1 /* 2 * Copyright 1995-2022 The OpenSSL Project Authors. All Rights Reserved. 3 * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved 4 * Copyright 2005 Nokia. All rights reserved. 5 * 6 * Licensed under the Apache License 2.0 (the "License"). You may not use 7 * this file except in compliance with the License. You can obtain a copy 8 * in the file LICENSE in the source distribution or at 9 * https://www.openssl.org/source/license.html 10 */ 11 12 #include <stdio.h> 13 #include <ctype.h> 14 #include <openssl/objects.h> 15 #include <openssl/comp.h> 16 #include <openssl/engine.h> 17 #include <openssl/crypto.h> 18 #include <openssl/conf.h> 19 #include <openssl/trace.h> 20 #include "internal/nelem.h" 21 #include "ssl_local.h" 22 #include "internal/thread_once.h" 23 #include "internal/cryptlib.h" 24 25 /* NB: make sure indices in these tables match values above */ 26 27 typedef struct { 28 uint32_t mask; 29 int nid; 30 } ssl_cipher_table; 31 32 /* Table of NIDs for each cipher */ 33 static const ssl_cipher_table ssl_cipher_table_cipher[SSL_ENC_NUM_IDX] = { 34 {SSL_DES, NID_des_cbc}, /* SSL_ENC_DES_IDX 0 */ 35 {SSL_3DES, NID_des_ede3_cbc}, /* SSL_ENC_3DES_IDX 1 */ 36 {SSL_RC4, NID_rc4}, /* SSL_ENC_RC4_IDX 2 */ 37 {SSL_RC2, NID_rc2_cbc}, /* SSL_ENC_RC2_IDX 3 */ 38 {SSL_IDEA, NID_idea_cbc}, /* SSL_ENC_IDEA_IDX 4 */ 39 {SSL_eNULL, NID_undef}, /* SSL_ENC_NULL_IDX 5 */ 40 {SSL_AES128, NID_aes_128_cbc}, /* SSL_ENC_AES128_IDX 6 */ 41 {SSL_AES256, NID_aes_256_cbc}, /* SSL_ENC_AES256_IDX 7 */ 42 {SSL_CAMELLIA128, NID_camellia_128_cbc}, /* SSL_ENC_CAMELLIA128_IDX 8 */ 43 {SSL_CAMELLIA256, NID_camellia_256_cbc}, /* SSL_ENC_CAMELLIA256_IDX 9 */ 44 {SSL_eGOST2814789CNT, NID_gost89_cnt}, /* SSL_ENC_GOST89_IDX 10 */ 45 {SSL_SEED, NID_seed_cbc}, /* SSL_ENC_SEED_IDX 11 */ 46 {SSL_AES128GCM, NID_aes_128_gcm}, /* SSL_ENC_AES128GCM_IDX 12 */ 47 {SSL_AES256GCM, NID_aes_256_gcm}, /* SSL_ENC_AES256GCM_IDX 13 */ 48 {SSL_AES128CCM, NID_aes_128_ccm}, /* SSL_ENC_AES128CCM_IDX 14 */ 49 {SSL_AES256CCM, NID_aes_256_ccm}, /* SSL_ENC_AES256CCM_IDX 15 */ 50 {SSL_AES128CCM8, NID_aes_128_ccm}, /* SSL_ENC_AES128CCM8_IDX 16 */ 51 {SSL_AES256CCM8, NID_aes_256_ccm}, /* SSL_ENC_AES256CCM8_IDX 17 */ 52 {SSL_eGOST2814789CNT12, NID_gost89_cnt_12}, /* SSL_ENC_GOST8912_IDX 18 */ 53 {SSL_CHACHA20POLY1305, NID_chacha20_poly1305}, /* SSL_ENC_CHACHA_IDX 19 */ 54 {SSL_ARIA128GCM, NID_aria_128_gcm}, /* SSL_ENC_ARIA128GCM_IDX 20 */ 55 {SSL_ARIA256GCM, NID_aria_256_gcm}, /* SSL_ENC_ARIA256GCM_IDX 21 */ 56 {SSL_MAGMA, NID_magma_ctr_acpkm}, /* SSL_ENC_MAGMA_IDX */ 57 {SSL_KUZNYECHIK, NID_kuznyechik_ctr_acpkm}, /* SSL_ENC_KUZNYECHIK_IDX */ 58 }; 59 60 #define SSL_COMP_NULL_IDX 0 61 #define SSL_COMP_ZLIB_IDX 1 62 #define SSL_COMP_NUM_IDX 2 63 64 static STACK_OF(SSL_COMP) *ssl_comp_methods = NULL; 65 66 #ifndef OPENSSL_NO_COMP 67 static CRYPTO_ONCE ssl_load_builtin_comp_once = CRYPTO_ONCE_STATIC_INIT; 68 #endif 69 70 /* NB: make sure indices in this table matches values above */ 71 static const ssl_cipher_table ssl_cipher_table_mac[SSL_MD_NUM_IDX] = { 72 {SSL_MD5, NID_md5}, /* SSL_MD_MD5_IDX 0 */ 73 {SSL_SHA1, NID_sha1}, /* SSL_MD_SHA1_IDX 1 */ 74 {SSL_GOST94, NID_id_GostR3411_94}, /* SSL_MD_GOST94_IDX 2 */ 75 {SSL_GOST89MAC, NID_id_Gost28147_89_MAC}, /* SSL_MD_GOST89MAC_IDX 3 */ 76 {SSL_SHA256, NID_sha256}, /* SSL_MD_SHA256_IDX 4 */ 77 {SSL_SHA384, NID_sha384}, /* SSL_MD_SHA384_IDX 5 */ 78 {SSL_GOST12_256, NID_id_GostR3411_2012_256}, /* SSL_MD_GOST12_256_IDX 6 */ 79 {SSL_GOST89MAC12, NID_gost_mac_12}, /* SSL_MD_GOST89MAC12_IDX 7 */ 80 {SSL_GOST12_512, NID_id_GostR3411_2012_512}, /* SSL_MD_GOST12_512_IDX 8 */ 81 {0, NID_md5_sha1}, /* SSL_MD_MD5_SHA1_IDX 9 */ 82 {0, NID_sha224}, /* SSL_MD_SHA224_IDX 10 */ 83 {0, NID_sha512}, /* SSL_MD_SHA512_IDX 11 */ 84 {SSL_MAGMAOMAC, NID_magma_mac}, /* sSL_MD_MAGMAOMAC_IDX */ 85 {SSL_KUZNYECHIKOMAC, NID_kuznyechik_mac} /* SSL_MD_KUZNYECHIKOMAC_IDX */ 86 }; 87 88 /* *INDENT-OFF* */ 89 static const ssl_cipher_table ssl_cipher_table_kx[] = { 90 {SSL_kRSA, NID_kx_rsa}, 91 {SSL_kECDHE, NID_kx_ecdhe}, 92 {SSL_kDHE, NID_kx_dhe}, 93 {SSL_kECDHEPSK, NID_kx_ecdhe_psk}, 94 {SSL_kDHEPSK, NID_kx_dhe_psk}, 95 {SSL_kRSAPSK, NID_kx_rsa_psk}, 96 {SSL_kPSK, NID_kx_psk}, 97 {SSL_kSRP, NID_kx_srp}, 98 {SSL_kGOST, NID_kx_gost}, 99 {SSL_kGOST18, NID_kx_gost18}, 100 {SSL_kANY, NID_kx_any} 101 }; 102 103 static const ssl_cipher_table ssl_cipher_table_auth[] = { 104 {SSL_aRSA, NID_auth_rsa}, 105 {SSL_aECDSA, NID_auth_ecdsa}, 106 {SSL_aPSK, NID_auth_psk}, 107 {SSL_aDSS, NID_auth_dss}, 108 {SSL_aGOST01, NID_auth_gost01}, 109 {SSL_aGOST12, NID_auth_gost12}, 110 {SSL_aSRP, NID_auth_srp}, 111 {SSL_aNULL, NID_auth_null}, 112 {SSL_aANY, NID_auth_any} 113 }; 114 /* *INDENT-ON* */ 115 116 /* Utility function for table lookup */ 117 static int ssl_cipher_info_find(const ssl_cipher_table * table, 118 size_t table_cnt, uint32_t mask) 119 { 120 size_t i; 121 for (i = 0; i < table_cnt; i++, table++) { 122 if (table->mask == mask) 123 return (int)i; 124 } 125 return -1; 126 } 127 128 #define ssl_cipher_info_lookup(table, x) \ 129 ssl_cipher_info_find(table, OSSL_NELEM(table), x) 130 131 /* 132 * PKEY_TYPE for GOST89MAC is known in advance, but, because implementation 133 * is engine-provided, we'll fill it only if corresponding EVP_PKEY_METHOD is 134 * found 135 */ 136 static const int default_mac_pkey_id[SSL_MD_NUM_IDX] = { 137 /* MD5, SHA, GOST94, MAC89 */ 138 EVP_PKEY_HMAC, EVP_PKEY_HMAC, EVP_PKEY_HMAC, NID_undef, 139 /* SHA256, SHA384, GOST2012_256, MAC89-12 */ 140 EVP_PKEY_HMAC, EVP_PKEY_HMAC, EVP_PKEY_HMAC, NID_undef, 141 /* GOST2012_512 */ 142 EVP_PKEY_HMAC, 143 /* MD5/SHA1, SHA224, SHA512, MAGMAOMAC, KUZNYECHIKOMAC */ 144 NID_undef, NID_undef, NID_undef, NID_undef, NID_undef 145 }; 146 147 #define CIPHER_ADD 1 148 #define CIPHER_KILL 2 149 #define CIPHER_DEL 3 150 #define CIPHER_ORD 4 151 #define CIPHER_SPECIAL 5 152 /* 153 * Bump the ciphers to the top of the list. 154 * This rule isn't currently supported by the public cipherstring API. 155 */ 156 #define CIPHER_BUMP 6 157 158 typedef struct cipher_order_st { 159 const SSL_CIPHER *cipher; 160 int active; 161 int dead; 162 struct cipher_order_st *next, *prev; 163 } CIPHER_ORDER; 164 165 static const SSL_CIPHER cipher_aliases[] = { 166 /* "ALL" doesn't include eNULL (must be specifically enabled) */ 167 {0, SSL_TXT_ALL, NULL, 0, 0, 0, ~SSL_eNULL}, 168 /* "COMPLEMENTOFALL" */ 169 {0, SSL_TXT_CMPALL, NULL, 0, 0, 0, SSL_eNULL}, 170 171 /* 172 * "COMPLEMENTOFDEFAULT" (does *not* include ciphersuites not found in 173 * ALL!) 174 */ 175 {0, SSL_TXT_CMPDEF, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_NOT_DEFAULT}, 176 177 /* 178 * key exchange aliases (some of those using only a single bit here 179 * combine multiple key exchange algs according to the RFCs, e.g. kDHE 180 * combines DHE_DSS and DHE_RSA) 181 */ 182 {0, SSL_TXT_kRSA, NULL, 0, SSL_kRSA}, 183 184 {0, SSL_TXT_kEDH, NULL, 0, SSL_kDHE}, 185 {0, SSL_TXT_kDHE, NULL, 0, SSL_kDHE}, 186 {0, SSL_TXT_DH, NULL, 0, SSL_kDHE}, 187 188 {0, SSL_TXT_kEECDH, NULL, 0, SSL_kECDHE}, 189 {0, SSL_TXT_kECDHE, NULL, 0, SSL_kECDHE}, 190 {0, SSL_TXT_ECDH, NULL, 0, SSL_kECDHE}, 191 192 {0, SSL_TXT_kPSK, NULL, 0, SSL_kPSK}, 193 {0, SSL_TXT_kRSAPSK, NULL, 0, SSL_kRSAPSK}, 194 {0, SSL_TXT_kECDHEPSK, NULL, 0, SSL_kECDHEPSK}, 195 {0, SSL_TXT_kDHEPSK, NULL, 0, SSL_kDHEPSK}, 196 {0, SSL_TXT_kSRP, NULL, 0, SSL_kSRP}, 197 {0, SSL_TXT_kGOST, NULL, 0, SSL_kGOST}, 198 {0, SSL_TXT_kGOST18, NULL, 0, SSL_kGOST18}, 199 200 /* server authentication aliases */ 201 {0, SSL_TXT_aRSA, NULL, 0, 0, SSL_aRSA}, 202 {0, SSL_TXT_aDSS, NULL, 0, 0, SSL_aDSS}, 203 {0, SSL_TXT_DSS, NULL, 0, 0, SSL_aDSS}, 204 {0, SSL_TXT_aNULL, NULL, 0, 0, SSL_aNULL}, 205 {0, SSL_TXT_aECDSA, NULL, 0, 0, SSL_aECDSA}, 206 {0, SSL_TXT_ECDSA, NULL, 0, 0, SSL_aECDSA}, 207 {0, SSL_TXT_aPSK, NULL, 0, 0, SSL_aPSK}, 208 {0, SSL_TXT_aGOST01, NULL, 0, 0, SSL_aGOST01}, 209 {0, SSL_TXT_aGOST12, NULL, 0, 0, SSL_aGOST12}, 210 {0, SSL_TXT_aGOST, NULL, 0, 0, SSL_aGOST01 | SSL_aGOST12}, 211 {0, SSL_TXT_aSRP, NULL, 0, 0, SSL_aSRP}, 212 213 /* aliases combining key exchange and server authentication */ 214 {0, SSL_TXT_EDH, NULL, 0, SSL_kDHE, ~SSL_aNULL}, 215 {0, SSL_TXT_DHE, NULL, 