE_CTX *, void *), 3414 void *arg) 3415 { 3416 ctx->app_verify_callback = cb; 3417 ctx->app_verify_arg = arg; 3418 } 3419 3420 void SSL_CTX_set_verify(SSL_CTX *ctx, int mode, 3421 int (*cb) (int, X509_STORE_CTX *)) 3422 { 3423 ctx->verify_mode = mode; 3424 ctx->default_verify_callback = cb; 3425 } 3426 3427 void SSL_CTX_set_verify_depth(SSL_CTX *ctx, int depth) 3428 { 3429 X509_VERIFY_PARAM_set_depth(ctx->param, depth); 3430 } 3431 3432 void SSL_CTX_set_cert_cb(SSL_CTX *c, int (*cb) (SSL *ssl, void *arg), void *arg) 3433 { 3434 ssl_cert_set_cert_cb(c->cert, cb, arg); 3435 } 3436 3437 void SSL_set_cert_cb(SSL *s, int (*cb) (SSL *ssl, void *arg), void *arg) 3438 { 3439 ssl_cert_set_cert_cb(s->cert, cb, arg); 3440 } 3441 3442 void ssl_set_masks(SSL *s) 3443 { 3444 CERT *c = s->cert; 3445 uint32_t *pvalid = s->s3->tmp.valid_flags; 3446 int rsa_enc, rsa_sign, dh_tmp, dsa_sign; 3447 unsigned long mask_k, mask_a; 3448 #ifndef OPENSSL_NO_EC 3449 int have_ecc_cert, ecdsa_ok; 3450 #endif 3451 if (c == NULL) 3452 return; 3453 3454 #ifndef OPENSSL_NO_DH 3455 dh_tmp = (c->dh_tmp != NULL || c->dh_tmp_cb != NULL || c->dh_tmp_auto); 3456 #else 3457 dh_tmp = 0; 3458 #endif 3459 3460 rsa_enc = pvalid[SSL_PKEY_RSA] & CERT_PKEY_VALID; 3461 rsa_sign = pvalid[SSL_PKEY_RSA] & CERT_PKEY_VALID; 3462 dsa_sign = pvalid[SSL_PKEY_DSA_SIGN] & CERT_PKEY_VALID; 3463 #ifndef OPENSSL_NO_EC 3464 have_ecc_cert = pvalid[SSL_PKEY_ECC] & CERT_PKEY_VALID; 3465 #endif 3466 mask_k = 0; 3467 mask_a = 0; 3468 3469 #ifdef CIPHER_DEBUG 3470 fprintf(stderr, "dht=%d re=%d rs=%d ds=%d\n", 3471 dh_tmp, rsa_enc, rsa_sign, dsa_sign); 3472 #endif 3473 3474 #ifndef OPENSSL_NO_GOST 3475 if (ssl_has_cert(s, SSL_PKEY_GOST12_512)) { 3476 mask_k |= SSL_kGOST; 3477 mask_a |= SSL_aGOST12; 3478 } 3479 if (ssl_has_cert(s, SSL_PKEY_GOST12_256)) { 3480 mask_k |= SSL_kGOST; 3481 mask_a |= SSL_aGOST12; 3482 } 3483 if (ssl_has_cert(s, SSL_PKEY_GOST01)) { 3484 mask_k |= SSL_kGOST; 3485 mask_a |= SSL_aGOST01; 3486 } 3487 #endif 3488 3489 if (rsa_enc) 3490 mask_k |= SSL_kRSA; 3491 3492 if (dh_tmp) 3493 mask_k |= SSL_kDHE; 3494 3495 /* 3496 * If we only have an RSA-PSS certificate allow RSA authentication 3497 * if TLS 1.2 and peer supports it. 3498 */ 3499 3500 if (rsa_enc || rsa_sign || (ssl_has_cert(s, SSL_PKEY_RSA_PSS_SIGN) 3501 && pvalid[SSL_PKEY_RSA_PSS_SIGN] & CERT_PKEY_EXPLICIT_SIGN 3502 && TLS1_get_version(s) == TLS1_2_VERSION)) 3503 mask_a |= SSL_aRSA; 3504 3505 if (dsa_sign) { 3506 mask_a |= SSL_aDSS; 3507 } 3508 3509 mask_a |= SSL_aNULL; 3510 3511 /* 3512 * An ECC certificate may be usable for ECDH and/or ECDSA cipher suites 3513 * depending on the key usage extension. 3514 */ 3515 #ifndef OPENSSL_NO_EC 3516 if (have_ecc_cert) { 3517 uint32_t ex_kusage; 3518 ex_kusage = X509_get_key_usage(c->pkeys[SSL_PKEY_ECC].x509); 3519 ecdsa_ok = ex_kusage & X509v3_KU_DIGITAL_SIGNATURE; 3520 if (!(pvalid[SSL_PKEY_ECC] & CERT_PKEY_SIGN)) 3521 ecdsa_ok = 0; 3522 if (ecdsa_ok) 3523 mask_a |= SSL_aECDSA; 3524 } 3525 /* Allow Ed25519 for TLS 1.2 if peer supports it */ 3526 if (!(mask_a & SSL_aECDSA) && ssl_has_cert(s, SSL_PKEY_ED25519) 3527 && pvalid[SSL_PKEY_ED25519] & CERT_PKEY_EXPLICIT_SIGN 3528 && TLS1_get_version(s) == TLS1_2_VERSION) 3529 mask_a |= SSL_aECDSA; 3530 3531 /* Allow Ed448 for TLS 1.2 if peer supports it */ 3532 if (!(mask_a & SSL_aECDSA) && ssl_has_cert(s, SSL_PKEY_ED448) 3533 && pvalid[SSL_PKEY_ED448] & CERT_PKEY_EXPLICIT_SIGN 3534 && TLS1_get_version(s) == TLS1_2_VERSION) 3535 mask_a |= SSL_aECDSA; 3536 #endif 3537 3538 #ifndef OPENSSL_NO_EC 3539 mask_k |= SSL_kECDHE; 3540 #endif 3541 3542 #ifndef OPENSSL_NO_PSK 3543 mask_k |= SSL_kPSK; 3544 mask_a |= SSL_aPSK; 3545 if (mask_k & SSL_kRSA) 3546 mask_k |= SSL_kRSAPSK; 3547 if (mask_k & SSL_kDHE) 3548 mask_k |= SSL_kDHEPSK; 3549 if (mask_k & SSL_kECDHE) 3550 mask_k |= SSL_kECDHEPSK; 3551 #endif 3552 3553 s->s3->tmp.mask_k = mask_k; 3554 s->s3->tmp.mask_a = mask_a; 3555 } 3556 3557 #ifndef OPENSSL_NO_EC 3558 3559 int ssl_check_srvr_ecc_cert_and_alg(X509 *x, SSL *s) 3560 { 3561 if (s->s3->tmp.new_cipher->algorithm_auth & SSL_aECDSA) { 3562 /* key usage, if present, must allow signing */ 3563 if (!(X509_get_key_usage(x) & X509v3_KU_DIGITAL_SIGNATURE)) { 3564 SSLerr(SSL_F_SSL_CHECK_SRVR_ECC_CERT_AND_ALG, 3565 SSL_R_ECC_CERT_NOT_FOR_SIGNING); 3566 return 0; 3567 } 3568 } 3569 return 1; /* all checks are ok */ 3570 } 3571 3572 #endif 3573 3574 int ssl_get_server_cert_serverinfo(SSL *s, const unsigned char **serverinfo, 3575 size_t *serverinfo_length) 3576 { 3577 CERT_PKEY *cpk = s->s3->tmp.cert; 3578 *serverinfo_length = 0; 3579 3580 if (cpk == NULL || cpk->serverinfo == NULL) 3581 return 0; 3582 3583 *serverinfo = cpk->serverinfo; 3584 *serverinfo_length = cpk->serverinfo_length; 3585 return 1; 3586 } 3587 3588 void ssl_update_cache(SSL *s, int mode) 3589 { 3590 int i; 3591 3592 /* 3593 * If the session_id_length is 0, we are not supposed to cache it, and it 3594 * would be rather hard to do anyway :-) 3595 */ 3596 if (s->session->session_id_length == 0) 3597 return; 3598 3599 /* 3600 * If sid_ctx_length is 0 there is no specific application context 3601 * associated with this session, so when we try to resume it and 3602 * SSL_VERIFY_PEER is requested to verify the client identity, we have no 3603 * indication that this is actually a session for the proper application 3604 * context, and the *handshake* will fail, not just the resumption attempt. 3605 * Do not cache (on the server) these sessions that are not resumable 3606 * (clients can set SSL_VERIFY_PEER without needing a sid_ctx set). 3607 */ 3608 if (s->server && s->session->sid_ctx_length == 0 3609 && (s->verify_mode & SSL_VERIFY_PEER) != 0) 3610 return; 3611 3612 i = s->session_ctx->session_cache_mode; 3613 if ((i & mode) != 0 3614 && (!s->hit || SSL_IS_TLS13(s))) { 3615 /* 3616 * Add the session to the internal cache. In server side TLSv1.3 we 3617 * normally don't do this because by default it's a full stateless ticket 3618 * with only a dummy session id so there is no reason to cache it, 3619 * unless: 3620 * - we are doing early_data, in which case we cache so that we can 3621 * detect replays 3622 * - the application has set a remove_session_cb so needs to know about 3623 * session timeout events 3624 * - SSL_OP_NO_TICKET is set in which case it is a stateful ticket 3625 */ 3626 if ((i & SSL_SESS_CACHE_NO_INTERNAL_STORE) == 0 3627 && (!SSL_IS_TLS13(s) 3628 || !s->server 3629 || (s->max_early_data > 0 3630 && (s->options & SSL_OP_NO_ANTI_REPLAY) == 0) 3631 || s->session_ctx->remove_session_cb != NULL 3632 || (s->options & SSL_OP_NO_TICKET) != 0)) 3633 SSL_CTX_add_session(s->session_ctx, s->session); 3634 3635 /* 3636 * Add the session to the external cache. We do this even in server side 3637 * TLSv1.3 without early data because some applications just want to 3638 * know about the creation of a session and aren't doing a full cache. 3639 */ 3640 if (s->session_ctx->new_session_cb != NULL) { 3641 SSL_SESSION_up_ref(s->session); 3642 if (!s->session_ctx->new_session_cb(s, s->session)) 3643 SSL_SESSION_free(s->session); 3644 } 3645 } 3646 3647 /* auto flush every 255 connections */ 3648 if ((!