1 /* ssl/ssl_ciph.c */ 2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) 3 * All rights reserved. 4 * 5 * This package is an SSL implementation written 6 * by Eric Young (eay@cryptsoft.com). 7 * The implementation was written so as to conform with Netscapes SSL. 8 * 9 * This library is free for commercial and non-commercial use as long as 10 * the following conditions are aheared to. The following conditions 11 * apply to all code found in this distribution, be it the RC4, RSA, 12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation 13 * included with this distribution is covered by the same copyright terms 14 * except that the holder is Tim Hudson (tjh@cryptsoft.com). 15 * 16 * Copyright remains Eric Young's, and as such any Copyright notices in 17 * the code are not to be removed. 18 * If this package is used in a product, Eric Young should be given attribution 19 * as the author of the parts of the library used. 20 * This can be in the form of a textual message at program startup or 21 * in documentation (online or textual) provided with the package. 22 * 23 * Redistribution and use in source and binary forms, with or without 24 * modification, are permitted provided that the following conditions 25 * are met: 26 * 1. Redistributions of source code must retain the copyright 27 * notice, this list of conditions and the following disclaimer. 28 * 2. Redistributions in binary form must reproduce the above copyright 29 * notice, this list of conditions and the following disclaimer in the 30 * documentation and/or other materials provided with the distribution. 31 * 3. All advertising materials mentioning features or use of this software 32 * must display the following acknowledgement: 33 * "This product includes cryptographic software written by 34 * Eric Young (eay@cryptsoft.com)" 35 * The word 'cryptographic' can be left out if the rouines from the library 36 * being used are not cryptographic related :-). 37 * 4. If you include any Windows specific code (or a derivative thereof) from 38 * the apps directory (application code) you must include an acknowledgement: 39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" 40 * 41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND 42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 51 * SUCH DAMAGE. 52 * 53 * The licence and distribution terms for any publically available version or 54 * derivative of this code cannot be changed. i.e. this code cannot simply be 55 * copied and put under another distribution licence 56 * [including the GNU Public Licence.] 57 */ 58 /* ==================================================================== 59 * Copyright (c) 1998-2006 The OpenSSL Project. All rights reserved. 60 * 61 * Redistribution and use in source and binary forms, with or without 62 * modification, are permitted provided that the following conditions 63 * are met: 64 * 65 * 1. Redistributions of source code must retain the above copyright 66 * notice, this list of conditions and the following disclaimer. 67 * 68 * 2. Redistributions in binary form must reproduce the above copyright 69 * notice, this list of conditions and the following disclaimer in 70 * the documentation and/or other materials provided with the 71 * distribution. 72 * 73 * 3. All advertising materials mentioning features or use of this 74 * software must display the following acknowledgment: 75 * "This product includes software developed by the OpenSSL Project 76 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" 77 * 78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to 79 * endorse or promote products derived from this software without 80 * prior written permission. For written permission, please contact 81 * openssl-core@openssl.org. 82 * 83 * 5. Products derived from this software may not be called "OpenSSL" 84 * nor may "OpenSSL" appear in their names without prior written 85 * permission of the OpenSSL Project. 86 * 87 * 6. Redistributions of any form whatsoever must retain the following 88 * acknowledgment: 89 * "This product includes software developed by the OpenSSL Project 90 * for use in the OpenSSL Toolkit (http://www.openssl.org/)" 91 * 92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY 93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 95 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR 96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED 103 * OF THE POSSIBILITY OF SUCH DAMAGE. 104 * ==================================================================== 105 * 106 * This product includes cryptographic software written by Eric Young 107 * (eay@cryptsoft.com). This product includes software written by Tim 108 * Hudson (tjh@cryptsoft.com). 109 * 110 */ 111 /* ==================================================================== 112 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. 113 * ECC cipher suite support in OpenSSL originally developed by 114 * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project. 