0, SSL_kDHE, ~SSL_aNULL}, 216 {0, SSL_TXT_EECDH, NULL, 0, SSL_kECDHE, ~SSL_aNULL}, 217 {0, SSL_TXT_ECDHE, NULL, 0, SSL_kECDHE, ~SSL_aNULL}, 218 {0, SSL_TXT_NULL, NULL, 0, 0, 0, SSL_eNULL}, 219 {0, SSL_TXT_RSA, NULL, 0, SSL_kRSA, SSL_aRSA}, 220 {0, SSL_TXT_ADH, NULL, 0, SSL_kDHE, SSL_aNULL}, 221 {0, SSL_TXT_AECDH, NULL, 0, SSL_kECDHE, SSL_aNULL}, 222 {0, SSL_TXT_PSK, NULL, 0, SSL_PSK}, 223 {0, SSL_TXT_SRP, NULL, 0, SSL_kSRP}, 224 225 /* symmetric encryption aliases */ 226 {0, SSL_TXT_3DES, NULL, 0, 0, 0, SSL_3DES}, 227 {0, SSL_TXT_RC4, NULL, 0, 0, 0, SSL_RC4}, 228 {0, SSL_TXT_RC2, NULL, 0, 0, 0, SSL_RC2}, 229 {0, SSL_TXT_IDEA, NULL, 0, 0, 0, SSL_IDEA}, 230 {0, SSL_TXT_SEED, NULL, 0, 0, 0, SSL_SEED}, 231 {0, SSL_TXT_eNULL, NULL, 0, 0, 0, SSL_eNULL}, 232 {0, SSL_TXT_GOST, NULL, 0, 0, 0, 233 SSL_eGOST2814789CNT | SSL_eGOST2814789CNT12 | SSL_MAGMA | SSL_KUZNYECHIK}, 234 {0, SSL_TXT_AES128, NULL, 0, 0, 0, 235 SSL_AES128 | SSL_AES128GCM | SSL_AES128CCM | SSL_AES128CCM8}, 236 {0, SSL_TXT_AES256, NULL, 0, 0, 0, 237 SSL_AES256 | SSL_AES256GCM | SSL_AES256CCM | SSL_AES256CCM8}, 238 {0, SSL_TXT_AES, NULL, 0, 0, 0, SSL_AES}, 239 {0, SSL_TXT_AES_GCM, NULL, 0, 0, 0, SSL_AES128GCM | SSL_AES256GCM}, 240 {0, SSL_TXT_AES_CCM, NULL, 0, 0, 0, 241 SSL_AES128CCM | SSL_AES256CCM | SSL_AES128CCM8 | SSL_AES256CCM8}, 242 {0, SSL_TXT_AES_CCM_8, NULL, 0, 0, 0, SSL_AES128CCM8 | SSL_AES256CCM8}, 243 {0, SSL_TXT_CAMELLIA128, NULL, 0, 0, 0, SSL_CAMELLIA128}, 244 {0, SSL_TXT_CAMELLIA256, NULL, 0, 0, 0, SSL_CAMELLIA256}, 245 {0, SSL_TXT_CAMELLIA, NULL, 0, 0, 0, SSL_CAMELLIA}, 246 {0, SSL_TXT_CHACHA20, NULL, 0, 0, 0, SSL_CHACHA20}, 247 {0, SSL_TXT_GOST2012_GOST8912_GOST8912, NULL, 0, 0, 0, SSL_eGOST2814789CNT12}, 248 249 {0, SSL_TXT_ARIA, NULL, 0, 0, 0, SSL_ARIA}, 250 {0, SSL_TXT_ARIA_GCM, NULL, 0, 0, 0, SSL_ARIA128GCM | SSL_ARIA256GCM}, 251 {0, SSL_TXT_ARIA128, NULL, 0, 0, 0, SSL_ARIA128GCM}, 252 {0, SSL_TXT_ARIA256, NULL, 0, 0, 0, SSL_ARIA256GCM}, 253 {0, SSL_TXT_CBC, NULL, 0, 0, 0, SSL_CBC}, 254 255 /* MAC aliases */ 256 {0, SSL_TXT_MD5, NULL, 0, 0, 0, 0, SSL_MD5}, 257 {0, SSL_TXT_SHA1, NULL, 0, 0, 0, 0, SSL_SHA1}, 258 {0, SSL_TXT_SHA, NULL, 0, 0, 0, 0, SSL_SHA1}, 259 {0, SSL_TXT_GOST94, NULL, 0, 0, 0, 0, SSL_GOST94}, 260 {0, SSL_TXT_GOST89MAC, NULL, 0, 0, 0, 0, SSL_GOST89MAC | SSL_GOST89MAC12}, 261 {0, SSL_TXT_SHA256, NULL, 0, 0, 0, 0, SSL_SHA256}, 262 {0, SSL_TXT_SHA384, NULL, 0, 0, 0, 0, SSL_SHA384}, 263 {0, SSL_TXT_GOST12, NULL, 0, 0, 0, 0, SSL_GOST12_256}, 264 265 /* protocol version aliases */ 266 {0, SSL_TXT_SSLV3, NULL, 0, 0, 0, 0, 0, SSL3_VERSION}, 267 {0, SSL_TXT_TLSV1, NULL, 0, 0, 0, 0, 0, TLS1_VERSION}, 268 {0, "TLSv1.0", NULL, 0, 0, 0, 0, 0, TLS1_VERSION}, 269 {0, SSL_TXT_TLSV1_2, NULL, 0, 0, 0, 0, 0, TLS1_2_VERSION}, 270 271 /* strength classes */ 272 {0, SSL_TXT_LOW, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_LOW}, 273 {0, SSL_TXT_MEDIUM, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_MEDIUM}, 274 {0, SSL_TXT_HIGH, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_HIGH}, 275 /* FIPS 140-2 approved ciphersuite */ 276 {0, SSL_TXT_FIPS, NULL, 0, 0, 0, ~SSL_eNULL, 0, 0, 0, 0, 0, SSL_FIPS}, 277 278 /* "EDH-" aliases to "DHE-" labels (for backward compatibility) */ 279 {0, SSL3_TXT_EDH_DSS_DES_192_CBC3_SHA, NULL, 0, 280 SSL_kDHE, SSL_aDSS, SSL_3DES, SSL_SHA1, 0, 0, 0, 0, SSL_HIGH | SSL_FIPS}, 281 {0, SSL3_TXT_EDH_RSA_DES_192_CBC3_SHA, NULL, 0, 282 SSL_kDHE, SSL_aRSA, SSL_3DES, SSL_SHA1, 0, 0, 0, 0, SSL_HIGH | SSL_FIPS}, 283 284 }; 285 286 /* 287 * Search for public key algorithm with given name and return its pkey_id if 288 * it is available. Otherwise return 0 289 */ 290 #ifdef OPENSSL_NO_ENGINE 291 292 static int get_optional_pkey_id(const char *pkey_name) 293 { 294 const EVP_PKEY_ASN1_METHOD *ameth; 295 int pkey_id = 0; 296 ameth = EVP_PKEY_asn1_find_str(NULL, pkey_name, -1); 297 if (ameth && EVP_PKEY_asn1_get0_info(&pkey_id, NULL, NULL, NULL, NULL, 298 ameth) > 0) 299 return pkey_id; 300 return 0; 301 } 302 303 #else 304 305 static int get_optional_pkey_id(const char *pkey_name) 306 { 307 const EVP_PKEY_ASN1_METHOD *ameth; 308 ENGINE *tmpeng = NULL; 309 int pkey_id = 0; 310 ameth = EVP_PKEY_asn1_find_str(&tmpeng, pkey_name, -1); 311 if (ameth) { 312 if (EVP_PKEY_asn1_get0_info(&pkey_id, NULL, NULL, NULL, NULL, 313 ameth) <= 0) 314 pkey_id = 0; 315 } 316 tls_engine_finish(tmpeng); 317 return pkey_id; 318 } 319 320 #endif 321 322 int ssl_load_ciphers(SSL_CTX *ctx) 323 { 324 size_t i; 325 const ssl_cipher_table *t; 326 EVP_KEYEXCH *kex = NULL; 327 EVP_SIGNATURE *sig = NULL; 328 329 ctx->disabled_enc_mask = 0; 330 for (i = 0, t = ssl_cipher_table_cipher; i < SSL_ENC_NUM_IDX; i++, t++) { 331 if (t->nid != NID_undef) { 332 const EVP_CIPHER *cipher 333 = ssl_evp_cipher_fetch(ctx->libctx, t->nid, ctx->propq); 334 335 ctx->ssl_cipher_methods[i] = cipher; 336 if (cipher == NULL) 337 ctx->disabled_enc_mask |= t->mask; 338 } 339 } 340 ctx->disabled_mac_mask = 0; 341 for (i = 0, t = ssl_cipher_table_mac; i < SSL_MD_NUM_IDX; i++, t++) { 342 const EVP_MD *md 343 = ssl_evp_md_fetch(ctx->libctx, t->nid, ctx->propq); 344 345 ctx->ssl_digest_methods[i] = md; 346 if (md == NULL) { 347 ctx->disabled_mac_mask |= t->mask; 348 } else { 349 int tmpsize = EVP_MD_get_size(md); 350 if (!ossl_assert(tmpsize >= 0)) 351 return 0; 352 ctx->ssl_mac_secret_size[i] = tmpsize; 353 } 354 } 355 356 ctx->disabled_mkey_mask = 0; 357 ctx->disabled_auth_mask = 0; 358 359 /* 360 * We ignore any errors from the fetches below. They are expected to fail 361 * if theose algorithms are not available. 362 */ 363 ERR_set_mark(); 364 sig = EVP_SIGNATURE_fetch(ctx->libctx, "DSA", ctx->propq); 365 if (sig == NULL) 366 ctx->disabled_auth_mask |= SSL_aDSS; 367 else 368 EVP_SIGNATURE_free(sig); 369 kex = EVP_KEYEXCH_fetch(ctx->libctx, "DH", ctx->propq); 370 if (kex == NULL) 371 ctx->disabled_mkey_mask |= SSL_kDHE | SSL_kDHEPSK; 372 else 373 EVP_KEYEXCH_free(kex); 374 kex = EVP_KEYEXCH_fetch(ctx->libctx, "ECDH", ctx->propq); 375 if (kex == NULL) 376 ctx->disabled_mkey_mask |= SSL_kECDHE | SSL_kECDHEPSK; 377 else 378 EVP_KEYEXCH_free(kex); 379 sig = EVP_SIGNATURE_fetch(ctx->libctx, "ECDSA", ctx->propq); 380 if (sig == NULL) 381 ctx->disabled_auth_mask |= SSL_aECDSA; 382 else 383 EVP_SIGNATURE_free(sig); 384 ERR_pop_to_mark(); 385 386 #ifdef OPENSSL_NO_PSK 387 ctx->disabled_mkey_mask |= SSL_PSK; 388 ctx->disabled_auth_mask |= SSL_aPSK; 389 #endif 390 #ifdef OPENSSL_NO_SRP 391 ctx->disabled_mkey_mask |= SSL_kSRP; 392 #endif 393 394 /* 395 * Check for presence of GOST 34.10 algorithms, and if they are not 396 * present, disable appropriate auth and key exchange 397 */ 398 memcpy(ctx->ssl_mac_pkey_id, default_mac_pkey_id, 399 sizeof(ctx->ssl_mac_pkey_id)); 400 401 ctx->ssl_mac_pkey_id[SSL_MD_GOST89MAC_IDX] = 402 get_optional_pkey_id(SN_id_Gost28147_89_MAC); 403 if (ctx->ssl_mac_pkey_id[SSL_MD_GOST89MAC_IDX]) 404 ctx->ssl_mac_secret_size[SSL_MD_GOST89MAC_IDX] = 32; 405 else 406 ctx->disabled_mac_mask |= SSL_GOST89MAC; 407 408 ctx->ssl_mac_pkey_id[SSL_MD_GOST89MAC12_IDX] = 409 get_optional_pkey_id(SN_gost_mac_12); 410 if (ctx->ssl_mac_pkey_id[SSL_MD_GOST89MAC12_IDX]) 411 ctx->ssl_mac_secret_size[SSL_MD_GOST89MAC12_IDX] = 32; 412 else 413 ctx->disabled_mac_mask |= SSL_GOST89MAC12; 414 415 ctx->ssl_mac_pkey_id[SSL_MD_MAGMAOMAC_IDX] = 416 get_optional_pkey_id(SN_magma_mac); 417 if (ctx->ssl_mac_pkey_id[SSL_MD_MAGMAOMAC_IDX]) 418 ctx->ssl_mac_secret_size[SSL_MD_MAGMAOMAC_IDX] = 32; 419 else 420 ctx->disabled_mac_mask |= SSL_MAGMAOMAC; 421 422 ctx->ssl_mac_pkey_id[SSL_MD_KUZNYECHIKOMAC_IDX] = 423 get_optional_pkey_id(SN_kuznyechik_mac); 424 if (ctx->ssl_mac_pkey_id[SSL_MD_KUZNYECHIKOMAC_IDX]) 425 ctx->ssl_mac_secret_size[SSL_MD_KUZNYECHIKOMAC_IDX] = 32; 426 else 427 ctx->disabled_mac_mask |= SSL_KUZNYECHIKOMAC; 428 429 if (!get_optional_pkey_id(SN_id_GostR3410_2001)) 430 ctx->disabled_auth_mask |= SSL_aGOST01 | SSL_aGOST12; 431 if (!get_optional_pkey_id(SN_id_GostR3410_2012_256)) 432 ctx->disabled_auth_mask |= SSL_aGOST12; 433 if (!get_optional_pkey_id(SN_id_GostR3410_2012_512)) 434 ctx->disabled_auth_mask |= SSL_aGOST12; 435 /* 436 * Disable GOST key exchange if no GOST signature algs are available * 437 */ 438 if ((ctx->disabled_auth_mask & (SSL_aGOST01 | SSL_aGOST12)) == 439 (SSL_aGOST01 | SSL_aGOST12)) 440 ctx->disabled_mkey_mask |= SSL_kGOST; 441 442 if ((ctx->disabled_auth_mask & SSL_aGOST12) == SSL_aGOST12) 443 ctx->disabled_mkey_mask |= SSL_kGOST18; 444 445 return 1; 446 } 447 448 #ifndef OPENSSL_NO_COMP 449 450 static int sk_comp_cmp(const SSL_COMP *const *a, const SSL_COMP *const *b) 451 { 452 return ((*a)->id - (*b)->id); 453 } 454 455 DEFINE_RUN_ONCE_STATIC(do_load_builtin_compressions) 456 { 457 SSL_COMP *comp = NULL; 458 COMP_METHOD *method = COMP_zlib(); 459 460 ssl_comp_methods = sk_SSL_COMP_new(sk_comp_cmp); 461 462 if (COMP_get_type(method) != NID_undef && ssl_comp_methods != NULL) { 463 comp = OPENSSL_malloc(sizeof(*comp)); 464 if (comp != NULL) { 465 comp->method = method; 466 comp->id = SSL_COMP_ZLIB_IDX; 467 comp->name = COMP_get_name(method); 468 if (!sk_SSL_COMP_push(ssl_comp_methods, comp)) 469 OPENSSL_free(comp); 470 sk_SSL_COMP_sort(ssl_comp_methods); 471 } 472 } 473 return 1; 474 } 475 476 static int load_builtin_compressions(void) 477 { 478 return RUN_ONCE(&ssl_load_builtin_comp_once, do_load_builtin_compressions); 479 } 480 #endif 481 482 int ssl_cipher_get_evp_cipher(SSL_CTX *ctx, const SSL_CIPHER *sslc, 483 const EVP_CIPHER **enc) 484 { 485 int i = ssl_cipher_info_lookup(ssl_cipher_table_cipher, sslc->algorithm_enc); 486 487 if (i == -1) { 488 *enc = NULL; 489 } else { 490 if (i == SSL_ENC_NULL_IDX) { 491 /* 492 * We assume we don't care about this coming from an ENGINE so 493 * just do a normal EVP_CIPHER_fetch instead of 494 * ssl_evp_cipher_fetch() 495 */ 496 *enc = EVP_CIPHER_fetch(ctx->libctx, "NULL", ctx->propq); 497 if (*enc == NULL) 498 return 0; 499 } else { 500 const EVP_CIPHER *cipher = ctx->ssl_cipher_methods[i]; 501 502 if (cipher == NULL 503 || !ssl_evp_cipher_up_ref(cipher)) 504 return 0; 505 *enc = ctx->ssl_cipher_methods[i]; 506 } 507 } 508 return 1; 509 } 510 511 int ssl_cipher_get_evp(SSL_CTX *ctx, const SSL_SESSION *s, 512 const EVP_CIPHER **enc, const EVP_MD **md, 513 int *mac_pkey_type, size_t *mac_secret_size, 514 SSL_COMP **comp, int use_etm) 515 { 516 int i; 517 const SSL_CIPHER *c; 518 519 c = s->cipher; 520 if (c == NULL) 521 return 0; 522 if (comp != NULL) { 523 SSL_COMP ctmp; 524 #ifndef OPENSSL_NO_COMP 525 if (!load_builtin_compressions()) { 526 /* 527 * Currently don't care, since a failure only means that 528 * ssl_comp_methods is NULL, which is perfectly OK 529 */ 530 } 531 #endif 532 *comp = NULL; 533 ctmp.id = s->compress_meth; 534 if (ssl_comp_methods != NULL) { 535 i = sk_SSL_COMP_find(ssl_comp_methods, &ctmp); 536 if (i >= 0) 537 *comp = sk_SSL_COMP_value(ssl_comp_methods, i); 538 } 539 /* If were only interested in comp then return success */ 540 if ((enc == NULL) && (md == NULL)) 541 return 1; 542 } 543 544 if ((enc == NULL) || (md == NULL)) 545 return 0; 546 547 if (!ssl_cipher_get_evp_cipher(ctx, c, enc)) 548 return 0; 549 550 i = ssl_cipher_info_lookup(ssl_cipher_table_mac, c->algorithm_mac); 551 if (i == -1) { 552 *md = NULL; 553 if (mac_pkey_type != NULL) 554 *mac_pkey_type = NID_undef; 555 if (mac_secret_size != NULL) 556 *mac_secret_size = 0; 557 if (c->algorithm_mac == SSL_AEAD) 558 mac_pkey_type = NULL; 559 } else { 560 const EVP_MD *digest = ctx->ssl_digest_methods[i]; 561 562 if (digest == NULL 563 || !ssl_evp_md_up_ref(digest)) { 564 ssl_evp_cipher_free(*enc); 565 return 0; 566 } 567 *md = digest; 568 if (mac_pkey_type != NULL) 569 *mac_pkey_type = ctx->ssl_mac_pkey_id[i]; 570 if (mac_secret_size != NULL) 571 *mac_secret_size = ctx->ssl_mac_secret_size[i]; 572 } 573 574 if ((*enc != NULL) 575 && (*md != NULL 576 || (EVP_CIPHER_get_flags(*enc) & EVP_CIPH_FLAG_AEAD_CIPHER)) 577 && (!mac_pkey_type || *mac_pkey_type != NID_undef)) { 578 const EVP_CIPHER *evp = NULL; 579 580 if (use_etm 581 || s->ssl_version >> 8 != TLS1_VERSION_MAJOR 582 || s->ssl_version < TLS1_VERSION) 583 return 1; 584 585 if (c->algorithm_enc == SSL_RC4 586 && c->algorithm_mac == SSL_MD5) 587 evp = ssl_evp_cipher_fetch(ctx->libctx, NID_rc4_hmac_md5, 588 ctx->propq); 589 else if (c->algorithm_enc == SSL_AES128 590 && c->algorithm_mac == SSL_SHA1) 591 evp = ssl_evp_cipher_fetch(ctx->libctx, 592 NID_aes_128_cbc_hmac_sha1, 593 ctx->propq); 594 else if (c->algorithm_enc == SSL_AES256 595 && c->algorithm_mac == SSL_SHA1) 596 evp = ssl_evp_cipher_fetch(ctx->libctx, 597 NID_aes_256_cbc_hmac_sha1, 598 ctx->propq); 599 else if (c->algorithm_enc == SSL_AES128 600 && c->algorithm_mac == SSL_SHA256) 601 evp = ssl_evp_cipher_fetch(ctx->libctx, 602 NID_aes_128_cbc_hmac_sha256, 603 ctx->propq); 604 else if (c->algorithm_enc == SSL_AES256 605 && c->algorithm_mac == SSL_SHA256) 606 evp = ssl_evp_cipher_fetch(ctx->libctx, 607 NID_aes_256_cbc_hmac_sha256, 608 ctx->propq); 609 610 if (evp != NULL) { 611 ssl_evp_cipher_free(*enc); 612 ssl_evp_md_free(*md); 613 *enc = evp; 614 *md = NULL; 615 } 616 return 1; 617 } 618 619 return 0; 620 } 621 622 const EVP_MD *ssl_md(SSL_CTX *ctx, int idx) 623 { 624 idx &= SSL_HANDSHAKE_MAC_MASK; 625 if (idx < 0 || idx >= SSL_MD_NUM_IDX) 626 return NULL; 627 return ctx->ssl_digest_methods[idx]; 628 } 629 630 const EVP_MD *ssl_handshake_md(SSL *s) 631 { 632 return ssl_md(s->ctx, ssl_get_algorithm2(s)); 633 } 634 635 const EVP_MD *ssl_prf_md(SSL *s) 636 { 637 return ssl_md(s->ctx, ssl_get_algorithm2(s) >> TLS1_PRF_DGST_SHIFT); 638 } 639 640 #define ITEM_SEP(a) \ 641 (((a) == ':') || ((a) == ' ') || ((a) == ';') || ((a) == ',')) 642 643 static void ll_append_tail(CIPHER_ORDER **head, CIPHER_ORDER *curr, 644 CIPHER_ORDER **tail) 645 { 646 if (curr == *tail) 647 return; 648 if (curr == *head) 649 *head = curr->next; 650 if (curr->prev != NULL) 651 curr->prev->next = curr->next; 652 if (curr->next != NULL) 653 curr->next->prev = curr->prev; 654 (*tail)->next = curr; 655 curr->prev = *tail; 656 curr->next = NULL; 657 *tail = curr; 658 } 659 660 static void ll_append_head(CIPHER_ORDER **head, CIPHER_ORDER *curr, 661 CIPHER_ORDER **tail) 662 { 663 if (curr == *head) 664 return; 665 if (curr == *tail) 666 *tail = curr->prev; 667 if (curr->next != NULL) 668 curr->next->prev = curr->prev; 669 if (curr->prev != NULL) 670 curr->prev->next = curr->next; 671 (*head)->prev = curr; 672 curr->next = *head; 673 curr->prev = NULL; 674 *head = curr; 675 } 676 677 static void ssl_cipher_collect_ciphers(const SSL_METHOD *ssl_method, 678 int num_of_ciphers, 679 uint32_t disabled_mkey, 680 uint32_t disabled_auth, 681 uint32_t disabled_enc, 682 uint32_t disabled_mac, 683 CIPHER_ORDER *co_list, 684 CIPHER_ORDER **head_p, 685 CIPHER_ORDER **tail_p) 686 { 687 int i, co_list_num; 688 const SSL_CIPHER *c; 689 690 /* 691 * We have num_of_ciphers descriptions compiled in, depending on the 692 * method selected (SSLv3, TLSv1 etc). 693 * These will later be sorted in a linked list with at most num 694 * entries. 695 */ 696 697 /* Get the initial list of ciphers */ 698 co_list_num = 0; /* actual count of ciphers */ 699 for (i = 0; i < num_of_ciphers; i++) { 700 c = ssl_method->get_cipher(i); 701 /* drop those that use any of that is not available */ 702 if (c == NULL || !c->valid) 703 continue; 704 if ((c->algorithm_mkey & disabled_mkey) || 705 (c->algorithm_auth & disabled_auth) || 706 (c->algorithm_enc & disabled_enc) || 707 (c->algorithm_mac & disabled_mac)) 708 continue; 709 if (((ssl_method->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS) == 0) && 710 c->min_tls == 0) 711 continue; 712 if (((ssl_method->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS) != 0) && 713 c->min_dtls == 0) 714 continue; 715 716 co_list[co_list_num].cipher = c; 717 co_list[co_list_num].next = NULL; 718 co_list[co_list_num].prev = NULL; 719 co_list[co_list_num].active = 0; 720 co_list_num++; 721 } 722 723 /* 724 * Prepare linked list from list entries 725 */ 726 if (co_list_num > 0) { 727 co_list[0].prev = NULL; 728 729 if (co_list_num > 1) { 730 co_list[0].next = &co_list[1]; 731 732 for (i = 1; i < co_list_num - 1; i++) { 733 co_list[i].prev = &co_list[i - 1]; 734 co_list[i].next = &co_list[i + 1]; 735 } 736 737 co_list[co_list_num - 1].prev = &co_list[co_list_num - 2]; 738 } 739 740 co_list[co_list_num - 1].next = NULL; 741 742 *head_p = &co_list[0]; 743 *tail_p = &co_list[co_list_num - 1]; 744 } 745 } 746 747 static void ssl_cipher_collect_aliases(const SSL_CIPHER **ca_list, 748 int num_of_group_aliases, 749 uint32_t disabled_mkey, 750 uint32_t disabled_auth, 751 uint32_t disabled_enc, 752 uint32_t disabled_mac, 753 CIPHER_ORDER *head) 754 { 755 CIPHER_ORDER *ciph_curr; 756 const SSL_CIPHER **ca_curr; 757 int i; 758 uint32_t mask_mkey = ~disabled_mkey; 759 uint32_t mask_auth = ~disabled_auth; 760 uint32_t mask_enc = ~disabled_enc; 761 uint32_t mask_mac = ~disabled_mac; 762 763 /* 764 * First, add the real ciphers as already collected 765 */ 766 ciph_curr = head; 767 ca_curr = ca_list; 768 while (ciph_curr != NULL) { 769 *ca_curr = ciph_curr->cipher; 770 ca_curr++; 771 ciph_curr = ciph_curr->next; 772 } 773 774 /* 775 * Now we add the available ones from the cipher_aliases[] table. 