(i & SSL_SESS_CACHE_NO_AUTO_CLEAR)) && ((i & mode) == mode)) { 3649 TSAN_QUALIFIER int *stat; 3650 if (mode & SSL_SESS_CACHE_CLIENT) 3651 stat = &s->session_ctx->stats.sess_connect_good; 3652 else 3653 stat = &s->session_ctx->stats.sess_accept_good; 3654 if ((tsan_load(stat) & 0xff) == 0xff) 3655 SSL_CTX_flush_sessions(s->session_ctx, (unsigned long)time(NULL)); 3656 } 3657 } 3658 3659 const SSL_METHOD *SSL_CTX_get_ssl_method(const SSL_CTX *ctx) 3660 { 3661 return ctx->method; 3662 } 3663 3664 const SSL_METHOD *SSL_get_ssl_method(const SSL *s) 3665 { 3666 return s->method; 3667 } 3668 3669 int SSL_set_ssl_method(SSL *s, const SSL_METHOD *meth) 3670 { 3671 int ret = 1; 3672 3673 if (s->method != meth) { 3674 const SSL_METHOD *sm = s->method; 3675 int (*hf) (SSL *) = s->handshake_func; 3676 3677 if (sm->version == meth->version) 3678 s->method = meth; 3679 else { 3680 sm->ssl_free(s); 3681 s->method = meth; 3682 ret = s->method->ssl_new(s); 3683 } 3684 3685 if (hf == sm->ssl_connect) 3686 s->handshake_func = meth->ssl_connect; 3687 else if (hf == sm->ssl_accept) 3688 s->handshake_func = meth->ssl_accept; 3689 } 3690 return ret; 3691 } 3692 3693 int SSL_get_error(const SSL *s, int i) 3694 { 3695 int reason; 3696 unsigned long l; 3697 BIO *bio; 3698 3699 if (i > 0) 3700 return SSL_ERROR_NONE; 3701 3702 /* 3703 * Make things return SSL_ERROR_SYSCALL when doing SSL_do_handshake etc, 3704 * where we do encode the error 3705 */ 3706 if ((l = ERR_peek_error()) != 0) { 3707 if (ERR_GET_LIB(l) == ERR_LIB_SYS) 3708 return SSL_ERROR_SYSCALL; 3709 else 3710 return SSL_ERROR_SSL; 3711 } 3712 3713 if (SSL_want_read(s)) { 3714 bio = SSL_get_rbio(s); 3715 if (BIO_should_read(bio)) 3716 return SSL_ERROR_WANT_READ; 3717 else if (BIO_should_write(bio)) 3718 /* 3719 * This one doesn't make too much sense ... We never try to write 3720 * to the rbio, and an application program where rbio and wbio 3721 * are separate couldn't even know what it should wait for. 3722 * However if we ever set s->rwstate incorrectly (so that we have 3723 * SSL_want_read(s) instead of SSL_want_write(s)) and rbio and 3724 * wbio *are* the same, this test works around that bug; so it 3725 * might be safer to keep it. 3726 */ 3727 return SSL_ERROR_WANT_WRITE; 3728 else if (BIO_should_io_special(bio)) { 3729 reason = BIO_get_retry_reason(bio); 3730 if (reason == BIO_RR_CONNECT) 3731 return SSL_ERROR_WANT_CONNECT; 3732 else if (reason == BIO_RR_ACCEPT) 3733 return SSL_ERROR_WANT_ACCEPT; 3734 else 3735 return SSL_ERROR_SYSCALL; /* unknown */ 3736 } 3737 } 3738 3739 if (SSL_want_write(s)) { 3740 /* Access wbio directly - in order to use the buffered bio if present */ 3741 bio = s->wbio; 3742 if (BIO_should_write(bio)) 3743 return SSL_ERROR_WANT_WRITE; 3744 else if (BIO_should_read(bio)) 3745 /* 3746 * See above (SSL_want_read(s) with BIO_should_write(bio)) 3747 */ 3748 return SSL_ERROR_WANT_READ; 3749 else if (BIO_should_io_special(bio)) { 3750 reason = BIO_get_retry_reason(bio); 3751 if (reason == BIO_RR_CONNECT) 3752 return SSL_ERROR_WANT_CONNECT; 3753 else if (reason == BIO_RR_ACCEPT) 3754 return SSL_ERROR_WANT_ACCEPT; 3755 else 3756 return SSL_ERROR_SYSCALL; 3757 } 3758 } 3759 if (SSL_want_x509_lookup(s)) 3760 return SSL_ERROR_WANT_X509_LOOKUP; 3761 if (SSL_want_async(s)) 3762 return SSL_ERROR_WANT_ASYNC; 3763 if (SSL_want_async_job(s)) 3764 return SSL_ERROR_WANT_ASYNC_JOB; 3765 if (SSL_want_client_hello_cb(s)) 3766 return SSL_ERROR_WANT_CLIENT_HELLO_CB; 3767 3768 if ((s->shutdown & SSL_RECEIVED_SHUTDOWN) && 3769 (s->s3->warn_alert == SSL_AD_CLOSE_NOTIFY)) 3770 return SSL_ERROR_ZERO_RETURN; 3771 3772 return SSL_ERROR_SYSCALL; 3773 } 3774 3775 static int ssl_do_handshake_intern(void *vargs) 3776 { 3777 struct ssl_async_args *args; 3778 SSL *s; 3779 3780 args = (struct ssl_async_args *)vargs; 3781 s = args->s; 3782 3783 return s->handshake_func(s); 3784 } 3785 3786 int SSL_do_handshake(SSL *s) 3787 { 3788 int ret = 1; 3789 3790 if (s->handshake_func == NULL) { 3791 SSLerr(SSL_F_SSL_DO_HANDSHAKE, SSL_R_CONNECTION_TYPE_NOT_SET); 3792 return -1; 3793 } 3794 3795 ossl_statem_check_finish_init(s, -1); 3796 3797 s->method->ssl_renegotiate_check(s, 0); 3798 3799 if (SSL_in_init(s) || SSL_in_before(s)) { 3800 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) { 3801 struct ssl_async_args args; 3802 3803 memset(&args, 0, sizeof(args)); 3804 args.s = s; 3805 3806 ret = ssl_start_async_job(s, &args, ssl_do_handshake_intern); 3807 } else { 3808 ret = s->handshake_func(s); 3809 } 3810 } 3811 return ret; 3812 } 3813 3814 void SSL_set_accept_state(SSL *s) 3815 { 3816 s->server = 1; 3817 s->shutdown = 0; 3818 ossl_statem_clear(s); 3819 s->handshake_func = s->method->ssl_accept; 3820 clear_ciphers(s); 3821 } 3822 3823 void SSL_set_connect_state(SSL *s) 3824 { 3825 s->server = 0; 3826 s->shutdown = 0; 3827 ossl_statem_clear(s); 3828 s->handshake_func = s->method->ssl_connect; 3829 clear_ciphers(s); 3830 } 3831 3832 int ssl_undefined_function(SSL *s) 3833 { 3834 SSLerr(SSL_F_SSL_UNDEFINED_FUNCTION, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 3835 return 0; 3836 } 3837 3838 int ssl_undefined_void_function(void) 3839 { 3840 SSLerr(SSL_F_SSL_UNDEFINED_VOID_FUNCTION, 3841 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 3842 return 0; 3843 } 3844 3845 int ssl_undefined_const_function(const SSL *s) 3846 { 3847 return 0; 3848 } 3849 3850 const SSL_METHOD *ssl_bad_method(int ver) 3851 { 3852 SSLerr(SSL_F_SSL_BAD_METHOD, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 3853 return NULL; 3854 } 3855 3856 const char *ssl_protocol_to_string(int version) 3857 { 3858 switch(version) 3859 { 3860 case TLS1_3_VERSION: 3861 return "TLSv1.3"; 3862 3863 case TLS1_2_VERSION: 3864 return "TLSv1.2"; 3865 3866 case TLS1_1_VERSION: 3867 return "TLSv1.1"; 3868 3869 case TLS1_VERSION: 3870 return "TLSv1"; 3871 3872 case SSL3_VERSION: 3873 return "SSLv3"; 3874 3875 case DTLS1_BAD_VER: 3876 return "DTLSv0.9"; 3877 3878 case DTLS1_VERSION: 3879 return "DTLSv1"; 3880 3881 case DTLS1_2_VERSION: 3882 return "DTLSv1.2"; 3883 3884 default: 3885 return "unknown"; 3886 } 3887 } 3888 3889 const char *SSL_get_version(const SSL *s) 3890 { 3891 return ssl_protocol_to_string(s->version); 3892 } 3893 3894 static int dup_ca_names(STACK_OF(X509_NAME) **dst, STACK_OF(X509_NAME) *src) 3895 { 3896 STACK_OF(X509_NAME) *sk; 3897 X509_NAME *xn; 3898 int i; 3899 3900 if (src == NULL) { 3901 *dst = NULL; 3902 return 1; 3903 } 3904 3905 if ((sk = sk_X509_NAME_new_null()) == NULL) 3906 return 0; 3907 for (i = 0; i < sk_X509_NAME_num(src); i++) { 3908 xn = X509_NAME_dup(sk_X509_NAME_value(src, i)); 3909 if (xn == NULL) { 3910 sk_X509_NAME_pop_free(sk, X509_NAME_free); 3911 return 0; 3912 } 3913 if (sk_X509_NAME_insert(sk, xn, i) == 0) { 3914 X509_NAME_free(xn); 3915 sk_X509_NAME_pop_free(sk, X509_NAME_free); 3916 return 0; 3917 } 3918 } 3919 *dst = sk; 3920 3921 return 1; 3922 } 3923 3924 SSL *SSL_dup(SSL *s) 3925 { 3926 SSL *ret; 3927 int i; 3928 3929 /* If we're not quiescent, just up_ref! */ 3930 if (!SSL_in_init(s) || !SSL_in_before(s)) { 3931 CRYPTO_UP_REF(&s->references, &i, s->lock); 3932 return s; 3933 } 3934 3935 /* 3936 * Otherwise, copy configuration state, and session if set. 3937 */ 3938 if ((ret = SSL_new(SSL_get_SSL_CTX(s))) == NULL) 3939 return NULL; 3940 3941 if (s->session != NULL) { 3942 /* 3943 * Arranges to share the same session via up_ref. This "copies" 3944 * session-id, SSL_METHOD, sid_ctx, and 'cert' 3945 */ 3946 if (!SSL_copy_session_id(ret, s)) 3947 goto err; 3948 } else { 3949 /* 3950 * No session has been established yet, so we have to expect that 3951 * s->cert or ret->cert will be changed later -- they should not both 3952 * point to the same object, and thus we can't use 3953 * SSL_copy_session_id. 3954 */ 3955 if (!SSL_set_ssl_method(ret, s->method)) 3956 goto err; 3957 3958 if (s->cert != NULL) { 3959 ssl_cert_free(ret->cert); 3960 ret->cert = ssl_cert_dup(s->cert); 3961 if (ret->cert == NULL) 3962 goto err; 3963 } 3964 3965 if (!SSL_set_session_id_context(ret, s->sid_ctx, 3966 (int)s->sid_ctx_length)) 3967 goto err; 3968 } 3969 3970 if (!ssl_dane_dup(ret, s)) 3971 goto err; 3972 ret->version = s->version; 3973 ret->options = s->options; 3974 ret->min_proto_version = s->min_proto_version; 3975 ret->max_proto_version = s->max_proto_version; 3976 ret->mode = s->mode; 3977 SSL_set_max_cert_list(ret, SSL_get_max_cert_list(s)); 3978 SSL_set_read_ahead(ret, SSL_get_read_ahead(s)); 3979 ret->msg_callback = s->msg_callback; 3980 ret->msg_callback_arg = s->msg_callback_arg; 3981 SSL_set_verify(ret, SSL_get_verify_mode(s), SSL_get_verify_callback(s)); 3982 SSL_set_verify_depth(ret, SSL_get_verify_depth(s)); 3983 ret->generate_session_id = s->generate_session_id; 3984 3985 SSL_set_info_callback(ret, SSL_get_info_callback(s)); 3986 3987 /* copy app data, a little dangerous perhaps */ 3988 if (!CRYPTO_dup_ex_data(CRYPTO_EX_INDEX_SSL, &ret->ex_data, &s->ex_data)) 3989 goto err; 3990 3991 ret->server = s->server; 3992 if (s->handshake_func) { 3993 if (s->server) 3994 SSL_set_accept_state(ret); 3995 else 3996 SSL_set_connect_state(ret); 3997 } 3998 ret->shutdown = s->shutdown; 3999 ret->hit = s->hit; 4000 4001 ret->default_passwd_callback = s->default_passwd_callback; 4002 ret->default_passwd_callback_userdata = s->default_passwd_callback_userdata; 4003 4004 