xref: /freebsd/crypto/openssl/ssl/ssl_ciph.c (revision e64fe029e9d3ce476e77a478318e0c3cd201ff08)
1 /*
2  * Copyright 1995-2022 The OpenSSL Project Authors. All Rights Reserved.
3  * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
4  * Copyright 2005 Nokia. All rights reserved.
5  *
6  * Licensed under the Apache License 2.0 (the "License").  You may not use
7  * this file except in compliance with the License.  You can obtain a copy
8  * in the file LICENSE in the source distribution or at
9  * https://www.openssl.org/source/license.html
10  */
11 
12 #include <stdio.h>
13 #include <ctype.h>
14 #include <openssl/objects.h>
15 #include <openssl/comp.h>
16 #include <openssl/engine.h>
17 #include <openssl/crypto.h>
18 #include <openssl/conf.h>
19 #include <openssl/trace.h>
20 #include "internal/nelem.h"
21 #include "ssl_local.h"
22 #include "internal/thread_once.h"
23 #include "internal/cryptlib.h"
24 
25 /* NB: make sure indices in these tables match values above */
26 
27 typedef struct {
28     uint32_t mask;
29     int nid;
30 } ssl_cipher_table;
31 
32 /* Table of NIDs for each cipher */
33 static const ssl_cipher_table ssl_cipher_table_cipher[SSL_ENC_NUM_IDX] = {
34     {SSL_DES, NID_des_cbc},     /* SSL_ENC_DES_IDX 0 */
35     {SSL_3DES, NID_des_ede3_cbc}, /* SSL_ENC_3DES_IDX 1 */
36     {SSL_RC4, NID_rc4},         /* SSL_ENC_RC4_IDX 2 */
37     {SSL_RC2, NID_rc2_cbc},     /* SSL_ENC_RC2_IDX 3 */
38     {SSL_IDEA, NID_idea_cbc},   /* SSL_ENC_IDEA_IDX 4 */
39     {SSL_eNULL, NID_undef},     /* SSL_ENC_NULL_IDX 5 */
40     {SSL_AES128, NID_aes_128_cbc}, /* SSL_ENC_AES128_IDX 6 */
41     {SSL_AES256, NID_aes_256_cbc}, /* SSL_ENC_AES256_IDX 7 */
42     {SSL_CAMELLIA128, NID_camellia_128_cbc}, /* SSL_ENC_CAMELLIA128_IDX 8 */
43     {SSL_CAMELLIA256, NID_camellia_256_cbc}, /* SSL_ENC_CAMELLIA256_IDX 9 */
44     {SSL_eGOST2814789CNT, NID_gost89_cnt}, /* SSL_ENC_GOST89_IDX 10 */
45     {SSL_SEED, NID_seed_cbc},   /* SSL_ENC_SEED_IDX 11 */
46     {SSL_AES128GCM, NID_aes_128_gcm}, /* SSL_ENC_AES128GCM_IDX 12 */
47     {SSL_AES256GCM, NID_aes_256_gcm}, /* SSL_ENC_AES256GCM_IDX 13 */
48     {SSL_AES128CCM, NID_aes_128_ccm}, /* SSL_ENC_AES128CCM_IDX 14 */
49     {SSL_AES256CCM, NID_aes_256_ccm}, /* SSL_ENC_AES256CCM_IDX 15 */
50     {SSL_AES128CCM8, NID_aes_128_ccm}, /* SSL_ENC_AES128CCM8_IDX 16 */
51     {SSL_AES256CCM8, NID_aes_256_ccm}, /* SSL_ENC_AES256CCM8_IDX 17 */
52     {SSL_eGOST2814789CNT12, NID_gost89_cnt_12}, /* SSL_ENC_GOST8912_IDX 18 */
53     {SSL_CHACHA20POLY1305, NID_chacha20_poly1305}, /* SSL_ENC_CHACHA_IDX 19 */
54     {SSL_ARIA128GCM, NID_aria_128_gcm}, /* SSL_ENC_ARIA128GCM_IDX 20 */
55     {SSL_ARIA256GCM, NID_aria_256_gcm}, /* SSL_ENC_ARIA256GCM_IDX 21 */
56     {SSL_MAGMA, NID_magma_ctr_acpkm}, /* SSL_ENC_MAGMA_IDX */
57     {SSL_KUZNYECHIK, NID_kuznyechik_ctr_acpkm}, /* SSL_ENC_KUZNYECHIK_IDX */
58 };
59 
60 #define SSL_COMP_NULL_IDX       0
61 #define SSL_COMP_ZLIB_IDX       1
62 #define SSL_COMP_NUM_IDX        2
63 
64 static STACK_OF(SSL_COMP) *ssl_comp_methods = NULL;
65 
66 #ifndef OPENSSL_NO_COMP
67 static CRYPTO_ONCE ssl_load_builtin_comp_once = CRYPTO_ONCE_STATIC_INIT;
68 #endif
69 
70 /* NB: make sure indices in this table matches values above */
71 static const ssl_cipher_table ssl_cipher_table_mac[SSL_MD_NUM_IDX] = {
72     {SSL_MD5, NID_md5},         /* SSL_MD_MD5_IDX 0 */
73     {SSL_SHA1, NID_sha1},       /* SSL_MD_SHA1_IDX 1 */
74     {SSL_GOST94, NID_id_GostR3411_94}, /* SSL_MD_GOST94_IDX 2 */
75     {SSL_GOST89MAC, NID_id_Gost28147_89_MAC}, /* SSL_MD_GOST89MAC_IDX 3 */
76     {SSL_SHA256, NID_sha256},   /* SSL_MD_SHA256_IDX 4 */
77     {SSL_SHA384, NID_sha384},   /* SSL_MD_SHA384_IDX 5 */
78     {SSL_GOST12_256, NID_id_GostR3411_2012_256}, /* SSL_MD_GOST12_256_IDX 6 */
79     {SSL_GOST89MAC12, NID_gost_mac_12}, /* SSL_MD_GOST89MAC12_IDX 7 */
80     {SSL_GOST12_512, NID_id_GostR3411_2012_512}, /* SSL_MD_GOST12_512_IDX 8 */
81     {0, NID_md5_sha1},          /* SSL_MD_MD5_SHA1_IDX 9 */
82     {0, NID_sha224},            /* SSL_MD_SHA224_IDX 10 */
83     {0, NID_sha512},            /* SSL_MD_SHA512_IDX 11 */
84     {SSL_MAGMAOMAC, NID_magma_mac}, /* sSL_MD_MAGMAOMAC_IDX */
85     {SSL_KUZNYECHIKOMAC, NID_kuznyechik_mac} /* SSL_MD_KUZNYECHIKOMAC_IDX */
86 };
87 
88 /* *INDENT-OFF* */
89 static const ssl_cipher_table ssl_cipher_table_kx[] = {
90     {SSL_kRSA,      NID_kx_rsa},
91     {SSL_kECDHE,    NID_kx_ecdhe},
92     {SSL_kDHE,      NID_kx_dhe},
93     {SSL_kECDHEPSK, NID_kx_ecdhe_psk},
94     {SSL_kDHEPSK,   NID_kx_dhe_psk},
95     {SSL_kRSAPSK,   NID_kx_rsa_psk},
96     {SSL_kPSK,      NID_kx_psk},
97     {SSL_kSRP,      NID_kx_srp},
98     {SSL_kGOST,     NID_kx_gost},
99     {SSL_kGOST18,   NID_kx_gost18},
100     {SSL_kANY,      NID_kx_any}
101 };
102 
103 static const ssl_cipher_table ssl_cipher_table_auth[] = {
104     {SSL_aRSA,    NID_auth_rsa},
105     {SSL_aECDSA,  NID_auth_ecdsa},
106     {SSL_aPSK,    NID_auth_psk},
107     {SSL_aDSS,    NID_auth_dss},
108     {SSL_aGOST01, NID_auth_gost01},
109     {SSL_aGOST12, NID_auth_gost12},
110     {SSL_aSRP,    NID_auth_srp},
111     {SSL_aNULL,   NID_auth_null},
112     {SSL_aANY,    NID_auth_any}
113 };
114 /* *INDENT-ON* */
115 
116 /* Utility function for table lookup */
117 static int ssl_cipher_info_find(const ssl_cipher_table * table,
118                                 size_t table_cnt, uint32_t mask)
119 {
120     size_t i;
121     for (i = 0; i < table_cnt; i++, table++) {
122         if (table->mask == mask)
123             return (int)i;
124     }
125     return -1;
126 }
127 
128 #define ssl_cipher_info_lookup(table, x) \
129     ssl_cipher_info_find(table, OSSL_NELEM(table), x)
130 
131 /*
132  * PKEY_TYPE for GOST89MAC is known in advance, but, because implementation
133  * is engine-provided, we'll fill it only if corresponding EVP_PKEY_METHOD is
134  * found
135  */
136 static const int default_mac_pkey_id[SSL_MD_NUM_IDX] = {
137     /* MD5, SHA, GOST94, MAC89 */
138     EVP_PKEY_HMAC, EVP_PKEY_HMAC, EVP_PKEY_HMAC, NID_undef,
139     /* SHA256, SHA384, GOST2012_256, MAC89-12 */
140     EVP_PKEY_HMAC, EVP_PKEY_HMAC, EVP_PKEY_HMAC, NID_undef,
141     /* GOST2012_512 */
142     EVP_PKEY_HMAC,
143     /* MD5/SHA1, SHA224, SHA512, MAGMAOMAC, KUZNYECHIKOMAC */
144     NID_undef, NID_undef, NID_undef, NID_undef, NID_undef
145 };
146 
147 #define CIPHER_ADD      1
148 #define CIPHER_KILL     2
149 #define CIPHER_DEL      3
150 #define CIPHER_ORD      4
151 #define CIPHER_SPECIAL  5
152 /*
153  * Bump the ciphers to the top of the list.
154  * This rule isn't currently supported by the public cipherstring API.
155  */
156 #define CIPHER_BUMP     6
157 
158 typedef struct cipher_order_st {
159     const SSL_CIPHER *cipher;
160     int active;
161     int dead;
162     struct cipher_order_st *next, *prev;
163 } CIPHER_ORDER;
164 
165 static const SSL_CIPHER cipher_aliases[] = {
166     /* "ALL" doesn't include eNULL (must be specifically enabled) */
167     {0, SSL_TXT_ALL, NULL, 0, 0, 0, ~SSL_eNULL},
168     /* "COMPLEMENTOFALL" */
169     {0, SSL_TXT_CMPALL, NULL, 0, 0, 0, SSL_eNULL},
170 
171     /*
172      * "COMPLEMENTOFDEFAULT" (does *not* include ciphersuites not found in
173      * ALL!)
