xref: /freebsd/crypto/openssl/ssl/ssl_ciph.c (revision 35c0a8c449fd2b7f75029ebed5e10852240f0865)
1 /*
2  * Copyright 1995-2022 The OpenSSL Project Authors. All Rights Reserved.
3  * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
4  * Copyright 2005 Nokia. All rights reserved.
5  *
6  * Licensed under the Apache License 2.0 (the "License").  You may not use
7  * this file except in compliance with the License.  You can obtain a copy
8  * in the file LICENSE in the source distribution or at
9  * https://www.openssl.org/source/license.html
10  */
11 
12 #include <stdio.h>
13 #include <ctype.h>
14 #include <openssl/objects.h>
15 #include <openssl/comp.h>
16 #include <openssl/engine.h>
17 #include <openssl/crypto.h>
18 #include <openssl/conf.h>
19 #include <openssl/trace.h>
20 #include "internal/nelem.h"
21 #include "ssl_local.h"
22 #include "internal/thread_once.h"
23 #include "internal/cryptlib.h"
24 
25 /* NB: make sure indices in these tables match values above */
26 
27 typedef struct {
28     uint32_t mask;
29     int nid;
30 } ssl_cipher_table;
31 
32 /* Table of NIDs for each cipher */
33 static const ssl_cipher_table ssl_cipher_table_cipher[SSL_ENC_NUM_IDX] = {
34     {SSL_DES, NID_des_cbc},     /* SSL_ENC_DES_IDX 0 */
35     {SSL_3DES, NID_des_ede3_cbc}, /* SSL_ENC_3DES_IDX 1 */
36     {SSL_RC4, NID_rc4},         /* SSL_ENC_RC4_IDX 2 */
37     {SSL_RC2, NID_rc2_cbc},     /* SSL_ENC_RC2_IDX 3 */
38     {SSL_IDEA, NID_idea_cbc},   /* SSL_ENC_IDEA_IDX 4 */
39     {SSL_eNULL, NID_undef},     /* SSL_ENC_NULL_IDX 5 */
40     {SSL_AES128, NID_aes_128_cbc}, /* SSL_ENC_AES128_IDX 6 */
41     {SSL_AES256, NID_aes_256_cbc}, /* SSL_ENC_AES256_IDX 7 */
42     {SSL_CAMELLIA128, NID_camellia_128_cbc}, /* SSL_ENC_CAMELLIA128_IDX 8 */
43     {SSL_CAMELLIA256, NID_camellia_256_cbc}, /* SSL_ENC_CAMELLIA256_IDX 9 */
44     {SSL_eGOST2814789CNT, NID_gost89_cnt}, /* SSL_ENC_GOST89_IDX 10 */
45     {SSL_SEED, NID_seed_cbc},   /* SSL_ENC_SEED_IDX 11 */
46     {SSL_AES128GCM, NID_aes_128_gcm}, /* SSL_ENC_AES128GCM_IDX 12 */
47     {SSL_AES256GCM, NID_aes_256_gcm}, /* SSL_ENC_AES256GCM_IDX 13 */
48     {SSL_AES128CCM, NID_aes_128_ccm}, /* SSL_ENC_AES128CCM_IDX 14 */
49     {SSL_AES256CCM, NID_aes_256_ccm}, /* SSL_ENC_AES256CCM_IDX 15 */
50     {SSL_AES128CCM8, NID_aes_128_ccm}, /* SSL_ENC_AES128CCM8_IDX 16 */
51     {SSL_AES256CCM8, NID_aes_256_ccm}, /* SSL_ENC_AES256CCM8_IDX 17 */
52     {SSL_eGOST2814789CNT12, NID_gost89_cnt_12}, /* SSL_ENC_GOST8912_IDX 18 */
53     {SSL_CHACHA20POLY1305, NID_chacha20_poly1305}, /* SSL_ENC_CHACHA_IDX 19 */
54     {SSL_ARIA128GCM, NID_aria_128_gcm}, /* SSL_ENC_ARIA128GCM_IDX 20 */
55     {SSL_ARIA256GCM, NID_aria_256_gcm}, /* SSL_ENC_ARIA256GCM_IDX 21 */
56     {SSL_MAGMA, NID_magma_ctr_acpkm}, /* SSL_ENC_MAGMA_IDX */
57     {SSL_KUZNYECHIK, NID_kuznyechik_ctr_acpkm}, /* SSL_ENC_KUZNYECHIK_IDX */
58 };
59 
60 #define SSL_COMP_NULL_IDX       0
61 #define SSL_COMP_ZLIB_IDX       1
62 #define SSL_COMP_NUM_IDX        2
63 
64 static STACK_OF(SSL_COMP) *ssl_comp_methods = NULL;
65 
66 #ifndef OPENSSL_NO_COMP
67 static CRYPTO_ONCE ssl_load_builtin_comp_once = CRYPTO_ONCE_STATIC_INIT;
68 #endif
69 
70 /* NB: make sure indices in this table matches values above */
71 static const ssl_cipher_table ssl_cipher_table_mac[SSL_MD_NUM_IDX] = {
72     {SSL_MD5, NID_md5},         /* SSL_MD_MD5_IDX 0 */
73     {SSL_SHA1, NID_sha1},       /* SSL_MD_SHA1_IDX 1 */
74     {SSL_GOST94, NID_id_GostR3411_94}, /* SSL_MD_GOST94_IDX 2 */
75     {SSL_GOST89MAC, NID_id_Gost28147_89_MAC}, /* SSL_MD_GOST89MAC_IDX 3 */
76     {SSL_SHA256, NID_sha256},   /* SSL_MD_SHA256_IDX 4 */
77     {SSL_SHA384, NID_sha384},   /* SSL_MD_SHA384_IDX 5 */
78     {SSL_GOST12_256, NID_id_GostR3411_2012_256}, /* SSL_MD_GOST12_256_IDX 6 */
79     {SSL_GOST89MAC12, NID_gost_mac_12}, /* SSL_MD_GOST89MAC12_IDX 7 */
80     {SSL_GOST12_512, NID_id_GostR3411_2012_512}, /* SSL_MD_GOST12_512_IDX 8 */
81     {0, NID_md5_sha1},          /* SSL_MD_MD5_SHA1_IDX 9 */
82     {0, NID_sha224},            /* SSL_MD_SHA224_IDX 10 */
83     {0, NID_sha512},            /* SSL_MD_SHA512_IDX 11 */
84     {SSL_MAGMAOMAC, NID_magma_mac}, /* sSL_MD_MAGMAOMAC_IDX */
85     {SSL_KUZNYECHIKOMAC, NID_kuznyechik_mac} /* SSL_MD_KUZNYECHIKOMAC_IDX */
86 };
87 
88 /* *INDENT-OFF* */
89 static const ssl_cipher_table ssl_cipher_table_kx[] = {
90     {SSL_kRSA,      NID_kx_rsa},
91     {SSL_kECDHE,    NID_kx_ecdhe},
92     {SSL_kDHE,      NID_kx_dhe},
93     {SSL_kECDHEPSK, NID_kx_ecdhe_psk},
94     {SSL_kDHEPSK,   NID_kx_dhe_psk},
95     {SSL_kRSAPSK,   NID_kx_rsa_psk},
96     {SSL_kPSK,      NID_kx_psk},
97     {SSL_kSRP,      NID_kx_srp},
98     {SSL_kGOST,     NID_kx_gost},
99     {SSL_kGOST18,   NID_kx_gost18},
100     {SSL_kANY,      NID_kx_any}
101 };
102 
103 static const ssl_cipher_table ssl_cipher_table_auth[] = {
104     {SSL_aRSA,    NID_auth_rsa},
105     {SSL_aECDSA,  NID_auth_ecdsa},
106     {SSL_aPSK,    NID_auth_psk},
107     {SSL_aDSS,    NID_auth_dss},
108     {SSL_aGOST01, NID_auth_gost01},
109     {SSL_aGOST12, NID_auth_gost12},
110     {SSL_aSRP,    NID_auth_srp},
111     {SSL_aNULL,   NID_auth_null},
112     {SSL_aANY,    NID_auth_any}
113 };
114 /* *INDENT-ON* */
115 
116 /* Utility function for table lookup */
117 static int ssl_cipher_info_find(const ssl_cipher_table * table,
118                                 size_t table_cnt, uint32_t mask)
119 {
120     size_t i;
121     for (i = 0; i < table_cnt; i++, table++) {
122         if (table->mask == mask)
123             return (int)i;
124     }
125     return -1;
126 }
127 
128 #define ssl_cipher_info_lookup(table, x) \
129     ssl_cipher_info_find(table, OSSL_NELEM(table), x)
130 
131 /*
132  * PKEY_TYPE for GOST89MAC is known in advance, but, because implementation
133  * is engine-provided, we'll fill it only if corresponding EVP_PKEY_METHOD is
134  * found
135  */
136 static const int default_mac_pkey_id[SSL_MD_NUM_IDX] = {
137     /* MD5, SHA, GOST94, MAC89 */
138     EVP_PKEY_HMAC, EVP_PKEY_HMAC, EVP_PKEY_HMAC, NID_undef,
139     /* SHA256, SHA384, GOST2012_256, MAC89-12 */
140     EVP_PKEY_HMAC, EVP_PKEY_HMAC, EVP_PKEY_HMAC, NID_undef,
141     /* GOST2012_512 */
142     EVP_PKEY_HMAC,
143     /* MD5/SHA1, SHA224, SHA512, MAGMAOMAC, KUZNYECHIKOMAC */
144     NID_undef, NID_undef, NID_undef, NID_undef, NID_undef
145 };
146 
147 #define CIPHER_ADD      1
148 #define CIPHER_KILL     2
149 #define CIPHER_DEL      3
150 #define CIPHER_ORD      4
151 #define CIPHER_SPECIAL  5
152 /*
153  * Bump the ciphers to the top of the list.