X509_VERIFY_PARAM_inherit(ret->param, s->param); 4005 4006 /* dup the cipher_list and cipher_list_by_id stacks */ 4007 if (s->cipher_list != NULL) { 4008 if ((ret->cipher_list = sk_SSL_CIPHER_dup(s->cipher_list)) == NULL) 4009 goto err; 4010 } 4011 if (s->cipher_list_by_id != NULL) 4012 if ((ret->cipher_list_by_id = sk_SSL_CIPHER_dup(s->cipher_list_by_id)) 4013 == NULL) 4014 goto err; 4015 4016 /* Dup the client_CA list */ 4017 if (!dup_ca_names(&ret->ca_names, s->ca_names) 4018 || !dup_ca_names(&ret->client_ca_names, s->client_ca_names)) 4019 goto err; 4020 4021 return ret; 4022 4023 err: 4024 SSL_free(ret); 4025 return NULL; 4026 } 4027 4028 void ssl_clear_cipher_ctx(SSL *s) 4029 { 4030 if (s->enc_read_ctx != NULL) { 4031 EVP_CIPHER_CTX_free(s->enc_read_ctx); 4032 s->enc_read_ctx = NULL; 4033 } 4034 if (s->enc_write_ctx != NULL) { 4035 EVP_CIPHER_CTX_free(s->enc_write_ctx); 4036 s->enc_write_ctx = NULL; 4037 } 4038 #ifndef OPENSSL_NO_COMP 4039 COMP_CTX_free(s->expand); 4040 s->expand = NULL; 4041 COMP_CTX_free(s->compress); 4042 s->compress = NULL; 4043 #endif 4044 } 4045 4046 X509 *SSL_get_certificate(const SSL *s) 4047 { 4048 if (s->cert != NULL) 4049 return s->cert->key->x509; 4050 else 4051 return NULL; 4052 } 4053 4054 EVP_PKEY *SSL_get_privatekey(const SSL *s) 4055 { 4056 if (s->cert != NULL) 4057 return s->cert->key->privatekey; 4058 else 4059 return NULL; 4060 } 4061 4062 X509 *SSL_CTX_get0_certificate(const SSL_CTX *ctx) 4063 { 4064 if (ctx->cert != NULL) 4065 return ctx->cert->key->x509; 4066 else 4067 return NULL; 4068 } 4069 4070 EVP_PKEY *SSL_CTX_get0_privatekey(const SSL_CTX *ctx) 4071 { 4072 if (ctx->cert != NULL) 4073 return ctx->cert->key->privatekey; 4074 else 4075 return NULL; 4076 } 4077 4078 const SSL_CIPHER *SSL_get_current_cipher(const SSL *s) 4079 { 4080 if ((s->session != NULL) && (s->session->cipher != NULL)) 4081 return s->session->cipher; 4082 return NULL; 4083 } 4084 4085 const SSL_CIPHER *SSL_get_pending_cipher(const SSL *s) 4086 { 4087 return s->s3->tmp.new_cipher; 4088 } 4089 4090 const COMP_METHOD *SSL_get_current_compression(const SSL *s) 4091 { 4092 #ifndef OPENSSL_NO_COMP 4093 return s->compress ? COMP_CTX_get_method(s->compress) : NULL; 4094 #else 4095 return NULL; 4096 #endif 4097 } 4098 4099 const COMP_METHOD *SSL_get_current_expansion(const SSL *s) 4100 { 4101 #ifndef OPENSSL_NO_COMP 4102 return s->expand ? COMP_CTX_get_method(s->expand) : NULL; 4103 #else 4104 return NULL; 4105 #endif 4106 } 4107 4108 int ssl_init_wbio_buffer(SSL *s) 4109 { 4110 BIO *bbio; 4111 4112 if (s->bbio != NULL) { 4113 /* Already buffered. */ 4114 return 1; 4115 } 4116 4117 bbio = BIO_new(BIO_f_buffer()); 4118 if (bbio == NULL || !BIO_set_read_buffer_size(bbio, 1)) { 4119 BIO_free(bbio); 4120 SSLerr(SSL_F_SSL_INIT_WBIO_BUFFER, ERR_R_BUF_LIB); 4121 return 0; 4122 } 4123 s->bbio = bbio; 4124 s->wbio = BIO_push(bbio, s->wbio); 4125 4126 return 1; 4127 } 4128 4129 int ssl_free_wbio_buffer(SSL *s) 4130 { 4131 /* callers ensure s is never null */ 4132 if (s->bbio == NULL) 4133 return 1; 4134 4135 s->wbio = BIO_pop(s->wbio); 4136 BIO_free(s->bbio); 4137 s->bbio = NULL; 4138 4139 return 1; 4140 } 4141 4142 void SSL_CTX_set_quiet_shutdown(SSL_CTX *ctx, int mode) 4143 { 4144 ctx->quiet_shutdown = mode; 4145 } 4146 4147 int SSL_CTX_get_quiet_shutdown(const SSL_CTX *ctx) 4148 { 4149 return ctx->quiet_shutdown; 4150 } 4151 4152 void SSL_set_quiet_shutdown(SSL *s, int mode) 4153 { 4154 s->quiet_shutdown = mode; 4155 } 4156 4157 int SSL_get_quiet_shutdown(const SSL *s) 4158 { 4159 return s->quiet_shutdown; 4160 } 4161 4162 void SSL_set_shutdown(SSL *s, int mode) 4163 { 4164 s->shutdown = mode; 4165 } 4166 4167 int SSL_get_shutdown(const SSL *s) 4168 { 4169 return s->shutdown; 4170 } 4171 4172 int SSL_version(const SSL *s) 4173 { 4174 return s->version; 4175 } 4176 4177 int SSL_client_version(const SSL *s) 4178 { 4179 return s->client_version; 4180 } 4181 4182 SSL_CTX *SSL_get_SSL_CTX(const SSL *ssl) 4183 { 4184 return ssl->ctx; 4185 } 4186 4187 SSL_CTX *SSL_set_SSL_CTX(SSL *ssl, SSL_CTX *ctx) 4188 { 4189 CERT *new_cert; 4190 if (ssl->ctx == ctx) 4191 return ssl->ctx; 4192 if (ctx == NULL) 4193 ctx = ssl->session_ctx; 4194 new_cert = ssl_cert_dup(ctx->cert); 4195 if (new_cert == NULL) { 4196 return NULL; 4197 } 4198 4199 if (!custom_exts_copy_flags(&new_cert->custext, &ssl->cert->custext)) { 4200 ssl_cert_free(new_cert); 4201 return NULL; 4202 } 4203 4204 ssl_cert_free(ssl->cert); 4205 ssl->cert = new_cert; 4206 4207 /* 4208 * Program invariant: |sid_ctx| has fixed size (SSL_MAX_SID_CTX_LENGTH), 4209 * so setter APIs must prevent invalid lengths from entering the system. 4210 */ 4211 if (!ossl_assert(ssl->sid_ctx_length <= sizeof(ssl->sid_ctx))) 4212 return NULL; 4213 4214 /* 4215 * If the session ID context matches that of the parent SSL_CTX, 4216 * inherit it from the new SSL_CTX as well. If however the context does 4217 * not match (i.e., it was set per-ssl with SSL_set_session_id_context), 4218 * leave it unchanged. 4219 */ 4220 if ((ssl->ctx != NULL) && 4221 (ssl->sid_ctx_length == ssl->ctx->sid_ctx_length) && 4222 (memcmp(ssl->sid_ctx, ssl->ctx->sid_ctx, ssl->sid_ctx_length) == 0)) { 4223 ssl->sid_ctx_length = ctx->sid_ctx_length; 4224 memcpy(&ssl->sid_ctx, &ctx->sid_ctx, sizeof(ssl->sid_ctx)); 4225 } 4226 4227 SSL_CTX_up_ref(ctx); 4228 SSL_CTX_free(ssl->ctx); /* decrement reference count */ 4229 ssl->ctx = ctx; 4230 4231 return ssl->ctx; 4232 } 4233 4234 int SSL_CTX_set_default_verify_paths(SSL_CTX *ctx) 4235 { 4236 return X509_STORE_set_default_paths(ctx->cert_store); 4237 } 4238 4239 int SSL_CTX_set_default_verify_dir(SSL_CTX *ctx) 4240 { 4241 X509_LOOKUP *lookup; 4242 4243 lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_hash_dir()); 4244 if (lookup == NULL) 4245 return 0; 4246 X509_LOOKUP_add_dir(lookup, NULL, X509_FILETYPE_DEFAULT); 4247 4248 /* Clear any errors if the default directory does not exist */ 4249 ERR_clear_error(); 4250 4251 return 1; 4252 } 4253 4254 int SSL_CTX_set_default_verify_file(SSL_CTX *ctx) 4255 { 4256 X509_LOOKUP *lookup; 4257 4258 lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_file()); 4259 if (lookup == NULL) 4260 return 0; 4261 4262 X509_LOOKUP_load_file(lookup, NULL, X509_FILETYPE_DEFAULT); 4263 4264 /* Clear any errors if the default file does not exist */ 4265 ERR_clear_error(); 4266 4267 return 1; 4268 } 4269 4270 int SSL_CTX_load_verify_locations(SSL_CTX *ctx, const char *CAfile, 4271 const char *CApath) 4272 { 4273 return X509_STORE_load_locations(ctx->cert_store, CAfile, CApath); 4274 } 4275 4276 void SSL_set_info_callback(SSL *ssl, 4277 void (*cb) (const SSL *ssl, int type, int val)) 4278 { 4279 ssl->info_callback = cb; 4280 } 4281 4282 /* 4283 * One compiler (Diab DCC) doesn't like argument names in returned function 4284 * pointer. 4285 */ 4286 void (*SSL_get_info_callback(const SSL *ssl)) (const SSL * /* ssl */ , 4287 int /* type */ , 4288 int /* val */ ) { 4289 return ssl->info_callback; 4290 } 4291 4292 void SSL_set_verify_result(SSL *ssl, long arg) 4293 { 4294 ssl->verify_result = arg; 4295 } 4296 4297 long SSL_get_verify_result(const SSL *ssl) 4298 { 4299 return ssl->verify_result; 4300 } 4301 4302 size_t SSL_get_client_random(const SSL *ssl, unsigned char *out, size_t outlen) 4303 { 4304 if (outlen == 0) 4305 return sizeof(ssl->s3->client_random); 4306 if (outlen > sizeof(ssl->s3->client_random)) 4307 outlen = sizeof(ssl->s3->client_random); 4308 memcpy(out, ssl->s3->client_random, outlen); 4309 return outlen; 4310 } 4311 4312 size_t SSL_get_server_random(const SSL *ssl, unsigned char *out, size_t outlen) 4313 { 4314 if (outlen == 0) 4315 return sizeof(ssl->s3->server_random); 4316 if (outlen > sizeof(ssl->s3->server_random)) 4317 outlen = sizeof(ssl->s3->server_random); 4318 memcpy(out, ssl->s3->server_random, outlen); 4319 return outlen; 4320 } 4321 4322 size_t SSL_SESSION_get_master_key(const SSL_SESSION *session, 4323 unsigned char *out, size_t outlen) 4324 { 4325 if (outlen == 0) 4326 return session->master_key_length; 4327 if (outlen > session->master_key_length) 4328 outlen = session->master_key_length; 4329 memcpy(out, session->master_key, outlen); 4330 return outlen; 4331 } 4332 4333 int SSL_SESSION_set1_master_key(SSL_SESSION *sess, const unsigned char *in, 4334 size_t len) 4335 { 4336 if (len > sizeof(sess->master_key)) 4337 return 0; 4338 4339 memcpy(sess->master_key, in, len); 4340 sess->master_key_length = len; 4341 return 1; 4342 } 4343 4344 4345 int SSL_set_ex_data(SSL *s, int idx, void *arg) 4346 { 4347 return CRYPTO_set_ex_data(&s->ex_data, idx, arg); 4348 } 4349 4350 void *SSL_get_ex_data(const SSL *s, int idx) 4351 { 4352 return CRYPTO_get_ex_data(&s->ex_data, idx); 4353 } 4354 4355 int SSL_CTX_set_ex_data(SSL_CTX *s, int idx, void *arg) 4356 { 4357 return CRYPTO_set_ex_data(&s->ex_data, idx, arg); 4358 } 4359 4360 void *SSL_CTX_get_ex_data(const SSL_CTX *s, int idx) 4361 { 4362 return CRYPTO_get_ex_data(&s->ex_data, idx); 4363 } 4364 4365 X509_STORE *SSL_CTX_get_cert_store(const SSL_CTX *ctx) 4366 { 4367 return ctx->cert_store; 4368 } 4369 4370 void SSL_CTX_set_cert_store(SSL_CTX *ctx, X509_STORE *store) 4371 { 4372 X509_STORE_free(ctx->cert_store); 4373 ctx->cert_store = store; 4374 } 4375 4376 void SSL_CTX_set1_cert_store(SSL_CTX *ctx, X509_STORE *store) 4377 { 4378 if (store != NULL) 4379 X509_STORE_up_ref(store); 4380 SSL_CTX_set_cert_store(ctx, store); 4381 } 4382 4383 int SSL_want(const SSL *s) 4384 { 4385 return s->rwstate; 4386 } 4387 4388 /** 4389 * \brief Set the callback for generating temporary DH keys. 4390 * \param ctx the SSL context. 4391 * \param dh the callback 4392 */ 4393 4394 #ifndef OPENSSL_NO_DH 4395 void SSL_CTX_set_tmp_dh_callback(SSL_CTX *ctx, 4396 DH *(*dh) (SSL *ssl, int is_export, 4397 int keylength)) 4398 { 4399 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_TMP_DH_CB, (void (*)(void))dh); 4400 } 4401 4402 void SSL_set_tmp_dh_callback(SSL *ssl, DH *(*dh) (SSL *ssl, int is_export, 4403 int keylength)) 4404 { 4405 SSL_callback_ctrl(ssl, SSL_CTRL_SET_TMP_DH_CB, (void (*)(void))dh); 4406 } 4407 #endif 4408 4409 #ifndef OPENSSL_NO_PSK 4410 int SSL_CTX_use_psk_identity_hint(SSL_CTX *ctx, const char *identity_hint) 4411 { 4412 if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) { 4413 SSLerr(SSL_F_SSL_CTX_USE_PSK_IDENTITY_HINT, SSL_R_DATA_LENGTH_TOO_LONG); 4414 return 0; 4415 } 4416 OPENSSL_free(ctx->cert->psk_identity_hint); 4417 if (identity_hint != NULL) { 4418 ctx->cert->psk_identity_hint = OPENSSL_strdup(identity_hint); 4419 if (ctx->cert->psk_identity_hint == NULL) 4420 return 0; 4421 } else 4422 ctx->cert->psk_identity_hint = NULL; 4423 return 1; 4424 } 4425 4426 int SSL_use_psk_identity_hint(SSL *s, const char *identity_hint) 4427 { 4428 if (s == NULL) 4429 return 0; 4430 4431 if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) { 4432 SSLerr(SSL_F_SSL_USE_PSK_IDENTITY_HINT, SSL_R_DATA_LENGTH_TOO_LONG); 4433 return 0; 4434 } 4435 OPENSSL_free(s->cert->psk_identity_hint); 4436 if (identity_hint != NULL) { 4437 s->cert->psk_identity_hint = OPENSSL_strdup(identity_hint); 4438 if (s->cert->psk_identity_hint == NULL) 4439 return 0; 4440 } else 4441 s->cert->psk_identity_hint = NULL; 4442 return 1; 4443 } 4444 4445 const char *SSL_get_psk_identity_hint(const SSL *s) 4446 { 4447 if (s == NULL || s->session == NULL) 4448 return NULL; 4449 return s->session->psk_identity_hint; 4450 } 4451 4452 const char *SSL_get_psk_identity(const SSL *s) 4453 { 4454 if (s == NULL || s->session == NULL) 4455 return NULL; 4456 return s->session->psk_identity; 4457 } 4458 4459 void SSL_set_psk_client_callback(SSL *s, SSL_psk_client_cb_func cb) 4460 { 4461 s->psk_client_callback = cb; 4462 } 4463 4464 void SSL_CTX_set_psk_client_callback(SSL_CTX *ctx, SSL_psk_client_cb_func cb) 4465 { 4466 ctx->psk_client_callback = cb; 4467 } 4468 4469 void SSL_set_psk_server_callback(SSL *s, SSL_psk_server_cb_func cb) 4470 { 4471 s->psk_server_callback = cb; 4472 } 4473 4474 void SSL_CTX_set_psk_server_callback(SSL_CTX *ctx, SSL_psk_server_cb_func cb) 4475 { 4476 ctx->psk_server_callback = cb; 4477 } 4478 #endif 4479 4480 void SSL_set_psk_find_session_callback(SSL *s, SSL_psk_find_session_cb_func cb) 4481 { 4482 s->psk_find_session_cb = cb; 4483 } 4484 4485 void SSL_CTX_set_psk_find_session_callback(SSL_CTX *ctx, 4486 SSL_psk_find_session_cb_func cb) 4487 { 4488 ctx->psk_find_session_cb = cb; 4489 } 4490 4491 void SSL_set_psk_use_session_callback(SSL *s, SSL_psk_use_session_cb_func cb) 4492 { 4493 s->psk_use_session_cb = cb; 4494 } 4495 4496 void SSL_CTX_set_psk_use_session_callback(SSL_CTX *ctx, 4497 SSL_psk_use_session_cb_func cb) 4498 { 4499 ctx->psk_use_session_cb = cb; 4500 } 4501 4502 void SSL_CTX_set_msg_callback(SSL_CTX *ctx, 4503 void (*cb) (int write_p, int version, 4504 int content_type, const void *buf, 4505 size_t len, SSL *ssl, void *arg)) 4506 { 4507 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_MSG_CALLBACK, (void (*)(void))cb); 4508 } 4509 4510 void SSL_set_msg_callback(SSL *ssl, 4511 void (*cb) (int write_p, int version, 4512 int content_type, const void *buf, 4513 size_t len, SSL *ssl, void *arg)) 4514 { 4515 SSL_callback_ctrl(ssl, SSL_CTRL_SET_MSG_CALLBACK, (void (*)(void))cb); 4516 } 4517 4518 void SSL_CTX_set_not_resumable_session_callback(SSL_CTX *ctx, 4519 int (*cb) (SSL *ssl, 4520 int 4521 is_forward_secure)) 4522 { 4523 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB, 4524 (void (*)(void))cb); 4525 } 4526 4527 void SSL_set_not_resumable_session_callback(SSL *ssl, 4528 int (*cb) (SSL *ssl, 4529 int is_forward_secure)) 4530 { 4531 SSL_callback_ctrl(ssl, SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB, 4532 (void (*)(void))cb); 4533 } 4534 4535 void SSL_CTX_set_record_padding_callback(SSL_CTX *ctx, 4536 size_t (*cb) (SSL *ssl, int type, 4537 size_t len, void *arg)) 4538 { 4539 ctx->record_padding_cb = cb; 4540 } 4541 4542 void SSL_CTX_set_record_padding_callback_arg(SSL_CTX *ctx, void *arg) 4543 { 4544 ctx->record_padding_arg = arg; 4545 } 4546 4547 void *SSL_CTX_get_record_padding_callback_arg(const SSL_CTX *ctx) 4548 { 4549 return ctx->record_padding_arg; 4550 } 4551 4552 int SSL_CTX_set_block_padding(SSL_CTX *ctx, size_t block_size) 4553 { 4554 /* block size of 0 or 1 is basically no padding */ 4555 if (block_size == 1) 4556 ctx->block_padding = 0; 4557 else if (block_size <= SSL3_RT_MAX_PLAIN_LENGTH) 4558 ctx->block_padding = block_size; 4559 else 4560 return 0; 4561 return 1; 4562 } 4563 4564 int SSL_set_record_padding_callback(SSL *ssl, 4565 size_t (*cb) (SSL *ssl, int type, 4566 size_t len, void *arg)) 4567 { 4568 BIO *b; 4569 4570 b = SSL_get_wbio(ssl); 4571 if (b == NULL || !BIO_get_ktls_send(b)) { 4572 ssl->record_padding_cb = cb; 4573 return 1; 4574 } 4575 return 0; 4576 } 4577 4578 void SSL_set_record_padding_callback_arg(SSL *ssl, void *arg) 4579 { 4580 ssl->record_padding_arg = arg; 4581 } 4582 4583 void *SSL_get_record_padding_callback_arg(const SSL *ssl) 4584 { 4585 return ssl->record_padding_arg; 4586 } 4587 4588 int SSL_set_block_padding(SSL *ssl, size_t block_size) 4589 { 4590 /* block size of 0 or 1 is basically no padding */ 4591 if (block_size == 1) 4592 ssl->block_padding = 0; 4593 else if (block_size <= SSL3_RT_MAX_PLAIN_LENGTH) 4594 ssl->block_padding = block_size; 4595 else 4596 return 0; 4597 return 1; 4598 } 4599 4600 int SSL_set_num_tickets(SSL *s, size_t num_tickets) 4601 { 4602 s->num_tickets = num_tickets; 4603 4604 return 1; 4605 } 4606 4607 size_t SSL_get_num_tickets(const SSL *s) 4608 { 4609 return s->num_tickets; 4610 } 4611 4612 int SSL_CTX_set_num_tickets(SSL_CTX *ctx, size_t num_tickets) 4613 { 4614 ctx->num_tickets = num_tickets; 4615 4616 return 1; 4617 } 4618 4619 size_t SSL_CTX_get_num_tickets(const SSL_CTX *ctx) 4620 { 4621 return ctx->num_tickets; 4622 } 4623 4624 /* 4625 * Allocates new EVP_MD_CTX and sets pointer to it into given pointer 4626 * variable, freeing EVP_MD_CTX previously stored in that variable, if any. 4627 * If EVP_MD pointer is passed, initializes ctx with this |md|. 