174      */
175     {0, SSL_TXT_CMPDEF, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_NOT_DEFAULT},
176 
177     /*
178      * key exchange aliases (some of those using only a single bit here
179      * combine multiple key exchange algs according to the RFCs, e.g. kDHE
180      * combines DHE_DSS and DHE_RSA)
181      */
182     {0, SSL_TXT_kRSA, NULL, 0, SSL_kRSA},
183 
184     {0, SSL_TXT_kEDH, NULL, 0, SSL_kDHE},
185     {0, SSL_TXT_kDHE, NULL, 0, SSL_kDHE},
186     {0, SSL_TXT_DH, NULL, 0, SSL_kDHE},
187 
188     {0, SSL_TXT_kEECDH, NULL, 0, SSL_kECDHE},
189     {0, SSL_TXT_kECDHE, NULL, 0, SSL_kECDHE},
190     {0, SSL_TXT_ECDH, NULL, 0, SSL_kECDHE},
191 
192     {0, SSL_TXT_kPSK, NULL, 0, SSL_kPSK},
193     {0, SSL_TXT_kRSAPSK, NULL, 0, SSL_kRSAPSK},
194     {0, SSL_TXT_kECDHEPSK, NULL, 0, SSL_kECDHEPSK},
195     {0, SSL_TXT_kDHEPSK, NULL, 0, SSL_kDHEPSK},
196     {0, SSL_TXT_kSRP, NULL, 0, SSL_kSRP},
197     {0, SSL_TXT_kGOST, NULL, 0, SSL_kGOST},
198     {0, SSL_TXT_kGOST18, NULL, 0, SSL_kGOST18},
199 
200     /* server authentication aliases */
201     {0, SSL_TXT_aRSA, NULL, 0, 0, SSL_aRSA},
202     {0, SSL_TXT_aDSS, NULL, 0, 0, SSL_aDSS},
203     {0, SSL_TXT_DSS, NULL, 0, 0, SSL_aDSS},
204     {0, SSL_TXT_aNULL, NULL, 0, 0, SSL_aNULL},
205     {0, SSL_TXT_aECDSA, NULL, 0, 0, SSL_aECDSA},
206     {0, SSL_TXT_ECDSA, NULL, 0, 0, SSL_aECDSA},
207     {0, SSL_TXT_aPSK, NULL, 0, 0, SSL_aPSK},
208     {0, SSL_TXT_aGOST01, NULL, 0, 0, SSL_aGOST01},
209     {0, SSL_TXT_aGOST12, NULL, 0, 0, SSL_aGOST12},
210     {0, SSL_TXT_aGOST, NULL, 0, 0, SSL_aGOST01 | SSL_aGOST12},
211     {0, SSL_TXT_aSRP, NULL, 0, 0, SSL_aSRP},
212 
213     /* aliases combining key exchange and server authentication */
214     {0, SSL_TXT_EDH, NULL, 0, SSL_kDHE, ~SSL_aNULL},
215     {0, SSL_TXT_DHE, NULL, 0, SSL_kDHE, ~SSL_aNULL},
216     {0, SSL_TXT_EECDH, NULL, 0, SSL_kECDHE, ~SSL_aNULL},
217     {0, SSL_TXT_ECDHE, NULL, 0, SSL_kECDHE, ~SSL_aNULL},
218     {0, SSL_TXT_NULL, NULL, 0, 0, 0, SSL_eNULL},
219     {0, SSL_TXT_RSA, NULL, 0, SSL_kRSA, SSL_aRSA},
220     {0, SSL_TXT_ADH, NULL, 0, SSL_kDHE, SSL_aNULL},
221     {0, SSL_TXT_AECDH, NULL, 0, SSL_kECDHE, SSL_aNULL},
222     {0, SSL_TXT_PSK, NULL, 0, SSL_PSK},
223     {0, SSL_TXT_SRP, NULL, 0, SSL_kSRP},
224 
225     /* symmetric encryption aliases */
226     {0, SSL_TXT_3DES, NULL, 0, 0, 0, SSL_3DES},
227     {0, SSL_TXT_RC4, NULL, 0, 0, 0, SSL_RC4},
228     {0, SSL_TXT_RC2, NULL, 0, 0, 0, SSL_RC2},
229     {0, SSL_TXT_IDEA, NULL, 0, 0, 0, SSL_IDEA},
230     {0, SSL_TXT_SEED, NULL, 0, 0, 0, SSL_SEED},
231     {0, SSL_TXT_eNULL, NULL, 0, 0, 0, SSL_eNULL},
232     {0, SSL_TXT_GOST, NULL, 0, 0, 0,
233      SSL_eGOST2814789CNT | SSL_eGOST2814789CNT12 | SSL_MAGMA | SSL_KUZNYECHIK},
234     {0, SSL_TXT_AES128, NULL, 0, 0, 0,
235      SSL_AES128 | SSL_AES128GCM | SSL_AES128CCM | SSL_AES128CCM8},
236     {0, SSL_TXT_AES256, NULL, 0, 0, 0,
237      SSL_AES256 | SSL_AES256GCM | SSL_AES256CCM | SSL_AES256CCM8},
238     {0, SSL_TXT_AES, NULL, 0, 0, 0, SSL_AES},
239     {0, SSL_TXT_AES_GCM, NULL, 0, 0, 0, SSL_AES128GCM | SSL_AES256GCM},
240     {0, SSL_TXT_AES_CCM, NULL, 0, 0, 0,
241      SSL_AES128CCM | SSL_AES256CCM | SSL_AES128CCM8 | SSL_AES256CCM8},
242     {0, SSL_TXT_AES_CCM_8, NULL, 0, 0, 0, SSL_AES128CCM8 | SSL_AES256CCM8},
243     {0, SSL_TXT_CAMELLIA128, NULL, 0, 0, 0, SSL_CAMELLIA128},
244     {0, SSL_TXT_CAMELLIA256, NULL, 0, 0, 0, SSL_CAMELLIA256},
245     {0, SSL_TXT_CAMELLIA, NULL, 0, 0, 0, SSL_CAMELLIA},
246     {0, SSL_TXT_CHACHA20, NULL, 0, 0, 0, SSL_CHACHA20},
247     {0, SSL_TXT_GOST2012_GOST8912_GOST8912, NULL, 0, 0, 0, SSL_eGOST2814789CNT12},
248 
249     {0, SSL_TXT_ARIA, NULL, 0, 0, 0, SSL_ARIA},
250     {0, SSL_TXT_ARIA_GCM, NULL, 0, 0, 0, SSL_ARIA128GCM | SSL_ARIA256GCM},
251     {0, SSL_TXT_ARIA128, NULL, 0, 0, 0, SSL_ARIA128GCM},
252     {0, SSL_TXT_ARIA256, NULL, 0, 0, 0, SSL_ARIA256GCM},
253     {0, SSL_TXT_CBC, NULL, 0, 0, 0, SSL_CBC},
254 
255     /* MAC aliases */
256     {0, SSL_TXT_MD5, NULL, 0, 0, 0, 0, SSL_MD5},
257     {0, SSL_TXT_SHA1, NULL, 0, 0, 0, 0, SSL_SHA1},
258     {0, SSL_TXT_SHA, NULL, 0, 0, 0, 0, SSL_SHA1},
259     {0, SSL_TXT_GOST94, NULL, 0, 0, 0, 0, SSL_GOST94},
260     {0, SSL_TXT_GOST89MAC, NULL, 0, 0, 0, 0, SSL_GOST89MAC | SSL_GOST89MAC12},
261     {0, SSL_TXT_SHA256, NULL, 0, 0, 0, 0, SSL_SHA256},
262     {0, SSL_TXT_SHA384, NULL, 0, 0, 0, 0, SSL_SHA384},
263     {0, SSL_TXT_GOST12, NULL, 0, 0, 0, 0, SSL_GOST12_256},
264 
265     /* protocol version aliases */
266     {0, SSL_TXT_SSLV3, NULL, 0, 0, 0, 0, 0, SSL3_VERSION},
267     {0, SSL_TXT_TLSV1, NULL, 0, 0, 0, 0, 0, TLS1_VERSION},
268     {0, "TLSv1.0", NULL, 0, 0, 0, 0, 0, TLS1_VERSION},
269     {0, SSL_TXT_TLSV1_2, NULL, 0, 0, 0, 0, 0, TLS1_2_VERSION},
270 
271     /* strength classes */
272     {0, SSL_TXT_LOW, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_LOW},
273     {0, SSL_TXT_MEDIUM, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_MEDIUM},
274     {0, SSL_TXT_HIGH, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_HIGH},
275     /* FIPS 140-2 approved ciphersuite */
276     {0, SSL_TXT_FIPS, NULL, 0, 0, 0, ~SSL_eNULL, 0, 0, 0, 0, 0, SSL_FIPS},
277 
278     /* "EDH-" aliases to "DHE-" labels (for backward compatibility) */
279     {0, SSL3_TXT_EDH_DSS_DES_192_CBC3_SHA, NULL, 0,
280      SSL_kDHE, SSL_aDSS, SSL_3DES, SSL_SHA1, 0, 0, 0, 0, SSL_HIGH | SSL_FIPS},
281     {0, SSL3_TXT_EDH_RSA_DES_192_CBC3_SHA, NULL, 0,
282      SSL_kDHE, SSL_aRSA, SSL_3DES, SSL_SHA1, 0, 0, 0, 0, SSL_HIGH | SSL_FIPS},
283 
284 };
285 
286 /*
287  * Search for public key algorithm with given name and return its pkey_id if
288  * it is available. Otherwise return 0
289  */
290 #ifdef OPENSSL_NO_ENGINE
291 
292 static int get_optional_pkey_id(const char *pkey_name)
293 {
294     const EVP_PKEY_ASN1_METHOD *ameth;
295     int pkey_id = 0;
296     ameth = EVP_PKEY_asn1_find_str(NULL, pkey_name, -1);
297     if (ameth && EVP_PKEY_asn1_get0_info(&pkey_id, NULL, NULL, NULL, NULL,
298                                          ameth) > 0)
299         return pkey_id;
300     return 0;
301 }
302 
303 #else
304 
305 static int get_optional_pkey_id(const char *pkey_name)
306 {
307     const EVP_PKEY_ASN1_METHOD *ameth;
308     ENGINE *tmpeng = NULL;
309     int pkey_id = 0;
310     ameth = EVP_PKEY_asn1_find_str(&tmpeng, pkey_name, -1);
311     if (ameth) {
312         if (EVP_PKEY_asn1_get0_info(&pkey_id, NULL, NULL, NULL, NULL,
313                                     ameth) <= 0)
314             pkey_id = 0;
315     }
316     tls_engine_finish(tmpeng);
317     return pkey_id;
318 }
319 
320 #endif
321 
322 int ssl_load_ciphers(SSL_CTX *ctx)
323 {
324     size_t i;
325     const ssl_cipher_table *t;
326     EVP_KEYEXCH *kex = NULL;
327     EVP_SIGNATURE *sig = NULL;
328 
329     ctx->disabled_enc_mask = 0;
330     for (i = 0, t = ssl_cipher_table_cipher; i < SSL_ENC_NUM_IDX; i++, t++) {
331         if (t->nid != NID_undef) {
332             const EVP_CIPHER *cipher
333                 = ssl_evp_cipher_fetch(ctx->libctx, t->nid, ctx->propq);
334 
335             ctx->ssl_cipher_methods[i] = cipher;
336             if (cipher == NULL)
337                 ctx->disabled_enc_mask |= t->mask;
338         }
339     }
340     ctx->disabled_mac_mask = 0;
341     for (i = 0, t = ssl_cipher_table_mac; i < SSL_MD_NUM_IDX; i++, t++) {
342         const EVP_MD *md
343             = ssl_evp_md_fetch(ctx->libctx, t->nid, ctx->propq);
344 
345         ctx->ssl_digest_methods[i] = md;
346         if (md == NULL) {
347             ctx->disabled_mac_mask |= t->mask;
348         } else {
349             int tmpsize = EVP_MD_get_size(md);
350             if (!ossl_assert(tmpsize >= 0))
351                 return 0;
352             ctx->ssl_mac_secret_size[i] = tmpsize;
353         }
354     }
355 
356     ctx->disabled_mkey_mask = 0;
357     ctx->disabled_auth_mask = 0;
358 
359     /*
360      * We ignore any errors from the fetches below. They are expected to fail
361      * if theose algorithms are not available.