154  * This rule isn't currently supported by the public cipherstring API.
155  */
156 #define CIPHER_BUMP     6
157 
158 typedef struct cipher_order_st {
159     const SSL_CIPHER *cipher;
160     int active;
161     int dead;
162     struct cipher_order_st *next, *prev;
163 } CIPHER_ORDER;
164 
165 static const SSL_CIPHER cipher_aliases[] = {
166     /* "ALL" doesn't include eNULL (must be specifically enabled) */
167     {0, SSL_TXT_ALL, NULL, 0, 0, 0, ~SSL_eNULL},
168     /* "COMPLEMENTOFALL" */
169     {0, SSL_TXT_CMPALL, NULL, 0, 0, 0, SSL_eNULL},
170 
171     /*
172      * "COMPLEMENTOFDEFAULT" (does *not* include ciphersuites not found in
173      * ALL!)
174      */
175     {0, SSL_TXT_CMPDEF, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_NOT_DEFAULT},
176 
177     /*
178      * key exchange aliases (some of those using only a single bit here
179      * combine multiple key exchange algs according to the RFCs, e.g. kDHE
180      * combines DHE_DSS and DHE_RSA)
181      */
182     {0, SSL_TXT_kRSA, NULL, 0, SSL_kRSA},
183 
184     {0, SSL_TXT_kEDH, NULL, 0, SSL_kDHE},
185     {0, SSL_TXT_kDHE, NULL, 0, SSL_kDHE},
186     {0, SSL_TXT_DH, NULL, 0, SSL_kDHE},
187 
188     {0, SSL_TXT_kEECDH, NULL, 0, SSL_kECDHE},
189     {0, SSL_TXT_kECDHE, NULL, 0, SSL_kECDHE},
190     {0, SSL_TXT_ECDH, NULL, 0, SSL_kECDHE},
191 
192     {0, SSL_TXT_kPSK, NULL, 0, SSL_kPSK},
193     {0, SSL_TXT_kRSAPSK, NULL, 0, SSL_kRSAPSK},
194     {0, SSL_TXT_kECDHEPSK, NULL, 0, SSL_kECDHEPSK},
195     {0, SSL_TXT_kDHEPSK, NULL, 0, SSL_kDHEPSK},
196     {0, SSL_TXT_kSRP, NULL, 0, SSL_kSRP},
197     {0, SSL_TXT_kGOST, NULL, 0, SSL_kGOST},
198     {0, SSL_TXT_kGOST18, NULL, 0, SSL_kGOST18},
199 
200     /* server authentication aliases */
201     {0, SSL_TXT_aRSA, NULL, 0, 0, SSL_aRSA},
202     {0, SSL_TXT_aDSS, NULL, 0, 0, SSL_aDSS},
203     {0, SSL_TXT_DSS, NULL, 0, 0, SSL_aDSS},
204     {0, SSL_TXT_aNULL, NULL, 0, 0, SSL_aNULL},
205     {0, SSL_TXT_aECDSA, NULL, 0, 0, SSL_aECDSA},
206     {0, SSL_TXT_ECDSA, NULL, 0, 0, SSL_aECDSA},
207     {0, SSL_TXT_aPSK, NULL, 0, 0, SSL_aPSK},
208     {0, SSL_TXT_aGOST01, NULL, 0, 0, SSL_aGOST01},
209     {0, SSL_TXT_aGOST12, NULL, 0, 0, SSL_aGOST12},
210     {0, SSL_TXT_aGOST, NULL, 0, 0, SSL_aGOST01 | SSL_aGOST12},
211     {0, SSL_TXT_aSRP, NULL, 0, 0, SSL_aSRP},
212 
213     /* aliases combining key exchange and server authentication */
214     {0, SSL_TXT_EDH, NULL, 0, SSL_kDHE, ~SSL_aNULL},
215     {0, SSL_TXT_DHE, NULL, 0, SSL_kDHE, ~SSL_aNULL},
216     {0, SSL_TXT_EECDH, NULL, 0, SSL_kECDHE, ~SSL_aNULL},
217     {0, SSL_TXT_ECDHE, NULL, 0, SSL_kECDHE, ~SSL_aNULL},
218     {0, SSL_TXT_NULL, NULL, 0, 0, 0, SSL_eNULL},
219     {0, SSL_TXT_RSA, NULL, 0, SSL_kRSA, SSL_aRSA},
220     {0, SSL_TXT_ADH, NULL, 0, SSL_kDHE, SSL_aNULL},
221     {0, SSL_TXT_AECDH, NULL, 0, SSL_kECDHE, SSL_aNULL},
222     {0, SSL_TXT_PSK, NULL, 0, SSL_PSK},
223     {0, SSL_TXT_SRP, NULL, 0, SSL_kSRP},
224 
225     /* symmetric encryption aliases */
226     {0, SSL_TXT_3DES, NULL, 0, 0, 0, SSL_3DES},
227     {0, SSL_TXT_RC4, NULL, 0, 0, 0, SSL_RC4},
228     {0, SSL_TXT_RC2, NULL, 0, 0, 0, SSL_RC2},
229     {0, SSL_TXT_IDEA, NULL, 0, 0, 0, SSL_IDEA},
230     {0, SSL_TXT_SEED, NULL, 0, 0, 0, SSL_SEED},
231     {0, SSL_TXT_eNULL, NULL, 0, 0, 0, SSL_eNULL},
232     {0, SSL_TXT_GOST, NULL, 0, 0, 0,
233      SSL_eGOST2814789CNT | SSL_eGOST2814789CNT12 | SSL_MAGMA | SSL_KUZNYECHIK},
234     {0, SSL_TXT_AES128, NULL, 0, 0, 0,
235      SSL_AES128 | SSL_AES128GCM | SSL_AES128CCM | SSL_AES128CCM8},
236     {0, SSL_TXT_AES256, NULL, 0, 0, 0,
237      SSL_AES256 | SSL_AES256GCM | SSL_AES256CCM | SSL_AES256CCM8},
238     {0, SSL_TXT_AES, NULL, 0, 0, 0, SSL_AES},
239     {0, SSL_TXT_AES_GCM, NULL, 0, 0, 0, SSL_AES128GCM | SSL_AES256GCM},
240     {0, SSL_TXT_AES_CCM, NULL, 0, 0, 0,
241      SSL_AES128CCM | SSL_AES256CCM | SSL_AES128CCM8 | SSL_AES256CCM8},
242     {0, SSL_TXT_AES_CCM_8, NULL, 0, 0, 0, SSL_AES128CCM8 | SSL_AES256CCM8},
243     {0, SSL_TXT_CAMELLIA128, NULL, 0, 0, 0, SSL_CAMELLIA128},
244     {0, SSL_TXT_CAMELLIA256, NULL, 0, 0, 0, SSL_CAMELLIA256},
245     {0, SSL_TXT_CAMELLIA, NULL, 0, 0, 0, SSL_CAMELLIA},
246     {0, SSL_TXT_CHACHA20, NULL, 0, 0, 0, SSL_CHACHA20},
247     {0, SSL_TXT_GOST2012_GOST8912_GOST8912, NULL, 0, 0, 0, SSL_eGOST2814789CNT12},
248 
249     {0, SSL_TXT_ARIA, NULL, 0, 0, 0, SSL_ARIA},
250     {0, SSL_TXT_ARIA_GCM, NULL, 0, 0, 0, SSL_ARIA128GCM | SSL_ARIA256GCM},
251     {0, SSL_TXT_ARIA128, NULL, 0, 0, 0, SSL_ARIA128GCM},
252     {0, SSL_TXT_ARIA256, NULL, 0, 0, 0, SSL_ARIA256GCM},
253     {0, SSL_TXT_CBC, NULL, 0, 0, 0, SSL_CBC},
254 
255     /* MAC aliases */
256     {0, SSL_TXT_MD5, NULL, 0, 0, 0, 0, SSL_MD5},
257     {0, SSL_TXT_SHA1, NULL, 0, 0, 0, 0, SSL_SHA1},
258     {0, SSL_TXT_SHA, NULL, 0, 0, 0, 0, SSL_SHA1},
259     {0, SSL_TXT_GOST94, NULL, 0, 0, 0, 0, SSL_GOST94},
260     {0, SSL_TXT_GOST89MAC, NULL, 0, 0, 0, 0, SSL_GOST89MAC | SSL_GOST89MAC12},
261     {0, SSL_TXT_SHA256, NULL, 0, 0, 0, 0, SSL_SHA256},
262     {0, SSL_TXT_SHA384, NULL, 0, 0, 0, 0, SSL_SHA384},
263     {0, SSL_TXT_GOST12, NULL, 0, 0, 0, 0, SSL_GOST12_256},
264 
265     /* protocol version aliases */
266     {0, SSL_TXT_SSLV3, NULL, 0, 0, 0, 0, 0, SSL3_VERSION},
267     {0, SSL_TXT_TLSV1, NULL, 0, 0, 0, 0, 0, TLS1_VERSION},
268     {0, "TLSv1.0", NULL, 0, 0, 0, 0, 0, TLS1_VERSION},
269     {0, SSL_TXT_TLSV1_2, NULL, 0, 0, 0, 0, 0, TLS1_2_VERSION},
270 
271     /* strength classes */
272     {0, SSL_TXT_LOW, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_LOW},
273     {0, SSL_TXT_MEDIUM, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_MEDIUM},
274     {0, SSL_TXT_HIGH, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_HIGH},
275     /* FIPS 140-2 approved ciphersuite */
276     {0, SSL_TXT_FIPS, NULL, 0, 0, 0, ~SSL_eNULL, 0, 0, 0, 0, 0, SSL_FIPS},
277 
278     /* "EDH-" aliases to "DHE-" labels (for backward compatibility) */
279     {0, SSL3_TXT_EDH_DSS_DES_192_CBC3_SHA, NULL, 0,
280      SSL_kDHE, SSL_aDSS, SSL_3DES, SSL_SHA1, 0, 0, 0, 0, SSL_HIGH | SSL_FIPS},
281     {0, SSL3_TXT_EDH_RSA_DES_192_CBC3_SHA, NULL, 0,
282      SSL_kDHE, SSL_aRSA, SSL_3DES, SSL_SHA1, 0, 0, 0, 0, SSL_HIGH | SSL_FIPS},
283 
284 };
285 
286 /*
287  * Search for public key algorithm with given name and return its pkey_id if
288  * it is available. Otherwise return 0
289  */
290 #ifdef OPENSSL_NO_ENGINE
291 
292 static int get_optional_pkey_id(const char *pkey_name)
293 {
294     const EVP_PKEY_ASN1_METHOD *ameth;
295     int pkey_id = 0;
296     ameth = EVP_PKEY_asn1_find_str(NULL, pkey_name, -1);
297     if (ameth && EVP_PKEY_asn1_get0_info(&pkey_id, NULL, NULL, NULL, NULL,
