1 /* ssl/ssl_ciph.c */ 2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) 3 * All rights reserved. 4 * 5 * This package is an SSL implementation written 6 * by Eric Young (eay@cryptsoft.com). 7 * The implementation was written so as to conform with Netscapes SSL. 8 * 9 * This library is free for commercial and non-commercial use as long as 10 * the following conditions are aheared to. The following conditions 11 * apply to all code found in this distribution, be it the RC4, RSA, 12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation 13 * included with this distribution is covered by the same copyright terms 14 * except that the holder is Tim Hudson (tjh@cryptsoft.com). 15 * 16 * Copyright remains Eric Young's, and as such any Copyright notices in 17 * the code are not to be removed. 18 * If this package is used in a product, Eric Young should be given attribution 19 * as the author of the parts of the library used. 20 * This can be in the form of a textual message at program startup or 21 * in documentation (online or textual) provided with the package. 22 * 23 * Redistribution and use in source and binary forms, with or without 24 * modification, are permitted provided that the following conditions 25 * are met: 26 * 1. Redistributions of source code must retain the copyright 27 * notice, this list of conditions and the following disclaimer. 28 * 2. Redistributions in binary form must reproduce the above copyright 29 * notice, this list of conditions and the following disclaimer in the 30 * documentation and/or other materials provided with the distribution. 31 * 3. All advertising materials mentioning features or use of this software 32 * must display the following acknowledgement: 33 * "This product includes cryptographic software written by 34 * Eric Young (eay@cryptsoft.com)" 35 * The word 'cryptographic' can be left out if the rouines from the library 36 * being used are not cryptographic related :-). 37 * 4. If you include any Windows specific code (or a derivative thereof) from 38 * the apps directory (application code) you must include an acknowledgement: 39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" 40 * 41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND 42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 51 * SUCH DAMAGE. 52 * 53 * The licence and distribution terms for any publically available version or 54 * derivative of this code cannot be changed. i.e. this code cannot simply be 55 * copied and put under another distribution licence 56 * [including the GNU Public Licence.] 57 */ 58 /* ==================================================================== 59 * Copyright (c) 1998-2006 The OpenSSL Project. All rights reserved. 60 * 61 * Redistribution and use in source and binary forms, with or without 62 * modification, are permitted provided that the following conditions 63 * are met: 64 * 65 * 1. Redistributions of source code must retain the above copyright 66 * notice, this list of conditions and the following disclaimer. 67 * 68 * 2. Redistributions in binary form must reproduce the above copyright 69 * notice, this list of conditions and the following disclaimer in 70 * the documentation and/or other materials provided with the 71 * distribution. 72 * 73 * 3. All advertising materials mentioning features or use of this 74 * software must display the following acknowledgment: 75 * "This product includes software developed by the OpenSSL Project 76 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" 77 * 78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to 79 * endorse or promote products derived from this software without 80 * prior written permission. For written permission, please contact 81 * openssl-core@openssl.org. 82 * 83 * 5. Products derived from this software may not be called "OpenSSL" 84 * nor may "OpenSSL" appear in their names without prior written 85 * permission of the OpenSSL Project. 86 * 87 * 6. Redistributions of any form whatsoever must retain the following 88 * acknowledgment: 89 * "This product includes software developed by the OpenSSL Project 90 * for use in the OpenSSL Toolkit (http://www.openssl.org/)" 91 * 92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY 93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 95 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR 96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED 103 * OF THE POSSIBILITY OF SUCH DAMAGE. 104 * ==================================================================== 105 * 106 * This product includes cryptographic software written by Eric Young 107 * (eay@cryptsoft.com). This product includes software written by Tim 108 * Hudson (tjh@cryptsoft.com). 109 * 110 */ 111 /* ==================================================================== 112 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. 113 * ECC cipher suite support in OpenSSL originally developed by 114 * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project. 