776 * They represent either one or more algorithms, some of which 777 * in any affected category must be supported (set in enabled_mask), 778 * or represent a cipher strength value (will be added in any case because algorithms=0). 779 */ 780 for (i = 0; i < num_of_group_aliases; i++) { 781 uint32_t algorithm_mkey = cipher_aliases[i].algorithm_mkey; 782 uint32_t algorithm_auth = cipher_aliases[i].algorithm_auth; 783 uint32_t algorithm_enc = cipher_aliases[i].algorithm_enc; 784 uint32_t algorithm_mac = cipher_aliases[i].algorithm_mac; 785 786 if (algorithm_mkey) 787 if ((algorithm_mkey & mask_mkey) == 0) 788 continue; 789 790 if (algorithm_auth) 791 if ((algorithm_auth & mask_auth) == 0) 792 continue; 793 794 if (algorithm_enc) 795 if ((algorithm_enc & mask_enc) == 0) 796 continue; 797 798 if (algorithm_mac) 799 if ((algorithm_mac & mask_mac) == 0) 800 continue; 801 802 *ca_curr = (SSL_CIPHER *)(cipher_aliases + i); 803 ca_curr++; 804 } 805 806 *ca_curr = NULL; /* end of list */ 807 } 808 809 static void ssl_cipher_apply_rule(uint32_t cipher_id, uint32_t alg_mkey, 810 uint32_t alg_auth, uint32_t alg_enc, 811 uint32_t alg_mac, int min_tls, 812 uint32_t algo_strength, int rule, 813 int32_t strength_bits, CIPHER_ORDER **head_p, 814 CIPHER_ORDER **tail_p) 815 { 816 CIPHER_ORDER *head, *tail, *curr, *next, *last; 817 const SSL_CIPHER *cp; 818 int reverse = 0; 819 820 OSSL_TRACE_BEGIN(TLS_CIPHER){ 821 BIO_printf(trc_out, 822 "Applying rule %d with %08x/%08x/%08x/%08x/%08x %08x (%d)\n", 823 rule, alg_mkey, alg_auth, alg_enc, alg_mac, min_tls, 824 algo_strength, strength_bits); 825 } 826 827 if (rule == CIPHER_DEL || rule == CIPHER_BUMP) 828 reverse = 1; /* needed to maintain sorting between currently 829 * deleted ciphers */ 830 831 head = *head_p; 832 tail = *tail_p; 833 834 if (reverse) { 835 next = tail; 836 last = head; 837 } else { 838 next = head; 839 last = tail; 840 } 841 842 curr = NULL; 843 for (;;) { 844 if (curr == last) 845 break; 846 847 curr = next; 848 849 if (curr == NULL) 850 break; 851 852 next = reverse ? curr->prev : curr->next; 853 854 cp = curr->cipher; 855 856 /* 857 * Selection criteria is either the value of strength_bits 858 * or the algorithms used. 859 */ 860 if (strength_bits >= 0) { 861 if (strength_bits != cp->strength_bits) 862 continue; 863 } else { 864 if (trc_out != NULL) { 865 BIO_printf(trc_out, 866 "\nName: %s:" 867 "\nAlgo = %08x/%08x/%08x/%08x/%08x Algo_strength = %08x\n", 868 cp->name, cp->algorithm_mkey, cp->algorithm_auth, 869 cp->algorithm_enc, cp->algorithm_mac, cp->min_tls, 870 cp->algo_strength); 871 } 872 if (cipher_id != 0 && (cipher_id != cp->id)) 873 continue; 874 if (alg_mkey && !(alg_mkey & cp->algorithm_mkey)) 875 continue; 876 if (alg_auth && !(alg_auth & cp->algorithm_auth)) 877 continue; 878 if (alg_enc && !(alg_enc & cp->algorithm_enc)) 879 continue; 880 if (alg_mac && !(alg_mac & cp->algorithm_mac)) 881 continue; 882 if (min_tls && (min_tls != cp->min_tls)) 883 continue; 884 if ((algo_strength & SSL_STRONG_MASK) 885 && !(algo_strength & SSL_STRONG_MASK & cp->algo_strength)) 886 continue; 887 if ((algo_strength & SSL_DEFAULT_MASK) 888 && !(algo_strength & SSL_DEFAULT_MASK & cp->algo_strength)) 889 continue; 890 } 891 892 if (trc_out != NULL) 893 BIO_printf(trc_out, "Action = %d\n", rule); 894 895 /* add the cipher if it has not been added yet. */ 896 if (rule == CIPHER_ADD) { 897 /* reverse == 0 */ 898 if (!curr->active) { 899 ll_append_tail(&head, curr, &tail); 900 curr->active = 1; 901 } 902 } 903 /* Move the added cipher to this location */ 904 else if (rule == CIPHER_ORD) { 905 /* reverse == 0 */ 906 if (curr->active) { 907 ll_append_tail(&head, curr, &tail); 908 } 909 } else if (rule == CIPHER_DEL) { 910 /* reverse == 1 */ 911 if (curr->active) { 912 /* 913 * most recently deleted ciphersuites get best positions for 914 * any future CIPHER_ADD (note that the CIPHER_DEL loop works 915 * in reverse to maintain the order) 916 */ 917 ll_append_head(&head, curr, &tail); 918 curr->active = 0; 919 } 920 } else if (rule == CIPHER_BUMP) { 921 if (curr->active) 922 ll_append_head(&head, curr, &tail); 923 } else if (rule == CIPHER_KILL) { 924 /* reverse == 0 */ 925 if (head == curr) 926 head = curr->next; 927 else 928 curr->prev->next = curr->next; 929 if (tail == curr) 930 tail = curr->prev; 931 curr->active = 0; 932 if (curr->next != NULL) 933 curr->next->prev = curr->prev; 934 if (curr->prev != NULL) 935 curr->prev->next = curr->next; 936 curr->next = NULL; 937 curr->prev = NULL; 938 } 939 } 940 941 *head_p = head; 942 *tail_p = tail; 943 944 OSSL_TRACE_END(TLS_CIPHER); 945 } 946 947 static int ssl_cipher_strength_sort(CIPHER_ORDER **head_p, 948 CIPHER_ORDER **tail_p) 949 { 950 int32_t max_strength_bits; 951 int i, *number_uses; 952 CIPHER_ORDER *curr; 953 954 /* 955 * This routine sorts the ciphers with descending strength. The sorting 956 * must keep the pre-sorted sequence, so we apply the normal sorting 957 * routine as '+' movement to the end of the list. 958 */ 959 max_strength_bits = 0; 960 curr = *head_p; 961 while (curr != NULL) { 962 if (curr->active && (curr->cipher->strength_bits > max_strength_bits)) 963 max_strength_bits = curr->cipher->strength_bits; 964 curr = curr->next; 965 } 966 967 number_uses = OPENSSL_zalloc(sizeof(int) * (max_strength_bits + 1)); 968 if (number_uses == NULL) { 969 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); 970 return 0; 971 } 972 973 /* 974 * Now find the strength_bits values actually used 975 */ 976 curr = *head_p; 977 while (curr != NULL) { 978 if (curr->active) 979 number_uses[curr->cipher->strength_bits]++; 980 curr = curr->next; 981 } 982 /* 983 * Go through the list of used strength_bits values in descending 984 * order. 985 */ 986 for (i = max_strength_bits; i >= 0; i--) 987 if (number_uses[i] > 0) 988 ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_ORD, i, head_p, 989 tail_p); 990 991 OPENSSL_free(number_uses); 992 return 1; 993 } 994 995 static int ssl_cipher_process_rulestr(const char *rule_str, 996 CIPHER_ORDER **head_p, 997 CIPHER_ORDER **tail_p, 998 const SSL_CIPHER **ca_list, CERT *c) 999 { 1000 uint32_t alg_mkey, alg_auth, alg_enc, alg_mac, algo_strength; 1001 int min_tls; 1002 const char *l, *buf; 1003 int j, multi, found, rule, retval, ok, buflen; 1004 uint32_t cipher_id = 0; 1005 char ch; 1006 1007 retval = 1; 1008 l = rule_str; 1009 for ( ; ; ) { 1010 ch = *l; 1011 1012 if (ch == '\0') 1013 break; /* done */ 1014 if (ch == '-') { 1015 rule = CIPHER_DEL; 1016 l++; 1017 } else if (ch == '+') { 1018 rule = CIPHER_ORD; 1019 l++; 1020 } else if (ch == '!') { 1021 rule = CIPHER_KILL; 1022 l++; 1023 } else if (ch == '@') { 1024 rule = CIPHER_SPECIAL; 1025 l++; 1026 } else { 1027 rule = CIPHER_ADD; 1028 } 1029 1030 if (ITEM_SEP(ch)) { 1031 l++; 1032 continue; 1033 } 1034 1035 alg_mkey = 0; 1036 alg_auth = 0; 1037 alg_enc = 0; 1038 alg_mac = 0; 1039 min_tls = 0; 1040 algo_strength = 0; 1041 1042 for (;;) { 1043 ch = *l; 1044 buf = l; 1045 buflen = 0; 1046 #ifndef CHARSET_EBCDIC 1047 while (((ch >= 'A') && (ch <= 'Z')) || 1048 ((ch >= '0') && (ch <= '9')) || 1049 ((ch >= 'a') && (ch <= 'z')) || 1050 (ch == '-') || (ch == '.') || (ch == '=')) 1051 #else 1052 while (isalnum((unsigned char)ch) || (ch == '-') || (ch == '.') 