298                                          ameth) > 0)
299         return pkey_id;
300     return 0;
301 }
302 
303 #else
304 
305 static int get_optional_pkey_id(const char *pkey_name)
306 {
307     const EVP_PKEY_ASN1_METHOD *ameth;
308     ENGINE *tmpeng = NULL;
309     int pkey_id = 0;
310     ameth = EVP_PKEY_asn1_find_str(&tmpeng, pkey_name, -1);
311     if (ameth) {
312         if (EVP_PKEY_asn1_get0_info(&pkey_id, NULL, NULL, NULL, NULL,
313                                     ameth) <= 0)
314             pkey_id = 0;
315     }
316     tls_engine_finish(tmpeng);
317     return pkey_id;
318 }
319 
320 #endif
321 
322 int ssl_load_ciphers(SSL_CTX *ctx)
323 {
324     size_t i;
325     const ssl_cipher_table *t;
326     EVP_KEYEXCH *kex = NULL;
327     EVP_SIGNATURE *sig = NULL;
328 
329     ctx->disabled_enc_mask = 0;
330     for (i = 0, t = ssl_cipher_table_cipher; i < SSL_ENC_NUM_IDX; i++, t++) {
331         if (t->nid != NID_undef) {
332             const EVP_CIPHER *cipher
333                 = ssl_evp_cipher_fetch(ctx->libctx, t->nid, ctx->propq);
334 
335             ctx->ssl_cipher_methods[i] = cipher;
336             if (cipher == NULL)
337                 ctx->disabled_enc_mask |= t->mask;
338         }
339     }
340     ctx->disabled_mac_mask = 0;
341     for (i = 0, t = ssl_cipher_table_mac; i < SSL_MD_NUM_IDX; i++, t++) {
342         const EVP_MD *md
343             = ssl_evp_md_fetch(ctx->libctx, t->nid, ctx->propq);
344 
345         ctx->ssl_digest_methods[i] = md;
346         if (md == NULL) {
347             ctx->disabled_mac_mask |= t->mask;
348         } else {
349             int tmpsize = EVP_MD_get_size(md);
350             if (!ossl_assert(tmpsize >= 0))
351                 return 0;
352             ctx->ssl_mac_secret_size[i] = tmpsize;
353         }
354     }
355 
356     ctx->disabled_mkey_mask = 0;
357     ctx->disabled_auth_mask = 0;
358 
359     /*
360      * We ignore any errors from the fetches below. They are expected to fail
361      * if theose algorithms are not available.
362      */
363     ERR_set_mark();
364     sig = EVP_SIGNATURE_fetch(ctx->libctx, "DSA", ctx->propq);
365     if (sig == NULL)
366         ctx->disabled_auth_mask |= SSL_aDSS;
367     else
368         EVP_SIGNATURE_free(sig);
369     kex = EVP_KEYEXCH_fetch(ctx->libctx, "DH", ctx->propq);
370     if (kex == NULL)
371         ctx->disabled_mkey_mask |= SSL_kDHE | SSL_kDHEPSK;
372     else
373         EVP_KEYEXCH_free(kex);
374     kex = EVP_KEYEXCH_fetch(ctx->libctx, "ECDH", ctx->propq);
375     if (kex == NULL)
376         ctx->disabled_mkey_mask |= SSL_kECDHE | SSL_kECDHEPSK;
377     else
378         EVP_KEYEXCH_free(kex);
379     sig = EVP_SIGNATURE_fetch(ctx->libctx, "ECDSA", ctx->propq);
380     if (sig == NULL)
381         ctx->disabled_auth_mask |= SSL_aECDSA;
382     else
383         EVP_SIGNATURE_free(sig);
384     ERR_pop_to_mark();
385 
386 #ifdef OPENSSL_NO_PSK
387     ctx->disabled_mkey_mask |= SSL_PSK;
388     ctx->disabled_auth_mask |= SSL_aPSK;
389 #endif
390 #ifdef OPENSSL_NO_SRP
391     ctx->disabled_mkey_mask |= SSL_kSRP;
392 #endif
393 
394     /*
395      * Check for presence of GOST 34.10 algorithms, and if they are not
396      * present, disable appropriate auth and key exchange
397      */
398     memcpy(ctx->ssl_mac_pkey_id, default_mac_pkey_id,
399            sizeof(ctx->ssl_mac_pkey_id));
400 
401     ctx->ssl_mac_pkey_id[SSL_MD_GOST89MAC_IDX] =
402         get_optional_pkey_id(SN_id_Gost28147_89_MAC);
403     if (ctx->ssl_mac_pkey_id[SSL_MD_GOST89MAC_IDX])
404         ctx->ssl_mac_secret_size[SSL_MD_GOST89MAC_IDX] = 32;
405     else
406         ctx->disabled_mac_mask |= SSL_GOST89MAC;
407 
408     ctx->ssl_mac_pkey_id[SSL_MD_GOST89MAC12_IDX] =
409         get_optional_pkey_id(SN_gost_mac_12);
410     if (ctx->ssl_mac_pkey_id[SSL_MD_GOST89MAC12_IDX])
411         ctx->ssl_mac_secret_size[SSL_MD_GOST89MAC12_IDX] = 32;
412     else
413         ctx->disabled_mac_mask |= SSL_GOST89MAC12;
414 
415     ctx->ssl_mac_pkey_id[SSL_MD_MAGMAOMAC_IDX] =
416         get_optional_pkey_id(SN_magma_mac);
417     if (ctx->ssl_mac_pkey_id[SSL_MD_MAGMAOMAC_IDX])
418         ctx->ssl_mac_secret_size[SSL_MD_MAGMAOMAC_IDX] = 32;
419     else
420         ctx->disabled_mac_mask |= SSL_MAGMAOMAC;
421 
422     ctx->ssl_mac_pkey_id[SSL_MD_KUZNYECHIKOMAC_IDX] =
423         get_optional_pkey_id(SN_kuznyechik_mac);
424     if (ctx->ssl_mac_pkey_id[SSL_MD_KUZNYECHIKOMAC_IDX])
425         ctx->ssl_mac_secret_size[SSL_MD_KUZNYECHIKOMAC_IDX] = 32;
426     else
427         ctx->disabled_mac_mask |= SSL_KUZNYECHIKOMAC;
428 
429     if (!get_optional_pkey_id(SN_id_GostR3410_2001))
430         ctx->disabled_auth_mask |= SSL_aGOST01 | SSL_aGOST12;
431     if (!get_optional_pkey_id(SN_id_GostR3410_2012_256))
432         ctx->disabled_auth_mask |= SSL_aGOST12;
433     if (!get_optional_pkey_id(SN_id_GostR3410_2012_512))
434         ctx->disabled_auth_mask |= SSL_aGOST12;
435     /*
436      * Disable GOST key exchange if no GOST signature algs are available *
437      */
438     if ((ctx->disabled_auth_mask & (SSL_aGOST01 | SSL_aGOST12)) ==
439         (SSL_aGOST01 | SSL_aGOST12))
440         ctx->disabled_mkey_mask |= SSL_kGOST;
441 
442     if ((ctx->disabled_auth_mask & SSL_aGOST12) ==  SSL_aGOST12)
443         ctx->disabled_mkey_mask |= SSL_kGOST18;
444 
445     return 1;
446 }
447 
448 #ifndef OPENSSL_NO_COMP
449 
450 static int sk_comp_cmp(const SSL_COMP *const *a, const SSL_COMP *const *b)
451 {
452     return ((*a)->id - (*b)->id);
453 }
454 
455 DEFINE_RUN_ONCE_STATIC(do_load_builtin_compressions)
456 {
457     SSL_COMP *comp = NULL;
458     COMP_METHOD *method = COMP_zlib();
459 
460     ssl_comp_methods = sk_SSL_COMP_new(sk_comp_cmp);
461 
462     if (COMP_get_type(method) != NID_undef && ssl_comp_methods != NULL) {
463         comp = OPENSSL_malloc(sizeof(*comp));
464         if (comp != NULL) {
465             comp->method = method;
466             comp->id = SSL_COMP_ZLIB_IDX;
467             comp->name = COMP_get_name(method);
468             if (!sk_SSL_COMP_push(ssl_comp_methods, comp))
469                 OPENSSL_free(comp);
470             sk_SSL_COMP_sort(ssl_comp_methods);
471         }
472     }
473     return 1;
474 }
475 
476 static int load_builtin_compressions(void)
477 {
478     return RUN_ONCE(&ssl_load_builtin_comp_once, do_load_builtin_compressions);
479 }
480 #endif
481 
482 int ssl_cipher_get_evp_cipher(SSL_CTX *ctx, const SSL_CIPHER *sslc,
483                               const EVP_CIPHER **enc)
484 {
485     int i = ssl_cipher_info_lookup(ssl_cipher_table_cipher, sslc->algorithm_enc);
486 
487     if (i == -1) {