4628 * Returns the newly allocated ctx; 4629 */ 4630 4631 EVP_MD_CTX *ssl_replace_hash(EVP_MD_CTX **hash, const EVP_MD *md) 4632 { 4633 ssl_clear_hash_ctx(hash); 4634 *hash = EVP_MD_CTX_new(); 4635 if (*hash == NULL || (md && EVP_DigestInit_ex(*hash, md, NULL) <= 0)) { 4636 EVP_MD_CTX_free(*hash); 4637 *hash = NULL; 4638 return NULL; 4639 } 4640 return *hash; 4641 } 4642 4643 void ssl_clear_hash_ctx(EVP_MD_CTX **hash) 4644 { 4645 4646 EVP_MD_CTX_free(*hash); 4647 *hash = NULL; 4648 } 4649 4650 /* Retrieve handshake hashes */ 4651 int ssl_handshake_hash(SSL *s, unsigned char *out, size_t outlen, 4652 size_t *hashlen) 4653 { 4654 EVP_MD_CTX *ctx = NULL; 4655 EVP_MD_CTX *hdgst = s->s3->handshake_dgst; 4656 int hashleni = EVP_MD_CTX_size(hdgst); 4657 int ret = 0; 4658 4659 if (hashleni < 0 || (size_t)hashleni > outlen) { 4660 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_HANDSHAKE_HASH, 4661 ERR_R_INTERNAL_ERROR); 4662 goto err; 4663 } 4664 4665 ctx = EVP_MD_CTX_new(); 4666 if (ctx == NULL) { 4667 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_HANDSHAKE_HASH, 4668 ERR_R_INTERNAL_ERROR); 4669 goto err; 4670 } 4671 4672 if (!EVP_MD_CTX_copy_ex(ctx, hdgst) 4673 || EVP_DigestFinal_ex(ctx, out, NULL) <= 0) { 4674 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_HANDSHAKE_HASH, 4675 ERR_R_INTERNAL_ERROR); 4676 goto err; 4677 } 4678 4679 *hashlen = hashleni; 4680 4681 ret = 1; 4682 err: 4683 EVP_MD_CTX_free(ctx); 4684 return ret; 4685 } 4686 4687 int SSL_session_reused(const SSL *s) 4688 { 4689 return s->hit; 4690 } 4691 4692 int SSL_is_server(const SSL *s) 4693 { 4694 return s->server; 4695 } 4696 4697 #if OPENSSL_API_COMPAT < 0x10100000L 4698 void SSL_set_debug(SSL *s, int debug) 4699 { 4700 /* Old function was do-nothing anyway... */ 4701 (void)s; 4702 (void)debug; 4703 } 4704 #endif 4705 4706 void SSL_set_security_level(SSL *s, int level) 4707 { 4708 s->cert->sec_level = level; 4709 } 4710 4711 int SSL_get_security_level(const SSL *s) 4712 { 4713 return s->cert->sec_level; 4714 } 4715 4716 void SSL_set_security_callback(SSL *s, 4717 int (*cb) (const SSL *s, const SSL_CTX *ctx, 4718 int op, int bits, int nid, 4719 void *other, void *ex)) 4720 { 4721 s->cert->sec_cb = cb; 4722 } 4723 4724 int (*SSL_get_security_callback(const SSL *s)) (const SSL *s, 4725 const SSL_CTX *ctx, int op, 4726 int bits, int nid, void *other, 4727 void *ex) { 4728 return s->cert->sec_cb; 4729 } 4730 4731 void SSL_set0_security_ex_data(SSL *s, void *ex) 4732 { 4733 s->cert->sec_ex = ex; 4734 } 4735 4736 void *SSL_get0_security_ex_data(const SSL *s) 4737 { 4738 return s->cert->sec_ex; 4739 } 4740 4741 void SSL_CTX_set_security_level(SSL_CTX *ctx, int level) 4742 { 4743 ctx->cert->sec_level = level; 4744 } 4745 4746 int SSL_CTX_get_security_level(const SSL_CTX *ctx) 4747 { 4748 return ctx->cert->sec_level; 4749 } 4750 4751 void SSL_CTX_set_security_callback(SSL_CTX *ctx, 4752 int (*cb) (const SSL *s, const SSL_CTX *ctx, 4753 int op, int bits, int nid, 4754 void *other, void *ex)) 4755 { 4756 ctx->cert->sec_cb = cb; 4757 } 4758 4759 int (*SSL_CTX_get_security_callback(const SSL_CTX *ctx)) (const SSL *s, 4760 const SSL_CTX *ctx, 4761 int op, int bits, 4762 int nid, 4763 void *other, 4764 void *ex) { 4765 return ctx->cert->sec_cb; 4766 } 4767 4768 void SSL_CTX_set0_security_ex_data(SSL_CTX *ctx, void *ex) 4769 { 4770 ctx->cert->sec_ex = ex; 4771 } 4772 4773 void *SSL_CTX_get0_security_ex_data(const SSL_CTX *ctx) 4774 { 4775 return ctx->cert->sec_ex; 4776 } 4777 4778 /* 4779 * Get/Set/Clear options in SSL_CTX or SSL, formerly macros, now functions that 4780 * can return unsigned long, instead of the generic long return value from the 4781 * control interface. 4782 */ 4783 unsigned long SSL_CTX_get_options(const SSL_CTX *ctx) 4784 { 4785 return ctx->options; 4786 } 4787 4788 unsigned long SSL_get_options(const SSL *s) 4789 { 4790 return s->options; 4791 } 4792 4793 unsigned long SSL_CTX_set_options(SSL_CTX *ctx, unsigned long op) 4794 { 4795 return ctx->options |= op; 4796 } 4797 4798 unsigned long SSL_set_options(SSL *s, unsigned long op) 4799 { 4800 return s->options |= op; 4801 } 4802 4803 unsigned long SSL_CTX_clear_options(SSL_CTX *ctx, unsigned long op) 4804 { 4805 return ctx->options &= ~op; 4806 } 4807 4808 unsigned long SSL_clear_options(SSL *s, unsigned long op) 4809 { 4810 return s->options &= ~op; 4811 } 4812 4813 STACK_OF(X509) *SSL_get0_verified_chain(const SSL *s) 4814 { 4815 return s->verified_chain; 4816 } 4817 4818 IMPLEMENT_OBJ_BSEARCH_GLOBAL_CMP_FN(SSL_CIPHER, SSL_CIPHER, ssl_cipher_id); 4819 4820 #ifndef OPENSSL_NO_CT 4821 4822 /* 4823 * Moves SCTs from the |src| stack to the |dst| stack. 4824 * The source of each SCT will be set to |origin|. 4825 * If |dst| points to a NULL pointer, a new stack will be created and owned by 4826 * the caller. 4827 * Returns the number of SCTs moved, or a negative integer if an error occurs. 4828 */ 4829 static int ct_move_scts(STACK_OF(SCT) **dst, STACK_OF(SCT) *src, 4830 sct_source_t origin) 4831 { 4832 int scts_moved = 0; 4833 SCT *sct = NULL; 4834 4835 if (*dst == NULL) { 4836 *dst = sk_SCT_new_null(); 4837 if (*dst == NULL) { 4838 SSLerr(SSL_F_CT_MOVE_SCTS, ERR_R_MALLOC_FAILURE); 4839 goto err; 4840 } 4841 } 4842 4843 while ((sct = sk_SCT_pop(src)) != NULL) { 4844 if (SCT_set_source(sct, origin) != 1) 4845 goto err; 4846 4847 if (sk_SCT_push(*dst, sct) <= 0) 4848 goto err; 4849 scts_moved += 1; 4850 } 4851 4852 return scts_moved; 4853 err: 4854 if (sct != NULL) 4855 sk_SCT_push(src, sct); /* Put the SCT back */ 4856 return -1; 4857 } 4858 4859 /* 4860 * Look for data collected during ServerHello and parse if found. 4861 * Returns the number of SCTs extracted. 4862 */ 4863 static int ct_extract_tls_extension_scts(SSL *s) 4864 { 4865 int scts_extracted = 0; 4866 4867 if (s->ext.scts != NULL) { 4868 const unsigned char *p = s->ext.scts; 4869 STACK_OF(SCT) *scts = o2i_SCT_LIST(NULL, &p, s->ext.scts_len); 4870 4871 scts_extracted = ct_move_scts(&s->scts, scts, SCT_SOURCE_TLS_EXTENSION); 4872 4873 SCT_LIST_free(scts); 4874 } 4875 4876 return scts_extracted; 4877 } 4878 4879 /* 4880 * Checks for an OCSP response and then attempts to extract any SCTs found if it 4881 * contains an SCT X509 extension. They will be stored in |s->scts|. 4882 * Returns: 4883 * - The number of SCTs extracted, assuming an OCSP response exists. 4884 * - 0 if no OCSP response exists or it contains no SCTs. 4885 * - A negative integer if an error occurs. 4886 */ 4887 static int ct_extract_ocsp_response_scts(SSL *s) 4888 { 4889 # ifndef OPENSSL_NO_OCSP 4890 int scts_extracted = 0; 4891 const unsigned char *p; 4892 OCSP_BASICRESP *br = NULL; 4893 OCSP_RESPONSE *rsp = NULL; 4894 STACK_OF(SCT) *scts = NULL; 4895 int i; 4896 4897 if (s->ext.ocsp.resp == NULL || s->ext.ocsp.resp_len == 0) 4898 goto err; 4899 4900 p = s->ext.ocsp.resp; 4901 rsp = d2i_OCSP_RESPONSE(NULL, &p, (int)s->ext.ocsp.resp_len); 4902 if (rsp == NULL) 4903 goto err; 4904 4905 br = OCSP_response_get1_basic(rsp); 4906 if (br == NULL) 4907 goto err; 4908 4909 for (i = 0; i < OCSP_resp_count(br); ++i) { 4910 OCSP_SINGLERESP *single = OCSP_resp_get0(br, i); 4911 4912 if (single == NULL) 4913 continue; 4914 4915 scts = 4916 OCSP_SINGLERESP_get1_ext_d2i(single, NID_ct_cert_scts, NULL, NULL); 4917 scts_extracted = 4918 ct_move_scts(&s->scts, scts, SCT_SOURCE_OCSP_STAPLED_RESPONSE); 4919 if (scts_extracted < 0) 4920 goto err; 4921 } 4922 err: 4923 SCT_LIST_free(scts); 4924 OCSP_BASICRESP_free(br); 4925 OCSP_RESPONSE_free(rsp); 4926 return scts_extracted; 4927 # else 4928 /* Behave as if no OCSP response exists */ 4929 return 0; 4930 # endif 4931 } 4932 4933 /* 4934 * Attempts to extract SCTs from the peer certificate. 4935 * Return the number of SCTs extracted, or a negative integer if an error 4936 * occurs. 4937 */ 4938 static int ct_extract_x509v3_extension_scts(SSL *s) 4939 { 4940 int scts_extracted = 0; 4941 X509 *cert = s->session != NULL ? s->session->peer : NULL; 4942 4943 if (cert != NULL) { 4944 STACK_OF(SCT) *scts = 4945 X509_get_ext_d2i(cert, NID_ct_precert_scts, NULL, NULL); 4946 4947 scts_extracted = 4948 ct_move_scts(&s->scts, scts, SCT_SOURCE_X509V3_EXTENSION); 4949 4950 SCT_LIST_free(scts); 4951 } 4952 4953 return scts_extracted; 4954 } 4955 4956 /* 4957 * Attempts to find all received SCTs by checking TLS extensions, the OCSP 4958 * response (if it exists) and X509v3 extensions in the certificate. 4959 * Returns NULL if an error occurs. 