362      */
363     ERR_set_mark();
364     sig = EVP_SIGNATURE_fetch(ctx->libctx, "DSA", ctx->propq);
365     if (sig == NULL)
366         ctx->disabled_auth_mask |= SSL_aDSS;
367     else
368         EVP_SIGNATURE_free(sig);
369     kex = EVP_KEYEXCH_fetch(ctx->libctx, "DH", ctx->propq);
370     if (kex == NULL)
371         ctx->disabled_mkey_mask |= SSL_kDHE | SSL_kDHEPSK;
372     else
373         EVP_KEYEXCH_free(kex);
374     kex = EVP_KEYEXCH_fetch(ctx->libctx, "ECDH", ctx->propq);
375     if (kex == NULL)
376         ctx->disabled_mkey_mask |= SSL_kECDHE | SSL_kECDHEPSK;
377     else
378         EVP_KEYEXCH_free(kex);
379     sig = EVP_SIGNATURE_fetch(ctx->libctx, "ECDSA", ctx->propq);
380     if (sig == NULL)
381         ctx->disabled_auth_mask |= SSL_aECDSA;
382     else
383         EVP_SIGNATURE_free(sig);
384     ERR_pop_to_mark();
385 
386 #ifdef OPENSSL_NO_PSK
387     ctx->disabled_mkey_mask |= SSL_PSK;
388     ctx->disabled_auth_mask |= SSL_aPSK;
389 #endif
390 #ifdef OPENSSL_NO_SRP
391     ctx->disabled_mkey_mask |= SSL_kSRP;
392 #endif
393 
394     /*
395      * Check for presence of GOST 34.10 algorithms, and if they are not
396      * present, disable appropriate auth and key exchange
397      */
398     memcpy(ctx->ssl_mac_pkey_id, default_mac_pkey_id,
399            sizeof(ctx->ssl_mac_pkey_id));
400 
401     ctx->ssl_mac_pkey_id[SSL_MD_GOST89MAC_IDX] =
402         get_optional_pkey_id(SN_id_Gost28147_89_MAC);
403     if (ctx->ssl_mac_pkey_id[SSL_MD_GOST89MAC_IDX])
404         ctx->ssl_mac_secret_size[SSL_MD_GOST89MAC_IDX] = 32;
405     else
406         ctx->disabled_mac_mask |= SSL_GOST89MAC;
407 
408     ctx->ssl_mac_pkey_id[SSL_MD_GOST89MAC12_IDX] =
409         get_optional_pkey_id(SN_gost_mac_12);
410     if (ctx->ssl_mac_pkey_id[SSL_MD_GOST89MAC12_IDX])
411         ctx->ssl_mac_secret_size[SSL_MD_GOST89MAC12_IDX] = 32;
412     else
413         ctx->disabled_mac_mask |= SSL_GOST89MAC12;
414 
415     ctx->ssl_mac_pkey_id[SSL_MD_MAGMAOMAC_IDX] =
416         get_optional_pkey_id(SN_magma_mac);
417     if (ctx->ssl_mac_pkey_id[SSL_MD_MAGMAOMAC_IDX])
418         ctx->ssl_mac_secret_size[SSL_MD_MAGMAOMAC_IDX] = 32;
419     else
420         ctx->disabled_mac_mask |= SSL_MAGMAOMAC;
421 
422     ctx->ssl_mac_pkey_id[SSL_MD_KUZNYECHIKOMAC_IDX] =
423         get_optional_pkey_id(SN_kuznyechik_mac);
424     if (ctx->ssl_mac_pkey_id[SSL_MD_KUZNYECHIKOMAC_IDX])
425         ctx->ssl_mac_secret_size[SSL_MD_KUZNYECHIKOMAC_IDX] = 32;
426     else
427         ctx->disabled_mac_mask |= SSL_KUZNYECHIKOMAC;
428 
429     if (!get_optional_pkey_id(SN_id_GostR3410_2001))
430         ctx->disabled_auth_mask |= SSL_aGOST01 | SSL_aGOST12;
431     if (!get_optional_pkey_id(SN_id_GostR3410_2012_256))
432         ctx->disabled_auth_mask |= SSL_aGOST12;
433     if (!get_optional_pkey_id(SN_id_GostR3410_2012_512))
434         ctx->disabled_auth_mask |= SSL_aGOST12;
435     /*
436      * Disable GOST key exchange if no GOST signature algs are available *
437      */
438     if ((ctx->disabled_auth_mask & (SSL_aGOST01 | SSL_aGOST12)) ==
439         (SSL_aGOST01 | SSL_aGOST12))
440         ctx->disabled_mkey_mask |= SSL_kGOST;
441 
442     if ((ctx->disabled_auth_mask & SSL_aGOST12) ==  SSL_aGOST12)
443         ctx->disabled_mkey_mask |= SSL_kGOST18;
444 
445     return 1;
446 }
447 
448 #ifndef OPENSSL_NO_COMP
449 
450 static int sk_comp_cmp(const SSL_COMP *const *a, const SSL_COMP *const *b)
451 {
452     return ((*a)->id - (*b)->id);
453 }
454 
455 DEFINE_RUN_ONCE_STATIC(do_load_builtin_compressions)
456 {
457     SSL_COMP *comp = NULL;
458     COMP_METHOD *method = COMP_zlib();
459 
460     ssl_comp_methods = sk_SSL_COMP_new(sk_comp_cmp);
461 
462     if (COMP_get_type(method) != NID_undef && ssl_comp_methods != NULL) {
463         comp = OPENSSL_malloc(sizeof(*comp));
464         if (comp != NULL) {
465             comp->method = method;
466             comp->id = SSL_COMP_ZLIB_IDX;
467             comp->name = COMP_get_name(method);
468             sk_SSL_COMP_push(ssl_comp_methods, comp);
469             sk_SSL_COMP_sort(ssl_comp_methods);
470         }
471     }
472     return 1;
473 }
474 
475 static int load_builtin_compressions(void)
476 {
477     return RUN_ONCE(&ssl_load_builtin_comp_once, do_load_builtin_compressions);
478 }
479 #endif
480 
481 int ssl_cipher_get_evp_cipher(SSL_CTX *ctx, const SSL_CIPHER *sslc,
482                               const EVP_CIPHER **enc)
483 {
484     int i = ssl_cipher_info_lookup(ssl_cipher_table_cipher, sslc->algorithm_enc);
485 
486     if (i == -1) {
487         *enc = NULL;
488     } else {
489         if (i == SSL_ENC_NULL_IDX) {
490             /*
491              * We assume we don't care about this coming from an ENGINE so
492              * just do a normal EVP_CIPHER_fetch instead of
493              * ssl_evp_cipher_fetch()
494              */
495             *enc = EVP_CIPHER_fetch(ctx->libctx, "NULL", ctx->propq);
496             if (*enc == NULL)
497                 return 0;
498         } else {
499             const EVP_CIPHER *cipher = ctx->ssl_cipher_methods[i];
500 
501             if (cipher == NULL
502                     || !ssl_evp_cipher_up_ref(cipher))
503                 return 0;
504             *enc = ctx->ssl_cipher_methods[i];
505         }
506     }
507     return 1;
508 }
509 
510 int ssl_cipher_get_evp(SSL_CTX *ctx, const SSL_SESSION *s,
511                        const EVP_CIPHER **enc, const EVP_MD **md,
512                        int *mac_pkey_type, size_t *mac_secret_size,
513                        SSL_COMP **comp, int use_etm)
514 {
515     int i;
516     const SSL_CIPHER *c;
517 
518     c = s->cipher;
519     if (c == NULL)
520         return 0;
521     if (comp != NULL) {
522         SSL_COMP ctmp;
523 #ifndef OPENSSL_NO_COMP
524         if (!load_builtin_compressions()) {
525             /*
526              * Currently don't care, since a failure only means that
527              * ssl_comp_methods is NULL, which is perfectly OK
528              */
529         }
530 #endif
531         *comp = NULL;
532         ctmp.id = s->compress_meth;
533         if (ssl_comp_methods != NULL) {
534             i = sk_SSL_COMP_find(ssl_comp_methods, &ctmp);
535             if (i >= 0)
536                 *comp = sk_SSL_COMP_value(ssl_comp_methods, i);
537         }
538         /* If were only interested in comp then return success */
539         if ((enc == NULL) && (md == NULL))
540             return 1;
541     }
542 
543     if ((enc == NULL) || (md == NULL))
544         return 0;
545 
546     if (!ssl_cipher_get_evp_cipher(ctx, c, enc))
547         return 0;
548 
549     i = ssl_cipher_info_lookup(ssl_cipher_table_mac, c->algorithm_mac);
550     if (i == -1) {
551         *md = NULL;
552         if (mac_pkey_type != NULL)
553             *mac_pkey_type = NID_undef;
554         if (mac_secret_size != NULL)
555             *mac_secret_size = 0;
556         if (c->algorithm_mac == SSL_AEAD)
557             mac_pkey_type = NULL;
558     } else {
559         const EVP_MD *digest = ctx->ssl_digest_methods[i];
560 
561         if (digest == NULL
562                 || !ssl_evp_md_up_ref(digest)) {
563             ssl_evp_cipher_free(*enc);
564             return 0;
565         }
566         *md = digest;
567         if (mac_pkey_type != NULL)
568             *mac_pkey_type = ctx->ssl_mac_pkey_id[i];
569         if (mac_secret_size != NULL)
570             *mac_secret_size = ctx->ssl_mac_secret_size[i];
571     }
572 
573     if ((*enc != NULL)
574         && (*md != NULL
575             || (EVP_CIPHER_get_flags(*enc) & EVP_CIPH_FLAG_AEAD_CIPHER))
576         && (!mac_pkey_type || *mac_pkey_type != NID_undef)) {
577         const EVP_CIPHER *evp = NULL;
578 
579         if (use_etm
580                 || s->ssl_version >> 8 != TLS1_VERSION_MAJOR
581                 || s->ssl_version < TLS1_VERSION)
582             return 1;
583 
584         if (c->algorithm_enc == SSL_RC4
585                 && c->algorithm_mac == SSL_MD5)
586             evp = ssl_evp_cipher_fetch(ctx->libctx, NID_rc4_hmac_md5,
587                                        ctx->propq);
588         else if (c->algorithm_enc == SSL_AES128
589                     && c->algorithm_mac == SSL_SHA1)
590             evp = ssl_evp_cipher_fetch(ctx->libctx,
591                                        NID_aes_128_cbc_hmac_sha1,
592                                        ctx->propq);
593         else if (c->algorithm_enc == SSL_AES256
594                     && c->algorithm_mac == SSL_SHA1)
595              evp = ssl_evp_cipher_fetch(ctx->libctx,
596                                         NID_aes_256_cbc_hmac_sha1,
597                                         ctx->propq);
598         else if (c->algorithm_enc == SSL_AES128
599                     && c->algorithm_mac == SSL_SHA256)
600             evp = ssl_evp_cipher_fetch(ctx->libctx,
601                                        NID_aes_128_cbc_hmac_sha256,
602                                        ctx->propq);
603         else if (c->algorithm_enc == SSL_AES256
604                     && c->algorithm_mac == SSL_SHA256)
605             evp = ssl_evp_cipher_fetch(ctx->libctx,
606                                        NID_aes_256_cbc_hmac_sha256,
607                                        ctx->propq);
608 
609         if (evp != NULL) {
610             ssl_evp_cipher_free(*enc);
611             ssl_evp_md_free(*md);
612             *enc = evp;
613             *md = NULL;
614         }
615         return 1;
616     }
617 
618     return 0;
619 }
620 
621 const EVP_MD *ssl_md(SSL_CTX *ctx, int idx)
622 {
623     idx &= SSL_HANDSHAKE_MAC_MASK;
624     if (idx < 0 || idx >= SSL_MD_NUM_IDX)
625         return NULL;
626     return ctx->ssl_digest_methods[idx];
627 }
628 
629 const EVP_MD *ssl_handshake_md(SSL *s)
630 {
631     return ssl_md(s->ctx, ssl_get_algorithm2(s));
632 }
633 
634 const EVP_MD *ssl_prf_md(SSL *s)
635 {
636     return ssl_md(s->ctx, ssl_get_algorithm2(s) >> TLS1_PRF_DGST_SHIFT);
637 }
638 
639 #define ITEM_SEP(a) \
640         (((a) == ':') || ((a) == ' ') || ((a) == ';') || ((a) == ','))
641 
642 static void ll_append_tail(CIPHER_ORDER **head, CIPHER_ORDER *curr,
643                            CIPHER_ORDER **tail)
644 {
645     if (curr == *tail)
646         return;
647     if (curr == *head)
648         *head = curr->next;
649     if (curr->prev != NULL)
650         curr->prev->next = curr->next;
651     if (curr->next != NULL)
652         curr->next->prev = curr->prev;
653     (*tail)->next = curr;
654     curr->prev = *tail;
655     curr->next = NULL;
656     *tail = curr;
657 }
658 
659 static void ll_append_head(CIPHER_ORDER **head, CIPHER_ORDER *curr,
660                            CIPHER_ORDER **tail)
661 {
662     if (curr == *head)
663         return;
664     if (curr == *tail)
665         *tail = curr->prev;
666     if (curr->next != NULL)
667         curr->next->prev = curr->prev;
668     if (curr->prev != NULL)
669         curr->prev->next = curr->next;
670     (*head)->prev = curr;
671     curr->next = *head;
672     curr->prev = NULL;
673     *head = curr;
674 }
675 
676 static void ssl_cipher_collect_ciphers(const SSL_METHOD *ssl_method,
677                                        int num_of_ciphers,
678                                        uint32_t disabled_mkey,
679                                        uint32_t disabled_auth,
680                                        uint32_t disabled_enc,
681                                        uint32_t disabled_mac,
682                                        CIPHER_ORDER *co_list,
683                                        CIPHER_ORDER **head_p,
684                                        CIPHER_ORDER **tail_p)
685 {
686     int i, co_list_num;
687     const SSL_CIPHER *c;
688 
689     /*
690      * We have num_of_ciphers descriptions compiled in, depending on the
691      * method selected (SSLv3, TLSv1 etc).