488         *enc = NULL;
489     } else {
490         if (i == SSL_ENC_NULL_IDX) {
491             /*
492              * We assume we don't care about this coming from an ENGINE so
493              * just do a normal EVP_CIPHER_fetch instead of
494              * ssl_evp_cipher_fetch()
495              */
496             *enc = EVP_CIPHER_fetch(ctx->libctx, "NULL", ctx->propq);
497             if (*enc == NULL)
498                 return 0;
499         } else {
500             const EVP_CIPHER *cipher = ctx->ssl_cipher_methods[i];
501 
502             if (cipher == NULL
503                     || !ssl_evp_cipher_up_ref(cipher))
504                 return 0;
505             *enc = ctx->ssl_cipher_methods[i];
506         }
507     }
508     return 1;
509 }
510 
511 int ssl_cipher_get_evp(SSL_CTX *ctx, const SSL_SESSION *s,
512                        const EVP_CIPHER **enc, const EVP_MD **md,
513                        int *mac_pkey_type, size_t *mac_secret_size,
514                        SSL_COMP **comp, int use_etm)
515 {
516     int i;
517     const SSL_CIPHER *c;
518 
519     c = s->cipher;
520     if (c == NULL)
521         return 0;
522     if (comp != NULL) {
523         SSL_COMP ctmp;
524 #ifndef OPENSSL_NO_COMP
525         if (!load_builtin_compressions()) {
526             /*
527              * Currently don't care, since a failure only means that
528              * ssl_comp_methods is NULL, which is perfectly OK
529              */
530         }
531 #endif
532         *comp = NULL;
533         ctmp.id = s->compress_meth;
534         if (ssl_comp_methods != NULL) {
535             i = sk_SSL_COMP_find(ssl_comp_methods, &ctmp);
536             if (i >= 0)
537                 *comp = sk_SSL_COMP_value(ssl_comp_methods, i);
538         }
539         /* If were only interested in comp then return success */
540         if ((enc == NULL) && (md == NULL))
541             return 1;
542     }
543 
544     if ((enc == NULL) || (md == NULL))
545         return 0;
546 
547     if (!ssl_cipher_get_evp_cipher(ctx, c, enc))
548         return 0;
549 
550     i = ssl_cipher_info_lookup(ssl_cipher_table_mac, c->algorithm_mac);
551     if (i == -1) {
552         *md = NULL;
553         if (mac_pkey_type != NULL)
554             *mac_pkey_type = NID_undef;
555         if (mac_secret_size != NULL)
556             *mac_secret_size = 0;
557         if (c->algorithm_mac == SSL_AEAD)
558             mac_pkey_type = NULL;
559     } else {
560         const EVP_MD *digest = ctx->ssl_digest_methods[i];
561 
562         if (digest == NULL
563                 || !ssl_evp_md_up_ref(digest)) {
564             ssl_evp_cipher_free(*enc);
565             return 0;
566         }
567         *md = digest;
568         if (mac_pkey_type != NULL)
569             *mac_pkey_type = ctx->ssl_mac_pkey_id[i];
570         if (mac_secret_size != NULL)
571             *mac_secret_size = ctx->ssl_mac_secret_size[i];
572     }
573 
574     if ((*enc != NULL)
575         && (*md != NULL
576             || (EVP_CIPHER_get_flags(*enc) & EVP_CIPH_FLAG_AEAD_CIPHER))
577         && (!mac_pkey_type || *mac_pkey_type != NID_undef)) {
578         const EVP_CIPHER *evp = NULL;
579 
580         if (use_etm
581                 || s->ssl_version >> 8 != TLS1_VERSION_MAJOR
582                 || s->ssl_version < TLS1_VERSION)
583             return 1;
584 
585         if (c->algorithm_enc == SSL_RC4
586                 && c->algorithm_mac == SSL_MD5)
587             evp = ssl_evp_cipher_fetch(ctx->libctx, NID_rc4_hmac_md5,
588                                        ctx->propq);
589         else if (c->algorithm_enc == SSL_AES128
590                     && c->algorithm_mac == SSL_SHA1)
591             evp = ssl_evp_cipher_fetch(ctx->libctx,
592                                        NID_aes_128_cbc_hmac_sha1,
593                                        ctx->propq);
594         else if (c->algorithm_enc == SSL_AES256
595                     && c->algorithm_mac == SSL_SHA1)
596              evp = ssl_evp_cipher_fetch(ctx->libctx,
597                                         NID_aes_256_cbc_hmac_sha1,
598                                         ctx->propq);
599         else if (c->algorithm_enc == SSL_AES128
600                     && c->algorithm_mac == SSL_SHA256)
601             evp = ssl_evp_cipher_fetch(ctx->libctx,
602                                        NID_aes_128_cbc_hmac_sha256,
603                                        ctx->propq);
604         else if (c->algorithm_enc == SSL_AES256
605                     && c->algorithm_mac == SSL_SHA256)
606             evp = ssl_evp_cipher_fetch(ctx->libctx,
607                                        NID_aes_256_cbc_hmac_sha256,
608                                        ctx->propq);
609 
610         if (evp != NULL) {
611             ssl_evp_cipher_free(*enc);
612             ssl_evp_md_free(*md);
613             *enc = evp;
614             *md = NULL;
615         }
616         return 1;
617     }
618 
619     return 0;
620 }
621 
622 const EVP_MD *ssl_md(SSL_CTX *ctx, int idx)
623 {
624     idx &= SSL_HANDSHAKE_MAC_MASK;
625     if (idx < 0 || idx >= SSL_MD_NUM_IDX)
626         return NULL;
627     return ctx->ssl_digest_methods[idx];
628 }
629 
630 const EVP_MD *ssl_handshake_md(SSL *s)
631 {
632     return ssl_md(s->ctx, ssl_get_algorithm2(s));
633 }
634 
635 const EVP_MD *ssl_prf_md(SSL *s)
636 {
637     return ssl_md(s->ctx, ssl_get_algorithm2(s) >> TLS1_PRF_DGST_SHIFT);
638 }
639 
640 #define ITEM_SEP(a) \
641         (((a) == ':') || ((a) == ' ') || ((a) == ';') || ((a) == ','))
642 
643 static void ll_append_tail(CIPHER_ORDER **head, CIPHER_ORDER *curr,
644                            CIPHER_ORDER **tail)
645 {
646     if (curr == *tail)
647         return;
648     if (curr == *head)
649         *head = curr->next;
650     if (curr->prev != NULL)
651         curr->prev->next = curr->next;
652     if (curr->next != NULL)
653         curr->next->prev = curr->prev;
654     (*tail)->next = curr;
655     curr->prev = *tail;
656     curr->next = NULL;
657     *tail = curr;
658 }
659 
660 static void ll_append_head(CIPHER_ORDER **head, CIPHER_ORDER *curr,
661                            CIPHER_ORDER **tail)
662 {
663     if (curr == *head)
664         return;
665     if (curr == *tail)
666         *tail = curr->prev;
667     if (curr->next != NULL)
668         curr->next->prev = curr->prev;
669     if (curr->prev != NULL)
670         curr->prev->next = curr->next;
671     (*head)->prev = curr;
672     curr->next = *head;
673     curr->prev = NULL;
674     *head = curr;
675 }
676 
677 static void ssl_cipher_collect_ciphers(const SSL_METHOD *ssl_method,