4960 */ 4961 const STACK_OF(SCT) *SSL_get0_peer_scts(SSL *s) 4962 { 4963 if (!s->scts_parsed) { 4964 if (ct_extract_tls_extension_scts(s) < 0 || 4965 ct_extract_ocsp_response_scts(s) < 0 || 4966 ct_extract_x509v3_extension_scts(s) < 0) 4967 goto err; 4968 4969 s->scts_parsed = 1; 4970 } 4971 return s->scts; 4972 err: 4973 return NULL; 4974 } 4975 4976 static int ct_permissive(const CT_POLICY_EVAL_CTX * ctx, 4977 const STACK_OF(SCT) *scts, void *unused_arg) 4978 { 4979 return 1; 4980 } 4981 4982 static int ct_strict(const CT_POLICY_EVAL_CTX * ctx, 4983 const STACK_OF(SCT) *scts, void *unused_arg) 4984 { 4985 int count = scts != NULL ? sk_SCT_num(scts) : 0; 4986 int i; 4987 4988 for (i = 0; i < count; ++i) { 4989 SCT *sct = sk_SCT_value(scts, i); 4990 int status = SCT_get_validation_status(sct); 4991 4992 if (status == SCT_VALIDATION_STATUS_VALID) 4993 return 1; 4994 } 4995 SSLerr(SSL_F_CT_STRICT, SSL_R_NO_VALID_SCTS); 4996 return 0; 4997 } 4998 4999 int SSL_set_ct_validation_callback(SSL *s, ssl_ct_validation_cb callback, 5000 void *arg) 5001 { 5002 /* 5003 * Since code exists that uses the custom extension handler for CT, look 5004 * for this and throw an error if they have already registered to use CT. 5005 */ 5006 if (callback != NULL && SSL_CTX_has_client_custom_ext(s->ctx, 5007 TLSEXT_TYPE_signed_certificate_timestamp)) 5008 { 5009 SSLerr(SSL_F_SSL_SET_CT_VALIDATION_CALLBACK, 5010 SSL_R_CUSTOM_EXT_HANDLER_ALREADY_INSTALLED); 5011 return 0; 5012 } 5013 5014 if (callback != NULL) { 5015 /* 5016 * If we are validating CT, then we MUST accept SCTs served via OCSP 5017 */ 5018 if (!SSL_set_tlsext_status_type(s, TLSEXT_STATUSTYPE_ocsp)) 5019 return 0; 5020 } 5021 5022 s->ct_validation_callback = callback; 5023 s->ct_validation_callback_arg = arg; 5024 5025 return 1; 5026 } 5027 5028 int SSL_CTX_set_ct_validation_callback(SSL_CTX *ctx, 5029 ssl_ct_validation_cb callback, void *arg) 5030 { 5031 /* 5032 * Since code exists that uses the custom extension handler for CT, look for 5033 * this and throw an error if they have already registered to use CT. 5034 */ 5035 if (callback != NULL && SSL_CTX_has_client_custom_ext(ctx, 5036 TLSEXT_TYPE_signed_certificate_timestamp)) 5037 { 5038 SSLerr(SSL_F_SSL_CTX_SET_CT_VALIDATION_CALLBACK, 5039 SSL_R_CUSTOM_EXT_HANDLER_ALREADY_INSTALLED); 5040 return 0; 5041 } 5042 5043 ctx->ct_validation_callback = callback; 5044 ctx->ct_validation_callback_arg = arg; 5045 return 1; 5046 } 5047 5048 int SSL_ct_is_enabled(const SSL *s) 5049 { 5050 return s->ct_validation_callback != NULL; 5051 } 5052 5053 int SSL_CTX_ct_is_enabled(const SSL_CTX *ctx) 5054 { 5055 return ctx->ct_validation_callback != NULL; 5056 } 5057 5058 int ssl_validate_ct(SSL *s) 5059 { 5060 int ret = 0; 5061 X509 *cert = s->session != NULL ? s->session->peer : NULL; 5062 X509 *issuer; 5063 SSL_DANE *dane = &s->dane; 5064 CT_POLICY_EVAL_CTX *ctx = NULL; 5065 const STACK_OF(SCT) *scts; 5066 5067 /* 5068 * If no callback is set, the peer is anonymous, or its chain is invalid, 5069 * skip SCT validation - just return success. Applications that continue 5070 * handshakes without certificates, with unverified chains, or pinned leaf 5071 * certificates are outside the scope of the WebPKI and CT. 5072 * 5073 * The above exclusions notwithstanding the vast majority of peers will 5074 * have rather ordinary certificate chains validated by typical 5075 * applications that perform certificate verification and therefore will 5076 * process SCTs when enabled. 5077 */ 5078 if (s->ct_validation_callback == NULL || cert == NULL || 5079 s->verify_result != X509_V_OK || 5080 s->verified_chain == NULL || sk_X509_num(s->verified_chain) <= 1) 5081 return 1; 5082 5083 /* 5084 * CT not applicable for chains validated via DANE-TA(2) or DANE-EE(3) 5085 * trust-anchors. See https://tools.ietf.org/html/rfc7671#section-4.2 5086 */ 5087 if (DANETLS_ENABLED(dane) && dane->mtlsa != NULL) { 5088 switch (dane->mtlsa->usage) { 5089 case DANETLS_USAGE_DANE_TA: 5090 case DANETLS_USAGE_DANE_EE: 5091 return 1; 5092 } 5093 } 5094 5095 ctx = CT_POLICY_EVAL_CTX_new(); 5096 if (ctx == NULL) { 5097 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_VALIDATE_CT, 5098 ERR_R_MALLOC_FAILURE); 5099 goto end; 5100 } 5101 5102 issuer = sk_X509_value(s->verified_chain, 1); 5103 CT_POLICY_EVAL_CTX_set1_cert(ctx, cert); 5104 CT_POLICY_EVAL_CTX_set1_issuer(ctx, issuer); 5105 CT_POLICY_EVAL_CTX_set_shared_CTLOG_STORE(ctx, s->ctx->ctlog_store); 5106 CT_POLICY_EVAL_CTX_set_time( 5107 ctx, (uint64_t)SSL_SESSION_get_time(SSL_get0_session(s)) * 1000); 5108 5109 scts = SSL_get0_peer_scts(s); 5110 5111 /* 5112 * This function returns success (> 0) only when all the SCTs are valid, 0 5113 * when some are invalid, and < 0 on various internal errors (out of 5114 * memory, etc.). Having some, or even all, invalid SCTs is not sufficient 5115 * reason to abort the handshake, that decision is up to the callback. 5116 * Therefore, we error out only in the unexpected case that the return 5117 * value is negative. 5118 * 5119 * XXX: One might well argue that the return value of this function is an 5120 * unfortunate design choice. Its job is only to determine the validation 5121 * status of each of the provided SCTs. So long as it correctly separates 5122 * the wheat from the chaff it should return success. Failure in this case 5123 * ought to correspond to an inability to carry out its duties. 5124 */ 5125 if (SCT_LIST_validate(scts, ctx) < 0) { 5126 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_SSL_VALIDATE_CT, 5127 SSL_R_SCT_VERIFICATION_FAILED); 5128 goto end; 5129 } 5130 5131 ret = s->ct_validation_callback(ctx, scts, s->ct_validation_callback_arg); 5132 if (ret < 0) 5133 ret = 0; /* This function returns 0 on failure */ 5134 if (!ret) 5135 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_SSL_VALIDATE_CT, 5136 SSL_R_CALLBACK_FAILED); 5137 5138 end: 5139 CT_POLICY_EVAL_CTX_free(ctx); 5140 /* 5141 * With SSL_VERIFY_NONE the session may be cached and re-used despite a 5142 * failure return code here. Also the application may wish the complete 5143 * the handshake, and then disconnect cleanly at a higher layer, after 5144 * checking the verification status of the completed connection. 5145 * 5146 * We therefore force a certificate verification failure which will be 5147 * visible via SSL_get_verify_result() and cached as part of any resumed 5148 * session. 5149 * 5150 * Note: the permissive callback is for information gathering only, always 5151 * returns success, and does not affect verification status. Only the 5152 * strict callback or a custom application-specified callback can trigger 5153 * connection failure or record a verification error. 5154 */ 5155 if (ret <= 0) 5156 s->verify_result = X509_V_ERR_NO_VALID_SCTS; 5157 return ret; 5158 } 5159 5160 int SSL_CTX_enable_ct(SSL_CTX *ctx, int validation_mode) 5161 { 5162 switch (validation_mode) { 5163 default: 5164 SSLerr(SSL_F_SSL_CTX_ENABLE_CT, SSL_R_INVALID_CT_VALIDATION_TYPE); 5165 return 0; 5166 case SSL_CT_VALIDATION_PERMISSIVE: 5167 return SSL_CTX_set_ct_validation_callback(ctx, ct_permissive, NULL); 5168 case SSL_CT_VALIDATION_STRICT: 5169 return SSL_CTX_set_ct_validation_callback(ctx, ct_strict, NULL); 5170 } 5171 } 5172 5173 int SSL_enable_ct(SSL *s, int validation_mode) 5174 { 5175 switch (validation_mode) { 5176 default: 5177 SSLerr(SSL_F_SSL_ENABLE_CT, SSL_R_INVALID_CT_VALIDATION_TYPE); 5178 return 0; 5179 case SSL_CT_VALIDATION_PERMISSIVE: 5180 return SSL_set_ct_validation_callback(s, ct_permissive, NULL); 5181 case SSL_CT_VALIDATION_STRICT: 5182 return SSL_set_ct_validation_callback(s, ct_strict, NULL); 5183 } 5184 } 5185 5186 int SSL_CTX_set_default_ctlog_list_file(SSL_CTX *ctx) 5187 { 5188 return CTLOG_STORE_load_default_file(ctx->ctlog_store); 5189 } 5190 5191 int SSL_CTX_set_ctlog_list_file(SSL_CTX *ctx, const char *path) 5192 { 5193 return CTLOG_STORE_load_file(ctx->ctlog_store, path); 5194 } 5195 5196 void SSL_CTX_set0_ctlog_store(SSL_CTX *ctx, CTLOG_STORE * logs) 5197 { 5198 CTLOG_STORE_free(ctx->ctlog_store); 5199 ctx->ctlog_store = logs; 5200 } 5201 5202 const CTLOG_STORE *SSL_CTX_get0_ctlog_store(const SSL_CTX *ctx) 5203 { 5204 return ctx->ctlog_store; 5205 } 5206 5207 #endif /* OPENSSL_NO_CT */ 5208 5209 void SSL_CTX_set_client_hello_cb(SSL_CTX *c, SSL_client_hello_cb_fn cb, 5210 void *arg) 5211 { 5212 c->client_hello_cb = cb; 5213 c->client_hello_cb_arg = arg; 5214 } 5215 5216 int SSL_client_hello_isv2(SSL *s) 5217 { 5218 if (s->clienthello == NULL) 5219 return 0; 5220 return s->clienthello->isv2; 5221 } 5222 5223 unsigned int SSL_client_hello_get0_legacy_version(SSL *s) 5224 { 5225 if (s->clienthello == NULL) 5226 return 0; 5227 return s->clienthello->legacy_version; 5228 } 5229 5230 size_t SSL_client_hello_get0_random(SSL *s, const unsigned char **out) 5231 { 5232 if (s->clienthello == NULL) 5233 return 0; 5234 if (out != NULL) 5235 *out = s->clienthello->random; 5236 return SSL3_RANDOM_SIZE; 5237 } 5238 5239 size_t SSL_client_hello_get0_session_id(SSL *s, const unsigned char **out) 5240 { 5241 if (s->clienthello == NULL) 5242 return 0; 5243 if (out != NULL) 5244 *out = s->clienthello->session_id; 5245 return s->clienthello->session_id_len; 5246 } 5247 5248 size_t SSL_client_hello_get0_ciphers(SSL *s, const unsigned char **out) 5249 { 5250 if (s->clienthello == NULL) 5251 return 0; 5252 if (out != NULL) 5253 *out = PACKET_data(&s->clienthello->ciphersuites); 5254 return PACKET_remaining(&s->clienthello->ciphersuites); 5255 } 5256 5257 size_t SSL_client_hello_get0_compression_methods(SSL *s, const unsigned char **out) 5258 { 5259 if (s->clienthello == NULL) 5260 return 0; 5261 if (out != NULL) 5262 *out = s->clienthello->compressions; 5263 return s->clienthello->compressions_len; 5264 } 5265 5266 int SSL_client_hello_get1_extensions_present(SSL *s, int **out, size_t *outlen) 5267 { 5268 RAW_EXTENSION *ext; 5269 int *present; 5270 size_t num = 0, i; 5271 5272 if (s->clienthello == NULL || out == NULL || outlen == NULL) 5273 return 0; 5274 for (i = 0; i < s->clienthello->pre_proc_exts_len; i++) { 5275 ext = s->clienthello->pre_proc_exts + i; 5276 if (ext->present) 5277 num++; 5278 } 5279 if (num == 0) { 5280 *out = NULL; 5281 *outlen = 0; 5282 return 1; 5283 } 5284 if ((present = OPENSSL_malloc(sizeof(*present) * num)) == NULL) { 5285 SSLerr(SSL_F_SSL_CLIENT_HELLO_GET1_EXTENSIONS_PRESENT, 5286 ERR_R_MALLOC_FAILURE); 5287 return 0; 5288 } 5289 for (i = 0; i < s->clienthello->pre_proc_exts_len; i++) { 5290 ext = s->clienthello->pre_proc_exts + i; 5291 if (ext->present) { 5292 if (ext->received_order >= num) 5293 goto err; 5294 present[ext->received_order] = ext->type; 5295 } 5296 } 5297 *out = present; 5298 *outlen = num; 5299 return 1; 5300 err: 5301 OPENSSL_free(present); 5302 return 0; 5303 } 5304 5305 int SSL_client_hello_get0_ext(SSL *s, unsigned int type, const unsigned char **out, 5306 size_t *outlen) 5307 { 5308 size_t i; 5309 RAW_EXTENSION *r; 5310 5311 if (s->clienthello == NULL) 5312 return 0; 5313 for (i = 0; i < s->clienthello->pre_proc_exts_len; ++i) { 5314 r = s->clienthello->pre_proc_exts + i; 5315 if (r->present && r->type == type) { 5316 if (out != NULL) 5317 *out = PACKET_data(&r->data); 5318 if (outlen != NULL) 5319 *outlen = PACKET_remaining(&r->data); 5320 return 1; 5321 } 5322 } 5323 return 0; 5324 } 5325 5326 int SSL_free_buffers(SSL *ssl) 5327 { 5328 RECORD_LAYER *rl = &ssl->rlayer; 5329 5330 if (RECORD_LAYER_read_pending(rl) || RECORD_LAYER_write_pending(rl)) 5331 return 0; 5332 5333 RECORD_LAYER_release(rl); 5334 return 1; 5335 } 5336 5337 int SSL_alloc_buffers(SSL *ssl) 5338 { 5339 return ssl3_setup_buffers(ssl); 5340 } 5341 5342 void SSL_CTX_set_keylog_callback(SSL_CTX *ctx, SSL_CTX_keylog_cb_func cb) 5343 { 5344 ctx->keylog_callback = cb; 5345 } 5346 5347 SSL_CTX_keylog_cb_func SSL_CTX_get_keylog_callback(const SSL_CTX *ctx) 5348 { 5349 return ctx->keylog_callback; 5350 } 5351 5352 static int nss_keylog_int(const char *prefix, 5353 SSL *ssl, 5354 const uint8_t *parameter_1, 5355 size_t parameter_1_len, 5356 const uint8_t *parameter_2, 5357 size_t parameter_2_len) 5358 { 5359 char *out = NULL; 5360 char *cursor = NULL; 5361 size_t out_len = 0; 5362 size_t i; 5363 size_t prefix_len; 5364 5365 if (ssl->ctx->keylog_callback == NULL) 5366 return 1; 5367 5368 /* 5369 * Our output buffer will contain the following strings, rendered with 5370 * space characters in between, terminated by a NULL character: first the 5371 * prefix, then the first parameter, then the second parameter. The 5372 * meaning of each parameter depends on the specific key material being 5373 * logged. Note that the first and second parameters are encoded in 5374 * hexadecimal, so we need a buffer that is twice their lengths. 5375 */ 5376 prefix_len = strlen(prefix); 5377 out_len = prefix_len + (2 * parameter_1_len) + (2 * parameter_2_len) + 3; 5378 if ((out = cursor = OPENSSL_malloc(out_len)) == NULL) { 5379 SSLfatal(ssl, SSL_AD_INTERNAL_ERROR, SSL_F_NSS_KEYLOG_INT, 5380 ERR_R_MALLOC_FAILURE); 5381 return 0; 5382 } 5383 5384 strcpy(cursor, prefix); 5385 cursor += prefix_len; 5386 *cursor++ = ' '; 5387 5388 for (i = 0; i < parameter_1_len; i++) { 5389 sprintf(cursor, "%02x", parameter_1[i]); 5390 cursor += 2; 5391 } 5392 *cursor++ = ' '; 5393 5394 for (i = 0; i < parameter_2_len; i++) { 5395 sprintf(cursor, "%02x", parameter_2[i]); 5396 cursor += 2; 5397 } 5398 *cursor = '\0'; 5399 5400 ssl->ctx->keylog_callback(ssl, (const char *)out); 5401 OPENSSL_clear_free(out, out_len); 5402 return 1; 5403 5404 } 5405 5406 int ssl_log_rsa_client_key_exchange(SSL *ssl, 5407 const uint8_t *encrypted_premaster, 5408 size_t encrypted_premaster_len, 5409 const uint8_t *premaster, 5410 size_t premaster_len) 5411 { 5412 if (encrypted_premaster_len < 8) { 5413 SSLfatal(ssl, SSL_AD_INTERNAL_ERROR, 5414 SSL_F_SSL_LOG_RSA_CLIENT_KEY_EXCHANGE, ERR_R_INTERNAL_ERROR); 5415 return 0; 5416 } 5417 5418 /* We only want the first 8 bytes of the encrypted premaster as a tag. */ 5419 return nss_keylog_int("RSA", 5420 ssl, 5421 encrypted_premaster, 5422 8, 5423 premaster, 5424 premaster_len); 5425 } 5426 5427 int ssl_log_secret(SSL *ssl, 5428 const char *label, 5429 const uint8_t *secret, 5430 size_t secret_len) 5431 { 5432 return nss_keylog_int(label, 5433 ssl, 5434 ssl->s3->client_random, 5435 SSL3_RANDOM_SIZE, 5436 secret, 5437 secret_len); 5438 } 5439 5440 #define SSLV2_CIPHER_LEN 3 5441 5442 int ssl_cache_cipherlist(SSL *s, PACKET *cipher_suites, int sslv2format) 5443 { 5444 int n; 5445 5446 n = sslv2format ? SSLV2_CIPHER_LEN : TLS_CIPHER_LEN; 5447 5448 if (PACKET_remaining(cipher_suites) == 0) { 5449 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_SSL_CACHE_CIPHERLIST, 5450 SSL_R_NO_CIPHERS_SPECIFIED); 5451 return 0; 5452 } 5453 5454 if (PACKET_remaining(cipher_suites) % n != 0) { 5455 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_SSL_CACHE_CIPHERLIST, 5456 SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST); 5457 return 0; 5458 } 5459 5460 OPENSSL_free(s->s3->tmp.ciphers_raw); 5461 s->s3->tmp.ciphers_raw = NULL; 5462 s->s3->tmp.ciphers_rawlen = 0; 5463 5464 if (sslv2format) { 5465 size_t numciphers = PACKET_remaining(cipher_suites) / n; 5466 PACKET sslv2ciphers = *cipher_suites; 5467 unsigned int leadbyte; 5468 unsigned char *raw; 5469 5470 /* 5471 * We store the raw ciphers list in SSLv3+ format so we need to do some 5472 * preprocessing to convert the list first. If there are any SSLv2 only 5473 * ciphersuites with a non-zero leading byte then we are going to 5474 * slightly over allocate because we won't store those. But that isn't a 5475 * problem. 