1053 || (ch == '=')) 1054 #endif 1055 { 1056 ch = *(++l); 1057 buflen++; 1058 } 1059 1060 if (buflen == 0) { 1061 /* 1062 * We hit something we cannot deal with, 1063 * it is no command or separator nor 1064 * alphanumeric, so we call this an error. 1065 */ 1066 ERR_raise(ERR_LIB_SSL, SSL_R_INVALID_COMMAND); 1067 return 0; 1068 } 1069 1070 if (rule == CIPHER_SPECIAL) { 1071 found = 0; /* unused -- avoid compiler warning */ 1072 break; /* special treatment */ 1073 } 1074 1075 /* check for multi-part specification */ 1076 if (ch == '+') { 1077 multi = 1; 1078 l++; 1079 } else { 1080 multi = 0; 1081 } 1082 1083 /* 1084 * Now search for the cipher alias in the ca_list. Be careful 1085 * with the strncmp, because the "buflen" limitation 1086 * will make the rule "ADH:SOME" and the cipher 1087 * "ADH-MY-CIPHER" look like a match for buflen=3. 1088 * So additionally check whether the cipher name found 1089 * has the correct length. We can save a strlen() call: 1090 * just checking for the '\0' at the right place is 1091 * sufficient, we have to strncmp() anyway. (We cannot 1092 * use strcmp(), because buf is not '\0' terminated.) 1093 */ 1094 j = found = 0; 1095 cipher_id = 0; 1096 while (ca_list[j]) { 1097 if (strncmp(buf, ca_list[j]->name, buflen) == 0 1098 && (ca_list[j]->name[buflen] == '\0')) { 1099 found = 1; 1100 break; 1101 } else 1102 j++; 1103 } 1104 1105 if (!found) 1106 break; /* ignore this entry */ 1107 1108 if (ca_list[j]->algorithm_mkey) { 1109 if (alg_mkey) { 1110 alg_mkey &= ca_list[j]->algorithm_mkey; 1111 if (!alg_mkey) { 1112 found = 0; 1113 break; 1114 } 1115 } else { 1116 alg_mkey = ca_list[j]->algorithm_mkey; 1117 } 1118 } 1119 1120 if (ca_list[j]->algorithm_auth) { 1121 if (alg_auth) { 1122 alg_auth &= ca_list[j]->algorithm_auth; 1123 if (!alg_auth) { 1124 found = 0; 1125 break; 1126 } 1127 } else { 1128 alg_auth = ca_list[j]->algorithm_auth; 1129 } 1130 } 1131 1132 if (ca_list[j]->algorithm_enc) { 1133 if (alg_enc) { 1134 alg_enc &= ca_list[j]->algorithm_enc; 1135 if (!alg_enc) { 1136 found = 0; 1137 break; 1138 } 1139 } else { 1140 alg_enc = ca_list[j]->algorithm_enc; 1141 } 1142 } 1143 1144 if (ca_list[j]->algorithm_mac) { 1145 if (alg_mac) { 1146 alg_mac &= ca_list[j]->algorithm_mac; 1147 if (!alg_mac) { 1148 found = 0; 1149 break; 1150 } 1151 } else { 1152 alg_mac = ca_list[j]->algorithm_mac; 1153 } 1154 } 1155 1156 if (ca_list[j]->algo_strength & SSL_STRONG_MASK) { 1157 if (algo_strength & SSL_STRONG_MASK) { 1158 algo_strength &= 1159 (ca_list[j]->algo_strength & SSL_STRONG_MASK) | 1160 ~SSL_STRONG_MASK; 1161 if (!(algo_strength & SSL_STRONG_MASK)) { 1162 found = 0; 1163 break; 1164 } 1165 } else { 1166 algo_strength = ca_list[j]->algo_strength & SSL_STRONG_MASK; 1167 } 1168 } 1169 1170 if (ca_list[j]->algo_strength & SSL_DEFAULT_MASK) { 1171 if (algo_strength & SSL_DEFAULT_MASK) { 1172 algo_strength &= 1173 (ca_list[j]->algo_strength & SSL_DEFAULT_MASK) | 1174 ~SSL_DEFAULT_MASK; 1175 if (!(algo_strength & SSL_DEFAULT_MASK)) { 1176 found = 0; 1177 break; 1178 } 1179 } else { 1180 algo_strength |= 1181 ca_list[j]->algo_strength & SSL_DEFAULT_MASK; 1182 } 1183 } 1184 1185 if (ca_list[j]->valid) { 1186 /* 1187 * explicit ciphersuite found; its protocol version does not 1188 * become part of the search pattern! 1189 */ 1190 1191 cipher_id = ca_list[j]->id; 1192 } else { 1193 /* 1194 * not an explicit ciphersuite; only in this case, the 1195 * protocol version is considered part of the search pattern 1196 */ 1197 1198 if (ca_list[j]->min_tls) { 1199 if (min_tls != 0 && min_tls != ca_list[j]->min_tls) { 1200 found = 0; 1201 break; 1202 } else { 1203 min_tls = ca_list[j]->min_tls; 1204 } 1205 } 1206 } 1207 1208 if (!multi) 1209 break; 1210 } 1211 1212 /* 1213 * Ok, we have the rule, now apply it 1214 */ 1215 if (rule == CIPHER_SPECIAL) { /* special command */ 1216 ok = 0; 1217 if ((buflen == 8) && strncmp(buf, "STRENGTH", 8) == 0) { 1218 ok = ssl_cipher_strength_sort(head_p, tail_p); 1219 } else if (buflen == 10 && strncmp(buf, "SECLEVEL=", 9) == 0) { 1220 int level = buf[9] - '0'; 1221 if (level < 0 || level > 5) { 1222 ERR_raise(ERR_LIB_SSL, SSL_R_INVALID_COMMAND); 1223 } else { 1224 c->sec_level = level; 1225 ok = 1; 1226 } 1227 } else { 1228 ERR_raise(ERR_LIB_SSL, SSL_R_INVALID_COMMAND); 1229 } 1230 if (ok == 0) 1231 retval = 0; 1232 /* 1233 * We do not support any "multi" options 1234 * together with "@", so throw away the 1235 * rest of the command, if any left, until 1236 * end or ':' is found. 1237 */ 1238 while ((*l != '\0') && !ITEM_SEP(*l)) 1239 l++; 1240 } else if (found) { 1241 ssl_cipher_apply_rule(cipher_id, 1242 alg_mkey, alg_auth, alg_enc, alg_mac, 1243 min_tls, algo_strength, rule, -1, head_p, 1244 tail_p); 1245 } else { 1246 while ((*l != '\0') && !ITEM_SEP(*l)) 1247 l++; 1248 } 1249 if (*l == '\0') 1250 break; /* done */ 1251 } 1252 1253 return retval; 1254 } 1255 1256 static int check_suiteb_cipher_list(const SSL_METHOD *meth, CERT *c, 1257 const char **prule_str) 1258 { 1259 unsigned int suiteb_flags = 0, suiteb_comb2 = 0; 1260 if (strncmp(*prule_str, "SUITEB128ONLY", 13) == 0) { 1261 suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS_ONLY; 1262 } else if (strncmp(*prule_str, "SUITEB128C2", 11) == 0) { 1263 suiteb_comb2 = 1; 1264 suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS; 1265 } else if (strncmp(*prule_str, "SUITEB128", 9) == 0) { 1266 suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS; 1267 } else if (strncmp(*prule_str, "SUITEB192", 9) == 0) { 1268 suiteb_flags = SSL_CERT_FLAG_SUITEB_192_LOS; 1269 } 1270 1271 if (suiteb_flags) { 1272 c->cert_flags &= ~SSL_CERT_FLAG_SUITEB_128_LOS; 1273 c->cert_flags |= suiteb_flags; 1274 } else { 1275 suiteb_flags = c->cert_flags & SSL_CERT_FLAG_SUITEB_128_LOS; 1276 } 1277 1278 if (!suiteb_flags) 1279 return 1; 1280 /* Check version: if TLS 1.2 ciphers allowed we can use Suite B */ 1281 1282 if (!(meth->ssl3_enc->enc_flags & SSL_ENC_FLAG_TLS1_2_CIPHERS)) { 1283 ERR_raise(ERR_LIB_SSL, SSL_R_AT_LEAST_TLS_1_2_NEEDED_IN_SUITEB_MODE); 1284 return 0; 1285 } 1286 1287 switch (suiteb_flags) { 1288 case SSL_CERT_FLAG_SUITEB_128_LOS: 1289 if (suiteb_comb2) 1290 *prule_str = "ECDHE-ECDSA-AES256-GCM-SHA384"; 1291 else 1292 *prule_str = 1293 "ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES256-GCM-SHA384"; 1294 break; 1295 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY: 1296 *prule_str = "ECDHE-ECDSA-AES128-GCM-SHA256"; 1297 break; 1298 case SSL_CERT_FLAG_SUITEB_192_LOS: 1299 *prule_str = "ECDHE-ECDSA-AES256-GCM-SHA384"; 1300 break; 1301 } 1302 return 1; 1303 } 1304 1305 static int ciphersuite_cb(const char *elem, int len, void *arg) 1306 { 1307 STACK_OF(SSL_CIPHER) *ciphersuites = (STACK_OF(SSL_CIPHER) *)arg; 1308 const SSL_CIPHER *cipher; 1309 /* Arbitrary sized temp buffer for the cipher name. Should be big enough */ 1310 char name[80]; 1311 1312 if (len > (int)(sizeof(name) - 1)) 1313 /* Anyway return 1 so we can parse rest of the list */ 1314 return 1; 1315 1316 memcpy(name, elem, len); 1317 name[len] = '\0'; 1318 1319 cipher = ssl3_get_cipher_by_std_name(name); 1320 if (cipher == NULL) 1321 /* Ciphersuite not found but return 1 to parse rest of the list */ 1322 return 1; 1323 1324 if (!sk_SSL_CIPHER_push(ciphersuites, cipher)) { 1325 ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR); 1326 return 0; 1327 } 1328 1329 return 1; 1330 } 1331 1332 static __owur int set_ciphersuites(STACK_OF(SSL_CIPHER) **currciphers, const char *str) 1333 { 1334 STACK_OF(SSL_CIPHER) *newciphers = sk_SSL_CIPHER_new_null(); 1335 1336 if (newciphers == NULL) 1337 return 0; 1338 1339 /* Parse the list. We explicitly allow an empty list */ 1340 if (*str != '\0' 1341 && (CONF_parse_list(str, ':', 1, ciphersuite_cb, newciphers) <= 0 1342 || sk_SSL_CIPHER_num(newciphers) == 0)) { 1343 ERR_raise(ERR_LIB_SSL, SSL_R_NO_CIPHER_MATCH); 1344 sk_SSL_CIPHER_free(newciphers); 1345 return 0; 1346 } 1347 sk_SSL_CIPHER_free(*currciphers); 1348 *currciphers = newciphers; 1349 1350 return 1; 1351 } 1352 1353 static int update_cipher_list_by_id(STACK_OF(SSL_CIPHER) **cipher_list_by_id, 1354 STACK_OF(SSL_CIPHER) *cipherstack) 1355 { 1356 STACK_OF(SSL_CIPHER) *tmp_cipher_list = sk_SSL_CIPHER_dup(cipherstack); 1357 1358 if (tmp_cipher_list == NULL) { 1359 return 0; 