115 */ 116 #include <stdio.h> 117 #include <openssl/objects.h> 118 #ifndef OPENSSL_NO_COMP 119 #include <openssl/comp.h> 120 #endif 121 122 #include "ssl_locl.h" 123 124 #define SSL_ENC_DES_IDX 0 125 #define SSL_ENC_3DES_IDX 1 126 #define SSL_ENC_RC4_IDX 2 127 #define SSL_ENC_RC2_IDX 3 128 #define SSL_ENC_IDEA_IDX 4 129 #define SSL_ENC_eFZA_IDX 5 130 #define SSL_ENC_NULL_IDX 6 131 #define SSL_ENC_AES128_IDX 7 132 #define SSL_ENC_AES256_IDX 8 133 #define SSL_ENC_CAMELLIA128_IDX 9 134 #define SSL_ENC_CAMELLIA256_IDX 10 135 #define SSL_ENC_SEED_IDX 11 136 #define SSL_ENC_NUM_IDX 12 137 138 139 static const EVP_CIPHER *ssl_cipher_methods[SSL_ENC_NUM_IDX]={ 140 NULL,NULL,NULL,NULL,NULL,NULL, 141 }; 142 143 #define SSL_COMP_NULL_IDX 0 144 #define SSL_COMP_ZLIB_IDX 1 145 #define SSL_COMP_NUM_IDX 2 146 147 static STACK_OF(SSL_COMP) *ssl_comp_methods=NULL; 148 149 #define SSL_MD_MD5_IDX 0 150 #define SSL_MD_SHA1_IDX 1 151 #define SSL_MD_NUM_IDX 2 152 static const EVP_MD *ssl_digest_methods[SSL_MD_NUM_IDX]={ 153 NULL,NULL, 154 }; 155 156 #define CIPHER_ADD 1 157 #define CIPHER_KILL 2 158 #define CIPHER_DEL 3 159 #define CIPHER_ORD 4 160 #define CIPHER_SPECIAL 5 161 162 typedef struct cipher_order_st 163 { 164 SSL_CIPHER *cipher; 165 int active; 166 int dead; 167 struct cipher_order_st *next,*prev; 168 } CIPHER_ORDER; 169 170 static const SSL_CIPHER cipher_aliases[]={ 171 /* Don't include eNULL unless specifically enabled. */ 172 /* Don't include ECC in ALL because these ciphers are not yet official. */ 173 {0,SSL_TXT_ALL, 0,SSL_ALL & ~SSL_eNULL & ~SSL_kECDH & ~SSL_kECDHE, SSL_ALL ,0,0,0,SSL_ALL,SSL_ALL}, /* must be first */ 174 /* TODO: COMPLEMENT OF ALL and COMPLEMENT OF DEFAULT do not have ECC cipher suites handled properly. */ 175 {0,SSL_TXT_CMPALL,0,SSL_eNULL,0,0,0,0,SSL_ENC_MASK,0}, /* COMPLEMENT OF ALL */ 176 {0,SSL_TXT_CMPDEF,0,SSL_ADH, 0,0,0,0,SSL_AUTH_MASK,0}, 177 {0,SSL_TXT_kKRB5,0,SSL_kKRB5,0,0,0,0,SSL_MKEY_MASK,0}, /* VRS Kerberos5 */ 178 {0,SSL_TXT_kRSA,0,SSL_kRSA, 0,0,0,0,SSL_MKEY_MASK,0}, 179 {0,SSL_TXT_kDHr,0,SSL_kDHr, 0,0,0,0,SSL_MKEY_MASK,0}, 180 {0,SSL_TXT_kDHd,0,SSL_kDHd, 0,0,0,0,SSL_MKEY_MASK,0}, 181 {0,SSL_TXT_kEDH,0,SSL_kEDH, 0,0,0,0,SSL_MKEY_MASK,0}, 182 {0,SSL_TXT_kFZA,0,SSL_kFZA, 0,0,0,0,SSL_MKEY_MASK,0}, 183 {0,SSL_TXT_DH, 0,SSL_DH, 0,0,0,0,SSL_MKEY_MASK,0}, 184 {0,SSL_TXT_ECC, 0,(SSL_kECDH|SSL_kECDHE), 0,0,0,0,SSL_MKEY_MASK,0}, 185 {0,SSL_TXT_EDH, 0,SSL_EDH, 0,0,0,0,SSL_MKEY_MASK|SSL_AUTH_MASK,0}, 186 {0,SSL_TXT_aKRB5,0,SSL_aKRB5,0,0,0,0,SSL_AUTH_MASK,0}, /* VRS Kerberos5 */ 187 {0,SSL_TXT_aRSA,0,SSL_aRSA, 0,0,0,0,SSL_AUTH_MASK,0}, 188 {0,SSL_TXT_aDSS,0,SSL_aDSS, 0,0,0,0,SSL_AUTH_MASK,0}, 189 {0,SSL_TXT_aFZA,0,SSL_aFZA, 0,0,0,0,SSL_AUTH_MASK,0}, 190 {0,SSL_TXT_aNULL,0,SSL_aNULL,0,0,0,0,SSL_AUTH_MASK,0}, 191 {0,SSL_TXT_aDH, 0,SSL_aDH, 0,0,0,0,SSL_AUTH_MASK,0}, 192 {0,SSL_TXT_DSS, 0,SSL_DSS, 0,0,0,0,SSL_AUTH_MASK,0}, 193 194 {0,SSL_TXT_DES, 0,SSL_DES, 0,0,0,0,SSL_ENC_MASK,0}, 195 {0,SSL_TXT_3DES,0,SSL_3DES, 0,0,0,0,SSL_ENC_MASK,0}, 196 {0,SSL_TXT_RC4, 0,SSL_RC4, 0,0,0,0,SSL_ENC_MASK,0}, 197 {0,SSL_TXT_RC2, 0,SSL_RC2, 0,0,0,0,SSL_ENC_MASK,0}, 198 #ifndef OPENSSL_NO_IDEA 199 {0,SSL_TXT_IDEA,0,SSL_IDEA, 0,0,0,0,SSL_ENC_MASK,0}, 200 #endif 201 {0,SSL_TXT_SEED,0,SSL_SEED, 0,0,0,0,SSL_ENC_MASK,0}, 202 {0,SSL_TXT_eNULL,0,SSL_eNULL,0,0,0,0,SSL_ENC_MASK,0}, 203 {0,SSL_TXT_eFZA,0,SSL_eFZA, 0,0,0,0,SSL_ENC_MASK,0}, 204 {0,SSL_TXT_AES, 0,SSL_AES, 0,0,0,0,SSL_ENC_MASK,0}, 205 {0,SSL_TXT_CAMELLIA,0,SSL_CAMELLIA, 0,0,0,0,SSL_ENC_MASK,0}, 206 207 {0,SSL_TXT_MD5, 0,SSL_MD5, 0,0,0,0,SSL_MAC_MASK,0}, 208 {0,SSL_TXT_SHA1,0,SSL_SHA1, 0,0,0,0,SSL_MAC_MASK,0}, 209 {0,SSL_TXT_SHA, 0,SSL_SHA, 0,0,0,0,SSL_MAC_MASK,0}, 210 211 {0,SSL_TXT_NULL,0,SSL_NULL, 0,0,0,0,SSL_ENC_MASK,0}, 212 {0,SSL_TXT_KRB5,0,SSL_KRB5, 0,0,0,0,SSL_AUTH_MASK|SSL_MKEY_MASK,0}, 213 {0,SSL_TXT_RSA, 0,SSL_RSA, 0,0,0,0,SSL_AUTH_MASK|SSL_MKEY_MASK,0}, 214 {0,SSL_TXT_ADH, 0,SSL_ADH, 0,0,0,0,SSL_AUTH_MASK|SSL_MKEY_MASK,0}, 215 {0,SSL_TXT_FZA, 0,SSL_FZA, 0,0,0,0,SSL_AUTH_MASK|SSL_MKEY_MASK|SSL_ENC_MASK,0}, 216 217 {0,SSL_TXT_SSLV2, 0,SSL_SSLV2, 0,0,0,0,SSL_SSL_MASK,0}, 218 {0,SSL_TXT_SSLV3, 0,SSL_SSLV3, 0,0,0,0,SSL_SSL_MASK,0}, 219 {0,SSL_TXT_TLSV1, 0,SSL_TLSV1, 0,0,0,0,SSL_SSL_MASK,0}, 220 221 {0,SSL_TXT_EXP ,0, 0,SSL_EXPORT, 0,0,0,0,SSL_EXP_MASK}, 222 {0,SSL_TXT_EXPORT,0, 0,SSL_EXPORT, 0,0,0,0,SSL_EXP_MASK}, 223 {0,SSL_TXT_EXP40, 0, 0, SSL_EXP40, 0,0,0,0,SSL_STRONG_MASK}, 224 {0,SSL_TXT_EXP56, 0, 0, SSL_EXP56, 0,0,0,0,SSL_STRONG_MASK}, 225 {0,SSL_TXT_LOW, 0, 0, SSL_LOW, 0,0,0,0,SSL_STRONG_MASK}, 226 {0,SSL_TXT_MEDIUM,0, 0,SSL_MEDIUM, 0,0,0,0,SSL_STRONG_MASK}, 227 {0,SSL_TXT_HIGH, 0, 0, SSL_HIGH, 0,0,0,0,SSL_STRONG_MASK}, 228 {0,SSL_TXT_FIPS, 0, 0, SSL_FIPS, 0,0,0,0,SSL_FIPS|SSL_STRONG_NONE}, 229 }; 230 231 void ssl_load_ciphers(void) 232 { 233 ssl_cipher_methods[SSL_ENC_DES_IDX]= 234 EVP_get_cipherbyname(SN_des_cbc); 235 ssl_cipher_methods[SSL_ENC_3DES_IDX]= 236 EVP_get_cipherbyname(SN_des_ede3_cbc); 237 ssl_cipher_methods[SSL_ENC_RC4_IDX]= 