115 */ 116 #include <stdio.h> 117 #include <openssl/objects.h> 118 #ifndef OPENSSL_NO_COMP 119 #include <openssl/comp.h> 120 #endif 121 122 #include "ssl_locl.h" 123 124 #define SSL_ENC_DES_IDX 0 125 #define SSL_ENC_3DES_IDX 1 126 #define SSL_ENC_RC4_IDX 2 127 #define SSL_ENC_RC2_IDX 3 128 #define SSL_ENC_IDEA_IDX 4 129 #define SSL_ENC_eFZA_IDX 5 130 #define SSL_ENC_NULL_IDX 6 131 #define SSL_ENC_AES128_IDX 7 132 #define SSL_ENC_AES256_IDX 8 133 #define SSL_ENC_CAMELLIA128_IDX 9 134 #define SSL_ENC_CAMELLIA256_IDX 10 135 #define SSL_ENC_SEED_IDX 11 136 #define SSL_ENC_NUM_IDX 12 137 138 139 static const EVP_CIPHER *ssl_cipher_methods[SSL_ENC_NUM_IDX]={ 140 NULL,NULL,NULL,NULL,NULL,NULL, 141 }; 142 143 #define SSL_COMP_NULL_IDX 0 144 #define SSL_COMP_ZLIB_IDX 1 145 #define SSL_COMP_NUM_IDX 2 146 147 static STACK_OF(SSL_COMP) *ssl_comp_methods=NULL; 148 149 #define SSL_MD_MD5_IDX 0 150 #define SSL_MD_SHA1_IDX 1 151 #define SSL_MD_NUM_IDX 2 152 static const EVP_MD *ssl_digest_methods[SSL_MD_NUM_IDX]={ 153 NULL,NULL, 154 }; 155 156 #define CIPHER_ADD 1 157 #define CIPHER_KILL 2 158 #define CIPHER_DEL 3 159 #define CIPHER_ORD 4 160 #define CIPHER_SPECIAL 5 161 162 typedef struct cipher_order_st 163 { 164 SSL_CIPHER *cipher; 165 int active; 166 int dead; 167 struct cipher_order_st *next,*prev; 168 } CIPHER_ORDER; 169 170 static const SSL_CIPHER cipher_aliases[]={ 171 /* Don't include eNULL unless specifically enabled. */ 172 /* Don't include ECC in ALL because these ciphers are not yet official. */ 173 {0,SSL_TXT_ALL, 0,SSL_ALL & ~SSL_eNULL & ~SSL_kECDH & ~SSL_kECDHE, SSL_ALL ,0,0,0,SSL_ALL,SSL_ALL}, /* must be first */ 174 /* TODO: COMPLEMENT OF ALL and COMPLEMENT OF DEFAULT do not have ECC cipher suites handled properly. */ 175 {0,SSL_TXT_CMPALL,0,SSL_eNULL,0,0,0,0,SSL_ENC_MASK,0}, /* COMPLEMENT OF ALL */ 176 {0,SSL_TXT_CMPDEF,0,SSL_ADH, 0,0,0,0,SSL_AUTH_MASK,0}, 177 {0,SSL_TXT_kKRB5,0,SSL_kKRB5,0,0,0,0,SSL_MKEY_MASK,0}, /* VRS Kerberos5 */ 178 {0,SSL_TXT_kRSA,0,SSL_kRSA, 0,0,0,0,SSL_MKEY_MASK,0}, 179 {0,SSL_TXT_kDHr,0,SSL_kDHr, 0,0,0,0,SSL_MKEY_MASK,0}, 180 {0,SSL_TXT_kDHd,0,SSL_kDHd, 0,0,0,0,SSL_MKEY_MASK,0}, 181 {0,SSL_TXT_kEDH,0,SSL_kEDH, 0,0,0,0,SSL_MKEY_MASK,0}, 182 {0,SSL_TXT_kFZA,0,SSL_kFZA, 0,0,0,0,SSL_MKEY_MASK,0}, 183 {0,SSL_TXT_DH, 0,SSL_DH, 0,0,0,0,SSL_MKEY_MASK,0}, 184 {0,SSL_TXT_ECC, 0,(SSL_kECDH|SSL_kECDHE), 0,0,0,0,SSL_MKEY_MASK,0}, 185 {0,SSL_TXT_EDH, 0,SSL_EDH, 0,0,0,0,SSL_MKEY_MASK|SSL_AUTH_MASK,0}, 186 {0,SSL_TXT_aKRB5,0,SSL_aKRB5,0,0,0,0,SSL_AUTH_MASK,0}, /* VRS Kerberos5 */ 187 {0,SSL_TXT_aRSA,0,SSL_aRSA, 0,0,0,0,SSL_AUTH_MASK,0}, 188 {0,SSL_TXT_aDSS,0,SSL_aDSS, 0,0,0,0,SSL_AUTH_MASK,0}, 189 {0,SSL_TXT_aFZA,0,SSL_aFZA, 0,0,0,0,SSL_AUTH_MASK,0}, 190 {0,SSL_TXT_aNULL,0,SSL_aNULL,0,0,0,0,SSL_AUTH_MASK,0}, 191 {0,SSL_TXT_aDH, 0,SSL_aDH, 0,0,0,0,SSL_AUTH_MASK,0}, 192 {0,SSL_TXT_DSS, 0,SSL_DSS, 0,0,0,0,SSL_AUTH_MASK,0}, 193 194 {0,SSL_TXT_DES, 0,SSL_DES, 0,0,0,0,SSL_ENC_MASK,0}, 195 {0,SSL_TXT_3DES,0,SSL_3DES, 0,0,0,0,SSL_ENC_MASK,0}, 196 {0,SSL_TXT_RC4, 0,SSL_RC4, 0,0,0,0,SSL_ENC_MASK,0}, 197 {0,SSL_TXT_RC2, 0,SSL_RC2, 0,0,0,0,SSL_ENC_MASK,0}, 198 #ifndef OPENSSL_NO_IDEA 199 {0,SSL_TXT_IDEA,0,SSL_IDEA, 0,0,0,0,SSL_ENC_MASK,0}, 200 #endif 201 {0,SSL_TXT_SEED,0,SSL_SEED, 0,0,0,0,SSL_ENC_MASK,0}, 202 {0,SSL_TXT_eNULL,0,SSL_eNULL,0,0,0,0,SSL_ENC_MASK,0}, 203 {0,SSL_TXT_eFZA,0,SSL_eFZA, 0,0,0,0,SSL_ENC_MASK,0}, 204 {0,SSL_TXT_AES, 0,SSL_AES, 0,0,0,0,SSL_ENC_MASK,0}, 205 {0,SSL_TXT_CAMELLIA,0,SSL_CAMELLIA, 0,0,0,0,SSL_ENC_MASK,0}, 206 207 {0,SSL_TXT_MD5, 0,SSL_MD5, 0,0,0,0,SSL_MAC_MASK,0}, 208 {0,SSL_TXT_SHA1,0,SSL_SHA1, 0,0,0,0,SSL_MAC_MASK,0}, 209 {0,SSL_TXT_SHA, 0,SSL_SHA, 0,0,0,0,SSL_MAC_MASK,0}, 210 211 {0,SSL_TXT_NULL,0,SSL_NULL, 0,0,0,0,SSL_ENC_MASK,0}, 212 {0,SSL_TXT_KRB5,0,SSL_KRB5, 0,0,0,0,SSL_AUTH_MASK|SSL_MKEY_MASK,0}, 213 {0,SSL_TXT_RSA, 0,SSL_RSA, 0,0,0,0,SSL_AUTH_MASK|SSL_MKEY_MASK,0}, 214 {0,SSL_TXT_ADH, 0,SSL_ADH, 0,0,0,0,SSL_AUTH_MASK|SSL_MKEY_MASK,0}, 215 {0,SSL_TXT_FZA, 0,SSL_FZA, 0,0,0,0,SSL_AUTH_MASK|SSL_MKEY_MASK|SSL_ENC_MASK,0}, 216 217 {0,SSL_TXT_SSLV2, 0,SSL_SSLV2, 0,0,0,0,SSL_SSL_MASK,0}, 218 {0,SSL_TXT_SSLV3, 0,SSL_SSLV3, 0,0,0,0,SSL_SSL_MASK,0}, 219 {0,SSL_TXT_TLSV1, 0,SSL_TLSV1, 0,0,0,0,SSL_SSL_MASK,0}, 220 221 {0,SSL_TXT_EXP ,0, 0,SSL_EXPORT, 0,0,0,0,SSL_EXP_MASK}, 222 {0,SSL_TXT_EXPORT,0, 0,SSL_EXPORT, 0,0,0,0,SSL_EXP_MASK}, 223 {0,SSL_TXT_EXP40, 0, 0, SSL_EXP40, 0,0,0,0,SSL_STRONG_MASK}, 224 {0,SSL_TXT_EXP56, 0, 0, SSL_EXP56, 0,0,0,0,SSL_STRONG_MASK}, 225 {0,SSL_TXT_LOW, 0, 0, SSL_LOW, 0,0,0,0,SSL_STRONG_MASK}, 226 {0,SSL_TXT_MEDIUM,0, 0,SSL_MEDIUM, 0,0,0,0,SSL_STRONG_MASK}, 227 {0,SSL_TXT_HIGH, 0, 0, SSL_HIGH, 0,0,0,0,SSL_STRONG_MASK}, 228 {0,SSL_TXT_FIPS, 0, 0, SSL_FIPS, 0,0,0,0,SSL_FIPS|SSL_STRONG_NONE}, 229 }; 230 231 void ssl_load_ciphers(void) 232 { 233 ssl_cipher_methods[SSL_ENC_DES_IDX]= 234 EVP_get_cipherbyname(SN_des_cbc); 235 ssl_cipher_methods[SSL_ENC_3DES_IDX]= 236 EVP_get_cipherbyname(SN_des_ede3_cbc); 237 ssl_cipher_methods[SSL_ENC_RC4_IDX]= 238 