678                                        int num_of_ciphers,
679                                        uint32_t disabled_mkey,
680                                        uint32_t disabled_auth,
681                                        uint32_t disabled_enc,
682                                        uint32_t disabled_mac,
683                                        CIPHER_ORDER *co_list,
684                                        CIPHER_ORDER **head_p,
685                                        CIPHER_ORDER **tail_p)
686 {
687     int i, co_list_num;
688     const SSL_CIPHER *c;
689 
690     /*
691      * We have num_of_ciphers descriptions compiled in, depending on the
692      * method selected (SSLv3, TLSv1 etc).
693      * These will later be sorted in a linked list with at most num
694      * entries.
695      */
696 
697     /* Get the initial list of ciphers */
698     co_list_num = 0;            /* actual count of ciphers */
699     for (i = 0; i < num_of_ciphers; i++) {
700         c = ssl_method->get_cipher(i);
701         /* drop those that use any of that is not available */
702         if (c == NULL || !c->valid)
703             continue;
704         if ((c->algorithm_mkey & disabled_mkey) ||
705             (c->algorithm_auth & disabled_auth) ||
706             (c->algorithm_enc & disabled_enc) ||
707             (c->algorithm_mac & disabled_mac))
708             continue;
709         if (((ssl_method->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS) == 0) &&
710             c->min_tls == 0)
711             continue;
712         if (((ssl_method->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS) != 0) &&
713             c->min_dtls == 0)
714             continue;
715 
716         co_list[co_list_num].cipher = c;
717         co_list[co_list_num].next = NULL;
718         co_list[co_list_num].prev = NULL;
719         co_list[co_list_num].active = 0;
720         co_list_num++;
721     }
722 
723     /*
724      * Prepare linked list from list entries
725      */
726     if (co_list_num > 0) {
727         co_list[0].prev = NULL;
728 
729         if (co_list_num > 1) {
730             co_list[0].next = &co_list[1];
731 
732             for (i = 1; i < co_list_num - 1; i++) {
733                 co_list[i].prev = &co_list[i - 1];
734                 co_list[i].next = &co_list[i + 1];
735             }
736 
737             co_list[co_list_num - 1].prev = &co_list[co_list_num - 2];
738         }
739 
740         co_list[co_list_num - 1].next = NULL;
741 
742         *head_p = &co_list[0];
743         *tail_p = &co_list[co_list_num - 1];
744     }
745 }
746 
747 static void ssl_cipher_collect_aliases(const SSL_CIPHER **ca_list,
748                                        int num_of_group_aliases,
749                                        uint32_t disabled_mkey,
750                                        uint32_t disabled_auth,
751                                        uint32_t disabled_enc,
752                                        uint32_t disabled_mac,
753                                        CIPHER_ORDER *head)
754 {
755     CIPHER_ORDER *ciph_curr;
756     const SSL_CIPHER **ca_curr;
757     int i;
758     uint32_t mask_mkey = ~disabled_mkey;
759     uint32_t mask_auth = ~disabled_auth;
760     uint32_t mask_enc = ~disabled_enc;
761     uint32_t mask_mac = ~disabled_mac;
762 
763     /*
764      * First, add the real ciphers as already collected
765      */
766     ciph_curr = head;
767     ca_curr = ca_list;
768     while (ciph_curr != NULL) {
769         *ca_curr = ciph_curr->cipher;
770         ca_curr++;
771         ciph_curr = ciph_curr->next;
772     }
773 
774     /*
775      * Now we add the available ones from the cipher_aliases[] table.
776      * They represent either one or more algorithms, some of which
777      * in any affected category must be supported (set in enabled_mask),
778      * or represent a cipher strength value (will be added in any case because algorithms=0).
779      */
780     for (i = 0; i < num_of_group_aliases; i++) {
781         uint32_t algorithm_mkey = cipher_aliases[i].algorithm_mkey;
782         uint32_t algorithm_auth = cipher_aliases[i].algorithm_auth;
783         uint32_t algorithm_enc = cipher_aliases[i].algorithm_enc;
784         uint32_t algorithm_mac = cipher_aliases[i].algorithm_mac;
785 
786         if (algorithm_mkey)
787             if ((algorithm_mkey & mask_mkey) == 0)
788                 continue;
789 
790         if (algorithm_auth)
791             if ((algorithm_auth & mask_auth) == 0)
792                 continue;
793 
794         if (algorithm_enc)
795             if ((algorithm_enc & mask_enc) == 0)
796                 continue;
797 
798         if (algorithm_mac)
799             if ((algorithm_mac & mask_mac) == 0)
800                 continue;
801 
802         *ca_curr = (SSL_CIPHER *)(cipher_aliases + i);
803         ca_curr++;
804     }
805 
806     *ca_curr = NULL;            /* end of list */
807 }
808 
809 static void ssl_cipher_apply_rule(uint32_t cipher_id, uint32_t alg_mkey,
810                                   uint32_t alg_auth, uint32_t alg_enc,
811                                   uint32_t alg_mac, int min_tls,
812                                   uint32_t algo_strength, int rule,
813                                   int32_t strength_bits, CIPHER_ORDER **head_p,
814                                   CIPHER_ORDER **tail_p)
815 {
816     CIPHER_ORDER *head, *tail, *curr, *next, *last;
817     const SSL_CIPHER *cp;
818     int reverse = 0;
819 
820     OSSL_TRACE_BEGIN(TLS_CIPHER){
821         BIO_printf(trc_out,
822                    "Applying rule %d with %08x/%08x/%08x/%08x/%08x %08x (%d)\n",
823                    rule, alg_mkey, alg_auth, alg_enc, alg_mac, min_tls,
824                    algo_strength, strength_bits);
825     }
826 
827     if (rule == CIPHER_DEL || rule == CIPHER_BUMP)
828         reverse = 1;            /* needed to maintain sorting between currently
829                                  * deleted ciphers */
830 
831     head = *head_p;
832     tail = *tail_p;
833 
834     if (reverse) {
835         next = tail;
836         last = head;
837     } else {
838         next = head;
839         last = tail;
840     }
841 
842     curr = NULL;
843     for (;;) {
844         if (curr == last)
845             break;
846 
847         curr = next;
848 
849         if (curr == NULL)
850             break;
851 
852         next = reverse ? curr->prev : curr->next;
853 
854         cp = curr->cipher;
855 
856         /*
857          * Selection criteria is either the value of strength_bits
858          * or the algorithms used.