692      * These will later be sorted in a linked list with at most num
693      * entries.
694      */
695 
696     /* Get the initial list of ciphers */
697     co_list_num = 0;            /* actual count of ciphers */
698     for (i = 0; i < num_of_ciphers; i++) {
699         c = ssl_method->get_cipher(i);
700         /* drop those that use any of that is not available */
701         if (c == NULL || !c->valid)
702             continue;
703         if ((c->algorithm_mkey & disabled_mkey) ||
704             (c->algorithm_auth & disabled_auth) ||
705             (c->algorithm_enc & disabled_enc) ||
706             (c->algorithm_mac & disabled_mac))
707             continue;
708         if (((ssl_method->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS) == 0) &&
709             c->min_tls == 0)
710             continue;
711         if (((ssl_method->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS) != 0) &&
712             c->min_dtls == 0)
713             continue;
714 
715         co_list[co_list_num].cipher = c;
716         co_list[co_list_num].next = NULL;
717         co_list[co_list_num].prev = NULL;
718         co_list[co_list_num].active = 0;
719         co_list_num++;
720     }
721 
722     /*
723      * Prepare linked list from list entries
724      */
725     if (co_list_num > 0) {
726         co_list[0].prev = NULL;
727 
728         if (co_list_num > 1) {
729             co_list[0].next = &co_list[1];
730 
731             for (i = 1; i < co_list_num - 1; i++) {
732                 co_list[i].prev = &co_list[i - 1];
733                 co_list[i].next = &co_list[i + 1];
734             }
735 
736             co_list[co_list_num - 1].prev = &co_list[co_list_num - 2];
737         }
738 
739         co_list[co_list_num - 1].next = NULL;
740 
741         *head_p = &co_list[0];
742         *tail_p = &co_list[co_list_num - 1];
743     }
744 }
745 
746 static void ssl_cipher_collect_aliases(const SSL_CIPHER **ca_list,
747                                        int num_of_group_aliases,
748                                        uint32_t disabled_mkey,
749                                        uint32_t disabled_auth,
750                                        uint32_t disabled_enc,
751                                        uint32_t disabled_mac,
752                                        CIPHER_ORDER *head)
753 {
754     CIPHER_ORDER *ciph_curr;
755     const SSL_CIPHER **ca_curr;
756     int i;
757     uint32_t mask_mkey = ~disabled_mkey;
758     uint32_t mask_auth = ~disabled_auth;
759     uint32_t mask_enc = ~disabled_enc;
760     uint32_t mask_mac = ~disabled_mac;
761 
762     /*
763      * First, add the real ciphers as already collected
764      */
765     ciph_curr = head;
766     ca_curr = ca_list;
767     while (ciph_curr != NULL) {
768         *ca_curr = ciph_curr->cipher;
769         ca_curr++;
770         ciph_curr = ciph_curr->next;
771     }
772 
773     /*
774      * Now we add the available ones from the cipher_aliases[] table.
775      * They represent either one or more algorithms, some of which
776      * in any affected category must be supported (set in enabled_mask),
777      * or represent a cipher strength value (will be added in any case because algorithms=0).
778      */
779     for (i = 0; i < num_of_group_aliases; i++) {
780         uint32_t algorithm_mkey = cipher_aliases[i].algorithm_mkey;
781         uint32_t algorithm_auth = cipher_aliases[i].algorithm_auth;
782         uint32_t algorithm_enc = cipher_aliases[i].algorithm_enc;
783         uint32_t algorithm_mac = cipher_aliases[i].algorithm_mac;
784 
785         if (algorithm_mkey)
786             if ((algorithm_mkey & mask_mkey) == 0)
787                 continue;
788 
789         if (algorithm_auth)
790             if ((algorithm_auth & mask_auth) == 0)
791                 continue;
792 
793         if (algorithm_enc)
794             if ((algorithm_enc & mask_enc) == 0)
795                 continue;
796 
797         if (algorithm_mac)
798             if ((algorithm_mac & mask_mac) == 0)
799                 continue;
800 
801         *ca_curr = (SSL_CIPHER *)(cipher_aliases + i);
802         ca_curr++;
803     }
804 
805     *ca_curr = NULL;            /* end of list */
806 }
807 
808 static void ssl_cipher_apply_rule(uint32_t cipher_id, uint32_t alg_mkey,
809                                   uint32_t alg_auth, uint32_t alg_enc,
810                                   uint32_t alg_mac, int min_tls,
811                                   uint32_t algo_strength, int rule,
812                                   int32_t strength_bits, CIPHER_ORDER **head_p,
813                                   CIPHER_ORDER **tail_p)
814 {
815     CIPHER_ORDER *head, *tail, *curr, *next, *last;
816     const SSL_CIPHER *cp;
817     int reverse = 0;
818 
819     OSSL_TRACE_BEGIN(TLS_CIPHER){
820         BIO_printf(trc_out,
821                    "Applying rule %d with %08x/%08x/%08x/%08x/%08x %08x (%d)\n",
822                    rule, alg_mkey, alg_auth, alg_enc, alg_mac, min_tls,
823                    algo_strength, strength_bits);
824     }
825 
826     if (rule == CIPHER_DEL || rule == CIPHER_BUMP)
827         reverse = 1;            /* needed to maintain sorting between currently
828                                  * deleted ciphers */
829 
830     head = *head_p;
831     tail = *tail_p;
832 
833     if (reverse) {
834         next = tail;
835         last = head;
836     } else {
837         next = head;
838         last = tail;
839     }
840 
841     curr = NULL;
842     for (;;) {
843         if (curr == last)
844             break;
845 
846         curr = next;
847 
848         if (curr == NULL)
849             break;
850 
851         next = reverse ? curr->prev : curr->next;
852 
853         cp = curr->cipher;
854 
855         /*
856          * Selection criteria is either the value of strength_bits
857          * or the algorithms used.
858          */
859         if (strength_bits >= 0) {
860             if (strength_bits != cp->strength_bits)
861                 continue;
862         } else {
863             if (trc_out != NULL) {
864                 BIO_printf(trc_out,
865                            "\nName: %s:"
866                            "\nAlgo = %08x/%08x/%08x/%08x/%08x Algo_strength = %08x\n",
867                            cp->name, cp->algorithm_mkey, cp->algorithm_auth,
868                            cp->algorithm_enc, cp->algorithm_mac, cp->min_tls,
869                            cp->algo_strength);
870             }
871             if (cipher_id != 0 && (cipher_id != cp->id))
872                 continue;
873             if (alg_mkey && !(alg_mkey & cp->algorithm_mkey))
874                 continue;
875             if (alg_auth && !(alg_auth & cp->algorithm_auth))
876                 continue;
877             if (alg_enc && !(alg_enc & cp->algorithm_enc))
878                 continue;
879             if (alg_mac && !(alg_mac & cp->algorithm_mac))
880                 continue;
881             if (min_tls && (min_tls != cp->min_tls))
882                 continue;
883             if ((algo_strength & SSL_STRONG_MASK)
884                 && !(algo_strength & SSL_STRONG_MASK & cp->algo_strength))
885                 continue;
886             if ((algo_strength & SSL_DEFAULT_MASK)
887                 && !(algo_strength & SSL_DEFAULT_MASK & cp->algo_strength))
888                 continue;
889         }
890 
891         if (trc_out != NULL)
892             BIO_printf(trc_out, "Action = %d\n", rule);
893 
894         /* add the cipher if it has not been added yet. */
895         if (rule == CIPHER_ADD) {
896             /* reverse == 0 */
897             if (!curr->active) {
898                 ll_append_tail(&head, curr, &tail);
899                 curr->active = 1;
900             }
901         }
902         /* Move the added cipher to this location */
903         else if (rule == CIPHER_ORD) {
904             /* reverse == 0 */
905             if (curr->active) {
906                 ll_append_tail(&head, curr, &tail);
907             }
908         } else if (rule == CIPHER_DEL) {
909             /* reverse == 1 */
910             if (curr->active) {
911                 /*
912                  * most recently deleted ciphersuites get best positions for
913                  * any future CIPHER_ADD (note that the CIPHER_DEL loop works
914                  * in reverse to maintain the order)
915                  */
916                 ll_append_head(&head, curr, &tail);
917                 curr->active = 0;
918             }
919         } else if (rule == CIPHER_BUMP) {
920             if (curr->active)
921                 ll_append_head(&head, curr, &tail);
922         } else if (rule == CIPHER_KILL) {
923             /* reverse == 0 */
924             if (head == curr)
925                 head = curr->next;
926             else
927                 curr->prev->next = curr->next;
928             if (tail == curr)
929                 tail = curr->prev;
930             curr->active = 0;
931             if (curr->next != NULL)
932                 curr->next->prev = curr->prev;
933             if (curr->prev != NULL)
934                 curr->prev->next = curr->next;
935             curr->next = NULL;
936             curr->prev = NULL;
937         }
938     }
939 
940     *head_p = head;
941     *tail_p = tail;
942 
943     OSSL_TRACE_END(TLS_CIPHER);
944 }
945 
946 static int ssl_cipher_strength_sort(CIPHER_ORDER **head_p,
947                                     CIPHER_ORDER **tail_p)
948 {
949     int32_t max_strength_bits;
950     int i, *number_uses;
951     CIPHER_ORDER *curr;
952 
953     /*
954      * This routine sorts the ciphers with descending strength. The sorting
955      * must keep the pre-sorted sequence, so we apply the normal sorting
956      * routine as '+' movement to the end of the list.
957      */
958     max_strength_bits = 0;
959     curr = *head_p;
960     while (curr != NULL) {
961         if (curr->active && (curr->cipher->strength_bits > max_strength_bits))
962             max_strength_bits = curr->cipher->strength_bits;
963         curr = curr->next;
964     }
965 
966     number_uses = OPENSSL_zalloc(sizeof(int) * (max_strength_bits + 1));
967     if (number_uses == NULL) {
968         ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
969         return 0;
970     }
971 
972     /*
973      * Now find the strength_bits values actually used
974      */
975     curr = *head_p;
976     while (curr != NULL) {
977         if (curr->active)
978             number_uses[curr->cipher->strength_bits]++;
979         curr = curr->next;
980     }
981     /*
982      * Go through the list of used strength_bits values in descending
983      * order.