EVP_get_cipherbyname(SN_rc4); 239 ssl_cipher_methods[SSL_ENC_RC2_IDX]= 240 EVP_get_cipherbyname(SN_rc2_cbc); 241 #ifndef OPENSSL_NO_IDEA 242 ssl_cipher_methods[SSL_ENC_IDEA_IDX]= 243 EVP_get_cipherbyname(SN_idea_cbc); 244 #else 245 ssl_cipher_methods[SSL_ENC_IDEA_IDX]= NULL; 246 #endif 247 ssl_cipher_methods[SSL_ENC_AES128_IDX]= 248 EVP_get_cipherbyname(SN_aes_128_cbc); 249 ssl_cipher_methods[SSL_ENC_AES256_IDX]= 250 EVP_get_cipherbyname(SN_aes_256_cbc); 251 ssl_cipher_methods[SSL_ENC_CAMELLIA128_IDX]= 252 EVP_get_cipherbyname(SN_camellia_128_cbc); 253 ssl_cipher_methods[SSL_ENC_CAMELLIA256_IDX]= 254 EVP_get_cipherbyname(SN_camellia_256_cbc); 255 ssl_cipher_methods[SSL_ENC_SEED_IDX]= 256 EVP_get_cipherbyname(SN_seed_cbc); 257 258 ssl_digest_methods[SSL_MD_MD5_IDX]= 259 EVP_get_digestbyname(SN_md5); 260 ssl_digest_methods[SSL_MD_SHA1_IDX]= 261 EVP_get_digestbyname(SN_sha1); 262 } 263 264 265 #ifndef OPENSSL_NO_COMP 266 267 static int sk_comp_cmp(const SSL_COMP * const *a, 268 const SSL_COMP * const *b) 269 { 270 return((*a)->id-(*b)->id); 271 } 272 273 static void load_builtin_compressions(void) 274 { 275 int got_write_lock = 0; 276 277 CRYPTO_r_lock(CRYPTO_LOCK_SSL); 278 if (ssl_comp_methods == NULL) 279 { 280 CRYPTO_r_unlock(CRYPTO_LOCK_SSL); 281 CRYPTO_w_lock(CRYPTO_LOCK_SSL); 282 got_write_lock = 1; 283 284 if (ssl_comp_methods == NULL) 285 { 286 SSL_COMP *comp = NULL; 287 288 MemCheck_off(); 289 ssl_comp_methods=sk_SSL_COMP_new(sk_comp_cmp); 290 if (ssl_comp_methods != NULL) 291 { 292 comp=(SSL_COMP *)OPENSSL_malloc(sizeof(SSL_COMP)); 293 if (comp != NULL) 294 { 295 comp->method=COMP_zlib(); 296 if (comp->method 297 && comp->method->type == NID_undef) 298 OPENSSL_free(comp); 299 else 300 { 301 comp->id=SSL_COMP_ZLIB_IDX; 302 comp->name=comp->method->name; 303 sk_SSL_COMP_push(ssl_comp_methods,comp); 304 } 305 } 306 } 307 MemCheck_on(); 308 } 309 } 310 311 if (got_write_lock) 312 CRYPTO_w_unlock(CRYPTO_LOCK_SSL); 313 else 314 CRYPTO_r_unlock(CRYPTO_LOCK_SSL); 315 } 316 #endif 317 318 int ssl_cipher_get_evp(const SSL_SESSION *s, const EVP_CIPHER **enc, 319 const EVP_MD **md, SSL_COMP **comp) 320 { 321 int i; 322 SSL_CIPHER *c; 323 324 c=s->cipher; 325 if (c == NULL) return(0); 326 if (comp != NULL) 327 { 328 SSL_COMP ctmp; 329 #ifndef OPENSSL_NO_COMP 330 load_builtin_compressions(); 331 #endif 332 333 *comp=NULL; 334 ctmp.id=s->compress_meth; 335 if (ssl_comp_methods != NULL) 336 { 337 i=sk_SSL_COMP_find(ssl_comp_methods,&ctmp); 338 if (i >= 0) 339 *comp=sk_SSL_COMP_value(ssl_comp_methods,i); 340 else 341 *comp=NULL; 342 } 343 } 344 345 if ((enc == NULL) || (md == NULL)) return(0); 346 347 switch (c->algorithms & SSL_ENC_MASK) 348 { 349 case SSL_DES: 350 i=SSL_ENC_DES_IDX; 351 break; 352 case SSL_3DES: 353 i=SSL_ENC_3DES_IDX; 354 break; 355 case SSL_RC4: 356 i=SSL_ENC_RC4_IDX; 357 break; 358 case SSL_RC2: 359 i=SSL_ENC_RC2_IDX; 360 break; 361 case SSL_IDEA: 362 i=SSL_ENC_IDEA_IDX; 363 break; 364 case SSL_eNULL: 365 i=SSL_ENC_NULL_IDX; 366 break; 367 case SSL_AES: 368 switch(c->alg_bits) 369 { 370 case 128: i=SSL_ENC_AES128_IDX; break; 371 case 256: i=SSL_ENC_AES256_IDX; break; 372 default: i=-1; break; 373 } 374 break; 375 case SSL_CAMELLIA: 376 switch(c->alg_bits) 377 { 378 case 128: i=SSL_ENC_CAMELLIA128_IDX; break; 379 case 256: i=SSL_ENC_CAMELLIA256_IDX; break; 380 default: i=-1; break; 381 } 382 break; 383 case SSL_SEED: 384 i=SSL_ENC_SEED_IDX; 385 break; 386 387 default: 388 i= -1; 389 break; 390 } 391 392 if ((i < 0) || (i > SSL_ENC_NUM_IDX)) 393 *enc=NULL; 394 else 395 { 396 if (i == SSL_ENC_NULL_IDX) 397 *enc=EVP_enc_null(); 398 else 399 *enc=ssl_cipher_methods[i]; 400 } 401 402 switch (c->algorithms & SSL_MAC_MASK) 403 { 404 case SSL_MD5: 405 i=SSL_MD_MD5_IDX; 406 break; 407 case SSL_SHA1: 408 i=SSL_MD_SHA1_IDX; 409 break; 410 default: 411 i= -1; 412 break; 413 } 414 if ((i < 0) || (i > SSL_MD_NUM_IDX)) 415 *md=NULL; 416 else 417 *md=ssl_digest_methods[i]; 418 419 if ((*enc != NULL) && (*md != NULL)) 420 return(1); 421 else 422 return(0); 423 } 424 425 #define ITEM_SEP(a) \ 426 (((a) == ':') || ((a) == ' ') || ((a) == ';') || ((a) == ',')) 427 428 static void ll_append_tail(CIPHER_ORDER **head, CIPHER_ORDER *curr, 429 CIPHER_ORDER **tail) 430 { 431 if (curr == *tail) return; 432 if (curr == *head) 433 *head=curr->next; 434 if (curr->prev != NULL) 435 curr->prev->next=curr->next; 436 if (curr->next != NULL) /* should always be true */ 437 curr->next->prev=curr->prev; 438 (*tail)->next=curr; 439 curr->prev= *tail; 440 curr->next=NULL; 441 *tail=curr; 442 } 443 444 struct disabled_masks { /* This is a kludge no longer needed with OpenSSL 0.9.9, 445 * where 128-bit and 256-bit algorithms simply will get 446 * separate bits. */ 447 unsigned long mask; /* everything except m256 */ 448 unsigned long m256; /* applies to 256-bit algorithms only */ 449 }; 450 451 static struct disabled_masks ssl_cipher_get_disabled(void) 452 { 453 unsigned long mask; 454 unsigned long m256; 455 struct disabled_masks