859          */
860         if (strength_bits >= 0) {
861             if (strength_bits != cp->strength_bits)
862                 continue;
863         } else {
864             if (trc_out != NULL) {
865                 BIO_printf(trc_out,
866                            "\nName: %s:"
867                            "\nAlgo = %08x/%08x/%08x/%08x/%08x Algo_strength = %08x\n",
868                            cp->name, cp->algorithm_mkey, cp->algorithm_auth,
869                            cp->algorithm_enc, cp->algorithm_mac, cp->min_tls,
870                            cp->algo_strength);
871             }
872             if (cipher_id != 0 && (cipher_id != cp->id))
873                 continue;
874             if (alg_mkey && !(alg_mkey & cp->algorithm_mkey))
875                 continue;
876             if (alg_auth && !(alg_auth & cp->algorithm_auth))
877                 continue;
878             if (alg_enc && !(alg_enc & cp->algorithm_enc))
879                 continue;
880             if (alg_mac && !(alg_mac & cp->algorithm_mac))
881                 continue;
882             if (min_tls && (min_tls != cp->min_tls))
883                 continue;
884             if ((algo_strength & SSL_STRONG_MASK)
885                 && !(algo_strength & SSL_STRONG_MASK & cp->algo_strength))
886                 continue;
887             if ((algo_strength & SSL_DEFAULT_MASK)
888                 && !(algo_strength & SSL_DEFAULT_MASK & cp->algo_strength))
889                 continue;
890         }
891 
892         if (trc_out != NULL)
893             BIO_printf(trc_out, "Action = %d\n", rule);
894 
895         /* add the cipher if it has not been added yet. */
896         if (rule == CIPHER_ADD) {
897             /* reverse == 0 */
898             if (!curr->active) {
899                 ll_append_tail(&head, curr, &tail);
900                 curr->active = 1;
901             }
902         }
903         /* Move the added cipher to this location */
904         else if (rule == CIPHER_ORD) {
905             /* reverse == 0 */
906             if (curr->active) {
907                 ll_append_tail(&head, curr, &tail);
908             }
909         } else if (rule == CIPHER_DEL) {
910             /* reverse == 1 */
911             if (curr->active) {
912                 /*
913                  * most recently deleted ciphersuites get best positions for
914                  * any future CIPHER_ADD (note that the CIPHER_DEL loop works
915                  * in reverse to maintain the order)
916                  */
917                 ll_append_head(&head, curr, &tail);
918                 curr->active = 0;
919             }
920         } else if (rule == CIPHER_BUMP) {
921             if (curr->active)
922                 ll_append_head(&head, curr, &tail);
923         } else if (rule == CIPHER_KILL) {
924             /* reverse == 0 */
925             if (head == curr)
926                 head = curr->next;
927             else
928                 curr->prev->next = curr->next;
929             if (tail == curr)
930                 tail = curr->prev;
931             curr->active = 0;
932             if (curr->next != NULL)
933                 curr->next->prev = curr->prev;
934             if (curr->prev != NULL)
935                 curr->prev->next = curr->next;
936             curr->next = NULL;
937             curr->prev = NULL;
938         }
939     }
940 
941     *head_p = head;
942     *tail_p = tail;
943 
944     OSSL_TRACE_END(TLS_CIPHER);
945 }
946 
947 static int ssl_cipher_strength_sort(CIPHER_ORDER **head_p,
948                                     CIPHER_ORDER **tail_p)
949 {
950     int32_t max_strength_bits;
951     int i, *number_uses;
952     CIPHER_ORDER *curr;
953 
954     /*
955      * This routine sorts the ciphers with descending strength. The sorting
956      * must keep the pre-sorted sequence, so we apply the normal sorting
957      * routine as '+' movement to the end of the list.
958      */
959     max_strength_bits = 0;
960     curr = *head_p;
961     while (curr != NULL) {
962         if (curr->active && (curr->cipher->strength_bits > max_strength_bits))
963             max_strength_bits = curr->cipher->strength_bits;
964         curr = curr->next;
965     }
966 
967     number_uses = OPENSSL_zalloc(sizeof(int) * (max_strength_bits + 1));
968     if (number_uses == NULL) {
969         ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
970         return 0;
971     }
972 
973     /*
974      * Now find the strength_bits values actually used
975      */
976     curr = *head_p;
977     while (curr != NULL) {
978         if (curr->active)
979             number_uses[curr->cipher->strength_bits]++;
980         curr = curr->next;
981     }
982     /*
983      * Go through the list of used strength_bits values in descending
984      * order.
985      */
986     for (i = max_strength_bits; i >= 0; i--)
987         if (number_uses[i] > 0)
988             ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_ORD, i, head_p,
989                                   tail_p);
990 
991     OPENSSL_free(number_uses);
992     return 1;
993 }
994 
995 static int ssl_cipher_process_rulestr(const char *rule_str,
996                                       CIPHER_ORDER **head_p,
997                                       CIPHER_ORDER **tail_p,
998                                       const SSL_CIPHER **ca_list, CERT *c)
999 {
1000     uint32_t alg_mkey, alg_auth, alg_enc, alg_mac, algo_strength;
1001     int min_tls;
1002     const char *l, *buf;
1003     int j, multi, found, rule, retval, ok, buflen;
1004     uint32_t cipher_id = 0;
1005     char ch;
1006 
1007     retval = 1;
1008     l = rule_str;
1009     for ( ; ; ) {
1010         ch = *l;
1011 
1012         if (ch == '\0')
1013             break;              /* done */
1014         if (ch == '-') {
1015             rule = CIPHER_DEL;
1016             l++;
1017         } else if (ch == '+') {
1018             rule = CIPHER_ORD;
1019             l++;
1020         } else if (ch == '!') {
1021             rule = CIPHER_KILL;
1022             l++;
1023         } else if (ch == '@') {
1024             rule = CIPHER_SPECIAL;
1025             l++;
1026         } else {
1027             rule = CIPHER_ADD;
1028         }
1029 
1030         if (ITEM_SEP(ch)) {
1031             l++;
1032             continue;
1033         }
1034 
1035         alg_mkey = 0;
1036         alg_auth = 0;
1037         alg_enc = 0;
1038         alg_mac = 0;
1039         min_tls = 0;
1040         algo_strength = 0;
1041 
1042         for (;;) {
1043             ch = *l;
1044             buf = l;
1045             buflen = 0;
1046 #ifndef CHARSET_EBCDIC
1047             while (((ch >= 'A') && (ch <= 'Z')) ||
1048                    ((ch >= '0') && (ch <= '9')) ||
1049                    ((ch >= 'a') && (ch <= 'z')) ||
1050                    (ch == '-') || (ch == '.') || (ch == '='))
1051 #else
1052             while (isalnum((unsigned char)ch) || (ch == '-') || (ch == '.')
1053                    || (ch == '='))
1054 #endif
1055             {
1056                 ch = *(++l);
1057                 buflen++;
1058             }
1059 
1060             if (buflen == 0) {
1061                 /*
1062                  * We hit something we cannot deal with,
1063                  * it is no command or separator nor
1064                  * alphanumeric, so we call this an error.
1065                  */
1066                 ERR_raise(ERR_LIB_SSL, SSL_R_INVALID_COMMAND);
1067                 return 0;
1068             }
1069 
1070             if (rule == CIPHER_SPECIAL) {
1071                 found = 0;      /* unused -- avoid compiler warning */
1072                 break;          /* special treatment */
1073             }
1074 
1075             /* check for multi-part specification */
1076             if (ch == '+') {
1077                 multi = 1;
1078                 l++;
1079             } else {
1080                 multi = 0;
1081             }
1082 
1083             /*
1084              * Now search for the cipher alias in the ca_list. Be careful
1085              * with the strncmp, because the "buflen" limitation
1086              * will make the rule "ADH:SOME" and the cipher
1087              * "ADH-MY-CIPHER" look like a match for buflen=3.
1088              * So additionally check whether the cipher name found
1089              * has the correct length. We can save a strlen() call:
1090              * just checking for the '\0' at the right place is
1091              * sufficient, we have to strncmp() anyway. (We cannot
1092              * use strcmp(), because buf is not '\0' terminated.)