5476 */ 5477 raw = OPENSSL_malloc(numciphers * TLS_CIPHER_LEN); 5478 s->s3->tmp.ciphers_raw = raw; 5479 if (raw == NULL) { 5480 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_CACHE_CIPHERLIST, 5481 ERR_R_MALLOC_FAILURE); 5482 return 0; 5483 } 5484 for (s->s3->tmp.ciphers_rawlen = 0; 5485 PACKET_remaining(&sslv2ciphers) > 0; 5486 raw += TLS_CIPHER_LEN) { 5487 if (!PACKET_get_1(&sslv2ciphers, &leadbyte) 5488 || (leadbyte == 0 5489 && !PACKET_copy_bytes(&sslv2ciphers, raw, 5490 TLS_CIPHER_LEN)) 5491 || (leadbyte != 0 5492 && !PACKET_forward(&sslv2ciphers, TLS_CIPHER_LEN))) { 5493 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_SSL_CACHE_CIPHERLIST, 5494 SSL_R_BAD_PACKET); 5495 OPENSSL_free(s->s3->tmp.ciphers_raw); 5496 s->s3->tmp.ciphers_raw = NULL; 5497 s->s3->tmp.ciphers_rawlen = 0; 5498 return 0; 5499 } 5500 if (leadbyte == 0) 5501 s->s3->tmp.ciphers_rawlen += TLS_CIPHER_LEN; 5502 } 5503 } else if (!PACKET_memdup(cipher_suites, &s->s3->tmp.ciphers_raw, 5504 &s->s3->tmp.ciphers_rawlen)) { 5505 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_CACHE_CIPHERLIST, 5506 ERR_R_INTERNAL_ERROR); 5507 return 0; 5508 } 5509 return 1; 5510 } 5511 5512 int SSL_bytes_to_cipher_list(SSL *s, const unsigned char *bytes, size_t len, 5513 int isv2format, STACK_OF(SSL_CIPHER) **sk, 5514 STACK_OF(SSL_CIPHER) **scsvs) 5515 { 5516 PACKET pkt; 5517 5518 if (!PACKET_buf_init(&pkt, bytes, len)) 5519 return 0; 5520 return bytes_to_cipher_list(s, &pkt, sk, scsvs, isv2format, 0); 5521 } 5522 5523 int bytes_to_cipher_list(SSL *s, PACKET *cipher_suites, 5524 STACK_OF(SSL_CIPHER) **skp, 5525 STACK_OF(SSL_CIPHER) **scsvs_out, 5526 int sslv2format, int fatal) 5527 { 5528 const SSL_CIPHER *c; 5529 STACK_OF(SSL_CIPHER) *sk = NULL; 5530 STACK_OF(SSL_CIPHER) *scsvs = NULL; 5531 int n; 5532 /* 3 = SSLV2_CIPHER_LEN > TLS_CIPHER_LEN = 2. */ 5533 unsigned char cipher[SSLV2_CIPHER_LEN]; 5534 5535 n = sslv2format ? SSLV2_CIPHER_LEN : TLS_CIPHER_LEN; 5536 5537 if (PACKET_remaining(cipher_suites) == 0) { 5538 if (fatal) 5539 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_BYTES_TO_CIPHER_LIST, 5540 SSL_R_NO_CIPHERS_SPECIFIED); 5541 else 5542 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, SSL_R_NO_CIPHERS_SPECIFIED); 5543 return 0; 5544 } 5545 5546 if (PACKET_remaining(cipher_suites) % n != 0) { 5547 if (fatal) 5548 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_BYTES_TO_CIPHER_LIST, 5549 SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST); 5550 else 5551 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, 5552 SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST); 5553 return 0; 5554 } 5555 5556 sk = sk_SSL_CIPHER_new_null(); 5557 scsvs = sk_SSL_CIPHER_new_null(); 5558 if (sk == NULL || scsvs == NULL) { 5559 if (fatal) 5560 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_BYTES_TO_CIPHER_LIST, 5561 ERR_R_MALLOC_FAILURE); 5562 else 5563 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, ERR_R_MALLOC_FAILURE); 5564 goto err; 5565 } 5566 5567 while (PACKET_copy_bytes(cipher_suites, cipher, n)) { 5568 /* 5569 * SSLv3 ciphers wrapped in an SSLv2-compatible ClientHello have the 5570 * first byte set to zero, while true SSLv2 ciphers have a non-zero 5571 * first byte. We don't support any true SSLv2 ciphers, so skip them. 5572 */ 5573 if (sslv2format && cipher[0] != '\0') 5574 continue; 5575 5576 /* For SSLv2-compat, ignore leading 0-byte. */ 5577 c = ssl_get_cipher_by_char(s, sslv2format ? &cipher[1] : cipher, 1); 5578 if (c != NULL) { 5579 if ((c->valid && !sk_SSL_CIPHER_push(sk, c)) || 5580 (!c->valid && !sk_SSL_CIPHER_push(scsvs, c))) { 5581 if (fatal) 5582 SSLfatal(s, SSL_AD_INTERNAL_ERROR, 5583 SSL_F_BYTES_TO_CIPHER_LIST, ERR_R_MALLOC_FAILURE); 5584 else 5585 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, ERR_R_MALLOC_FAILURE); 5586 goto err; 5587 } 5588 } 5589 } 5590 if (PACKET_remaining(cipher_suites) > 0) { 5591 if (fatal) 5592 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_BYTES_TO_CIPHER_LIST, 5593 SSL_R_BAD_LENGTH); 5594 else 5595 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, SSL_R_BAD_LENGTH); 5596 goto err; 5597 } 5598 5599 if (skp != NULL) 5600 *skp = sk; 5601 else 5602 sk_SSL_CIPHER_free(sk); 5603 if (scsvs_out != NULL) 5604 *scsvs_out = scsvs; 5605 else 5606 sk_SSL_CIPHER_free(scsvs); 5607 return 1; 5608 err: 5609 sk_SSL_CIPHER_free(sk); 5610 sk_SSL_CIPHER_free(scsvs); 5611 return 0; 5612 } 5613 5614 int SSL_CTX_set_max_early_data(SSL_CTX *ctx, uint32_t max_early_data) 5615 { 5616 ctx->max_early_data = max_early_data; 5617 5618 return 1; 5619 } 5620 5621 uint32_t SSL_CTX_get_max_early_data(const SSL_CTX *ctx) 5622 { 5623 return ctx->max_early_data; 5624 } 5625 5626 int SSL_set_max_early_data(SSL *s, uint32_t max_early_data) 5627 { 5628 s->max_early_data = max_early_data; 5629 5630 return 1; 5631 } 5632 5633 uint32_t SSL_get_max_early_data(const SSL *s) 5634 { 5635 return s->max_early_data; 5636 } 5637 5638 int SSL_CTX_set_recv_max_early_data(SSL_CTX *ctx, uint32_t recv_max_early_data) 5639 { 5640 ctx->recv_max_early_data = recv_max_early_data; 5641 5642 return 1; 5643 } 5644 5645 uint32_t SSL_CTX_get_recv_max_early_data(const SSL_CTX *ctx) 5646 { 5647 return ctx->recv_max_early_data; 5648 } 5649 5650 int SSL_set_recv_max_early_data(SSL *s, uint32_t recv_max_early_data) 5651 { 5652 s->recv_max_early_data = recv_max_early_data; 5653 5654 return 1; 5655 } 5656 5657 uint32_t SSL_get_recv_max_early_data(const SSL *s) 5658 { 5659 return s->recv_max_early_data; 5660 } 5661 5662 __owur unsigned int ssl_get_max_send_fragment(const SSL *ssl) 5663 { 5664 /* Return any active Max Fragment Len extension */ 5665 if (ssl->session != NULL && USE_MAX_FRAGMENT_LENGTH_EXT(ssl->session)) 5666 return GET_MAX_FRAGMENT_LENGTH(ssl->session); 5667 5668 /* return current SSL connection setting */ 5669 return ssl->max_send_fragment; 5670 } 5671 5672 __owur unsigned int ssl_get_split_send_fragment(const SSL *ssl) 5673 { 5674 /* Return a value regarding an active Max Fragment Len extension */ 5675 if (ssl->session != NULL && USE_MAX_FRAGMENT_LENGTH_EXT(ssl->session) 5676 && ssl->split_send_fragment > GET_MAX_FRAGMENT_LENGTH(ssl->session)) 5677 return GET_MAX_FRAGMENT_LENGTH(ssl->session); 5678 5679 /* else limit |split_send_fragment| to current |max_send_fragment| */ 5680 if (ssl->split_send_fragment > ssl->max_send_fragment) 5681 return ssl->max_send_fragment; 5682 5683 /* return current SSL connection setting */ 5684 return ssl->split_send_fragment; 5685 } 5686 5687 int SSL_stateless(SSL *s) 5688 { 5689 int ret; 5690 5691 /* Ensure there is no state left over from a previous invocation */ 5692 if (!SSL_clear(s)) 5693 return 0; 5694 5695 ERR_clear_error(); 5696 5697 s->s3->flags |= TLS1_FLAGS_STATELESS; 5698 ret = SSL_accept(s); 5699 s->s3->flags &= ~TLS1_FLAGS_STATELESS; 5700 5701 if (ret > 0 && s->ext.cookieok) 5702 return 1; 5703 5704 if (s->hello_retry_request == SSL_HRR_PENDING && !ossl_statem_in_error(s)) 5705 return 0; 5706 5707 return -1; 5708 } 5709 5710 void SSL_CTX_set_post_handshake_auth(SSL_CTX *ctx, int val) 5711 { 5712 ctx->pha_enabled = val; 5713 } 5714 5715 void SSL_set_post_handshake_auth(SSL *ssl, int val) 5716 { 5717 ssl->pha_enabled = val; 5718 } 5719 5720 int SSL_verify_client_post_handshake(SSL *ssl) 5721 { 5722 if (!SSL_IS_TLS13(ssl)) { 5723 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_WRONG_SSL_VERSION); 5724 return 0; 5725 } 5726 if (!ssl->server) { 5727 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_NOT_SERVER); 5728 return 0; 5729 } 5730 5731 if (!SSL_is_init_finished(ssl)) { 5732 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_STILL_IN_INIT); 5733 return 0; 5734 } 5735 5736 switch (ssl->post_handshake_auth) { 5737 case SSL_PHA_NONE: 5738 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_EXTENSION_NOT_RECEIVED); 5739 return 0; 5740 default: 5741 case SSL_PHA_EXT_SENT: 5742 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, ERR_R_INTERNAL_ERROR); 5743 return 0; 5744 case SSL_PHA_EXT_RECEIVED: 5745 break; 5746 case SSL_PHA_REQUEST_PENDING: 5747 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_REQUEST_PENDING); 5748 return 0; 5749 case SSL_PHA_REQUESTED: 5750 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_REQUEST_SENT); 5751 return 0; 5752 } 5753 5754 ssl->post_handshake_auth = SSL_PHA_REQUEST_PENDING; 5755 5756 /* checks verify_mode and algorithm_auth */ 5757 if (!send_certificate_request(ssl)) { 5758 ssl->post_handshake_auth = SSL_PHA_EXT_RECEIVED; /* restore on error */ 5759 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_INVALID_CONFIG); 5760 return 0; 5761 } 5762 5763 ossl_statem_set_in_init(ssl, 1); 5764 return 1; 5765 } 5766 5767 int SSL_CTX_set_session_ticket_cb(SSL_CTX *ctx, 5768 SSL_CTX_generate_session_ticket_fn gen_cb, 5769 SSL_CTX_decrypt_session_ticket_fn dec_cb, 5770 void *arg) 5771 { 5772 ctx->generate_ticket_cb = gen_cb; 5773 ctx->decrypt_ticket_cb = dec_cb; 5774 ctx->ticket_cb_data = arg; 5775 return 1; 5776 } 5777 5778 void SSL_CTX_set_allow_early_data_cb(SSL_CTX *ctx, 5779 SSL_allow_early_data_cb_fn cb, 5780 void *arg) 5781 { 5782 ctx->allow_early_data_cb = cb; 5783 ctx->allow_early_data_cb_data = arg; 5784 } 5785 5786 void SSL_set_allow_early_data_cb(SSL *s, 5787 SSL_allow_early_data_cb_fn cb, 5788 void *arg) 5789 { 5790 s->allow_early_data_cb = cb; 5791 s->allow_early_data_cb_data = arg; 5792 } 5793