238 EVP_get_cipherbyname(SN_rc4); 239 ssl_cipher_methods[SSL_ENC_RC2_IDX]= 240 EVP_get_cipherbyname(SN_rc2_cbc); 241 #ifndef OPENSSL_NO_IDEA 242 ssl_cipher_methods[SSL_ENC_IDEA_IDX]= 243 EVP_get_cipherbyname(SN_idea_cbc); 244 #else 245 ssl_cipher_methods[SSL_ENC_IDEA_IDX]= NULL; 246 #endif 247 ssl_cipher_methods[SSL_ENC_AES128_IDX]= 248 EVP_get_cipherbyname(SN_aes_128_cbc); 249 ssl_cipher_methods[SSL_ENC_AES256_IDX]= 250 EVP_get_cipherbyname(SN_aes_256_cbc); 251 ssl_cipher_methods[SSL_ENC_CAMELLIA128_IDX]= 252 EVP_get_cipherbyname(SN_camellia_128_cbc); 253 ssl_cipher_methods[SSL_ENC_CAMELLIA256_IDX]= 254 EVP_get_cipherbyname(SN_camellia_256_cbc); 255 ssl_cipher_methods[SSL_ENC_SEED_IDX]= 256 EVP_get_cipherbyname(SN_seed_cbc); 257 258 ssl_digest_methods[SSL_MD_MD5_IDX]= 259 EVP_get_digestbyname(SN_md5); 260 ssl_digest_methods[SSL_MD_SHA1_IDX]= 261 EVP_get_digestbyname(SN_sha1); 262 } 263 264 265 #ifndef OPENSSL_NO_COMP 266 267 static int sk_comp_cmp(const SSL_COMP * const *a, 268 const SSL_COMP * const *b) 269 { 270 return((*a)->id-(*b)->id); 271 } 272 273 static void load_builtin_compressions(void) 274 { 275 int got_write_lock = 0; 276 277 CRYPTO_r_lock(CRYPTO_LOCK_SSL); 278 if (ssl_comp_methods == NULL) 279 { 280 CRYPTO_r_unlock(CRYPTO_LOCK_SSL); 281 CRYPTO_w_lock(CRYPTO_LOCK_SSL); 282 got_write_lock = 1; 283 284 if (ssl_comp_methods == NULL) 285 { 286 SSL_COMP *comp = NULL; 287 288 MemCheck_off(); 289 ssl_comp_methods=sk_SSL_COMP_new(sk_comp_cmp); 290 if (ssl_comp_methods != NULL) 291 { 292 comp=(SSL_COMP *)OPENSSL_malloc(sizeof(SSL_COMP)); 293 if (comp != NULL) 294 { 295 comp->method=COMP_zlib(); 296 if (comp->method 297 && comp->method->type == NID_undef) 298 OPENSSL_free(comp); 299 else 300 { 301 comp->id=SSL_COMP_ZLIB_IDX; 302 comp->name=comp->method->name; 303 sk_SSL_COMP_push(ssl_comp_methods,comp); 304 } 305 } 306 } 307 MemCheck_on(); 308 } 309 } 310 311 if (got_write_lock) 312 CRYPTO_w_unlock(CRYPTO_LOCK_SSL); 313 else 314 CRYPTO_r_unlock(CRYPTO_LOCK_SSL); 315 } 316 #endif 317 318 int ssl_cipher_get_evp(const SSL_SESSION *s, const EVP_CIPHER **enc, 319 const EVP_MD **md, SSL_COMP **comp) 320 { 321 int i; 322 SSL_CIPHER *c; 323 324 c=s->cipher; 325 if (c == NULL) return(0); 326 if (comp != NULL) 327 { 328 SSL_COMP ctmp; 329 #ifndef OPENSSL_NO_COMP 330 load_builtin_compressions(); 331 #endif 332 333 *comp=NULL; 334 ctmp.id=s->compress_meth; 335 if (ssl_comp_methods != NULL) 336 { 337 i=sk_SSL_COMP_find(ssl_comp_methods,&ctmp); 338 if (i >= 0) 339 *comp=sk_SSL_COMP_value(ssl_comp_methods,i); 340 else 341 *comp=NULL; 342 } 343 } 344 345 if ((enc == NULL) || (md == NULL)) return(0); 346 347 switch (c->algorithms & SSL_ENC_MASK) 348 { 349 case SSL_DES: 350 i=SSL_ENC_DES_IDX; 351 break; 352 case SSL_3DES: 353 i=SSL_ENC_3DES_IDX; 354 break; 355 case SSL_RC4: 356 i=SSL_ENC_RC4_IDX; 357 break; 358 case SSL_RC2: 359 i=SSL_ENC_RC2_IDX; 360 break; 361 case SSL_IDEA: 362 i=SSL_ENC_IDEA_IDX; 363 break; 364 case SSL_eNULL: 365 i=SSL_ENC_NULL_IDX; 366 break; 367 case SSL_AES: 368 switch(c->alg_bits) 369 { 370 case 128: i=SSL_ENC_AES128_IDX; break; 371 case 256: i=SSL_ENC_AES256_IDX; break; 372 default: i=-1; break; 373 } 374 break; 375 case SSL_CAMELLIA: 376 switch(c->alg_bits) 377 { 378 case 128: i=SSL_ENC_CAMELLIA128_IDX; break; 379 case 256: i=SSL_ENC_CAMELLIA256_IDX; break; 380 default: i=-1; break; 381 } 382 break; 383 case SSL_SEED: 384 i=SSL_ENC_SEED_IDX; 385 break; 386 387 default: 388 i= -1; 389 break; 390 } 391 392 if ((i < 0) || (i > SSL_ENC_NUM_IDX)) 393 *enc=NULL; 394 else 395 { 396 if (i == SSL_ENC_NULL_IDX) 397 *enc=EVP_enc_null(); 398 else 399 *enc=ssl_cipher_methods[i]; 400 } 401 402 switch (c->algorithms & SSL_MAC_MASK) 403 { 404 case SSL_MD5: 405 i=SSL_MD_MD5_IDX; 406 break; 407 case SSL_SHA1: 408 i=SSL_MD_SHA1_IDX; 409 break; 410 default: 411 i= -1; 412 break; 413 } 414 if ((i < 0) || (i > SSL_MD_NUM_IDX)) 415 *md=NULL; 416 else 417 *md=ssl_digest_methods[i]; 418 419 if ((*enc != NULL) && (*md != NULL)) 420 return(1); 421 else 422 return(0); 423 } 424 425 #define ITEM_SEP(a) \ 426 (((a) == ':') || ((a) == ' ') || ((a) == ';') || ((a) == ',')) 427 428 static void ll_append_tail(CIPHER_ORDER **head, CIPHER_ORDER *curr, 429 CIPHER_ORDER **tail) 430 { 431 if (curr == *tail) return; 432 if (curr == *head) 433 *head=curr->next; 434 if (curr->prev != NULL) 435 curr->prev->next=curr->next; 436 if (curr->next != NULL) /* should always be true */ 437 curr->next->prev=curr->prev; 438 (*tail)->next=curr; 439 curr->prev= *tail; 440 curr->next=NULL; 441 *tail=curr; 442 } 443 444 struct disabled_masks { /* This is a kludge no longer needed with OpenSSL 0.9.9, 445 * where 128-bit and 256-bit algorithms simply will get 446 * separate bits. */ 447 unsigned long mask; /* everything except m256 */ 448 unsigned long m256; /* applies to 256-bit algorithms only */ 449 }; 450 451 static struct disabled_masks ssl_cipher_get_disabled(void) 452 { 453 unsigned long mask; 454 unsigned long