1360 } 1361 1362 sk_SSL_CIPHER_free(*cipher_list_by_id); 1363 *cipher_list_by_id = tmp_cipher_list; 1364 1365 (void)sk_SSL_CIPHER_set_cmp_func(*cipher_list_by_id, ssl_cipher_ptr_id_cmp); 1366 sk_SSL_CIPHER_sort(*cipher_list_by_id); 1367 1368 return 1; 1369 } 1370 1371 static int update_cipher_list(SSL_CTX *ctx, 1372 STACK_OF(SSL_CIPHER) **cipher_list, 1373 STACK_OF(SSL_CIPHER) **cipher_list_by_id, 1374 STACK_OF(SSL_CIPHER) *tls13_ciphersuites) 1375 { 1376 int i; 1377 STACK_OF(SSL_CIPHER) *tmp_cipher_list = sk_SSL_CIPHER_dup(*cipher_list); 1378 1379 if (tmp_cipher_list == NULL) 1380 return 0; 1381 1382 /* 1383 * Delete any existing TLSv1.3 ciphersuites. These are always first in the 1384 * list. 1385 */ 1386 while (sk_SSL_CIPHER_num(tmp_cipher_list) > 0 1387 && sk_SSL_CIPHER_value(tmp_cipher_list, 0)->min_tls 1388 == TLS1_3_VERSION) 1389 (void)sk_SSL_CIPHER_delete(tmp_cipher_list, 0); 1390 1391 /* Insert the new TLSv1.3 ciphersuites */ 1392 for (i = sk_SSL_CIPHER_num(tls13_ciphersuites) - 1; i >= 0; i--) { 1393 const SSL_CIPHER *sslc = sk_SSL_CIPHER_value(tls13_ciphersuites, i); 1394 1395 /* Don't include any TLSv1.3 ciphersuites that are disabled */ 1396 if ((sslc->algorithm_enc & ctx->disabled_enc_mask) == 0 1397 && (ssl_cipher_table_mac[sslc->algorithm2 1398 & SSL_HANDSHAKE_MAC_MASK].mask 1399 & ctx->disabled_mac_mask) == 0) { 1400 sk_SSL_CIPHER_unshift(tmp_cipher_list, sslc); 1401 } 1402 } 1403 1404 if (!update_cipher_list_by_id(cipher_list_by_id, tmp_cipher_list)) { 1405 sk_SSL_CIPHER_free(tmp_cipher_list); 1406 return 0; 1407 } 1408 1409 sk_SSL_CIPHER_free(*cipher_list); 1410 *cipher_list = tmp_cipher_list; 1411 1412 return 1; 1413 } 1414 1415 int SSL_CTX_set_ciphersuites(SSL_CTX *ctx, const char *str) 1416 { 1417 int ret = set_ciphersuites(&(ctx->tls13_ciphersuites), str); 1418 1419 if (ret && ctx->cipher_list != NULL) 1420 return update_cipher_list(ctx, &ctx->cipher_list, &ctx->cipher_list_by_id, 1421 ctx->tls13_ciphersuites); 1422 1423 return ret; 1424 } 1425 1426 int SSL_set_ciphersuites(SSL *s, const char *str) 1427 { 1428 STACK_OF(SSL_CIPHER) *cipher_list; 1429 int ret = set_ciphersuites(&(s->tls13_ciphersuites), str); 1430 1431 if (s->cipher_list == NULL) { 1432 if ((cipher_list = SSL_get_ciphers(s)) != NULL) 1433 s->cipher_list = sk_SSL_CIPHER_dup(cipher_list); 1434 } 1435 if (ret && s->cipher_list != NULL) 1436 return update_cipher_list(s->ctx, &s->cipher_list, &s->cipher_list_by_id, 1437 s->tls13_ciphersuites); 1438 1439 return ret; 1440 } 1441 1442 STACK_OF(SSL_CIPHER) *ssl_create_cipher_list(SSL_CTX *ctx, 1443 STACK_OF(SSL_CIPHER) *tls13_ciphersuites, 1444 STACK_OF(SSL_CIPHER) **cipher_list, 1445 STACK_OF(SSL_CIPHER) **cipher_list_by_id, 1446 const char *rule_str, 1447 CERT *c) 1448 { 1449 int ok, num_of_ciphers, num_of_alias_max, num_of_group_aliases, i; 1450 uint32_t disabled_mkey, disabled_auth, disabled_enc, disabled_mac; 1451 STACK_OF(SSL_CIPHER) *cipherstack; 1452 const char *rule_p; 1453 CIPHER_ORDER *co_list = NULL, *head = NULL, *tail = NULL, *curr; 1454 const SSL_CIPHER **ca_list = NULL; 1455 const SSL_METHOD *ssl_method = ctx->method; 1456 1457 /* 1458 * Return with error if nothing to do. 1459 */ 1460 if (rule_str == NULL || cipher_list == NULL || cipher_list_by_id == NULL) 1461 return NULL; 1462 1463 if (!check_suiteb_cipher_list(ssl_method, c, &rule_str)) 1464 return NULL; 1465 1466 /* 1467 * To reduce the work to do we only want to process the compiled 1468 * in algorithms, so we first get the mask of disabled ciphers. 1469 */ 1470 1471 disabled_mkey = ctx->disabled_mkey_mask; 1472 disabled_auth = ctx->disabled_auth_mask; 1473 disabled_enc = ctx->disabled_enc_mask; 1474 disabled_mac = ctx->disabled_mac_mask; 1475 1476 /* 1477 * Now we have to collect the available ciphers from the compiled 1478 * in ciphers. We cannot get more than the number compiled in, so 1479 * it is used for allocation. 1480 */ 1481 num_of_ciphers = ssl_method->num_ciphers(); 1482 1483 co_list = OPENSSL_malloc(sizeof(*co_list) * num_of_ciphers); 1484 if (co_list == NULL) { 1485 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); 1486 return NULL; /* Failure */ 1487 } 1488 1489 ssl_cipher_collect_ciphers(ssl_method, num_of_ciphers, 1490 disabled_mkey, disabled_auth, disabled_enc, 1491 disabled_mac, co_list, &head, &tail); 1492 1493 /* Now arrange all ciphers by preference. */ 1494 1495 /* 1496 * Everything else being equal, prefer ephemeral ECDH over other key 1497 * exchange mechanisms. 1498 * For consistency, prefer ECDSA over RSA (though this only matters if the 1499 * server has both certificates, and is using the DEFAULT, or a client 1500 * preference). 1501 */ 1502 ssl_cipher_apply_rule(0, SSL_kECDHE, SSL_aECDSA, 0, 0, 0, 0, CIPHER_ADD, 1503 -1, &head, &tail); 1504 ssl_cipher_apply_rule(0, SSL_kECDHE, 0, 0, 0, 0, 0, CIPHER_ADD, -1, &head, 1505 &tail); 1506 ssl_cipher_apply_rule(0, SSL_kECDHE, 0, 0, 0, 0, 0, CIPHER_DEL, -1, &head, 1507 &tail); 1508 1509 /* Within each strength group, we prefer GCM over CHACHA... */ 1510 ssl_cipher_apply_rule(0, 0, 0, SSL_AESGCM, 0, 0, 0, CIPHER_ADD, -1, 1511 &head, &tail); 1512 ssl_cipher_apply_rule(0, 0, 0, SSL_CHACHA20, 0, 0, 0, CIPHER_ADD, -1, 1513 &head, &tail); 1514 1515 /* 1516 * ...and generally, our preferred cipher is AES. 1517 * Note that AEADs will be bumped to take preference after sorting by 1518 * strength. 1519 */ 1520 ssl_cipher_apply_rule(0, 0, 0, SSL_AES ^ SSL_AESGCM, 0, 0, 0, CIPHER_ADD, 1521 -1, &head, &tail); 1522 1523 /* Temporarily enable everything else for sorting */ 1524 ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_ADD, -1, &head, &tail); 1525 1526 /* Low priority for MD5 */ 1527 ssl_cipher_apply_rule(0, 0, 0, 0, SSL_MD5, 0, 0, CIPHER_ORD, -1, &head, 1528 &tail); 1529 1530 /* 1531 * Move anonymous ciphers to the end. Usually, these will remain 1532 * disabled. (For applications that allow them, they aren't too bad, but 1533 * we prefer authenticated ciphers.) 1534 */ 1535 ssl_cipher_apply_rule(0, 0, SSL_aNULL, 0, 0, 0, 0, CIPHER_ORD, -1, &head, 1536 &tail); 1537 1538 ssl_cipher_apply_rule(0, SSL_kRSA, 0, 0, 0, 0, 0, CIPHER_ORD, -1, &head, 1539 &tail); 1540 ssl_cipher_apply_rule(0, SSL_kPSK, 0, 0, 0, 0, 0, CIPHER_ORD, -1, &head, 1541 &tail); 1542 1543 /* RC4 is sort-of broken -- move to the end */ 1544 ssl_cipher_apply_rule(0, 0, 0, SSL_RC4, 0, 0, 0, CIPHER_ORD, -1, &head, 1545 &tail); 1546 1547 /* 1548 * Now sort by symmetric encryption strength. The above ordering remains 1549 * in force within each class 1550 */ 1551 if (!ssl_cipher_strength_sort(&head, &tail)) { 1552 OPENSSL_free(co_list); 1553 return NULL; 1554 } 1555 1556 /* 1557 * Partially overrule strength sort to prefer TLS 1.2 ciphers/PRFs. 1558 */ 1559 ssl_cipher_apply_rule(0, 0, 0, 0, 0, TLS1_2_VERSION, 0, CIPHER_BUMP, -1, 1560 &head, &tail); 1561 1562 /* 1563 * Irrespective of strength, enforce the following order: 1564 * (EC)DHE + AEAD > (EC)DHE > rest of AEAD > rest. 1565 * Within each group, ciphers remain sorted by strength and previous 1566 * preference, i.e., 1567 * 1) ECDHE > DHE 1568 * 2) GCM > CHACHA 1569 * 3) AES > rest 1570 * 4) TLS 1.2 > legacy 1571 * 1572 * Because we now bump ciphers to the top of the list, we proceed in 1573 * reverse order of preference. 1574 */ 1575 ssl_cipher_apply_rule(0, 0, 0, 0, SSL_AEAD, 0, 0, CIPHER_BUMP, -1, 1576 &head, &tail); 1577 ssl_cipher_apply_rule(0, SSL_kDHE | SSL_kECDHE, 0, 0, 0, 0, 0, 1578 CIPHER_BUMP, -1, &head, &tail); 1579 ssl_cipher_apply_rule(0, SSL_kDHE | SSL_kECDHE, 0, 0, SSL_AEAD, 0, 0, 1580 CIPHER_BUMP, -1, &head, &tail); 1581 1582 /* Now disable everything (maintaining the ordering!) */ 1583 ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_DEL, -1, &head, &tail); 1584 1585 /* 1586 * We also need cipher aliases for selecting based on the rule_str. 1587 * There might be two types of entries in the rule_str: 1) names 1588 * of ciphers themselves 2) aliases for groups of ciphers. 1589 * For 1) we need the available ciphers and for 2) the cipher 1590 * groups of cipher_aliases added together in one list (otherwise 1591 * we would be happy with just the cipher_aliases table). 