1093              */
1094             j = found = 0;
1095             cipher_id = 0;
1096             while (ca_list[j]) {
1097                 if (strncmp(buf, ca_list[j]->name, buflen) == 0
1098                     && (ca_list[j]->name[buflen] == '\0')) {
1099                     found = 1;
1100                     break;
1101                 } else
1102                     j++;
1103             }
1104 
1105             if (!found)
1106                 break;          /* ignore this entry */
1107 
1108             if (ca_list[j]->algorithm_mkey) {
1109                 if (alg_mkey) {
1110                     alg_mkey &= ca_list[j]->algorithm_mkey;
1111                     if (!alg_mkey) {
1112                         found = 0;
1113                         break;
1114                     }
1115                 } else {
1116                     alg_mkey = ca_list[j]->algorithm_mkey;
1117                 }
1118             }
1119 
1120             if (ca_list[j]->algorithm_auth) {
1121                 if (alg_auth) {
1122                     alg_auth &= ca_list[j]->algorithm_auth;
1123                     if (!alg_auth) {
1124                         found = 0;
1125                         break;
1126                     }
1127                 } else {
1128                     alg_auth = ca_list[j]->algorithm_auth;
1129                 }
1130             }
1131 
1132             if (ca_list[j]->algorithm_enc) {
1133                 if (alg_enc) {
1134                     alg_enc &= ca_list[j]->algorithm_enc;
1135                     if (!alg_enc) {
1136                         found = 0;
1137                         break;
1138                     }
1139                 } else {
1140                     alg_enc = ca_list[j]->algorithm_enc;
1141                 }
1142             }
1143 
1144             if (ca_list[j]->algorithm_mac) {
1145                 if (alg_mac) {
1146                     alg_mac &= ca_list[j]->algorithm_mac;
1147                     if (!alg_mac) {
1148                         found = 0;
1149                         break;
1150                     }
1151                 } else {
1152                     alg_mac = ca_list[j]->algorithm_mac;
1153                 }
1154             }
1155 
1156             if (ca_list[j]->algo_strength & SSL_STRONG_MASK) {
1157                 if (algo_strength & SSL_STRONG_MASK) {
1158                     algo_strength &=
1159                         (ca_list[j]->algo_strength & SSL_STRONG_MASK) |
1160                         ~SSL_STRONG_MASK;
1161                     if (!(algo_strength & SSL_STRONG_MASK)) {
1162                         found = 0;
1163                         break;
1164                     }
1165                 } else {
1166                     algo_strength = ca_list[j]->algo_strength & SSL_STRONG_MASK;
1167                 }
1168             }
1169 
1170             if (ca_list[j]->algo_strength & SSL_DEFAULT_MASK) {
1171                 if (algo_strength & SSL_DEFAULT_MASK) {
1172                     algo_strength &=
1173                         (ca_list[j]->algo_strength & SSL_DEFAULT_MASK) |
1174                         ~SSL_DEFAULT_MASK;
1175                     if (!(algo_strength & SSL_DEFAULT_MASK)) {
1176                         found = 0;
1177                         break;
1178                     }
1179                 } else {
1180                     algo_strength |=
1181                         ca_list[j]->algo_strength & SSL_DEFAULT_MASK;
1182                 }
1183             }
1184 
1185             if (ca_list[j]->valid) {
1186                 /*
1187                  * explicit ciphersuite found; its protocol version does not
1188                  * become part of the search pattern!
1189                  */
1190 
1191                 cipher_id = ca_list[j]->id;
1192             } else {
1193                 /*
1194                  * not an explicit ciphersuite; only in this case, the
1195                  * protocol version is considered part of the search pattern
1196                  */
1197 
1198                 if (ca_list[j]->min_tls) {
1199                     if (min_tls != 0 && min_tls != ca_list[j]->min_tls) {
1200                         found = 0;
1201                         break;
1202                     } else {
1203                         min_tls = ca_list[j]->min_tls;
1204                     }
1205                 }
1206             }
1207 
1208             if (!multi)
1209                 break;
1210         }
1211 
1212         /*
1213          * Ok, we have the rule, now apply it
1214          */
1215         if (rule == CIPHER_SPECIAL) { /* special command */
1216             ok = 0;
1217             if ((buflen == 8) && strncmp(buf, "STRENGTH", 8) == 0) {
1218                 ok = ssl_cipher_strength_sort(head_p, tail_p);
1219             } else if (buflen == 10 && strncmp(buf, "SECLEVEL=", 9) == 0) {
1220                 int level = buf[9] - '0';
1221                 if (level < 0 || level > 5) {
1222                     ERR_raise(ERR_LIB_SSL, SSL_R_INVALID_COMMAND);
1223                 } else {
1224                     c->sec_level = level;
1225                     ok = 1;
1226                 }
1227             } else {
1228                 ERR_raise(ERR_LIB_SSL, SSL_R_INVALID_COMMAND);
1229             }
1230             if (ok == 0)
1231                 retval = 0;
1232             /*
1233              * We do not support any "multi" options
1234              * together with "@", so throw away the
1235              * rest of the command, if any left, until
1236              * end or ':' is found.
1237              */
1238             while ((*l != '\0') && !ITEM_SEP(*l))
1239                 l++;
1240         } else if (found) {
1241             ssl_cipher_apply_rule(cipher_id,
1242                                   alg_mkey, alg_auth, alg_enc, alg_mac,
1243                                   min_tls, algo_strength, rule, -1, head_p,
1244                                   tail_p);
1245         } else {
1246             while ((*l != '\0') && !ITEM_SEP(*l))
1247                 l++;
1248         }
1249         if (*l == '\0')
1250             break;              /* done */
1251     }
1252 
1253     return retval;
1254 }
1255 
1256 static int check_suiteb_cipher_list(const SSL_METHOD *meth, CERT *c,
1257                                     const char **prule_str)
1258 {
1259     unsigned int suiteb_flags = 0, suiteb_comb2 = 0;
1260     if (strncmp(*prule_str, "SUITEB128ONLY", 13) == 0) {
1261         suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS_ONLY;
1262     } else if (strncmp(*prule_str, "SUITEB128C2", 11) == 0) {
1263         suiteb_comb2 = 1;
1264         suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS;
1265     } else if (strncmp(*prule_str, "SUITEB128", 9) == 0) {
1266         suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS;
1267     } else if (strncmp(*prule_str, "SUITEB192", 9) == 0) {
1268         suiteb_flags = SSL_CERT_FLAG_SUITEB_192_LOS;
1269     }
1270 
1271     if (suiteb_flags) {
1272         c->cert_flags &= ~SSL_CERT_FLAG_SUITEB_128_LOS;
1273         c->cert_flags |= suiteb_flags;
1274     } else {
1275         suiteb_flags = c->cert_flags & SSL_CERT_FLAG_SUITEB_128_LOS;
1276     }
1277 
1278     if (!suiteb_flags)
1279         return 1;
1280     /* Check version: if TLS 1.2 ciphers allowed we can use Suite B */
1281 
1282     if (!(meth->ssl3_enc->enc_flags & SSL_ENC_FLAG_TLS1_2_CIPHERS)) {
1283         ERR_raise(ERR_LIB_SSL, SSL_R_AT_LEAST_TLS_1_2_NEEDED_IN_SUITEB_MODE);
1284         return 0;
1285     }
1286 
1287     switch (suiteb_flags) {
1288     case SSL_CERT_FLAG_SUITEB_128_LOS:
1289         if (suiteb_comb2)
1290             *prule_str = "ECDHE-ECDSA-AES256-GCM-SHA384";
1291         else
1292             *prule_str =
1293                 "ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES256-GCM-SHA384";
1294         break;
1295     case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
1296         *prule_str = "ECDHE-ECDSA-AES128-GCM-SHA256";
1297         break;
1298     case SSL_CERT_FLAG_SUITEB_192_LOS:
1299         *prule_str = "ECDHE-ECDSA-AES256-GCM-SHA384";
1300         break;
1301     }
1302     return 1;
1303 }
1304 
1305 static int ciphersuite_cb(const char *elem, int len, void *arg)
1306 {
1307     STACK_OF(SSL_CIPHER) *ciphersuites = (STACK_OF(SSL_CIPHER) *)arg;
1308     const SSL_CIPHER *cipher;
1309     /* Arbitrary sized temp buffer for the cipher name. Should be big enough */
1310     char name[80];
1311 
1312     if (len > (int)(sizeof(name) - 1))
1313         /* Anyway return 1 so we can parse rest of the list */
1314         return 1;
1315 
1316     memcpy(name, elem, len);
1317     name[len] = '\0';
1318 
1319     cipher = ssl3_get_cipher_by_std_name(name);
1320     if (cipher == NULL)
1321         /* Ciphersuite not found but return 1 to parse rest of the list */
1322         return 1;
1323 
1324     if (!sk_SSL_CIPHER_push(ciphersuites, cipher)) {
1325         ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR);
1326         return 0;
1327     }
1328 
1329     return 1;
1330 }
1331 
1332 static __owur int set_ciphersuites(STACK_OF(SSL_CIPHER) **currciphers, const char *str)
1333 {
1334     STACK_OF(SSL_CIPHER) *newciphers = sk_SSL_CIPHER_new_null();
1335 
1336     if (newciphers == NULL)
1337         return 0;
1338 
1339     /* Parse the list. We explicitly allow an empty list */
1340     if (*str != '\0'
1341             && (CONF_parse_list(str, ':', 1, ciphersuite_cb, newciphers) <= 0
1342                 || sk_SSL_CIPHER_num(newciphers) == 0)) {
1343         ERR_raise(ERR_LIB_SSL, SSL_R_NO_CIPHER_MATCH);
1344         sk_SSL_CIPHER_free(newciphers);
1345         return 0;
1346     }
1347     sk_SSL_CIPHER_free(*currciphers);
1348     *currciphers = newciphers;
1349 
1350     return 1;
1351 }
1352 
1353 static int update_cipher_list_by_id(STACK_OF(SSL_CIPHER) **cipher_list_by_id,
1354                                     STACK_OF(SSL_CIPHER) *cipherstack)
1355 {
1356     STACK_OF(SSL_CIPHER) *tmp_cipher_list = sk_SSL_CIPHER_dup(cipherstack);
1357 
1358     if (tmp_cipher_list == NULL) {
1359         return 0;
1360     }
1361 
1362     sk_SSL_CIPHER_free(*cipher_list_by_id);
1363     *cipher_list_by_id = tmp_cipher_list;
1364 
1365     (void)sk_SSL_CIPHER_set_cmp_func(*cipher_list_by_id, ssl_cipher_ptr_id_cmp);
1366     sk_SSL_CIPHER_sort(*cipher_list_by_id);
1367 
1368     return 1;
1369 }
1370 
1371 static int update_cipher_list(SSL_CTX *ctx,
1372                               STACK_OF(SSL_CIPHER) **cipher_list,
1373                               STACK_OF(SSL_CIPHER) **cipher_list_by_id,
1374                               STACK_OF(SSL_CIPHER) *tls13_ciphersuites)
1375 {
1376     int i;
1377     STACK_OF(SSL_CIPHER) *tmp_cipher_list = sk_SSL_CIPHER_dup(*cipher_list);
1378 
1379     if (tmp_cipher_list == NULL)
1380         return 0;
1381 
1382     /*
1383      * Delete any existing TLSv1.3 ciphersuites. These are always first in the
1384      * list.