ret; 456 457 mask = SSL_kFZA; 458 #ifdef OPENSSL_NO_RSA 459 mask |= SSL_aRSA|SSL_kRSA; 460 #endif 461 #ifdef OPENSSL_NO_DSA 462 mask |= SSL_aDSS; 463 #endif 464 #ifdef OPENSSL_NO_DH 465 mask |= SSL_kDHr|SSL_kDHd|SSL_kEDH|SSL_aDH; 466 #endif 467 #ifdef OPENSSL_NO_KRB5 468 mask |= SSL_kKRB5|SSL_aKRB5; 469 #endif 470 #ifdef OPENSSL_NO_ECDH 471 mask |= SSL_kECDH|SSL_kECDHE; 472 #endif 473 #ifdef SSL_FORBID_ENULL 474 mask |= SSL_eNULL; 475 #endif 476 477 mask |= (ssl_cipher_methods[SSL_ENC_DES_IDX ] == NULL) ? SSL_DES :0; 478 mask |= (ssl_cipher_methods[SSL_ENC_3DES_IDX] == NULL) ? SSL_3DES:0; 479 mask |= (ssl_cipher_methods[SSL_ENC_RC4_IDX ] == NULL) ? SSL_RC4 :0; 480 mask |= (ssl_cipher_methods[SSL_ENC_RC2_IDX ] == NULL) ? SSL_RC2 :0; 481 mask |= (ssl_cipher_methods[SSL_ENC_IDEA_IDX] == NULL) ? SSL_IDEA:0; 482 mask |= (ssl_cipher_methods[SSL_ENC_eFZA_IDX] == NULL) ? SSL_eFZA:0; 483 mask |= (ssl_cipher_methods[SSL_ENC_SEED_IDX] == NULL) ? SSL_SEED:0; 484 485 mask |= (ssl_digest_methods[SSL_MD_MD5_IDX ] == NULL) ? SSL_MD5 :0; 486 mask |= (ssl_digest_methods[SSL_MD_SHA1_IDX] == NULL) ? SSL_SHA1:0; 487 488 /* finally consider algorithms where mask and m256 differ */ 489 m256 = mask; 490 mask |= (ssl_cipher_methods[SSL_ENC_AES128_IDX] == NULL) ? SSL_AES:0; 491 mask |= (ssl_cipher_methods[SSL_ENC_CAMELLIA128_IDX] == NULL) ? SSL_CAMELLIA:0; 492 m256 |= (ssl_cipher_methods[SSL_ENC_AES256_IDX] == NULL) ? SSL_AES:0; 493 m256 |= (ssl_cipher_methods[SSL_ENC_CAMELLIA256_IDX] == NULL) ? SSL_CAMELLIA:0; 494 495 ret.mask = mask; 496 ret.m256 = m256; 497 return ret; 498 } 499 500 static void ssl_cipher_collect_ciphers(const SSL_METHOD *ssl_method, 501 int num_of_ciphers, unsigned long mask, unsigned long m256, 502 CIPHER_ORDER *co_list, CIPHER_ORDER **head_p, 503 CIPHER_ORDER **tail_p) 504 { 505 int i, co_list_num; 506 SSL_CIPHER *c; 507 508 /* 509 * We have num_of_ciphers descriptions compiled in, depending on the 510 * method selected (SSLv2 and/or SSLv3, TLSv1 etc). 511 * These will later be sorted in a linked list with at most num 512 * entries. 513 */ 514 515 /* Get the initial list of ciphers */ 516 co_list_num = 0; /* actual count of ciphers */ 517 for (i = 0; i < num_of_ciphers; i++) 518 { 519 c = ssl_method->get_cipher(i); 520 #define IS_MASKED(c) ((c)->algorithms & (((c)->alg_bits == 256) ? m256 : mask)) 521 /* drop those that use any of that is not available */ 522 #ifdef OPENSSL_FIPS 523 if ((c != NULL) && c->valid && !IS_MASKED(c) 524 && (!FIPS_mode() || (c->algo_strength & SSL_FIPS))) 525 #else 526 if ((c != NULL) && c->valid && !IS_MASKED(c)) 527 #endif 528 { 529 co_list[co_list_num].cipher = c; 530 co_list[co_list_num].next = NULL; 531 co_list[co_list_num].prev = NULL; 532 co_list[co_list_num].active = 0; 533 co_list_num++; 534 #ifdef KSSL_DEBUG 535 printf("\t%d: %s %lx %lx\n",i,c->name,c->id,c->algorithms); 536 #endif /* KSSL_DEBUG */ 537 /* 538 if (!sk_push(ca_list,(char *)c)) goto err; 539 */ 540 } 541 } 542 543 /* 544 * Prepare linked list from list entries 545 */ 546 for (i = 1; i < co_list_num - 1; i++) 547 { 548 co_list[i].prev = &(co_list[i-1]); 549 co_list[i].next = &(co_list[i+1]); 550 } 551 if (co_list_num > 0) 552 { 553 (*head_p) = &(co_list[0]); 554 (*head_p)->prev = NULL; 555 (*head_p)->next = &(co_list[1]); 556 (*tail_p) = &(co_list[co_list_num - 1]); 557 (*tail_p)->prev = &(co_list[co_list_num - 2]); 558 (*tail_p)->next = NULL; 559 } 560 } 561 562 static void ssl_cipher_collect_aliases(SSL_CIPHER **ca_list, 563 int num_of_group_aliases, unsigned long mask, 564 CIPHER_ORDER *head) 565 { 566 CIPHER_ORDER *ciph_curr; 567 SSL_CIPHER **ca_curr; 568 int i; 569 570 /* 571 * First, add the real ciphers as already collected 572 */ 573 ciph_curr = head; 574 ca_curr = ca_list; 575 while (ciph_curr != NULL) 576 { 577 *ca_curr = ciph_curr->cipher; 578 ca_curr++; 579 ciph_curr = ciph_curr->next; 580 } 581 582 /* 583 * Now we add the available ones from the cipher_aliases[] table. 584 * They represent either an algorithm, that must be fully 585 * supported (not match any bit in mask) or represent a cipher 586 * strength value (will be added in any case because algorithms=0). 587 */ 588 for (i = 0; i < num_of_group_aliases; i++) 589 { 590 if ((i == 0) || /* always fetch "ALL" */ 591 !(cipher_aliases[i].algorithms & mask)) 592 { 593 *ca_curr = (SSL_CIPHER *)(cipher_aliases + i); 594 ca_curr++; 595 } 596 } 597 598 *ca_curr = NULL; /* end of list */ 599 } 600 601 static void ssl_cipher_apply_rule(unsigned long cipher_id, unsigned long ssl_version, 602 unsigned long algorithms, unsigned long mask, 603 unsigned long algo_strength, unsigned long mask_strength, 604 int rule, int strength_bits, CIPHER_ORDER *co_list, 605 CIPHER_ORDER **head_p, CIPHER_ORDER **tail_p) 606 { 607 CIPHER_ORDER *head, *tail, *curr, *curr2, *tail2; 608 SSL_CIPHER *cp; 609 unsigned long ma, ma_s; 610 611 #ifdef CIPHER_DEBUG 612 printf("Applying rule %d with %08lx %08lx %08lx %08lx (%d)\n", 613 rule, algorithms, mask, algo_strength, mask_strength, 614 strength_bits); 615 #endif 616 617 curr = head = *head_p; 618 curr2 = head; 619 tail2 = tail = *tail_p; 620 for (;;) 621 { 622 if ((curr == NULL) || (curr == tail2)) break; 623 curr = curr2; 624 curr2 = curr->next; 625 626 cp = curr->cipher; 627 628 /* If explicit cipher suite, match only that one for its own protocol version. 