m256; 455 struct disabled_masks ret; 456 457 mask = SSL_kFZA; 458 #ifdef OPENSSL_NO_RSA 459 mask |= SSL_aRSA|SSL_kRSA; 460 #endif 461 #ifdef OPENSSL_NO_DSA 462 mask |= SSL_aDSS; 463 #endif 464 #ifdef OPENSSL_NO_DH 465 mask |= SSL_kDHr|SSL_kDHd|SSL_kEDH|SSL_aDH; 466 #endif 467 #ifdef OPENSSL_NO_KRB5 468 mask |= SSL_kKRB5|SSL_aKRB5; 469 #endif 470 #ifdef OPENSSL_NO_ECDH 471 mask |= SSL_kECDH|SSL_kECDHE; 472 #endif 473 #ifdef SSL_FORBID_ENULL 474 mask |= SSL_eNULL; 475 #endif 476 477 mask |= (ssl_cipher_methods[SSL_ENC_DES_IDX ] == NULL) ? SSL_DES :0; 478 mask |= (ssl_cipher_methods[SSL_ENC_3DES_IDX] == NULL) ? SSL_3DES:0; 479 mask |= (ssl_cipher_methods[SSL_ENC_RC4_IDX ] == NULL) ? SSL_RC4 :0; 480 mask |= (ssl_cipher_methods[SSL_ENC_RC2_IDX ] == NULL) ? SSL_RC2 :0; 481 mask |= (ssl_cipher_methods[SSL_ENC_IDEA_IDX] == NULL) ? SSL_IDEA:0; 482 mask |= (ssl_cipher_methods[SSL_ENC_eFZA_IDX] == NULL) ? SSL_eFZA:0; 483 mask |= (ssl_cipher_methods[SSL_ENC_SEED_IDX] == NULL) ? SSL_SEED:0; 484 485 mask |= (ssl_digest_methods[SSL_MD_MD5_IDX ] == NULL) ? SSL_MD5 :0; 486 mask |= (ssl_digest_methods[SSL_MD_SHA1_IDX] == NULL) ? SSL_SHA1:0; 487 488 /* finally consider algorithms where mask and m256 differ */ 489 m256 = mask; 490 mask |= (ssl_cipher_methods[SSL_ENC_AES128_IDX] == NULL) ? SSL_AES:0; 491 mask |= (ssl_cipher_methods[SSL_ENC_CAMELLIA128_IDX] == NULL) ? SSL_CAMELLIA:0; 492 m256 |= (ssl_cipher_methods[SSL_ENC_AES256_IDX] == NULL) ? SSL_AES:0; 493 m256 |= (ssl_cipher_methods[SSL_ENC_CAMELLIA256_IDX] == NULL) ? SSL_CAMELLIA:0; 494 495 ret.mask = mask; 496 ret.m256 = m256; 497 return ret; 498 } 499 500 static void ssl_cipher_collect_ciphers(const SSL_METHOD *ssl_method, 501 int num_of_ciphers, unsigned long mask, unsigned long m256, 502 CIPHER_ORDER *co_list, CIPHER_ORDER **head_p, 503 CIPHER_ORDER **tail_p) 504 { 505 int i, co_list_num; 506 SSL_CIPHER *c; 507 508 /* 509 * We have num_of_ciphers descriptions compiled in, depending on the 510 * method selected (SSLv2 and/or SSLv3, TLSv1 etc). 511 * These will later be sorted in a linked list with at most num 512 * entries. 513 */ 514 515 /* Get the initial list of ciphers */ 516 co_list_num = 0; /* actual count of ciphers */ 517 for (i = 0; i < num_of_ciphers; i++) 518 { 519 c = ssl_method->get_cipher(i); 520 #define IS_MASKED(c) ((c)->algorithms & (((c)->alg_bits == 256) ? m256 : mask)) 521 /* drop those that use any of that is not available */ 522 #ifdef OPENSSL_FIPS 523 if ((c != NULL) && c->valid && !IS_MASKED(c) 524 && (!FIPS_mode() || (c->algo_strength & SSL_FIPS))) 525 #else 526 if ((c != NULL) && c->valid && !IS_MASKED(c)) 527 #endif 528 { 529 co_list[co_list_num].cipher = c; 530 co_list[co_list_num].next = NULL; 531 co_list[co_list_num].prev = NULL; 532 co_list[co_list_num].active = 0; 533 co_list_num++; 534 #ifdef KSSL_DEBUG 535 printf("\t%d: %s %lx %lx\n",i,c->name,c->id,c->algorithms); 536 #endif /* KSSL_DEBUG */ 537 /* 538 if (!sk_push(ca_list,(char *)c)) goto err; 539 */ 540 } 541 } 542 543 /* 544 * Prepare linked list from list entries 545 */ 546 for (i = 1; i < co_list_num - 1; i++) 547 { 548 co_list[i].prev = &(co_list[i-1]); 549 co_list[i].next = &(co_list[i+1]); 550 } 551 if (co_list_num > 0) 552 { 553 (*head_p) = &(co_list[0]); 554 (*head_p)->prev = NULL; 555 (*head_p)->next = &(co_list[1]); 556 (*tail_p) = &(co_list[co_list_num - 1]); 557 (*tail_p)->prev = &(co_list[co_list_num - 2]); 558 (*tail_p)->next = NULL; 559 } 560 } 561 562 static void ssl_cipher_collect_aliases(SSL_CIPHER **ca_list, 563 int num_of_group_aliases, unsigned long mask, 564 CIPHER_ORDER *head) 565 { 566 CIPHER_ORDER *ciph_curr; 567 SSL_CIPHER **ca_curr; 568 int i; 569 570 /* 571 * First, add the real ciphers as already collected 572 */ 573 ciph_curr = head; 574 ca_curr = ca_list; 575 while (ciph_curr != NULL) 576 { 577 *ca_curr = ciph_curr->cipher; 578 ca_curr++; 579 ciph_curr = ciph_curr->next; 580 } 581 582 /* 583 * Now we add the available ones from the cipher_aliases[] table. 584 * They represent either an algorithm, that must be fully 585 * supported (not match any bit in mask) or represent a cipher 586 * strength value (will be added in any case because algorithms=0). 587 */ 588 for (i = 0; i < num_of_group_aliases; i++) 589 { 590 if ((i == 0) || /* always fetch "ALL" */ 591 !(cipher_aliases[i].algorithms & mask)) 592 { 593 *ca_curr = (SSL_CIPHER *)(cipher_aliases + i); 594 ca_curr++; 595 } 596 } 597 598 *ca_curr = NULL; /* end of list */ 599 } 600 601 static void ssl_cipher_apply_rule(unsigned long cipher_id, unsigned long ssl_version, 602 unsigned long algorithms, unsigned long mask, 603 unsigned long algo_strength, unsigned long mask_strength, 604 int rule, int strength_bits, CIPHER_ORDER *co_list, 605 CIPHER_ORDER **head_p, CIPHER_ORDER **tail_p) 606 { 607 CIPHER_ORDER *head, *tail, *curr, *curr2, *tail2; 608 SSL_CIPHER *cp; 609 unsigned long ma, ma_s; 610 611 #ifdef CIPHER_DEBUG 612 printf("Applying rule %d with %08lx %08lx %08lx %08lx (%d)\n", 613 rule, algorithms, mask, algo_strength, mask_strength, 614 strength_bits); 615 #endif 616 617 curr = head = *head_p; 618 curr2 = head; 619 tail2 = tail = *tail_p; 620 for (;;) 621 { 622 if ((curr == NULL) || (curr == tail2)) break; 623 curr = curr2; 624 curr2 = curr->next; 625 626 cp = curr->cipher; 627 628 /* If explicit cipher suite, match only that one for its own protocol version. 