984      */
985     for (i = max_strength_bits; i >= 0; i--)
986         if (number_uses[i] > 0)
987             ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_ORD, i, head_p,
988                                   tail_p);
989 
990     OPENSSL_free(number_uses);
991     return 1;
992 }
993 
994 static int ssl_cipher_process_rulestr(const char *rule_str,
995                                       CIPHER_ORDER **head_p,
996                                       CIPHER_ORDER **tail_p,
997                                       const SSL_CIPHER **ca_list, CERT *c)
998 {
999     uint32_t alg_mkey, alg_auth, alg_enc, alg_mac, algo_strength;
1000     int min_tls;
1001     const char *l, *buf;
1002     int j, multi, found, rule, retval, ok, buflen;
1003     uint32_t cipher_id = 0;
1004     char ch;
1005 
1006     retval = 1;
1007     l = rule_str;
1008     for ( ; ; ) {
1009         ch = *l;
1010 
1011         if (ch == '\0')
1012             break;              /* done */
1013         if (ch == '-') {
1014             rule = CIPHER_DEL;
1015             l++;
1016         } else if (ch == '+') {
1017             rule = CIPHER_ORD;
1018             l++;
1019         } else if (ch == '!') {
1020             rule = CIPHER_KILL;
1021             l++;
1022         } else if (ch == '@') {
1023             rule = CIPHER_SPECIAL;
1024             l++;
1025         } else {
1026             rule = CIPHER_ADD;
1027         }
1028 
1029         if (ITEM_SEP(ch)) {
1030             l++;
1031             continue;
1032         }
1033 
1034         alg_mkey = 0;
1035         alg_auth = 0;
1036         alg_enc = 0;
1037         alg_mac = 0;
1038         min_tls = 0;
1039         algo_strength = 0;
1040 
1041         for (;;) {
1042             ch = *l;
1043             buf = l;
1044             buflen = 0;
1045 #ifndef CHARSET_EBCDIC
1046             while (((ch >= 'A') && (ch <= 'Z')) ||
1047                    ((ch >= '0') && (ch <= '9')) ||
1048                    ((ch >= 'a') && (ch <= 'z')) ||
1049                    (ch == '-') || (ch == '.') || (ch == '='))
1050 #else
1051             while (isalnum((unsigned char)ch) || (ch == '-') || (ch == '.')
1052                    || (ch == '='))
1053 #endif
1054             {
1055                 ch = *(++l);
1056                 buflen++;
1057             }
1058 
1059             if (buflen == 0) {
1060                 /*
1061                  * We hit something we cannot deal with,
1062                  * it is no command or separator nor
1063                  * alphanumeric, so we call this an error.
1064                  */
1065                 ERR_raise(ERR_LIB_SSL, SSL_R_INVALID_COMMAND);
1066                 return 0;
1067             }
1068 
1069             if (rule == CIPHER_SPECIAL) {
1070                 found = 0;      /* unused -- avoid compiler warning */
1071                 break;          /* special treatment */
1072             }
1073 
1074             /* check for multi-part specification */
1075             if (ch == '+') {
1076                 multi = 1;
1077                 l++;
1078             } else {
1079                 multi = 0;
1080             }
1081 
1082             /*
1083              * Now search for the cipher alias in the ca_list. Be careful
1084              * with the strncmp, because the "buflen" limitation
1085              * will make the rule "ADH:SOME" and the cipher
1086              * "ADH-MY-CIPHER" look like a match for buflen=3.
1087              * So additionally check whether the cipher name found
1088              * has the correct length. We can save a strlen() call:
1089              * just checking for the '\0' at the right place is
1090              * sufficient, we have to strncmp() anyway. (We cannot
1091              * use strcmp(), because buf is not '\0' terminated.)
1092              */
1093             j = found = 0;
1094             cipher_id = 0;
1095             while (ca_list[j]) {
1096                 if (strncmp(buf, ca_list[j]->name, buflen) == 0
1097                     && (ca_list[j]->name[buflen] == '\0')) {
1098                     found = 1;
1099                     break;
1100                 } else
1101                     j++;
1102             }
1103 
1104             if (!found)
1105                 break;          /* ignore this entry */
1106 
1107             if (ca_list[j]->algorithm_mkey) {
1108                 if (alg_mkey) {
1109                     alg_mkey &= ca_list[j]->algorithm_mkey;
1110                     if (!alg_mkey) {
1111                         found = 0;
1112                         break;
1113                     }
1114                 } else {
1115                     alg_mkey = ca_list[j]->algorithm_mkey;
1116                 }
1117             }
1118 
1119             if (ca_list[j]->algorithm_auth) {
1120                 if (alg_auth) {
1121                     alg_auth &= ca_list[j]->algorithm_auth;
1122                     if (!alg_auth) {
1123                         found = 0;
1124                         break;
1125                     }
1126                 } else {
1127                     alg_auth = ca_list[j]->algorithm_auth;
1128                 }
1129             }
1130 
1131             if (ca_list[j]->algorithm_enc) {
1132                 if (alg_enc) {
1133                     alg_enc &= ca_list[j]->algorithm_enc;
1134                     if (!alg_enc) {
1135                         found = 0;
1136                         break;
1137                     }
1138                 } else {
1139                     alg_enc = ca_list[j]->algorithm_enc;
1140                 }
1141             }
1142 
1143             if (ca_list[j]->algorithm_mac) {
1144                 if (alg_mac) {
1145                     alg_mac &= ca_list[j]->algorithm_mac;
1146                     if (!alg_mac) {
1147                         found = 0;
1148                         break;
1149                     }
1150                 } else {
1151                     alg_mac = ca_list[j]->algorithm_mac;
1152                 }
1153             }
1154 
1155             if (ca_list[j]->algo_strength & SSL_STRONG_MASK) {
1156                 if (algo_strength & SSL_STRONG_MASK) {
1157                     algo_strength &=
1158                         (ca_list[j]->algo_strength & SSL_STRONG_MASK) |
1159                         ~SSL_STRONG_MASK;
1160                     if (!(algo_strength & SSL_STRONG_MASK)) {
1161                         found = 0;
1162                         break;
1163                     }
1164                 } else {
1165                     algo_strength = ca_list[j]->algo_strength & SSL_STRONG_MASK;
1166                 }
1167             }
1168 
1169             if (ca_list[j]->algo_strength & SSL_DEFAULT_MASK) {
1170                 if (algo_strength & SSL_DEFAULT_MASK) {
1171                     algo_strength &=
1172                         (ca_list[j]->algo_strength & SSL_DEFAULT_MASK) |
1173                         ~SSL_DEFAULT_MASK;
1174                     if (!(algo_strength & SSL_DEFAULT_MASK)) {
1175                         found = 0;
1176                         break;
1177                     }
1178                 } else {
1179                     algo_strength |=
1180                         ca_list[j]->algo_strength & SSL_DEFAULT_MASK;
1181                 }
1182             }
1183 
1184             if (ca_list[j]->valid) {
1185                 /*
1186                  * explicit ciphersuite found; its protocol version does not
1187                  * become part of the search pattern!
1188                  */
1189 
1190                 cipher_id = ca_list[j]->id;
1191             } else {
1192                 /*
1193                  * not an explicit ciphersuite; only in this case, the
1194                  * protocol version is considered part of the search pattern
1195                  */
1196 
1197                 if (ca_list[j]->min_tls) {
1198                     if (min_tls != 0 && min_tls != ca_list[j]->min_tls) {
1199                         found = 0;
1200                         break;
1201                     } else {
1202                         min_tls = ca_list[j]->min_tls;
1203                     }
1204                 }
1205             }
1206 
1207             if (!multi)
1208                 break;
1209         }
1210 
1211         /*
1212          * Ok, we have the rule, now apply it
1213          */
1214         if (rule == CIPHER_SPECIAL) { /* special command */
1215             ok = 0;
1216             if ((buflen == 8) && strncmp(buf, "STRENGTH", 8) == 0) {
1217                 ok = ssl_cipher_strength_sort(head_p, tail_p);
1218             } else if (buflen == 10 && strncmp(buf, "SECLEVEL=", 9) == 0) {
1219                 int level = buf[9] - '0';
1220                 if (level < 0 || level > 5) {
1221                     ERR_raise(ERR_LIB_SSL, SSL_R_INVALID_COMMAND);
1222                 } else {
1223                     c->sec_level = level;
1224                     ok = 1;
1225                 }
1226             } else {
1227                 ERR_raise(ERR_LIB_SSL, SSL_R_INVALID_COMMAND);
1228             }
1229             if (ok == 0)
1230                 retval = 0;
1231             /*
1232              * We do not support any "multi" options
1233              * together with "@", so throw away the
1234              * rest of the command, if any left, until
1235              * end or ':' is found.
1236              */
1237             while ((*l != '\0') && !ITEM_SEP(*l))
1238                 l++;
1239         } else if (found) {
1240             ssl_cipher_apply_rule(cipher_id,
1241                                   alg_mkey, alg_auth, alg_enc, alg_mac,
1242                                   min_tls, algo_strength, rule, -1, head_p,
1243                                   tail_p);
1244         } else {
1245             while ((*l != '\0') && !ITEM_SEP(*l))
1246                 l++;
1247         }
1248         if (*l == '\0')
1249             break;              /* done */
1250     }
1251 
1252     return retval;
1253 }
1254 
1255 static int check_suiteb_cipher_list(const SSL_METHOD *meth, CERT *c,
1256                                     const char **prule_str)
1257 {
1258     unsigned int suiteb_flags = 0, suiteb_comb2 = 0;
1259     if (strncmp(*prule_str, "SUITEB128ONLY", 13) == 0) {
1260         suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS_ONLY;
1261     } else if (strncmp(*prule_str, "SUITEB128C2", 11) == 0) {
1262         suiteb_comb2 = 1;
1263         suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS;
1264     } else if (strncmp(*prule_str, "SUITEB128", 9) == 0) {
1265         suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS;
1266     } else if (strncmp(*prule_str, "SUITEB192", 9) == 0) {
1267         suiteb_flags = SSL_CERT_FLAG_SUITEB_192_LOS;
1268     }
1269 
1270     if (suiteb_flags) {
1271         c->cert_flags &= ~SSL_CERT_FLAG_SUITEB_128_LOS;
1272         c->cert_flags |= suiteb_flags;
1273     } else {
1274         suiteb_flags = c->cert_flags & SSL_CERT_FLAG_SUITEB_128_LOS;
1275     }
1276 
1277     if (!suiteb_flags)
1278         return 1;
1279     /* Check version: if TLS 1.2 ciphers allowed we can use Suite B */
1280 
1281     if (!(meth->ssl3_enc->enc_flags & SSL_ENC_FLAG_TLS1_2_CIPHERS)) {
1282         ERR_raise(ERR_LIB_SSL, SSL_R_AT_LEAST_TLS_1_2_NEEDED_IN_SUITEB_MODE);
1283         return 0;
1284     }
1285 
1286     switch (suiteb_flags) {
1287     case SSL_CERT_FLAG_SUITEB_128_LOS:
1288         if (suiteb_comb2)
1289             *prule_str = "ECDHE-ECDSA-AES256-GCM-SHA384";
1290         else
1291             *prule_str =
1292                 "ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES256-GCM-SHA384";
1293         break;
1294     case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
1295         *prule_str = "ECDHE-ECDSA-AES128-GCM-SHA256";
1296         break;
1297     case SSL_CERT_FLAG_SUITEB_192_LOS:
1298         *prule_str = "ECDHE-ECDSA-AES256-GCM-SHA384";
1299         break;
1300     }
1301     return 1;
1302 }
1303 
1304 static int ciphersuite_cb(const char *elem, int len, void *arg)
1305 {
1306     STACK_OF(SSL_CIPHER) *ciphersuites = (STACK_OF(SSL_CIPHER) *)arg;
1307     const SSL_CIPHER *cipher;
1308     /* Arbitrary sized temp buffer for the cipher name. Should be big enough */
1309     char name[80];
1310 
1311     if (len > (int)(sizeof(name) - 1))
1312         /* Anyway return 1 so we can parse rest of the list */
1313         return 1;
1314 
1315     memcpy(name, elem, len);
1316     name[len] = '\0';
1317 
1318     cipher = ssl3_get_cipher_by_std_name(name);
1319     if (cipher == NULL)
1320         /* Ciphersuite not found but return 1 to parse rest of the list */
1321         return 1;
1322 
1323     if (!sk_SSL_CIPHER_push(ciphersuites, cipher)) {
1324         ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR);
1325         return 0;
1326     }
1327 
1328     return 1;
1329 }
1330 
1331 static __owur int set_ciphersuites(STACK_OF(SSL_CIPHER) **currciphers, const char *str)
1332 {
1333     STACK_OF(SSL_CIPHER) *newciphers = sk_SSL_CIPHER_new_null();
1334 
1335     if (newciphers == NULL)
1336         return 0;
1337 
1338     /* Parse the list. We explicitly allow an empty list */
1339     if (*str != '\0'
1340             && (CONF_parse_list(str, ':', 1, ciphersuite_cb, newciphers) <= 0
1341                 || sk_SSL_CIPHER_num(newciphers) == 0)) {
1342         ERR_raise(ERR_LIB_SSL, SSL_R_NO_CIPHER_MATCH);
1343         sk_SSL_CIPHER_free(newciphers);
1344         return 0;
1345     }
1346     sk_SSL_CIPHER_free(*currciphers);
1347     *currciphers = newciphers;
1348 
1349     return 1;
1350 }
1351 
1352 static int update_cipher_list_by_id(STACK_OF(SSL_CIPHER) **cipher_list_by_id,
1353                                     STACK_OF(SSL_CIPHER) *cipherstack)
1354 {
1355     STACK_OF(SSL_CIPHER) *tmp_cipher_list = sk_SSL_CIPHER_dup(cipherstack);
1356 
1357     if (tmp_cipher_list == NULL) {
1358         return 0;
1359     }
1360 
1361     sk_SSL_CIPHER_free(*cipher_list_by_id);
1362     *cipher_list_by_id = tmp_cipher_list;
1363 
1364     (void)sk_SSL_CIPHER_set_cmp_func(*cipher_list_by_id, ssl_cipher_ptr_id_cmp);
1365     sk_SSL_CIPHER_sort(*cipher_list_by_id);
1366 
1367     return 1;
1368 }
1369 
1370 static int update_cipher_list(SSL_CTX *ctx,
1371                               STACK_OF(SSL_CIPHER) **cipher_list,
1372                               STACK_OF(SSL_CIPHER) **cipher_list_by_id,
1373                               STACK_OF(SSL_CIPHER) *tls13_ciphersuites)
1374 {
1375     int i;
1376     STACK_OF(SSL_CIPHER) *tmp_cipher_list = sk_SSL_CIPHER_dup(*cipher_list);
1377 
1378     if (tmp_cipher_list == NULL)
1379         return 0;
1380 
1381     /*
1382      * Delete any existing TLSv1.3 ciphersuites. These are always first in the
1383      * list.