1592 */ 1593 num_of_group_aliases = OSSL_NELEM(cipher_aliases); 1594 num_of_alias_max = num_of_ciphers + num_of_group_aliases + 1; 1595 ca_list = OPENSSL_malloc(sizeof(*ca_list) * num_of_alias_max); 1596 if (ca_list == NULL) { 1597 OPENSSL_free(co_list); 1598 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); 1599 return NULL; /* Failure */ 1600 } 1601 ssl_cipher_collect_aliases(ca_list, num_of_group_aliases, 1602 disabled_mkey, disabled_auth, disabled_enc, 1603 disabled_mac, head); 1604 1605 /* 1606 * If the rule_string begins with DEFAULT, apply the default rule 1607 * before using the (possibly available) additional rules. 1608 */ 1609 ok = 1; 1610 rule_p = rule_str; 1611 if (strncmp(rule_str, "DEFAULT", 7) == 0) { 1612 ok = ssl_cipher_process_rulestr(OSSL_default_cipher_list(), 1613 &head, &tail, ca_list, c); 1614 rule_p += 7; 1615 if (*rule_p == ':') 1616 rule_p++; 1617 } 1618 1619 if (ok && (rule_p[0] != '\0')) 1620 ok = ssl_cipher_process_rulestr(rule_p, &head, &tail, ca_list, c); 1621 1622 OPENSSL_free(ca_list); /* Not needed anymore */ 1623 1624 if (!ok) { /* Rule processing failure */ 1625 OPENSSL_free(co_list); 1626 return NULL; 1627 } 1628 1629 /* 1630 * Allocate new "cipherstack" for the result, return with error 1631 * if we cannot get one. 1632 */ 1633 if ((cipherstack = sk_SSL_CIPHER_new_null()) == NULL) { 1634 OPENSSL_free(co_list); 1635 return NULL; 1636 } 1637 1638 /* Add TLSv1.3 ciphers first - we always prefer those if possible */ 1639 for (i = 0; i < sk_SSL_CIPHER_num(tls13_ciphersuites); i++) { 1640 const SSL_CIPHER *sslc = sk_SSL_CIPHER_value(tls13_ciphersuites, i); 1641 1642 /* Don't include any TLSv1.3 ciphers that are disabled */ 1643 if ((sslc->algorithm_enc & disabled_enc) != 0 1644 || (ssl_cipher_table_mac[sslc->algorithm2 1645 & SSL_HANDSHAKE_MAC_MASK].mask 1646 & ctx->disabled_mac_mask) != 0) { 1647 sk_SSL_CIPHER_delete(tls13_ciphersuites, i); 1648 i--; 1649 continue; 1650 } 1651 1652 if (!sk_SSL_CIPHER_push(cipherstack, sslc)) { 1653 OPENSSL_free(co_list); 1654 sk_SSL_CIPHER_free(cipherstack); 1655 return NULL; 1656 } 1657 } 1658 1659 OSSL_TRACE_BEGIN(TLS_CIPHER) { 1660 BIO_printf(trc_out, "cipher selection:\n"); 1661 } 1662 /* 1663 * The cipher selection for the list is done. The ciphers are added 1664 * to the resulting precedence to the STACK_OF(SSL_CIPHER). 1665 */ 1666 for (curr = head; curr != NULL; curr = curr->next) { 1667 if (curr->active) { 1668 if (!sk_SSL_CIPHER_push(cipherstack, curr->cipher)) { 1669 OPENSSL_free(co_list); 1670 sk_SSL_CIPHER_free(cipherstack); 1671 OSSL_TRACE_CANCEL(TLS_CIPHER); 1672 return NULL; 1673 } 1674 if (trc_out != NULL) 1675 BIO_printf(trc_out, "<%s>\n", curr->cipher->name); 1676 } 1677 } 1678 OPENSSL_free(co_list); /* Not needed any longer */ 1679 OSSL_TRACE_END(TLS_CIPHER); 1680 1681 if (!update_cipher_list_by_id(cipher_list_by_id, cipherstack)) { 1682 sk_SSL_CIPHER_free(cipherstack); 1683 return NULL; 1684 } 1685 sk_SSL_CIPHER_free(*cipher_list); 1686 *cipher_list = cipherstack; 1687 1688 return cipherstack; 1689 } 1690 1691 char *SSL_CIPHER_description(const SSL_CIPHER *cipher, char *buf, int len) 1692 { 1693 const char *ver; 1694 const char *kx, *au, *enc, *mac; 1695 uint32_t alg_mkey, alg_auth, alg_enc, alg_mac; 1696 static const char *format = "%-30s %-7s Kx=%-8s Au=%-5s Enc=%-22s Mac=%-4s\n"; 1697 1698 if (buf == NULL) { 1699 len = 128; 1700 if ((buf = OPENSSL_malloc(len)) == NULL) { 1701 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); 1702 return NULL; 1703 } 1704 } else if (len < 128) { 1705 return NULL; 1706 } 1707 1708 alg_mkey = cipher->algorithm_mkey; 1709 alg_auth = cipher->algorithm_auth; 1710 alg_enc = cipher->algorithm_enc; 1711 alg_mac = cipher->algorithm_mac; 1712 1713 ver = ssl_protocol_to_string(cipher->min_tls); 1714 1715 switch (alg_mkey) { 1716 case SSL_kRSA: 1717 kx = "RSA"; 1718 break; 1719 case SSL_kDHE: 1720 kx = "DH"; 1721 break; 1722 case SSL_kECDHE: 1723 kx = "ECDH"; 1724 break; 1725 case SSL_kPSK: 1726 kx = "PSK"; 1727 break; 1728 case SSL_kRSAPSK: 1729 kx = "RSAPSK"; 1730 break; 1731 case SSL_kECDHEPSK: 1732 kx = "ECDHEPSK"; 1733 break; 1734 case SSL_kDHEPSK: 1735 kx = "DHEPSK"; 1736 break; 1737 case SSL_kSRP: 1738 kx = "SRP"; 1739 break; 1740 case SSL_kGOST: 1741 kx = "GOST"; 1742 break; 1743 case SSL_kGOST18: 1744 kx = "GOST18"; 1745 break; 1746 case SSL_kANY: 1747 kx = "any"; 1748 break; 1749 default: 1750 kx = "unknown"; 1751 } 1752 1753 switch (alg_auth) { 1754 case SSL_aRSA: 1755 au = "RSA"; 1756 break; 1757 case SSL_aDSS: 1758 au = "DSS"; 1759 break; 1760 case SSL_aNULL: 1761 au = "None"; 1762 break; 1763 case SSL_aECDSA: 1764 au = "ECDSA"; 1765 break; 1766 case SSL_aPSK: 1767 au = "PSK"; 1768 break; 1769 case SSL_aSRP: 1770 au = "SRP"; 1771 break; 1772 case SSL_aGOST01: 1773 au = "GOST01"; 1774 break; 1775 /* New GOST ciphersuites have both SSL_aGOST12 and SSL_aGOST01 bits */ 1776 case (SSL_aGOST12 | SSL_aGOST01): 1777 au = "GOST12"; 1778 break; 1779 case SSL_aANY: 1780 au = "any"; 1781 break; 1782 default: 1783 au = "unknown"; 1784 break; 1785 } 1786 1787 switch (alg_enc) { 1788 case SSL_DES: 1789 enc = "DES(56)"; 1790 break; 1791 case SSL_3DES: 1792 enc = "3DES(168)"; 1793 break; 1794 case SSL_RC4: 1795 enc = "RC4(128)"; 1796 break; 1797 case SSL_RC2: 1798 enc = "RC2(128)"; 1799 break; 1800 case SSL_IDEA: 1801 enc = "IDEA(128)"; 1802 break; 1803 case SSL_eNULL: 1804 enc = "None"; 1805 break; 1806 case SSL_AES128: 1807 enc = "AES(128)"; 1808 break; 1809 case SSL_AES256: 1810 enc = "AES(256)"; 1811 break; 1812 case SSL_AES128GCM: 1813 enc = "AESGCM(128)"; 1814 break; 1815 case SSL_AES256GCM: 1816 enc = "AESGCM(256)"; 1817 break; 1818 case SSL_AES128CCM: 1819 enc = "AESCCM(128)"; 1820 break; 1821 case SSL_AES256CCM: 1822 enc = "AESCCM(256)"; 1823 break; 1824 case SSL_AES128CCM8: 1825 enc = "AESCCM8(128)"; 1826 break; 1827 case SSL_AES256CCM8: 1828 enc = "AESCCM8(256)"; 1829 break; 1830 case SSL_CAMELLIA128: 1831 enc = "Camellia(128)"; 1832 break; 1833 case SSL_CAMELLIA256: 1834 enc = "Camellia(256)"; 1835 break; 1836 case SSL_ARIA128GCM: 1837 enc = "ARIAGCM(128)"; 1838 break; 1839 case SSL_ARIA256GCM: 1840 enc = "ARIAGCM(256)"; 1841 break; 1842 case SSL_SEED: 1843 enc = "SEED(128)"; 1844 break; 1845 case SSL_eGOST2814789CNT: 1846 case SSL_eGOST2814789CNT12: 1847 enc = "GOST89(256)"; 1848 break; 1849 case SSL_MAGMA: 1850 enc = "MAGMA"; 1851 break; 1852 case SSL_KUZNYECHIK: 1853 enc = "KUZNYECHIK"; 1854 break; 1855 case SSL_CHACHA20POLY1305: 1856 enc = "CHACHA20/POLY1305(256)"; 1857 break; 1858 default: 1859 enc = "unknown"; 1860 break; 1861 } 1862 1863 switch (alg_mac) { 1864 case SSL_MD5: 1865 mac = "MD5"; 1866 break; 1867 case SSL_SHA1: 1868 mac = "SHA1"; 1869 break; 1870 case SSL_SHA256: 1871 mac = "SHA256"; 1872 break; 1873 case SSL_SHA384: 1874 mac = "SHA384"; 1875 break; 1876 case SSL_AEAD: 1877 mac = "AEAD"; 1878 break; 1879 case SSL_GOST89MAC: 1880 case SSL_GOST89MAC12: 1881 mac = "GOST89"; 1882 break; 1883 case SSL_GOST94: 1884 mac = "GOST94"; 1885 break; 1886 case SSL_GOST12_256: 1887 case SSL_GOST12_512: 1888 mac = "GOST2012"; 1889 break; 1890 default: 1891 mac = "unknown"; 1892 break; 1893 } 1894 1895 BIO_snprintf(buf, len, format, cipher->name, ver, kx, au, enc, mac); 1896 1897 return buf; 1898 } 1899 1900 const char *SSL_CIPHER_get_version(const SSL_CIPHER *c) 1901 { 1902 if (c == NULL) 1903 return "(NONE)"; 1904 1905 /* 1906 * Backwards-compatibility crutch. In almost all contexts we report TLS 1907 * 1.0 as "TLSv1", but for ciphers we report "TLSv1.0". 