629 * Usual selection criteria will be used for similar ciphersuites from other version! */ 630 631 if (cipher_id && (cp->algorithms & SSL_SSL_MASK) == ssl_version) 632 { 633 if (cp->id != cipher_id) 634 continue; 635 } 636 637 /* 638 * Selection criteria is either the number of strength_bits 639 * or the algorithm used. 640 */ 641 else if (strength_bits == -1) 642 { 643 ma = mask & cp->algorithms; 644 ma_s = mask_strength & cp->algo_strength; 645 646 #ifdef CIPHER_DEBUG 647 printf("\nName: %s:\nAlgo = %08lx Algo_strength = %08lx\nMask = %08lx Mask_strength %08lx\n", cp->name, cp->algorithms, cp->algo_strength, mask, mask_strength); 648 printf("ma = %08lx ma_s %08lx, ma&algo=%08lx, ma_s&algos=%08lx\n", ma, ma_s, ma&algorithms, ma_s&algo_strength); 649 #endif 650 /* 651 * Select: if none of the mask bit was met from the 652 * cipher or not all of the bits were met, the 653 * selection does not apply. 654 */ 655 if (((ma == 0) && (ma_s == 0)) || 656 ((ma & algorithms) != ma) || 657 ((ma_s & algo_strength) != ma_s)) 658 continue; /* does not apply */ 659 } 660 else if (strength_bits != cp->strength_bits) 661 continue; /* does not apply */ 662 663 #ifdef CIPHER_DEBUG 664 printf("Action = %d\n", rule); 665 #endif 666 667 /* add the cipher if it has not been added yet. */ 668 if (rule == CIPHER_ADD) 669 { 670 if (!curr->active) 671 { 672 int add_this_cipher = 1; 673 674 if (((cp->algorithms & (SSL_kECDHE|SSL_kECDH|SSL_aECDSA)) != 0)) 675 { 676 /* Make sure "ECCdraft" ciphersuites are activated only if 677 * *explicitly* requested, but not implicitly (such as 678 * as part of the "AES" alias). */ 679 680 add_this_cipher = (mask & (SSL_kECDHE|SSL_kECDH|SSL_aECDSA)) != 0 || cipher_id != 0; 681 } 682 683 if (add_this_cipher) 684 { 685 ll_append_tail(&head, curr, &tail); 686 curr->active = 1; 687 } 688 } 689 } 690 /* Move the added cipher to this location */ 691 else if (rule == CIPHER_ORD) 692 { 693 if (curr->active) 694 { 695 ll_append_tail(&head, curr, &tail); 696 } 697 } 698 else if (rule == CIPHER_DEL) 699 curr->active = 0; 700 else if (rule == CIPHER_KILL) 701 { 702 if (head == curr) 703 head = curr->next; 704 else 705 curr->prev->next = curr->next; 706 if (tail == curr) 707 tail = curr->prev; 708 curr->active = 0; 709 if (curr->next != NULL) 710 curr->next->prev = curr->prev; 711 if (curr->prev != NULL) 712 curr->prev->next = curr->next; 713 curr->next = NULL; 714 curr->prev = NULL; 715 } 716 } 717 718 *head_p = head; 719 *tail_p = tail; 720 } 721 722 static int ssl_cipher_strength_sort(CIPHER_ORDER *co_list, 723 CIPHER_ORDER **head_p, 724 CIPHER_ORDER **tail_p) 725 { 726 int max_strength_bits, i, *number_uses; 727 CIPHER_ORDER *curr; 728 729 /* 730 * This routine sorts the ciphers with descending strength. The sorting 731 * must keep the pre-sorted sequence, so we apply the normal sorting 732 * routine as '+' movement to the end of the list. 733 */ 734 max_strength_bits = 0; 735 curr = *head_p; 736 while (curr != NULL) 737 { 738 if (curr->active && 739 (curr->cipher->strength_bits > max_strength_bits)) 740 max_strength_bits = curr->cipher->strength_bits; 741 curr = curr->next; 742 } 743 744 number_uses = OPENSSL_malloc((max_strength_bits + 1) * sizeof(int)); 745 if (!number_uses) 746 { 747 SSLerr(SSL_F_SSL_CIPHER_STRENGTH_SORT,ERR_R_MALLOC_FAILURE); 748 return(0); 749 } 750 memset(number_uses, 0, (max_strength_bits + 1) * sizeof(int)); 751 752 /* 753 * Now find the strength_bits values actually used 754 */ 755 curr = *head_p; 756 while (curr != NULL) 757 { 758 if (curr->active) 759 number_uses[curr->cipher->strength_bits]++; 760 curr = curr->next; 761 } 762 /* 763 * Go through the list of used strength_bits values in descending 764 * order. 765 */ 766 for (i = max_strength_bits; i >= 0; i--) 767 if (number_uses[i] > 0) 768 ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, CIPHER_ORD, i, 769 co_list, head_p, tail_p); 770 771 OPENSSL_free(number_uses); 772 return(1); 773 } 774 775 static int ssl_cipher_process_rulestr(const char *rule_str, 776 CIPHER_ORDER *co_list, CIPHER_ORDER **head_p, 777 CIPHER_ORDER **tail_p, SSL_CIPHER **ca_list) 778 { 779 unsigned long algorithms, mask, algo_strength, mask_strength; 780 const char *l, *buf; 781 int j, multi, found, rule, retval, ok, buflen; 782 unsigned long cipher_id = 0, ssl_version = 0; 783 char ch; 784 785 retval = 1; 786 l = rule_str; 787 for (;;) 788 { 789 ch = *l; 790 791 if (ch == '\0') 792 break; /* done */ 793 if (ch == '-') 794 { rule = CIPHER_DEL; l++; } 795 else if (ch == '+') 796 { rule = CIPHER_ORD; l++; } 797 else if (ch == '!') 