629 * Usual selection criteria will be used for similar ciphersuites from other version! */ 630 631 if (cipher_id && (cp->algorithms & SSL_SSL_MASK) == ssl_version) 632 { 633 if (cp->id != cipher_id) 634 continue; 635 } 636 637 /* 638 * Selection criteria is either the number of strength_bits 639 * or the algorithm used. 640 */ 641 else if (strength_bits == -1) 642 { 643 ma = mask & cp->algorithms; 644 ma_s = mask_strength & cp->algo_strength; 645 646 #ifdef CIPHER_DEBUG 647 printf("\nName: %s:\nAlgo = %08lx Algo_strength = %08lx\nMask = %08lx Mask_strength %08lx\n", cp->name, cp->algorithms, cp->algo_strength, mask, mask_strength); 648 printf("ma = %08lx ma_s %08lx, ma&algo=%08lx, ma_s&algos=%08lx\n", ma, ma_s, ma&algorithms, ma_s&algo_strength); 649 #endif 650 /* 651 * Select: if none of the mask bit was met from the 652 * cipher or not all of the bits were met, the 653 * selection does not apply. 654 */ 655 if (((ma == 0) && (ma_s == 0)) || 656 ((ma & algorithms) != ma) || 657 ((ma_s & algo_strength) != ma_s)) 658 continue; /* does not apply */ 659 } 660 else if (strength_bits != cp->strength_bits) 661 continue; /* does not apply */ 662 663 #ifdef CIPHER_DEBUG 664 printf("Action = %d\n", rule); 665 #endif 666 667 /* add the cipher if it has not been added yet. */ 668 if (rule == CIPHER_ADD) 669 { 670 if (!curr->active) 671 { 672 int add_this_cipher = 1; 673 674 if (((cp->algorithms & (SSL_kECDHE|SSL_kECDH|SSL_aECDSA)) != 0)) 675 { 676 /* Make sure "ECCdraft" ciphersuites are activated only if 677 * *explicitly* requested, but not implicitly (such as 678 * as part of the "AES" alias). */ 679 680 add_this_cipher = (mask & (SSL_kECDHE|SSL_kECDH|SSL_aECDSA)) != 0 || cipher_id != 0; 681 } 682 683 if (add_this_cipher) 684 { 685 ll_append_tail(&head, curr, &tail); 686 curr->active = 1; 687 } 688 } 689 } 690 /* Move the added cipher to this location */ 691 else if (rule == CIPHER_ORD) 692 { 693 if (curr->active) 694 { 695 ll_append_tail(&head, curr, &tail); 696 } 697 } 698 else if (rule == CIPHER_DEL) 699 curr->active = 0; 700 else if (rule == CIPHER_KILL) 701 { 702 if (head == curr) 703 head = curr->next; 704 else 705 curr->prev->next = curr->next; 706 if (tail == curr) 707 tail = curr->prev; 708 curr->active = 0; 709 if (curr->next != NULL) 710 curr->next->prev = curr->prev; 711 if (curr->prev != NULL) 712 curr->prev->next = curr->next; 713 curr->next = NULL; 714 curr->prev = NULL; 715 } 716 } 717 718 *head_p = head; 719 *tail_p = tail; 720 } 721 722 static int ssl_cipher_strength_sort(CIPHER_ORDER *co_list, 723 CIPHER_ORDER **head_p, 724 CIPHER_ORDER **tail_p) 725 { 726 int max_strength_bits, i, *number_uses; 727 CIPHER_ORDER *curr; 728 729 /* 730 * This routine sorts the ciphers with descending strength. The sorting 731 * must keep the pre-sorted sequence, so we apply the normal sorting 732 * routine as '+' movement to the end of the list. 733 */ 734 max_strength_bits = 0; 735 curr = *head_p; 736 while (curr != NULL) 737 { 738 if (curr->active && 739 (curr->cipher->strength_bits > max_strength_bits)) 740 max_strength_bits = curr->cipher->strength_bits; 741 curr = curr->next; 742 } 743 744 number_uses = OPENSSL_malloc((max_strength_bits + 1) * sizeof(int)); 745 if (!number_uses) 746 { 747 SSLerr(SSL_F_SSL_CIPHER_STRENGTH_SORT,ERR_R_MALLOC_FAILURE); 748 return(0); 749 } 750 memset(number_uses, 0, (max_strength_bits + 1) * sizeof(int)); 751 752 /* 753 * Now find the strength_bits values actually used 754 */ 755 curr = *head_p; 756 while (curr != NULL) 757 { 758 if (curr->active) 759 number_uses[curr->cipher->strength_bits]++; 760 curr = curr->next; 761 } 762 /* 763 * Go through the list of used strength_bits values in descending 764 * order. 765 */ 766 for (i = max_strength_bits; i >= 0; i--) 767 if (number_uses[i] > 0) 768 ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, CIPHER_ORD, i, 769 co_list, head_p, tail_p); 770 771 OPENSSL_free(number_uses); 772 return(1); 773 } 774 775 static int ssl_cipher_process_rulestr(const char *rule_str, 776 CIPHER_ORDER *co_list, CIPHER_ORDER **head_p, 777 CIPHER_ORDER **tail_p, SSL_CIPHER **ca_list) 778 { 779 unsigned long algorithms, mask, algo_strength, mask_strength; 780 const char *l, *start, *buf; 781 int j, multi, found, rule, retval, ok, buflen; 782 unsigned long cipher_id = 0, ssl_version = 0; 783 char ch; 784 785 retval = 1; 786 l = rule_str; 787 for (;;) 788 { 789 ch = *l; 790 791 if (ch == '\0') 792 break; /* done */ 793 if (ch == '-') 794 { rule = CIPHER_DEL; l++; } 795 else if (ch == '+') 796 { rule = CIPHER_ORD; l++; } 797 else if (ch == '!') 