1908 */ 1909 if (c->min_tls == TLS1_VERSION) 1910 return "TLSv1.0"; 1911 return ssl_protocol_to_string(c->min_tls); 1912 } 1913 1914 /* return the actual cipher being used */ 1915 const char *SSL_CIPHER_get_name(const SSL_CIPHER *c) 1916 { 1917 if (c != NULL) 1918 return c->name; 1919 return "(NONE)"; 1920 } 1921 1922 /* return the actual cipher being used in RFC standard name */ 1923 const char *SSL_CIPHER_standard_name(const SSL_CIPHER *c) 1924 { 1925 if (c != NULL) 1926 return c->stdname; 1927 return "(NONE)"; 1928 } 1929 1930 /* return the OpenSSL name based on given RFC standard name */ 1931 const char *OPENSSL_cipher_name(const char *stdname) 1932 { 1933 const SSL_CIPHER *c; 1934 1935 if (stdname == NULL) 1936 return "(NONE)"; 1937 c = ssl3_get_cipher_by_std_name(stdname); 1938 return SSL_CIPHER_get_name(c); 1939 } 1940 1941 /* number of bits for symmetric cipher */ 1942 int SSL_CIPHER_get_bits(const SSL_CIPHER *c, int *alg_bits) 1943 { 1944 int ret = 0; 1945 1946 if (c != NULL) { 1947 if (alg_bits != NULL) 1948 *alg_bits = (int)c->alg_bits; 1949 ret = (int)c->strength_bits; 1950 } 1951 return ret; 1952 } 1953 1954 uint32_t SSL_CIPHER_get_id(const SSL_CIPHER *c) 1955 { 1956 return c->id; 1957 } 1958 1959 uint16_t SSL_CIPHER_get_protocol_id(const SSL_CIPHER *c) 1960 { 1961 return c->id & 0xFFFF; 1962 } 1963 1964 SSL_COMP *ssl3_comp_find(STACK_OF(SSL_COMP) *sk, int n) 1965 { 1966 SSL_COMP *ctmp; 1967 int i, nn; 1968 1969 if ((n == 0) || (sk == NULL)) 1970 return NULL; 1971 nn = sk_SSL_COMP_num(sk); 1972 for (i = 0; i < nn; i++) { 1973 ctmp = sk_SSL_COMP_value(sk, i); 1974 if (ctmp->id == n) 1975 return ctmp; 1976 } 1977 return NULL; 1978 } 1979 1980 #ifdef OPENSSL_NO_COMP 1981 STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void) 1982 { 1983 return NULL; 1984 } 1985 1986 STACK_OF(SSL_COMP) *SSL_COMP_set0_compression_methods(STACK_OF(SSL_COMP) 1987 *meths) 1988 { 1989 return meths; 1990 } 1991 1992 int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm) 1993 { 1994 return 1; 1995 } 1996 1997 #else 1998 STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void) 1999 { 2000 load_builtin_compressions(); 2001 return ssl_comp_methods; 2002 } 2003 2004 STACK_OF(SSL_COMP) *SSL_COMP_set0_compression_methods(STACK_OF(SSL_COMP) 2005 *meths) 2006 { 2007 STACK_OF(SSL_COMP) *old_meths = ssl_comp_methods; 2008 ssl_comp_methods = meths; 2009 return old_meths; 2010 } 2011 2012 static void cmeth_free(SSL_COMP *cm) 2013 { 2014 OPENSSL_free(cm); 2015 } 2016 2017 void ssl_comp_free_compression_methods_int(void) 2018 { 2019 STACK_OF(SSL_COMP) *old_meths = ssl_comp_methods; 2020 ssl_comp_methods = NULL; 2021 sk_SSL_COMP_pop_free(old_meths, cmeth_free); 2022 } 2023 2024 int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm) 2025 { 2026 SSL_COMP *comp; 2027 2028 if (cm == NULL || COMP_get_type(cm) == NID_undef) 2029 return 1; 2030 2031 /*- 2032 * According to draft-ietf-tls-compression-04.txt, the 2033 * compression number ranges should be the following: 2034 * 2035 * 0 to 63: methods defined by the IETF 2036 * 64 to 192: external party methods assigned by IANA 2037 * 193 to 255: reserved for private use 2038 */ 2039 if (id < 193 || id > 255) { 2040 ERR_raise(ERR_LIB_SSL, SSL_R_COMPRESSION_ID_NOT_WITHIN_PRIVATE_RANGE); 2041 return 1; 2042 } 2043 2044 comp = OPENSSL_malloc(sizeof(*comp)); 2045 if (comp == NULL) { 2046 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); 2047 return 1; 2048 } 2049 2050 comp->id = id; 2051 comp->method = cm; 2052 load_builtin_compressions(); 2053 if (ssl_comp_methods && sk_SSL_COMP_find(ssl_comp_methods, comp) >= 0) { 2054 OPENSSL_free(comp); 2055 ERR_raise(ERR_LIB_SSL, SSL_R_DUPLICATE_COMPRESSION_ID); 2056 return 1; 2057 } 2058 if (ssl_comp_methods == NULL || !sk_SSL_COMP_push(ssl_comp_methods, comp)) { 2059 OPENSSL_free(comp); 2060 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); 2061 return 1; 2062 } 2063 return 0; 2064 } 2065 #endif 2066 2067 const char *SSL_COMP_get_name(const COMP_METHOD *comp) 2068 { 2069 #ifndef OPENSSL_NO_COMP 2070 return comp ? COMP_get_name(comp) : NULL; 2071 #else 2072 return NULL; 2073 #endif 2074 } 2075 2076 const char *SSL_COMP_get0_name(const SSL_COMP *comp) 2077 { 2078 #ifndef OPENSSL_NO_COMP 2079 return comp->name; 2080 #else 2081 return NULL; 2082 #endif 2083 } 2084 2085 int SSL_COMP_get_id(const SSL_COMP *comp) 2086 { 2087 #ifndef OPENSSL_NO_COMP 2088 return comp->id; 2089 #else 2090 return -1; 2091 #endif 2092 } 2093 2094 const SSL_CIPHER *ssl_get_cipher_by_char(SSL *ssl, const unsigned char *ptr, 2095 int all) 2096 { 2097 const SSL_CIPHER *c = ssl->method->get_cipher_by_char(ptr); 2098 2099 if (c == NULL || (!all && c->valid == 0)) 2100 return NULL; 2101 return c; 2102 } 2103 2104 const SSL_CIPHER *SSL_CIPHER_find(SSL *ssl, const unsigned char *ptr) 2105 { 2106 return ssl->method->get_cipher_by_char(ptr); 2107 } 2108 2109 int SSL_CIPHER_get_cipher_nid(const SSL_CIPHER *c) 2110 { 2111 int i; 2112 if (c == NULL) 2113 return NID_undef; 2114 i = ssl_cipher_info_lookup(ssl_cipher_table_cipher, c->algorithm_enc); 2115 if (i == -1) 2116 return NID_undef; 2117 return ssl_cipher_table_cipher[i].nid; 2118 } 2119 2120 int SSL_CIPHER_get_digest_nid(const SSL_CIPHER *c) 2121 { 2122 int i = ssl_cipher_info_lookup(ssl_cipher_table_mac, c->algorithm_mac); 2123 2124 if (i == -1) 2125 return NID_undef; 2126 return ssl_cipher_table_mac[i].nid; 2127 } 2128 2129 int SSL_CIPHER_get_kx_nid(const SSL_CIPHER *c) 2130 { 2131 int i = ssl_cipher_info_lookup(ssl_cipher_table_kx, c->algorithm_mkey); 2132 2133 if (i == -1) 2134 return NID_undef; 2135 return ssl_cipher_table_kx[i].nid; 2136 } 2137 2138 int SSL_CIPHER_get_auth_nid(const SSL_CIPHER *c) 2139 { 2140 int i = ssl_cipher_info_lookup(ssl_cipher_table_auth, c->algorithm_auth); 2141 2142 if (i == -1) 2143 return NID_undef; 2144 return ssl_cipher_table_auth[i].nid; 2145 } 2146 2147 const EVP_MD *SSL_CIPHER_get_handshake_digest(const SSL_CIPHER *c) 2148 { 2149 int idx = c->algorithm2 & SSL_HANDSHAKE_MAC_MASK; 2150 2151 if (idx < 0 || idx >= SSL_MD_NUM_IDX) 2152 return NULL; 2153 return EVP_get_digestbynid(ssl_cipher_table_mac[idx].nid); 2154 } 2155 2156 int SSL_CIPHER_is_aead(const SSL_CIPHER *c) 2157 { 2158 return (c->algorithm_mac & SSL_AEAD) ? 1 : 0; 2159 } 2160 2161 int ssl_cipher_get_overhead(const SSL_CIPHER *c, size_t *mac_overhead, 2162 size_t *int_overhead, size_t *blocksize, 2163 size_t *ext_overhead) 2164 { 2165 size_t mac = 0, in = 0, blk = 0, out = 0; 2166 2167 /* Some hard-coded numbers for the CCM/Poly1305 MAC overhead 2168 * because there are no handy #defines for those. */ 2169 if (c->algorithm_enc & (SSL_AESGCM | SSL_ARIAGCM)) { 2170 out = EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN; 2171 } else if (c->algorithm_enc & (SSL_AES128CCM | SSL_AES256CCM)) { 2172 out = EVP_CCM_TLS_EXPLICIT_IV_LEN + 16; 2173 } else if (c->algorithm_enc & (SSL_AES128CCM8 | SSL_AES256CCM8)) { 2174 out = EVP_CCM_TLS_EXPLICIT_IV_LEN + 8; 2175 } else if (c->algorithm_enc & SSL_CHACHA20POLY1305) { 2176 out = 16; 2177 } else if (c->algorithm_mac & SSL_AEAD) { 2178 /* We're supposed to have handled all the AEAD modes above */ 2179 return 0; 2180 } else { 2181 /* Non-AEAD modes. Calculate MAC/cipher overhead separately */ 2182 int digest_nid = SSL_CIPHER_get_digest_nid(c); 2183 const EVP_MD *e_md = EVP_get_digestbynid(digest_nid); 2184 2185 if (e_md == NULL) 2186 return 0; 2187 2188 mac = EVP_MD_get_size(e_md); 2189 if (c->algorithm_enc != SSL_eNULL) { 2190 int cipher_nid = SSL_CIPHER_get_cipher_nid(c); 2191 const EVP_CIPHER *e_ciph = EVP_get_cipherbynid(cipher_nid); 2192 2193 /* If it wasn't AEAD or SSL_eNULL, we expect it to be a 2194 known CBC cipher. */ 2195 if (e_ciph == NULL || 2196 EVP_CIPHER_get_mode(e_ciph) != EVP_CIPH_CBC_MODE) 2197 return 0; 2198 2199 in = 1; /* padding length byte */ 2200 out = EVP_CIPHER_get_iv_length(e_ciph); 2201 blk = EVP_CIPHER_get_block_size(e_ciph); 2202 } 2203 } 2204 2205 *mac_overhead = mac; 2206 *int_overhead = in; 2207 *blocksize = blk; 2208 *ext_overhead = out; 2209 2210 return 1; 2211 } 2212 2213 int ssl_cert_is_disabled(SSL_CTX *ctx, size_t idx) 2214 { 2215 const SSL_CERT_LOOKUP *cl = ssl_cert_lookup_by_idx(idx); 2216 2217 if (cl == NULL || (cl->amask & ctx->disabled_auth_mask) != 0) 2218 return 1; 2219 return 0; 2220 } 2221 2222 /* 2223 * Default list of TLSv1.2 (and earlier) ciphers 2224 * SSL_DEFAULT_CIPHER_LIST deprecated in 3.0.0 2225 * Update both macro and function simultaneously 2226 */ 2227 const char *OSSL_default_cipher_list(void) 2228 { 2229 return "ALL:!COMPLEMENTOFDEFAULT:!eNULL"; 2230 } 2231 2232 /* 2233 * Default list of TLSv1.3 (and later) ciphers 2234 * TLS_DEFAULT_CIPHERSUITES deprecated in 3.0.0 2235 * Update both macro and function simultaneously 2236 */ 2237 const char *OSSL_default_ciphersuites(void) 2238 { 2239 return "TLS_AES_256_GCM_SHA384:" 2240 "TLS_CHACHA20_POLY1305_SHA256:" 2241 "TLS_AES_128_GCM_SHA256"; 2242 } 2243