798 { rule = CIPHER_KILL; l++; } 799 else if (ch == '@') 800 { rule = CIPHER_SPECIAL; l++; } 801 else 802 { rule = CIPHER_ADD; } 803 804 if (ITEM_SEP(ch)) 805 { 806 l++; 807 continue; 808 } 809 810 algorithms = mask = algo_strength = mask_strength = 0; 811 812 for (;;) 813 { 814 ch = *l; 815 buf = l; 816 buflen = 0; 817 #ifndef CHARSET_EBCDIC 818 while ( ((ch >= 'A') && (ch <= 'Z')) || 819 ((ch >= '0') && (ch <= '9')) || 820 ((ch >= 'a') && (ch <= 'z')) || 821 (ch == '-')) 822 #else 823 while ( isalnum(ch) || (ch == '-')) 824 #endif 825 { 826 ch = *(++l); 827 buflen++; 828 } 829 830 if (buflen == 0) 831 { 832 /* 833 * We hit something we cannot deal with, 834 * it is no command or separator nor 835 * alphanumeric, so we call this an error. 836 */ 837 SSLerr(SSL_F_SSL_CIPHER_PROCESS_RULESTR, 838 SSL_R_INVALID_COMMAND); 839 retval = found = 0; 840 l++; 841 break; 842 } 843 844 if (rule == CIPHER_SPECIAL) 845 { 846 found = 0; /* unused -- avoid compiler warning */ 847 break; /* special treatment */ 848 } 849 850 /* check for multi-part specification */ 851 if (ch == '+') 852 { 853 multi=1; 854 l++; 855 } 856 else 857 multi=0; 858 859 /* 860 * Now search for the cipher alias in the ca_list. Be careful 861 * with the strncmp, because the "buflen" limitation 862 * will make the rule "ADH:SOME" and the cipher 863 * "ADH-MY-CIPHER" look like a match for buflen=3. 864 * So additionally check whether the cipher name found 865 * has the correct length. We can save a strlen() call: 866 * just checking for the '\0' at the right place is 867 * sufficient, we have to strncmp() anyway. (We cannot 868 * use strcmp(), because buf is not '\0' terminated.) 869 */ 870 j = found = 0; 871 cipher_id = 0; 872 ssl_version = 0; 873 while (ca_list[j]) 874 { 875 if (!strncmp(buf, ca_list[j]->name, buflen) && 876 (ca_list[j]->name[buflen] == '\0')) 877 { 878 found = 1; 879 break; 880 } 881 else 882 j++; 883 } 884 if (!found) 885 break; /* ignore this entry */ 886 887 /* New algorithms: 888 * 1 - any old restrictions apply outside new mask 889 * 2 - any new restrictions apply outside old mask 890 * 3 - enforce old & new where masks intersect 891 */ 892 algorithms = (algorithms & ~ca_list[j]->mask) | /* 1 */ 893 (ca_list[j]->algorithms & ~mask) | /* 2 */ 894 (algorithms & ca_list[j]->algorithms); /* 3 */ 895 mask |= ca_list[j]->mask; 896 algo_strength = (algo_strength & ~ca_list[j]->mask_strength) | 897 (ca_list[j]->algo_strength & ~mask_strength) | 898 (algo_strength & ca_list[j]->algo_strength); 899 mask_strength |= ca_list[j]->mask_strength; 900 901 /* explicit ciphersuite found */ 902 if (ca_list[j]->valid) 903 { 904 cipher_id = ca_list[j]->id; 905 ssl_version = ca_list[j]->algorithms & SSL_SSL_MASK; 906 break; 907 } 908 909 if (!multi) break; 910 } 911 912 /* 913 * Ok, we have the rule, now apply it 914 */ 915 if (rule == CIPHER_SPECIAL) 916 { /* special command */ 917 ok = 0; 918 if ((buflen == 8) && 919 !strncmp(buf, "STRENGTH", 8)) 920 ok = ssl_cipher_strength_sort(co_list, 921 head_p, tail_p); 922 else 923 SSLerr(SSL_F_SSL_CIPHER_PROCESS_RULESTR, 924 SSL_R_INVALID_COMMAND); 925 if (ok == 0) 926 retval = 0; 927 /* 928 * We do not support any "multi" options 929 * together with "@", so throw away the 930 * rest of the command, if any left, until 931 * end or ':' is found. 932 */ 933 while ((*l != '\0') && !ITEM_SEP(*l)) 934 l++; 935 } 936 else if (found) 937 { 938 ssl_cipher_apply_rule(cipher_id, ssl_version, algorithms, mask, 939 algo_strength, mask_strength, rule, -1, 940 co_list, head_p, tail_p); 941 } 942 else 943 { 944 while ((*l != '\0') && !ITEM_SEP(*l)) 945 l++; 946 } 947 if (*l == '\0') break; /* done */ 948 } 949 950 return(retval); 951 } 952 953 STACK_OF(SSL_CIPHER) *ssl_create_cipher_list(const SSL_METHOD *ssl_method, 954 STACK_OF(SSL_CIPHER) **cipher_list, 955 STACK_OF(SSL_CIPHER) **cipher_list_by_id, 956 const char *rule_str) 957 { 958 int ok, num_of_ciphers, num_of_alias_max, num_of_group_aliases; 959 unsigned long disabled_mask; 960 unsigned long disabled_m256; 961 STACK_OF(SSL_CIPHER) *cipherstack, *tmp_cipher_list; 962 const char *rule_p; 963 CIPHER_ORDER *co_list = NULL, *head = NULL, *tail = NULL, *curr; 964 SSL_CIPHER **ca_list = NULL; 965 966 /* 967 * Return with error if nothing to do. 968 */ 969 if (rule_str == NULL || cipher_list == NULL || cipher_list_by_id == NULL) 970 return NULL; 971 972 /* 973 * To reduce the work to do we only want to process the compiled 974 * in algorithms, so we first get the mask of disabled ciphers. 975 */ 976 { 977 struct disabled_masks d; 978 d = ssl_cipher_get_disabled(); 979 disabled_mask = d.mask; 980 disabled_m256 = d.m256; 981 } 982 983 /* 984 * Now we have to collect the available ciphers from the compiled 985 * in ciphers. We cannot get more than the number compiled in, so 986 * it is used for allocation. 