1384      */
1385     while (sk_SSL_CIPHER_num(tmp_cipher_list) > 0
1386            && sk_SSL_CIPHER_value(tmp_cipher_list, 0)->min_tls
1387               == TLS1_3_VERSION)
1388         (void)sk_SSL_CIPHER_delete(tmp_cipher_list, 0);
1389 
1390     /* Insert the new TLSv1.3 ciphersuites */
1391     for (i = sk_SSL_CIPHER_num(tls13_ciphersuites) - 1; i >= 0; i--) {
1392         const SSL_CIPHER *sslc = sk_SSL_CIPHER_value(tls13_ciphersuites, i);
1393 
1394         /* Don't include any TLSv1.3 ciphersuites that are disabled */
1395         if ((sslc->algorithm_enc & ctx->disabled_enc_mask) == 0
1396                 && (ssl_cipher_table_mac[sslc->algorithm2
1397                                          & SSL_HANDSHAKE_MAC_MASK].mask
1398                     & ctx->disabled_mac_mask) == 0) {
1399             sk_SSL_CIPHER_unshift(tmp_cipher_list, sslc);
1400         }
1401     }
1402 
1403     if (!update_cipher_list_by_id(cipher_list_by_id, tmp_cipher_list)) {
1404         sk_SSL_CIPHER_free(tmp_cipher_list);
1405         return 0;
1406     }
1407 
1408     sk_SSL_CIPHER_free(*cipher_list);
1409     *cipher_list = tmp_cipher_list;
1410 
1411     return 1;
1412 }
1413 
1414 int SSL_CTX_set_ciphersuites(SSL_CTX *ctx, const char *str)
1415 {
1416     int ret = set_ciphersuites(&(ctx->tls13_ciphersuites), str);
1417 
1418     if (ret && ctx->cipher_list != NULL)
1419         return update_cipher_list(ctx, &ctx->cipher_list, &ctx->cipher_list_by_id,
1420                                   ctx->tls13_ciphersuites);
1421 
1422     return ret;
1423 }
1424 
1425 int SSL_set_ciphersuites(SSL *s, const char *str)
1426 {
1427     STACK_OF(SSL_CIPHER) *cipher_list;
1428     int ret = set_ciphersuites(&(s->tls13_ciphersuites), str);
1429 
1430     if (s->cipher_list == NULL) {
1431         if ((cipher_list = SSL_get_ciphers(s)) != NULL)
1432             s->cipher_list = sk_SSL_CIPHER_dup(cipher_list);
1433     }
1434     if (ret && s->cipher_list != NULL)
1435         return update_cipher_list(s->ctx, &s->cipher_list, &s->cipher_list_by_id,
1436                                   s->tls13_ciphersuites);
1437 
1438     return ret;
1439 }
1440 
1441 STACK_OF(SSL_CIPHER) *ssl_create_cipher_list(SSL_CTX *ctx,
1442                                              STACK_OF(SSL_CIPHER) *tls13_ciphersuites,
1443                                              STACK_OF(SSL_CIPHER) **cipher_list,
1444                                              STACK_OF(SSL_CIPHER) **cipher_list_by_id,
1445                                              const char *rule_str,
1446                                              CERT *c)
1447 {
1448     int ok, num_of_ciphers, num_of_alias_max, num_of_group_aliases, i;
1449     uint32_t disabled_mkey, disabled_auth, disabled_enc, disabled_mac;
1450     STACK_OF(SSL_CIPHER) *cipherstack;
1451     const char *rule_p;
1452     CIPHER_ORDER *co_list = NULL, *head = NULL, *tail = NULL, *curr;
1453     const SSL_CIPHER **ca_list = NULL;
1454     const SSL_METHOD *ssl_method = ctx->method;
1455 
1456     /*
1457      * Return with error if nothing to do.
1458      */
1459     if (rule_str == NULL || cipher_list == NULL || cipher_list_by_id == NULL)
1460         return NULL;
1461 
1462     if (!check_suiteb_cipher_list(ssl_method, c, &rule_str))
1463         return NULL;
1464 
1465     /*
1466      * To reduce the work to do we only want to process the compiled
1467      * in algorithms, so we first get the mask of disabled ciphers.
1468      */
1469 
1470     disabled_mkey = ctx->disabled_mkey_mask;
1471     disabled_auth = ctx->disabled_auth_mask;
1472     disabled_enc = ctx->disabled_enc_mask;
1473     disabled_mac = ctx->disabled_mac_mask;
1474 
1475     /*
1476      * Now we have to collect the available ciphers from the compiled
1477      * in ciphers. We cannot get more than the number compiled in, so
1478      * it is used for allocation.
1479      */
1480     num_of_ciphers = ssl_method->num_ciphers();
1481 
1482     co_list = OPENSSL_malloc(sizeof(*co_list) * num_of_ciphers);
1483     if (co_list == NULL) {
1484         ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
1485         return NULL;          /* Failure */
1486     }
1487 
1488     ssl_cipher_collect_ciphers(ssl_method, num_of_ciphers,
1489                                disabled_mkey, disabled_auth, disabled_enc,
1490                                disabled_mac, co_list, &head, &tail);
1491 
1492     /* Now arrange all ciphers by preference. */
1493 
1494     /*
1495      * Everything else being equal, prefer ephemeral ECDH over other key
1496      * exchange mechanisms.
1497      * For consistency, prefer ECDSA over RSA (though this only matters if the
1498      * server has both certificates, and is using the DEFAULT, or a client
1499      * preference).
1500      */
1501     ssl_cipher_apply_rule(0, SSL_kECDHE, SSL_aECDSA, 0, 0, 0, 0, CIPHER_ADD,
1502                           -1, &head, &tail);
1503     ssl_cipher_apply_rule(0, SSL_kECDHE, 0, 0, 0, 0, 0, CIPHER_ADD, -1, &head,
1504                           &tail);
1505     ssl_cipher_apply_rule(0, SSL_kECDHE, 0, 0, 0, 0, 0, CIPHER_DEL, -1, &head,
1506                           &tail);
1507 
1508     /* Within each strength group, we prefer GCM over CHACHA... */
1509     ssl_cipher_apply_rule(0, 0, 0, SSL_AESGCM, 0, 0, 0, CIPHER_ADD, -1,
1510                           &head, &tail);
1511     ssl_cipher_apply_rule(0, 0, 0, SSL_CHACHA20, 0, 0, 0, CIPHER_ADD, -1,
1512                           &head, &tail);
1513 
1514     /*
1515      * ...and generally, our preferred cipher is AES.
1516      * Note that AEADs will be bumped to take preference after sorting by
1517      * strength.
1518      */
1519     ssl_cipher_apply_rule(0, 0, 0, SSL_AES ^ SSL_AESGCM, 0, 0, 0, CIPHER_ADD,
1520                           -1, &head, &tail);
1521 
1522     /* Temporarily enable everything else for sorting */
1523     ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_ADD, -1, &head, &tail);
1524 
1525     /* Low priority for MD5 */
1526     ssl_cipher_apply_rule(0, 0, 0, 0, SSL_MD5, 0, 0, CIPHER_ORD, -1, &head,
1527                           &tail);
1528 
1529     /*
1530      * Move anonymous ciphers to the end.  Usually, these will remain
1531      * disabled. (For applications that allow them, they aren't too bad, but
1532      * we prefer authenticated ciphers.)
1533      */
1534     ssl_cipher_apply_rule(0, 0, SSL_aNULL, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
1535                           &tail);
1536 
1537     ssl_cipher_apply_rule(0, SSL_kRSA, 0, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
1538                           &tail);
1539     ssl_cipher_apply_rule(0, SSL_kPSK, 0, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
1540                           &tail);
1541 
1542     /* RC4 is sort-of broken -- move to the end */
1543     ssl_cipher_apply_rule(0, 0, 0, SSL_RC4, 0, 0, 0, CIPHER_ORD, -1, &head,
1544                           &tail);
1545 
1546     /*
1547      * Now sort by symmetric encryption strength.  The above ordering remains
1548      * in force within each class
1549      */
1550     if (!ssl_cipher_strength_sort(&head, &tail)) {
1551         OPENSSL_free(co_list);
1552         return NULL;
1553     }
1554 
1555     /*
1556      * Partially overrule strength sort to prefer TLS 1.2 ciphers/PRFs.
1557      */
1558     ssl_cipher_apply_rule(0, 0, 0, 0, 0, TLS1_2_VERSION, 0, CIPHER_BUMP, -1,
1559                           &head, &tail);
1560 
1561     /*
1562      * Irrespective of strength, enforce the following order:
1563      * (EC)DHE + AEAD > (EC)DHE > rest of AEAD > rest.
1564      * Within each group, ciphers remain sorted by strength and previous
1565      * preference, i.e.,
1566      * 1) ECDHE > DHE
1567      * 2) GCM > CHACHA
1568      * 3) AES > rest
1569      * 4) TLS 1.2 > legacy
1570      *
1571      * Because we now bump ciphers to the top of the list, we proceed in
1572      * reverse order of preference.
1573      */
1574     ssl_cipher_apply_rule(0, 0, 0, 0, SSL_AEAD, 0, 0, CIPHER_BUMP, -1,
1575                           &head, &tail);
1576     ssl_cipher_apply_rule(0, SSL_kDHE | SSL_kECDHE, 0, 0, 0, 0, 0,
1577                           CIPHER_BUMP, -1, &head, &tail);
1578     ssl_cipher_apply_rule(0, SSL_kDHE | SSL_kECDHE, 0, 0, SSL_AEAD, 0, 0,
1579                           CIPHER_BUMP, -1, &head, &tail);
1580 
1581     /* Now disable everything (maintaining the ordering!) */
1582     ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_DEL, -1, &head, &tail);
1583 
1584     /*
1585      * We also need cipher aliases for selecting based on the rule_str.