798 { rule = CIPHER_KILL; l++; } 799 else if (ch == '@') 800 { rule = CIPHER_SPECIAL; l++; } 801 else 802 { rule = CIPHER_ADD; } 803 804 if (ITEM_SEP(ch)) 805 { 806 l++; 807 continue; 808 } 809 810 algorithms = mask = algo_strength = mask_strength = 0; 811 812 start=l; 813 for (;;) 814 { 815 ch = *l; 816 buf = l; 817 buflen = 0; 818 #ifndef CHARSET_EBCDIC 819 while ( ((ch >= 'A') && (ch <= 'Z')) || 820 ((ch >= '0') && (ch <= '9')) || 821 ((ch >= 'a') && (ch <= 'z')) || 822 (ch == '-')) 823 #else 824 while ( isalnum(ch) || (ch == '-')) 825 #endif 826 { 827 ch = *(++l); 828 buflen++; 829 } 830 831 if (buflen == 0) 832 { 833 /* 834 * We hit something we cannot deal with, 835 * it is no command or separator nor 836 * alphanumeric, so we call this an error. 837 */ 838 SSLerr(SSL_F_SSL_CIPHER_PROCESS_RULESTR, 839 SSL_R_INVALID_COMMAND); 840 retval = found = 0; 841 l++; 842 break; 843 } 844 845 if (rule == CIPHER_SPECIAL) 846 { 847 found = 0; /* unused -- avoid compiler warning */ 848 break; /* special treatment */ 849 } 850 851 /* check for multi-part specification */ 852 if (ch == '+') 853 { 854 multi=1; 855 l++; 856 } 857 else 858 multi=0; 859 860 /* 861 * Now search for the cipher alias in the ca_list. Be careful 862 * with the strncmp, because the "buflen" limitation 863 * will make the rule "ADH:SOME" and the cipher 864 * "ADH-MY-CIPHER" look like a match for buflen=3. 865 * So additionally check whether the cipher name found 866 * has the correct length. We can save a strlen() call: 867 * just checking for the '\0' at the right place is 868 * sufficient, we have to strncmp() anyway. (We cannot 869 * use strcmp(), because buf is not '\0' terminated.) 870 */ 871 j = found = 0; 872 cipher_id = 0; 873 ssl_version = 0; 874 while (ca_list[j]) 875 { 876 if (!strncmp(buf, ca_list[j]->name, buflen) && 877 (ca_list[j]->name[buflen] == '\0')) 878 { 879 found = 1; 880 break; 881 } 882 else 883 j++; 884 } 885 if (!found) 886 break; /* ignore this entry */ 887 888 /* New algorithms: 889 * 1 - any old restrictions apply outside new mask 890 * 2 - any new restrictions apply outside old mask 891 * 3 - enforce old & new where masks intersect 892 */ 893 algorithms = (algorithms & ~ca_list[j]->mask) | /* 1 */ 894 (ca_list[j]->algorithms & ~mask) | /* 2 */ 895 (algorithms & ca_list[j]->algorithms); /* 3 */ 896 mask |= ca_list[j]->mask; 897 algo_strength = (algo_strength & ~ca_list[j]->mask_strength) | 898 (ca_list[j]->algo_strength & ~mask_strength) | 899 (algo_strength & ca_list[j]->algo_strength); 900 mask_strength |= ca_list[j]->mask_strength; 901 902 /* explicit ciphersuite found */ 903 if (ca_list[j]->valid) 904 { 905 cipher_id = ca_list[j]->id; 906 ssl_version = ca_list[j]->algorithms & SSL_SSL_MASK; 907 break; 908 } 909 910 if (!multi) break; 911 } 912 913 /* 914 * Ok, we have the rule, now apply it 915 */ 916 if (rule == CIPHER_SPECIAL) 917 { /* special command */ 918 ok = 0; 919 if ((buflen == 8) && 920 !strncmp(buf, "STRENGTH", 8)) 921 ok = ssl_cipher_strength_sort(co_list, 922 head_p, tail_p); 923 else 924 SSLerr(SSL_F_SSL_CIPHER_PROCESS_RULESTR, 925 SSL_R_INVALID_COMMAND); 926 if (ok == 0) 927 retval = 0; 928 /* 929 * We do not support any "multi" options 930 * together with "@", so throw away the 931 * rest of the command, if any left, until 932 * end or ':' is found. 933 */ 934 while ((*l != '\0') && !ITEM_SEP(*l)) 935 l++; 936 } 937 else if (found) 938 { 939 ssl_cipher_apply_rule(cipher_id, ssl_version, algorithms, mask, 940 algo_strength, mask_strength, rule, -1, 941 co_list, head_p, tail_p); 942 } 943 else 944 { 945 while ((*l != '\0') && !ITEM_SEP(*l)) 946 l++; 947 } 948 if (*l == '\0') break; /* done */ 949 } 950 951 return(retval); 952 } 953 954 STACK_OF(SSL_CIPHER) *ssl_create_cipher_list(const SSL_METHOD *ssl_method, 955 STACK_OF(SSL_CIPHER) **cipher_list, 956 STACK_OF(SSL_CIPHER) **cipher_list_by_id, 957 const char *rule_str) 958 { 959 int ok, num_of_ciphers, num_of_alias_max, num_of_group_aliases; 960 unsigned long disabled_mask; 961 unsigned long disabled_m256; 962 STACK_OF(SSL_CIPHER) *cipherstack, *tmp_cipher_list; 963 const char *rule_p; 964 CIPHER_ORDER *co_list = NULL, *head = NULL, *tail = NULL, *curr; 965 SSL_CIPHER **ca_list = NULL; 966 967 /* 968 * Return with error if nothing to do. 969 */ 970 if (rule_str == NULL || cipher_list == NULL || cipher_list_by_id == NULL) 971 return NULL; 972 973 /* 974 * To reduce the work to do we only want to process the compiled 975 * in algorithms, so we first get the mask of disabled ciphers. 976 */ 977 { 978 struct disabled_masks d; 979 d = ssl_cipher_get_disabled(); 980 disabled_mask = d.mask; 981 disabled_m256 = d.m256; 982 } 983 984 /* 985 * Now we have to collect the available ciphers from the compiled 986 * in ciphers. We cannot get more than the number compiled in, so 987 * it is used for allocation. 