987 */ 988 num_of_ciphers = ssl_method->num_ciphers(); 989 #ifdef KSSL_DEBUG 990 printf("ssl_create_cipher_list() for %d ciphers\n", num_of_ciphers); 991 #endif /* KSSL_DEBUG */ 992 co_list = (CIPHER_ORDER *)OPENSSL_malloc(sizeof(CIPHER_ORDER) * num_of_ciphers); 993 if (co_list == NULL) 994 { 995 SSLerr(SSL_F_SSL_CREATE_CIPHER_LIST,ERR_R_MALLOC_FAILURE); 996 return(NULL); /* Failure */ 997 } 998 999 ssl_cipher_collect_ciphers(ssl_method, num_of_ciphers, disabled_mask, 1000 disabled_m256, co_list, &head, &tail); 1001 1002 /* 1003 * We also need cipher aliases for selecting based on the rule_str. 1004 * There might be two types of entries in the rule_str: 1) names 1005 * of ciphers themselves 2) aliases for groups of ciphers. 1006 * For 1) we need the available ciphers and for 2) the cipher 1007 * groups of cipher_aliases added together in one list (otherwise 1008 * we would be happy with just the cipher_aliases table). 1009 */ 1010 num_of_group_aliases = sizeof(cipher_aliases) / sizeof(SSL_CIPHER); 1011 num_of_alias_max = num_of_ciphers + num_of_group_aliases + 1; 1012 ca_list = 1013 (SSL_CIPHER **)OPENSSL_malloc(sizeof(SSL_CIPHER *) * num_of_alias_max); 1014 if (ca_list == NULL) 1015 { 1016 OPENSSL_free(co_list); 1017 SSLerr(SSL_F_SSL_CREATE_CIPHER_LIST,ERR_R_MALLOC_FAILURE); 1018 return(NULL); /* Failure */ 1019 } 1020 ssl_cipher_collect_aliases(ca_list, num_of_group_aliases, 1021 (disabled_mask & disabled_m256), head); 1022 1023 /* 1024 * If the rule_string begins with DEFAULT, apply the default rule 1025 * before using the (possibly available) additional rules. 1026 */ 1027 ok = 1; 1028 rule_p = rule_str; 1029 if (strncmp(rule_str,"DEFAULT",7) == 0) 1030 { 1031 ok = ssl_cipher_process_rulestr(SSL_DEFAULT_CIPHER_LIST, 1032 co_list, &head, &tail, ca_list); 1033 rule_p += 7; 1034 if (*rule_p == ':') 1035 rule_p++; 1036 } 1037 1038 if (ok && (strlen(rule_p) > 0)) 1039 ok = ssl_cipher_process_rulestr(rule_p, co_list, &head, &tail, 1040 ca_list); 1041 1042 OPENSSL_free(ca_list); /* Not needed anymore */ 1043 1044 if (!ok) 1045 { /* Rule processing failure */ 1046 OPENSSL_free(co_list); 1047 return(NULL); 1048 } 1049 /* 1050 * Allocate new "cipherstack" for the result, return with error 1051 * if we cannot get one. 1052 */ 1053 if ((cipherstack = sk_SSL_CIPHER_new_null()) == NULL) 1054 { 1055 OPENSSL_free(co_list); 1056 return(NULL); 1057 } 1058 1059 /* 1060 * The cipher selection for the list is done. The ciphers are added 1061 * to the resulting precedence to the STACK_OF(SSL_CIPHER). 1062 */ 1063 for (curr = head; curr != NULL; curr = curr->next) 1064 { 1065 #ifdef OPENSSL_FIPS 1066 if (curr->active && (!FIPS_mode() || curr->cipher->algo_strength & SSL_FIPS)) 1067 #else 1068 if (curr->active) 1069 #endif 1070 { 1071 sk_SSL_CIPHER_push(cipherstack, curr->cipher); 1072 #ifdef CIPHER_DEBUG 1073 printf("<%s>\n",curr->cipher->name); 1074 #endif 1075 } 1076 } 1077 OPENSSL_free(co_list); /* Not needed any longer */ 1078 1079 tmp_cipher_list = sk_SSL_CIPHER_dup(cipherstack); 1080 if (tmp_cipher_list == NULL) 1081 { 1082 sk_SSL_CIPHER_free(cipherstack); 1083 return NULL; 1084 } 1085 if (*cipher_list != NULL) 1086 sk_SSL_CIPHER_free(*cipher_list); 1087 *cipher_list = cipherstack; 1088 if (*cipher_list_by_id != NULL) 1089 sk_SSL_CIPHER_free(*cipher_list_by_id); 1090 *cipher_list_by_id = tmp_cipher_list; 1091 (void)sk_SSL_CIPHER_set_cmp_func(*cipher_list_by_id,ssl_cipher_ptr_id_cmp); 1092 1093 sk_SSL_CIPHER_sort(*cipher_list_by_id); 1094 return(cipherstack); 1095 } 1096 1097 char *SSL_CIPHER_description(const SSL_CIPHER *cipher, char *buf, int len) 1098 { 1099 int is_export,pkl,kl; 1100 const char *ver,*exp_str; 1101 const char *kx,*au,*enc,*mac; 1102 unsigned long alg,alg2; 1103 #ifdef KSSL_DEBUG 1104 static const char *format="%-23s %s Kx=%-8s Au=%-4s Enc=%-9s Mac=%-4s%s AL=%lx\n"; 1105 #else 1106 static const char *format="%-23s %s Kx=%-8s Au=%-4s Enc=%-9s Mac=%-4s%s\n"; 1107 #endif /* KSSL_DEBUG */ 1108 1109 alg=cipher->algorithms; 1110 alg2=cipher->algorithm2; 1111 1112 is_export=SSL_C_IS_EXPORT(cipher); 1113 pkl=SSL_C_EXPORT_PKEYLENGTH(cipher); 1114 kl=SSL_C_EXPORT_KEYLENGTH(cipher); 1115 exp_str=is_export?" export":""; 1116 1117 if (alg & SSL_SSLV2) 1118 ver="SSLv2"; 1119 else if (alg & SSL_SSLV3) 1120 ver="SSLv3"; 1121 else 1122 ver="unknown"; 1123 1124 switch (alg&SSL_MKEY_MASK) 1125 { 1126 case SSL_kRSA: 1127 kx=is_export?(pkl == 512 ? "RSA(512)" : "RSA(1024)"):"RSA"; 1128 break; 1129 case SSL_kDHr: 1130 kx="DH/RSA"; 1131 break; 1132 case SSL_kDHd: 1133 kx="DH/DSS"; 1134 break; 1135 case SSL_kKRB5: /* VRS */ 1136 case SSL_KRB5: /* VRS */ 1137 kx="KRB5"; 1138 break; 1139 case SSL_kFZA: 1140 kx="Fortezza"; 1141 break; 1142 case SSL_kEDH: 1143 kx=is_export?