1586      * There might be two types of entries in the rule_str: 1) names
1587      * of ciphers themselves 2) aliases for groups of ciphers.
1588      * For 1) we need the available ciphers and for 2) the cipher
1589      * groups of cipher_aliases added together in one list (otherwise
1590      * we would be happy with just the cipher_aliases table).
1591      */
1592     num_of_group_aliases = OSSL_NELEM(cipher_aliases);
1593     num_of_alias_max = num_of_ciphers + num_of_group_aliases + 1;
1594     ca_list = OPENSSL_malloc(sizeof(*ca_list) * num_of_alias_max);
1595     if (ca_list == NULL) {
1596         OPENSSL_free(co_list);
1597         ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
1598         return NULL;          /* Failure */
1599     }
1600     ssl_cipher_collect_aliases(ca_list, num_of_group_aliases,
1601                                disabled_mkey, disabled_auth, disabled_enc,
1602                                disabled_mac, head);
1603 
1604     /*
1605      * If the rule_string begins with DEFAULT, apply the default rule
1606      * before using the (possibly available) additional rules.
1607      */
1608     ok = 1;
1609     rule_p = rule_str;
1610     if (strncmp(rule_str, "DEFAULT", 7) == 0) {
1611         ok = ssl_cipher_process_rulestr(OSSL_default_cipher_list(),
1612                                         &head, &tail, ca_list, c);
1613         rule_p += 7;
1614         if (*rule_p == ':')
1615             rule_p++;
1616     }
1617 
1618     if (ok && (rule_p[0] != '\0'))
1619         ok = ssl_cipher_process_rulestr(rule_p, &head, &tail, ca_list, c);
1620 
1621     OPENSSL_free(ca_list);      /* Not needed anymore */
1622 
1623     if (!ok) {                  /* Rule processing failure */
1624         OPENSSL_free(co_list);
1625         return NULL;
1626     }
1627 
1628     /*
1629      * Allocate new "cipherstack" for the result, return with error
1630      * if we cannot get one.
1631      */
1632     if ((cipherstack = sk_SSL_CIPHER_new_null()) == NULL) {
1633         OPENSSL_free(co_list);
1634         return NULL;
1635     }
1636 
1637     /* Add TLSv1.3 ciphers first - we always prefer those if possible */
1638     for (i = 0; i < sk_SSL_CIPHER_num(tls13_ciphersuites); i++) {
1639         const SSL_CIPHER *sslc = sk_SSL_CIPHER_value(tls13_ciphersuites, i);
1640 
1641         /* Don't include any TLSv1.3 ciphers that are disabled */
1642         if ((sslc->algorithm_enc & disabled_enc) != 0
1643                 || (ssl_cipher_table_mac[sslc->algorithm2
1644                                          & SSL_HANDSHAKE_MAC_MASK].mask
1645                     & ctx->disabled_mac_mask) != 0) {
1646             sk_SSL_CIPHER_delete(tls13_ciphersuites, i);
1647             i--;
1648             continue;
1649         }
1650 
1651         if (!sk_SSL_CIPHER_push(cipherstack, sslc)) {
1652             OPENSSL_free(co_list);
1653             sk_SSL_CIPHER_free(cipherstack);
1654             return NULL;
1655         }
1656     }
1657 
1658     OSSL_TRACE_BEGIN(TLS_CIPHER) {
1659         BIO_printf(trc_out, "cipher selection:\n");
1660     }
1661     /*
1662      * The cipher selection for the list is done. The ciphers are added
1663      * to the resulting precedence to the STACK_OF(SSL_CIPHER).
1664      */
1665     for (curr = head; curr != NULL; curr = curr->next) {
1666         if (curr->active) {
1667             if (!sk_SSL_CIPHER_push(cipherstack, curr->cipher)) {
1668                 OPENSSL_free(co_list);
1669                 sk_SSL_CIPHER_free(cipherstack);
1670                 OSSL_TRACE_CANCEL(TLS_CIPHER);
1671                 return NULL;
1672             }
1673             if (trc_out != NULL)
1674                 BIO_printf(trc_out, "<%s>\n", curr->cipher->name);
1675         }
1676     }
1677     OPENSSL_free(co_list);      /* Not needed any longer */
1678     OSSL_TRACE_END(TLS_CIPHER);
1679 
1680     if (!update_cipher_list_by_id(cipher_list_by_id, cipherstack)) {
1681         sk_SSL_CIPHER_free(cipherstack);
1682         return NULL;
1683     }
1684     sk_SSL_CIPHER_free(*cipher_list);
1685     *cipher_list = cipherstack;
1686 
1687     return cipherstack;
1688 }
1689 
1690 char *SSL_CIPHER_description(const SSL_CIPHER *cipher, char *buf, int len)
1691 {
1692     const char *ver;
1693     const char *kx, *au, *enc, *mac;
1694     uint32_t alg_mkey, alg_auth, alg_enc, alg_mac;
1695     static const char *format = "%-30s %-7s Kx=%-8s Au=%-5s Enc=%-22s Mac=%-4s\n";
1696 
1697     if (buf == NULL) {
1698         len = 128;
1699         if ((buf = OPENSSL_malloc(len)) == NULL) {
1700             ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
1701             return NULL;
1702         }
1703     } else if (len < 128) {
1704         return NULL;
1705     }
1706 
1707     alg_mkey = cipher->algorithm_mkey;
1708     alg_auth = cipher->algorithm_auth;
1709     alg_enc = cipher->algorithm_enc;
1710     alg_mac = cipher->algorithm_mac;
1711 
1712     ver = ssl_protocol_to_string(cipher->min_tls);
1713 
1714     switch (alg_mkey) {
1715     case SSL_kRSA:
1716         kx = "RSA";
1717         break;
1718     case SSL_kDHE:
1719         kx = "DH";
1720         break;
1721     case SSL_kECDHE:
1722         kx = "ECDH";
1723         break;
1724     case SSL_kPSK:
1725         kx = "PSK";
1726         break;
1727     case SSL_kRSAPSK:
1728         kx = "RSAPSK";
1729         break;
1730     case SSL_kECDHEPSK:
1731         kx = "ECDHEPSK";
1732         break;
1733     case SSL_kDHEPSK:
1734         kx = "DHEPSK";
1735         break;
1736     case SSL_kSRP:
1737         kx = "SRP";
1738         break;
1739     case SSL_kGOST:
1740         kx = "GOST";
1741         break;
1742     case SSL_kGOST18:
1743         kx = "GOST18";
1744         break;
1745     case SSL_kANY:
1746         kx = "any";
1747         break;
1748     default:
1749         kx = "unknown";
1750     }
1751 
1752     switch (alg_auth) {
1753     case SSL_aRSA:
1754         au = "RSA";
1755         break;
1756     case SSL_aDSS:
1757         au = "DSS";
1758         break;
1759     case SSL_aNULL:
1760         au = "None";
1761         break;
1762     case SSL_aECDSA:
1763         au = "ECDSA";
1764         break;
1765     case SSL_aPSK:
1766         au = "PSK";
1767         break;
1768     case SSL_aSRP:
1769         au = "SRP";
1770         break;
1771     case SSL_aGOST01:
1772         au = "GOST01";
1773         break;
1774     /* New GOST ciphersuites have both SSL_aGOST12 and SSL_aGOST01 bits */
1775     case (SSL_aGOST12 | SSL_aGOST01):
1776         au = "GOST12";
1777         break;
1778     case SSL_aANY:
1779         au = "any";
1780         break;
1781     default:
1782         au = "unknown";
1783         break;
1784     }
1785 
1786     switch (alg_enc) {
1787     case SSL_DES:
1788         enc = "DES(56)";
1789         break;
1790     case SSL_3DES:
1791         enc = "3DES(168)";
1792         break;
1793     case SSL_RC4:
1794         enc = "RC4(128)";
1795         break;
1796     case SSL_RC2:
1797         enc = "RC2(128)";
1798         break;
1799     case SSL_IDEA:
1800         enc = "IDEA(128)";
1801         break;
1802     case SSL_eNULL:
1803         enc = "None";
1804         break;
1805     case SSL_AES128:
1806         enc = "AES(128)";
1807         break;
1808     case SSL_AES256:
1809         enc = "AES(256)";
1810         break;
1811     case SSL_AES128GCM:
1812         enc = "AESGCM(128)";
1813         break;
1814     case SSL_AES256GCM:
1815         enc = "AESGCM(256)";
1816         break;
1817     case SSL_AES128CCM:
1818         enc = "AESCCM(128)";
1819         break;
1820     case SSL_AES256CCM:
1821         enc = "AESCCM(256)";
1822         break;
1823     case SSL_AES128CCM8:
1824         enc = "AESCCM8(128)";
1825         break;
1826     case SSL_AES256CCM8:
1827         enc = "AESCCM8(256)";
1828         break;
1829     case SSL_CAMELLIA128:
1830         enc = "Camellia(128)";
1831         break;
1832     case SSL_CAMELLIA256:
1833         enc = "Camellia(256)";
1834         break;
1835     case SSL_ARIA128GCM:
1836         enc = "ARIAGCM(128)";
1837         break;
1838     case SSL_ARIA256GCM:
1839         enc = "ARIAGCM(256)";
1840         break;
1841     case SSL_SEED:
1842         enc = "SEED(128)";
1843         break;
1844     case SSL_eGOST2814789CNT:
1845     case SSL_eGOST2814789CNT12:
1846         enc = "GOST89(256)";
1847         break;
1848     case SSL_MAGMA:
1849         enc = "MAGMA";
1850         break;
1851     case SSL_KUZNYECHIK:
1852         enc = "KUZNYECHIK";
1853         break;
1854     case SSL_CHACHA20POLY1305:
1855         enc = "CHACHA20/POLY1305(256)";
1856         break;
1857     default:
1858         enc = "unknown";
1859         break;
1860     }
1861 
1862     switch (alg_mac) {
1863     case SSL_MD5:
1864         mac = "MD5";
1865         break;
1866     case SSL_SHA1:
1867         mac = "SHA1";
1868         break;
1869     case SSL_SHA256:
1870         mac = "SHA256";
1871         break;
1872     case SSL_SHA384:
1873         mac = "SHA384";
1874         break;
1875     case SSL_AEAD:
1876         mac = "AEAD";
1877         break;
1878     case SSL_GOST89MAC:
1879     case SSL_GOST89MAC12:
1880         mac = "GOST89";
1881         break;
1882     case SSL_GOST94:
1883         mac = "GOST94";
1884         break;
1885     case SSL_GOST12_256:
1886     case SSL_GOST12_512:
1887         mac = "GOST2012";
1888         break;
1889     default:
1890         mac = "unknown";
1891         break;
1892     }
1893 
1894     BIO_snprintf(buf, len, format, cipher->name, ver, kx, au, enc, mac);
1895 
1896     return buf;
1897 }
1898 
1899 const char *SSL_CIPHER_get_version(const SSL_CIPHER *c)
1900 {
1901     if (c == NULL)
1902         return "(NONE)";
1903 
1904     /*
1905      * Backwards-compatibility crutch.  In almost all contexts we report TLS
1906      * 1.0 as "TLSv1", but for ciphers we report "TLSv1.0".