988 */ 989 num_of_ciphers = ssl_method->num_ciphers(); 990 #ifdef KSSL_DEBUG 991 printf("ssl_create_cipher_list() for %d ciphers\n", num_of_ciphers); 992 #endif /* KSSL_DEBUG */ 993 co_list = (CIPHER_ORDER *)OPENSSL_malloc(sizeof(CIPHER_ORDER) * num_of_ciphers); 994 if (co_list == NULL) 995 { 996 SSLerr(SSL_F_SSL_CREATE_CIPHER_LIST,ERR_R_MALLOC_FAILURE); 997 return(NULL); /* Failure */ 998 } 999 1000 ssl_cipher_collect_ciphers(ssl_method, num_of_ciphers, disabled_mask, 1001 disabled_m256, co_list, &head, &tail); 1002 1003 /* 1004 * We also need cipher aliases for selecting based on the rule_str. 1005 * There might be two types of entries in the rule_str: 1) names 1006 * of ciphers themselves 2) aliases for groups of ciphers. 1007 * For 1) we need the available ciphers and for 2) the cipher 1008 * groups of cipher_aliases added together in one list (otherwise 1009 * we would be happy with just the cipher_aliases table). 1010 */ 1011 num_of_group_aliases = sizeof(cipher_aliases) / sizeof(SSL_CIPHER); 1012 num_of_alias_max = num_of_ciphers + num_of_group_aliases + 1; 1013 ca_list = 1014 (SSL_CIPHER **)OPENSSL_malloc(sizeof(SSL_CIPHER *) * num_of_alias_max); 1015 if (ca_list == NULL) 1016 { 1017 OPENSSL_free(co_list); 1018 SSLerr(SSL_F_SSL_CREATE_CIPHER_LIST,ERR_R_MALLOC_FAILURE); 1019 return(NULL); /* Failure */ 1020 } 1021 ssl_cipher_collect_aliases(ca_list, num_of_group_aliases, 1022 (disabled_mask & disabled_m256), head); 1023 1024 /* 1025 * If the rule_string begins with DEFAULT, apply the default rule 1026 * before using the (possibly available) additional rules. 1027 */ 1028 ok = 1; 1029 rule_p = rule_str; 1030 if (strncmp(rule_str,"DEFAULT",7) == 0) 1031 { 1032 ok = ssl_cipher_process_rulestr(SSL_DEFAULT_CIPHER_LIST, 1033 co_list, &head, &tail, ca_list); 1034 rule_p += 7; 1035 if (*rule_p == ':') 1036 rule_p++; 1037 } 1038 1039 if (ok && (strlen(rule_p) > 0)) 1040 ok = ssl_cipher_process_rulestr(rule_p, co_list, &head, &tail, 1041 ca_list); 1042 1043 OPENSSL_free(ca_list); /* Not needed anymore */ 1044 1045 if (!ok) 1046 { /* Rule processing failure */ 1047 OPENSSL_free(co_list); 1048 return(NULL); 1049 } 1050 /* 1051 * Allocate new "cipherstack" for the result, return with error 1052 * if we cannot get one. 1053 */ 1054 if ((cipherstack = sk_SSL_CIPHER_new_null()) == NULL) 1055 { 1056 OPENSSL_free(co_list); 1057 return(NULL); 1058 } 1059 1060 /* 1061 * The cipher selection for the list is done. The ciphers are added 1062 * to the resulting precedence to the STACK_OF(SSL_CIPHER). 1063 */ 1064 for (curr = head; curr != NULL; curr = curr->next) 1065 { 1066 #ifdef OPENSSL_FIPS 1067 if (curr->active && (!FIPS_mode() || curr->cipher->algo_strength & SSL_FIPS)) 1068 #else 1069 if (curr->active) 1070 #endif 1071 { 1072 sk_SSL_CIPHER_push(cipherstack, curr->cipher); 1073 #ifdef CIPHER_DEBUG 1074 printf("<%s>\n",curr->cipher->name); 1075 #endif 1076 } 1077 } 1078 OPENSSL_free(co_list); /* Not needed any longer */ 1079 1080 tmp_cipher_list = sk_SSL_CIPHER_dup(cipherstack); 1081 if (tmp_cipher_list == NULL) 1082 { 1083 sk_SSL_CIPHER_free(cipherstack); 1084 return NULL; 1085 } 1086 if (*cipher_list != NULL) 1087 sk_SSL_CIPHER_free(*cipher_list); 1088 *cipher_list = cipherstack; 1089 if (*cipher_list_by_id != NULL) 1090 sk_SSL_CIPHER_free(*cipher_list_by_id); 1091 *cipher_list_by_id = tmp_cipher_list; 1092 (void)sk_SSL_CIPHER_set_cmp_func(*cipher_list_by_id,ssl_cipher_ptr_id_cmp); 1093 1094 sk_SSL_CIPHER_sort(*cipher_list_by_id); 1095 return(cipherstack); 1096 } 1097 1098 char *SSL_CIPHER_description(const SSL_CIPHER *cipher, char *buf, int len) 1099 { 1100 int is_export,pkl,kl; 1101 const char *ver,*exp_str; 1102 const char *kx,*au,*enc,*mac; 1103 unsigned long alg,alg2,alg_s; 1104 #ifdef KSSL_DEBUG 1105 static const char *format="%-23s %s Kx=%-8s Au=%-4s Enc=%-9s Mac=%-4s%s AL=%lx\n"; 1106 #else 1107 static const char *format="%-23s %s Kx=%-8s Au=%-4s Enc=%-9s Mac=%-4s%s\n"; 1108 #endif /* KSSL_DEBUG */ 1109 1110 alg=cipher->algorithms; 1111 alg_s=cipher->algo_strength; 1112 alg2=cipher->algorithm2; 1113 1114 is_export=SSL_C_IS_EXPORT(cipher); 1115 pkl=SSL_C_EXPORT_PKEYLENGTH(cipher); 1116 kl=SSL_C_EXPORT_KEYLENGTH(cipher); 1117 exp_str=is_export?" export":""; 1118 1119 if (alg & SSL_SSLV2) 1120 ver="SSLv2"; 1121 else if (alg & SSL_SSLV3) 1122 ver="SSLv3"; 1123 else 1124 ver="unknown"; 1125 1126 switch (alg&SSL_MKEY_MASK) 1127 { 1128 case SSL_kRSA: 1129 kx=is_export?(pkl == 512 ? "RSA(512)" : "RSA(1024)"):"RSA"; 1130 break; 1131 case SSL_kDHr: 1132 kx="DH/RSA"; 1133 break; 1134 case SSL_kDHd: 1135 kx="DH/DSS"; 1136 break; 1137 case SSL_kKRB5: /* VRS */ 1138 case SSL_KRB5: /* VRS */ 1139 kx="KRB5"; 1140 break; 1141 case SSL_kFZA: 1142 kx="Fortezza"; 1143 break; 1144 case SSL_kEDH: 1145 kx=is_export?