(pkl == 512 ? "DH(512)" : "DH(1024)"):"DH"; 1144 break; 1145 case SSL_kECDH: 1146 case SSL_kECDHE: 1147 kx=is_export?"ECDH(<=163)":"ECDH"; 1148 break; 1149 default: 1150 kx="unknown"; 1151 } 1152 1153 switch (alg&SSL_AUTH_MASK) 1154 { 1155 case SSL_aRSA: 1156 au="RSA"; 1157 break; 1158 case SSL_aDSS: 1159 au="DSS"; 1160 break; 1161 case SSL_aDH: 1162 au="DH"; 1163 break; 1164 case SSL_aKRB5: /* VRS */ 1165 case SSL_KRB5: /* VRS */ 1166 au="KRB5"; 1167 break; 1168 case SSL_aFZA: 1169 case SSL_aNULL: 1170 au="None"; 1171 break; 1172 case SSL_aECDSA: 1173 au="ECDSA"; 1174 break; 1175 default: 1176 au="unknown"; 1177 break; 1178 } 1179 1180 switch (alg&SSL_ENC_MASK) 1181 { 1182 case SSL_DES: 1183 enc=(is_export && kl == 5)?"DES(40)":"DES(56)"; 1184 break; 1185 case SSL_3DES: 1186 enc="3DES(168)"; 1187 break; 1188 case SSL_RC4: 1189 enc=is_export?(kl == 5 ? "RC4(40)" : "RC4(56)") 1190 :((alg2&SSL2_CF_8_BYTE_ENC)?"RC4(64)":"RC4(128)"); 1191 break; 1192 case SSL_RC2: 1193 enc=is_export?(kl == 5 ? "RC2(40)" : "RC2(56)"):"RC2(128)"; 1194 break; 1195 case SSL_IDEA: 1196 enc="IDEA(128)"; 1197 break; 1198 case SSL_eFZA: 1199 enc="Fortezza"; 1200 break; 1201 case SSL_eNULL: 1202 enc="None"; 1203 break; 1204 case SSL_AES: 1205 switch(cipher->strength_bits) 1206 { 1207 case 128: enc="AES(128)"; break; 1208 case 192: enc="AES(192)"; break; 1209 case 256: enc="AES(256)"; break; 1210 default: enc="AES(?""?""?)"; break; 1211 } 1212 break; 1213 case SSL_CAMELLIA: 1214 switch(cipher->strength_bits) 1215 { 1216 case 128: enc="Camellia(128)"; break; 1217 case 256: enc="Camellia(256)"; break; 1218 default: enc="Camellia(?""?""?)"; break; 1219 } 1220 break; 1221 case SSL_SEED: 1222 enc="SEED(128)"; 1223 break; 1224 1225 default: 1226 enc="unknown"; 1227 break; 1228 } 1229 1230 switch (alg&SSL_MAC_MASK) 1231 { 1232 case SSL_MD5: 1233 mac="MD5"; 1234 break; 1235 case SSL_SHA1: 1236 mac="SHA1"; 1237 break; 1238 default: 1239 mac="unknown"; 1240 break; 1241 } 1242 1243 if (buf == NULL) 1244 { 1245 len=128; 1246 buf=OPENSSL_malloc(len); 1247 if (buf == NULL) return("OPENSSL_malloc Error"); 1248 } 1249 else if (len < 128) 1250 return("Buffer too small"); 1251 1252 #ifdef KSSL_DEBUG 1253 BIO_snprintf(buf,len,format,cipher->name,ver,kx,au,enc,mac,exp_str,alg); 1254 #else 1255 BIO_snprintf(buf,len,format,cipher->name,ver,kx,au,enc,mac,exp_str); 1256 #endif /* KSSL_DEBUG */ 1257 return(buf); 1258 } 1259 1260 char *SSL_CIPHER_get_version(const SSL_CIPHER *c) 1261 { 1262 int i; 1263 1264 if (c == NULL) return("(NONE)"); 1265 i=(int)(c->id>>24L); 1266 if (i == 3) 1267 return("TLSv1/SSLv3"); 1268 else if (i == 2) 1269 return("SSLv2"); 1270 else 1271 return("unknown"); 1272 } 1273 1274 /* return the actual cipher being used */ 1275 const char *SSL_CIPHER_get_name(const SSL_CIPHER *c) 1276 { 1277 if (c != NULL) 1278 return(c->name); 1279 return("(NONE)"); 1280 } 1281 1282 /* number of bits for symmetric cipher */ 1283 int SSL_CIPHER_get_bits(const SSL_CIPHER *c, int *alg_bits) 1284 { 1285 int ret=0; 1286 1287 if (c != NULL) 1288 { 1289 if (alg_bits != NULL) *alg_bits = c->alg_bits; 1290 ret = c->strength_bits; 1291 } 1292 return(ret); 1293 } 1294 1295 SSL_COMP *ssl3_comp_find(STACK_OF(SSL_COMP) *sk, int n) 1296 { 1297 SSL_COMP *ctmp; 1298 int i,nn; 1299 1300 if ((n == 0) || (sk == NULL)) return(NULL); 1301 nn=sk_SSL_COMP_num(sk); 1302 for (i=0; i<nn; i++) 1303 { 1304 ctmp=sk_SSL_COMP_value(sk,i); 1305 if (ctmp->id == n) 1306 return(ctmp); 1307 } 1308 return(NULL); 1309 } 1310 1311 #ifdef OPENSSL_NO_COMP 1312 void *SSL_COMP_get_compression_methods(void) 1313 { 1314 return NULL; 1315 } 1316 int SSL_COMP_add_compression_method(int id, void *cm) 1317 { 1318 return 1; 1319 } 1320 1321 const char *SSL_COMP_get_name(const void *comp) 1322 { 1323 return NULL; 1324 } 1325 #else 1326 STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void) 1327 { 1328 load_builtin_compressions(); 1329 return(ssl_comp_methods); 1330 } 1331 1332 int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm) 1333 { 1334 SSL_COMP *comp; 1335 1336 if (cm == NULL || cm->type == NID_undef) 1337 return 1; 1338 1339 /* According to draft-ietf-tls-compression-04.txt, the 1340 compression number ranges should be the following: 1341 1342 0 to 63: methods defined by the IETF 1343 64 to 192: external party methods assigned by IANA 1344 193 to 255: reserved for private use */ 1345 if (id < 193 || id > 255) 1346 { 1347 SSLerr(SSL_F_SSL_COMP_ADD_COMPRESSION_METHOD,SSL_R_COMPRESSION_ID_NOT_WITHIN_PRIVATE_RANGE); 1348 return 0; 1349 } 1350 1351 MemCheck_off(); 1352 comp=(SSL_COMP *)OPENSSL_malloc(sizeof(SSL_COMP)); 1353 comp->id=id; 1354 comp->method=cm; 1355 load_builtin_compressions(); 1356 if (ssl_comp_methods 1357 && sk_SSL_COMP_find(ssl_comp_methods,comp) >= 0) 1358 { 1359 OPENSSL_free(comp); 1360 MemCheck_on(); 1361 SSLerr(SSL_F_SSL_COMP_ADD_COMPRESSION_METHOD,SSL_R_DUPLICATE_COMPRESSION_ID); 1362 return(1); 1363 } 1364 else if ((ssl_comp_methods == NULL) 1365 || !sk_SSL_COMP_push(ssl_comp_methods,comp)) 1366 { 1367 OPENSSL_free(comp); 1368 MemCheck_on(); 1369 SSLerr(SSL_F_SSL_COMP_ADD_COMPRESSION_METHOD,ERR_R_MALLOC_FAILURE); 1370 return(1); 1371 } 1372 else 1373 { 1374 MemCheck_on(); 1375 return(0); 1376 } 1377 } 1378 1379 const char *SSL_COMP_get_name(const COMP_METHOD *comp) 1380 { 1381 if (comp) 1382 return comp->name; 1383 return NULL; 1384 } 1385 1386 #endif 1387