1907      */
1908     if (c->min_tls == TLS1_VERSION)
1909         return "TLSv1.0";
1910     return ssl_protocol_to_string(c->min_tls);
1911 }
1912 
1913 /* return the actual cipher being used */
1914 const char *SSL_CIPHER_get_name(const SSL_CIPHER *c)
1915 {
1916     if (c != NULL)
1917         return c->name;
1918     return "(NONE)";
1919 }
1920 
1921 /* return the actual cipher being used in RFC standard name */
1922 const char *SSL_CIPHER_standard_name(const SSL_CIPHER *c)
1923 {
1924     if (c != NULL)
1925         return c->stdname;
1926     return "(NONE)";
1927 }
1928 
1929 /* return the OpenSSL name based on given RFC standard name */
1930 const char *OPENSSL_cipher_name(const char *stdname)
1931 {
1932     const SSL_CIPHER *c;
1933 
1934     if (stdname == NULL)
1935         return "(NONE)";
1936     c = ssl3_get_cipher_by_std_name(stdname);
1937     return SSL_CIPHER_get_name(c);
1938 }
1939 
1940 /* number of bits for symmetric cipher */
1941 int SSL_CIPHER_get_bits(const SSL_CIPHER *c, int *alg_bits)
1942 {
1943     int ret = 0;
1944 
1945     if (c != NULL) {
1946         if (alg_bits != NULL)
1947             *alg_bits = (int)c->alg_bits;
1948         ret = (int)c->strength_bits;
1949     }
1950     return ret;
1951 }
1952 
1953 uint32_t SSL_CIPHER_get_id(const SSL_CIPHER *c)
1954 {
1955     return c->id;
1956 }
1957 
1958 uint16_t SSL_CIPHER_get_protocol_id(const SSL_CIPHER *c)
1959 {
1960     return c->id & 0xFFFF;
1961 }
1962 
1963 SSL_COMP *ssl3_comp_find(STACK_OF(SSL_COMP) *sk, int n)
1964 {
1965     SSL_COMP *ctmp;
1966     int i, nn;
1967 
1968     if ((n == 0) || (sk == NULL))
1969         return NULL;
1970     nn = sk_SSL_COMP_num(sk);
1971     for (i = 0; i < nn; i++) {
1972         ctmp = sk_SSL_COMP_value(sk, i);
1973         if (ctmp->id == n)
1974             return ctmp;
1975     }
1976     return NULL;
1977 }
1978 
1979 #ifdef OPENSSL_NO_COMP
1980 STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void)
1981 {
1982     return NULL;
1983 }
1984 
1985 STACK_OF(SSL_COMP) *SSL_COMP_set0_compression_methods(STACK_OF(SSL_COMP)
1986                                                       *meths)
1987 {
1988     return meths;
1989 }
1990 
1991 int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm)
1992 {
1993     return 1;
1994 }
1995 
1996 #else
1997 STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void)
1998 {
1999     load_builtin_compressions();
2000     return ssl_comp_methods;
2001 }
2002 
2003 STACK_OF(SSL_COMP) *SSL_COMP_set0_compression_methods(STACK_OF(SSL_COMP)
2004                                                       *meths)
2005 {
2006     STACK_OF(SSL_COMP) *old_meths = ssl_comp_methods;
2007     ssl_comp_methods = meths;
2008     return old_meths;
2009 }
2010 
2011 static void cmeth_free(SSL_COMP *cm)
2012 {
2013     OPENSSL_free(cm);
2014 }
2015 
2016 void ssl_comp_free_compression_methods_int(void)
2017 {
2018     STACK_OF(SSL_COMP) *old_meths = ssl_comp_methods;
2019     ssl_comp_methods = NULL;
2020     sk_SSL_COMP_pop_free(old_meths, cmeth_free);
2021 }
2022 
2023 int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm)
2024 {
2025     SSL_COMP *comp;
2026 
2027     if (cm == NULL || COMP_get_type(cm) == NID_undef)
2028         return 1;
2029 
2030     /*-
2031      * According to draft-ietf-tls-compression-04.txt, the
2032      * compression number ranges should be the following:
2033      *
2034      *   0 to  63:  methods defined by the IETF
2035      *  64 to 192:  external party methods assigned by IANA
2036      * 193 to 255:  reserved for private use
2037      */
2038     if (id < 193 || id > 255) {
2039         ERR_raise(ERR_LIB_SSL, SSL_R_COMPRESSION_ID_NOT_WITHIN_PRIVATE_RANGE);
2040         return 1;
2041     }
2042 
2043     comp = OPENSSL_malloc(sizeof(*comp));
2044     if (comp == NULL) {
2045         ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
2046         return 1;
2047     }
2048 
2049     comp->id = id;
2050     comp->method = cm;
2051     load_builtin_compressions();
2052     if (ssl_comp_methods && sk_SSL_COMP_find(ssl_comp_methods, comp) >= 0) {
2053         OPENSSL_free(comp);
2054         ERR_raise(ERR_LIB_SSL, SSL_R_DUPLICATE_COMPRESSION_ID);
2055         return 1;
2056     }
2057     if (ssl_comp_methods == NULL || !sk_SSL_COMP_push(ssl_comp_methods, comp)) {
2058         OPENSSL_free(comp);
2059         ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
2060         return 1;
2061     }
2062     return 0;
2063 }
2064 #endif
2065 
2066 const char *SSL_COMP_get_name(const COMP_METHOD *comp)
2067 {
2068 #ifndef OPENSSL_NO_COMP
2069     return comp ? COMP_get_name(comp) : NULL;
2070 #else
2071     return NULL;
2072 #endif
2073 }
2074 
2075 const char *SSL_COMP_get0_name(const SSL_COMP *comp)
2076 {
2077 #ifndef OPENSSL_NO_COMP
2078     return comp->name;
2079 #else
2080     return NULL;
2081 #endif
2082 }
2083 
2084 int SSL_COMP_get_id(const SSL_COMP *comp)
2085 {
2086 #ifndef OPENSSL_NO_COMP
2087     return comp->id;
2088 #else
2089     return -1;
2090 #endif
2091 }
2092 
2093 const SSL_CIPHER *ssl_get_cipher_by_char(SSL *ssl, const unsigned char *ptr,
2094                                          int all)
2095 {
2096     const SSL_CIPHER *c = ssl->method->get_cipher_by_char(ptr);
2097 
2098     if (c == NULL || (!all && c->valid == 0))
2099         return NULL;
2100     return c;
2101 }
2102 
2103 const SSL_CIPHER *SSL_CIPHER_find(SSL *ssl, const unsigned char *ptr)
2104 {
2105     return ssl->method->get_cipher_by_char(ptr);
2106 }
2107 
2108 int SSL_CIPHER_get_cipher_nid(const SSL_CIPHER *c)
2109 {
2110     int i;
2111     if (c == NULL)
2112         return NID_undef;
2113     i = ssl_cipher_info_lookup(ssl_cipher_table_cipher, c->algorithm_enc);
2114     if (i == -1)
2115         return NID_undef;
2116     return ssl_cipher_table_cipher[i].nid;
2117 }
2118 
2119 int SSL_CIPHER_get_digest_nid(const SSL_CIPHER *c)
2120 {
2121     int i = ssl_cipher_info_lookup(ssl_cipher_table_mac, c->algorithm_mac);
2122 
2123     if (i == -1)
2124         return NID_undef;
2125     return ssl_cipher_table_mac[i].nid;
2126 }
2127 
2128 int SSL_CIPHER_get_kx_nid(const SSL_CIPHER *c)
2129 {
2130     int i = ssl_cipher_info_lookup(ssl_cipher_table_kx, c->algorithm_mkey);
2131 
2132     if (i == -1)
2133         return NID_undef;
2134     return ssl_cipher_table_kx[i].nid;
2135 }
2136 
2137 int SSL_CIPHER_get_auth_nid(const SSL_CIPHER *c)
2138 {
2139     int i = ssl_cipher_info_lookup(ssl_cipher_table_auth, c->algorithm_auth);
2140 
2141     if (i == -1)
2142         return NID_undef;
2143     return ssl_cipher_table_auth[i].nid;
2144 }
2145 
2146 const EVP_MD *SSL_CIPHER_get_handshake_digest(const SSL_CIPHER *c)
2147 {
2148     int idx = c->algorithm2 & SSL_HANDSHAKE_MAC_MASK;
2149 
2150     if (idx < 0 || idx >= SSL_MD_NUM_IDX)
2151         return NULL;
2152     return EVP_get_digestbynid(ssl_cipher_table_mac[idx].nid);
2153 }
2154 
2155 int SSL_CIPHER_is_aead(const SSL_CIPHER *c)
2156 {
2157     return (c->algorithm_mac & SSL_AEAD) ? 1 : 0;
2158 }
2159 
2160 int ssl_cipher_get_overhead(const SSL_CIPHER *c, size_t *mac_overhead,
2161                             size_t *int_overhead, size_t *blocksize,
2162                             size_t *ext_overhead)
2163 {
2164     size_t mac = 0, in = 0, blk = 0, out = 0;
2165 
2166     /* Some hard-coded numbers for the CCM/Poly1305 MAC overhead
2167      * because there are no handy #defines for those. */
2168     if (c->algorithm_enc & (SSL_AESGCM | SSL_ARIAGCM)) {
2169         out = EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN;
2170     } else if (c->algorithm_enc & (SSL_AES128CCM | SSL_AES256CCM)) {
2171         out = EVP_CCM_TLS_EXPLICIT_IV_LEN + 16;
2172     } else if (c->algorithm_enc & (SSL_AES128CCM8 | SSL_AES256CCM8)) {
2173         out = EVP_CCM_TLS_EXPLICIT_IV_LEN + 8;
2174     } else if (c->algorithm_enc & SSL_CHACHA20POLY1305) {
2175         out = 16;
2176     } else if (c->algorithm_mac & SSL_AEAD) {
2177         /* We're supposed to have handled all the AEAD modes above */
2178         return 0;
2179     } else {
2180         /* Non-AEAD modes. Calculate MAC/cipher overhead separately */
2181         int digest_nid = SSL_CIPHER_get_digest_nid(c);
2182         const EVP_MD *e_md = EVP_get_digestbynid(digest_nid);
2183 
2184         if (e_md == NULL)
2185             return 0;
2186 
2187         mac = EVP_MD_get_size(e_md);
2188         if (c->algorithm_enc != SSL_eNULL) {
2189             int cipher_nid = SSL_CIPHER_get_cipher_nid(c);
2190             const EVP_CIPHER *e_ciph = EVP_get_cipherbynid(cipher_nid);
2191 
2192             /* If it wasn't AEAD or SSL_eNULL, we expect it to be a
2193                known CBC cipher. */
2194             if (e_ciph == NULL ||
2195                 EVP_CIPHER_get_mode(e_ciph) != EVP_CIPH_CBC_MODE)
2196                 return 0;
2197 
2198             in = 1; /* padding length byte */
2199             out = EVP_CIPHER_get_iv_length(e_ciph);
2200             blk = EVP_CIPHER_get_block_size(e_ciph);
2201         }
2202     }
2203 
2204     *mac_overhead = mac;
2205     *int_overhead = in;
2206     *blocksize = blk;
2207     *ext_overhead = out;
2208 
2209     return 1;
2210 }
2211 
2212 int ssl_cert_is_disabled(SSL_CTX *ctx, size_t idx)
2213 {
2214     const SSL_CERT_LOOKUP *cl = ssl_cert_lookup_by_idx(idx);
2215 
2216     if (cl == NULL || (cl->amask & ctx->disabled_auth_mask) != 0)
2217         return 1;
2218     return 0;
2219 }
2220 
2221 /*
2222  * Default list of TLSv1.2 (and earlier) ciphers
2223  * SSL_DEFAULT_CIPHER_LIST deprecated in 3.0.0
2224  * Update both macro and function simultaneously
2225  */
2226 const char *OSSL_default_cipher_list(void)
2227 {
2228     return "ALL:!COMPLEMENTOFDEFAULT:!eNULL";
2229 }
2230 
2231 /*
2232  * Default list of TLSv1.3 (and later) ciphers
2233  * TLS_DEFAULT_CIPHERSUITES deprecated in 3.0.0
2234  * Update both macro and function simultaneously
2235  */
2236 const char *OSSL_default_ciphersuites(void)
2237 {
2238     return "TLS_AES_256_GCM_SHA384:"
2239            "TLS_CHACHA20_POLY1305_SHA256:"
2240            "TLS_AES_128_GCM_SHA256";
2241 }
2242