(pkl == 512 ? "DH(512)" : "DH(1024)"):"DH"; 1146 break; 1147 case SSL_kECDH: 1148 case SSL_kECDHE: 1149 kx=is_export?"ECDH(<=163)":"ECDH"; 1150 break; 1151 default: 1152 kx="unknown"; 1153 } 1154 1155 switch (alg&SSL_AUTH_MASK) 1156 { 1157 case SSL_aRSA: 1158 au="RSA"; 1159 break; 1160 case SSL_aDSS: 1161 au="DSS"; 1162 break; 1163 case SSL_aDH: 1164 au="DH"; 1165 break; 1166 case SSL_aKRB5: /* VRS */ 1167 case SSL_KRB5: /* VRS */ 1168 au="KRB5"; 1169 break; 1170 case SSL_aFZA: 1171 case SSL_aNULL: 1172 au="None"; 1173 break; 1174 case SSL_aECDSA: 1175 au="ECDSA"; 1176 break; 1177 default: 1178 au="unknown"; 1179 break; 1180 } 1181 1182 switch (alg&SSL_ENC_MASK) 1183 { 1184 case SSL_DES: 1185 enc=(is_export && kl == 5)?"DES(40)":"DES(56)"; 1186 break; 1187 case SSL_3DES: 1188 enc="3DES(168)"; 1189 break; 1190 case SSL_RC4: 1191 enc=is_export?(kl == 5 ? "RC4(40)" : "RC4(56)") 1192 :((alg2&SSL2_CF_8_BYTE_ENC)?"RC4(64)":"RC4(128)"); 1193 break; 1194 case SSL_RC2: 1195 enc=is_export?(kl == 5 ? "RC2(40)" : "RC2(56)"):"RC2(128)"; 1196 break; 1197 case SSL_IDEA: 1198 enc="IDEA(128)"; 1199 break; 1200 case SSL_eFZA: 1201 enc="Fortezza"; 1202 break; 1203 case SSL_eNULL: 1204 enc="None"; 1205 break; 1206 case SSL_AES: 1207 switch(cipher->strength_bits) 1208 { 1209 case 128: enc="AES(128)"; break; 1210 case 192: enc="AES(192)"; break; 1211 case 256: enc="AES(256)"; break; 1212 default: enc="AES(?""?""?)"; break; 1213 } 1214 break; 1215 case SSL_CAMELLIA: 1216 switch(cipher->strength_bits) 1217 { 1218 case 128: enc="Camellia(128)"; break; 1219 case 256: enc="Camellia(256)"; break; 1220 default: enc="Camellia(?""?""?)"; break; 1221 } 1222 break; 1223 case SSL_SEED: 1224 enc="SEED(128)"; 1225 break; 1226 1227 default: 1228 enc="unknown"; 1229 break; 1230 } 1231 1232 switch (alg&SSL_MAC_MASK) 1233 { 1234 case SSL_MD5: 1235 mac="MD5"; 1236 break; 1237 case SSL_SHA1: 1238 mac="SHA1"; 1239 break; 1240 default: 1241 mac="unknown"; 1242 break; 1243 } 1244 1245 if (buf == NULL) 1246 { 1247 len=128; 1248 buf=OPENSSL_malloc(len); 1249 if (buf == NULL) return("OPENSSL_malloc Error"); 1250 } 1251 else if (len < 128) 1252 return("Buffer too small"); 1253 1254 #ifdef KSSL_DEBUG 1255 BIO_snprintf(buf,len,format,cipher->name,ver,kx,au,enc,mac,exp_str,alg); 1256 #else 1257 BIO_snprintf(buf,len,format,cipher->name,ver,kx,au,enc,mac,exp_str); 1258 #endif /* KSSL_DEBUG */ 1259 return(buf); 1260 } 1261 1262 char *SSL_CIPHER_get_version(const SSL_CIPHER *c) 1263 { 1264 int i; 1265 1266 if (c == NULL) return("(NONE)"); 1267 i=(int)(c->id>>24L); 1268 if (i == 3) 1269 return("TLSv1/SSLv3"); 1270 else if (i == 2) 1271 return("SSLv2"); 1272 else 1273 return("unknown"); 1274 } 1275 1276 /* return the actual cipher being used */ 1277 const char *SSL_CIPHER_get_name(const SSL_CIPHER *c) 1278 { 1279 if (c != NULL) 1280 return(c->name); 1281 return("(NONE)"); 1282 } 1283 1284 /* number of bits for symmetric cipher */ 1285 int SSL_CIPHER_get_bits(const SSL_CIPHER *c, int *alg_bits) 1286 { 1287 int ret=0; 1288 1289 if (c != NULL) 1290 { 1291 if (alg_bits != NULL) *alg_bits = c->alg_bits; 1292 ret = c->strength_bits; 1293 } 1294 return(ret); 1295 } 1296 1297 SSL_COMP *ssl3_comp_find(STACK_OF(SSL_COMP) *sk, int n) 1298 { 1299 SSL_COMP *ctmp; 1300 int i,nn; 1301 1302 if ((n == 0) || (sk == NULL)) return(NULL); 1303 nn=sk_SSL_COMP_num(sk); 1304 for (i=0; i<nn; i++) 1305 { 1306 ctmp=sk_SSL_COMP_value(sk,i); 1307 if (ctmp->id == n) 1308 return(ctmp); 1309 } 1310 return(NULL); 1311 } 1312 1313 #ifdef OPENSSL_NO_COMP 1314 void *SSL_COMP_get_compression_methods(void) 1315 { 1316 return NULL; 1317 } 1318 int SSL_COMP_add_compression_method(int id, void *cm) 1319 { 1320 return 1; 1321 } 1322 1323 const char *SSL_COMP_get_name(const void *comp) 1324 { 1325 return NULL; 1326 } 1327 #else 1328 STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void) 1329 { 1330 load_builtin_compressions(); 1331 return(ssl_comp_methods); 1332 } 1333 1334 int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm) 1335 { 1336 SSL_COMP *comp; 1337 1338 if (cm == NULL || cm->type == NID_undef) 1339 return 1; 1340 1341 /* According to draft-ietf-tls-compression-04.txt, the 1342 compression number ranges should be the following: 1343 1344 0 to 63: methods defined by the IETF 1345 64 to 192: external party methods assigned by IANA 1346 193 to 255: reserved for private use */ 1347 if (id < 193 || id > 255) 1348 { 1349 SSLerr(SSL_F_SSL_COMP_ADD_COMPRESSION_METHOD,SSL_R_COMPRESSION_ID_NOT_WITHIN_PRIVATE_RANGE); 1350 return 0; 1351 } 1352 1353 MemCheck_off(); 1354 comp=(SSL_COMP *)OPENSSL_malloc(sizeof(SSL_COMP)); 1355 comp->id=id; 1356 comp->method=cm; 1357 load_builtin_compressions(); 1358 if (ssl_comp_methods 1359 && sk_SSL_COMP_find(ssl_comp_methods,comp) >= 0) 1360 { 1361 OPENSSL_free(comp); 1362 MemCheck_on(); 1363 SSLerr(SSL_F_SSL_COMP_ADD_COMPRESSION_METHOD,SSL_R_DUPLICATE_COMPRESSION_ID); 1364 return(1); 1365 } 1366 else if ((ssl_comp_methods == NULL) 1367 || !sk_SSL_COMP_push(ssl_comp_methods,comp)) 1368 { 1369 OPENSSL_free(comp); 1370 MemCheck_on(); 1371 SSLerr(SSL_F_SSL_COMP_ADD_COMPRESSION_METHOD,ERR_R_MALLOC_FAILURE); 1372 return(1); 1373 } 1374 else 1375 { 1376 MemCheck_on(); 1377 return(0); 1378 } 1379 } 1380 1381 const char *SSL_COMP_get_name(const COMP_METHOD *comp) 1382 { 1383 if (comp) 1384 return comp->name; 1385 return NULL; 1386 } 1387 1388 #endif 1389