1385      */
1386     while (sk_SSL_CIPHER_num(tmp_cipher_list) > 0
1387            && sk_SSL_CIPHER_value(tmp_cipher_list, 0)->min_tls
1388               == TLS1_3_VERSION)
1389         (void)sk_SSL_CIPHER_delete(tmp_cipher_list, 0);
1390 
1391     /* Insert the new TLSv1.3 ciphersuites */
1392     for (i = sk_SSL_CIPHER_num(tls13_ciphersuites) - 1; i >= 0; i--) {
1393         const SSL_CIPHER *sslc = sk_SSL_CIPHER_value(tls13_ciphersuites, i);
1394 
1395         /* Don't include any TLSv1.3 ciphersuites that are disabled */
1396         if ((sslc->algorithm_enc & ctx->disabled_enc_mask) == 0
1397                 && (ssl_cipher_table_mac[sslc->algorithm2
1398                                          & SSL_HANDSHAKE_MAC_MASK].mask
1399                     & ctx->disabled_mac_mask) == 0) {
1400             sk_SSL_CIPHER_unshift(tmp_cipher_list, sslc);
1401         }
1402     }
1403 
1404     if (!update_cipher_list_by_id(cipher_list_by_id, tmp_cipher_list)) {
1405         sk_SSL_CIPHER_free(tmp_cipher_list);
1406         return 0;
1407     }
1408 
1409     sk_SSL_CIPHER_free(*cipher_list);
1410     *cipher_list = tmp_cipher_list;
1411 
1412     return 1;
1413 }
1414 
1415 int SSL_CTX_set_ciphersuites(SSL_CTX *ctx, const char *str)
1416 {
1417     int ret = set_ciphersuites(&(ctx->tls13_ciphersuites), str);
1418 
1419     if (ret && ctx->cipher_list != NULL)
1420         return update_cipher_list(ctx, &ctx->cipher_list, &ctx->cipher_list_by_id,
1421                                   ctx->tls13_ciphersuites);
1422 
1423     return ret;
1424 }
1425 
1426 int SSL_set_ciphersuites(SSL *s, const char *str)
1427 {
1428     STACK_OF(SSL_CIPHER) *cipher_list;
1429     int ret = set_ciphersuites(&(s->tls13_ciphersuites), str);
1430 
1431     if (s->cipher_list == NULL) {
1432         if ((cipher_list = SSL_get_ciphers(s)) != NULL)
1433             s->cipher_list = sk_SSL_CIPHER_dup(cipher_list);
1434     }
1435     if (ret && s->cipher_list != NULL)
1436         return update_cipher_list(s->ctx, &s->cipher_list, &s->cipher_list_by_id,
1437                                   s->tls13_ciphersuites);
1438 
1439     return ret;
1440 }
1441 
1442 STACK_OF(SSL_CIPHER) *ssl_create_cipher_list(SSL_CTX *ctx,
1443                                              STACK_OF(SSL_CIPHER) *tls13_ciphersuites,
1444                                              STACK_OF(SSL_CIPHER) **cipher_list,
1445                                              STACK_OF(SSL_CIPHER) **cipher_list_by_id,
1446                                              const char *rule_str,
1447                                              CERT *c)
1448 {
1449     int ok, num_of_ciphers, num_of_alias_max, num_of_group_aliases, i;
1450     uint32_t disabled_mkey, disabled_auth, disabled_enc, disabled_mac;
1451     STACK_OF(SSL_CIPHER) *cipherstack;
1452     const char *rule_p;
1453     CIPHER_ORDER *co_list = NULL, *head = NULL, *tail = NULL, *curr;
1454     const SSL_CIPHER **ca_list = NULL;
1455     const SSL_METHOD *ssl_method = ctx->method;
1456 
1457     /*
1458      * Return with error if nothing to do.
1459      */
1460     if (rule_str == NULL || cipher_list == NULL || cipher_list_by_id == NULL)
1461         return NULL;
1462 
1463     if (!check_suiteb_cipher_list(ssl_method, c, &rule_str))
1464         return NULL;
1465 
1466     /*
1467      * To reduce the work to do we only want to process the compiled
1468      * in algorithms, so we first get the mask of disabled ciphers.
1469      */
1470 
1471     disabled_mkey = ctx->disabled_mkey_mask;
1472     disabled_auth = ctx->disabled_auth_mask;
1473     disabled_enc = ctx->disabled_enc_mask;
1474     disabled_mac = ctx->disabled_mac_mask;
1475 
1476     /*
1477      * Now we have to collect the available ciphers from the compiled
1478      * in ciphers. We cannot get more than the number compiled in, so
1479      * it is used for allocation.
1480      */
1481     num_of_ciphers = ssl_method->num_ciphers();
1482 
1483     co_list = OPENSSL_malloc(sizeof(*co_list) * num_of_ciphers);
1484     if (co_list == NULL) {
1485         ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
1486         return NULL;          /* Failure */
1487     }
1488 
1489     ssl_cipher_collect_ciphers(ssl_method, num_of_ciphers,
1490                                disabled_mkey, disabled_auth, disabled_enc,
1491                                disabled_mac, co_list, &head, &tail);
1492 
1493     /* Now arrange all ciphers by preference. */
1494 
1495     /*
1496      * Everything else being equal, prefer ephemeral ECDH over other key
1497      * exchange mechanisms.
1498      * For consistency, prefer ECDSA over RSA (though this only matters if the
1499      * server has both certificates, and is using the DEFAULT, or a client
1500      * preference).
1501      */
1502     ssl_cipher_apply_rule(0, SSL_kECDHE, SSL_aECDSA, 0, 0, 0, 0, CIPHER_ADD,
1503                           -1, &head, &tail);
1504     ssl_cipher_apply_rule(0, SSL_kECDHE, 0, 0, 0, 0, 0, CIPHER_ADD, -1, &head,
1505                           &tail);
1506     ssl_cipher_apply_rule(0, SSL_kECDHE, 0, 0, 0, 0, 0, CIPHER_DEL, -1, &head,
1507                           &tail);
1508 
1509     /* Within each strength group, we prefer GCM over CHACHA... */
1510     ssl_cipher_apply_rule(0, 0, 0, SSL_AESGCM, 0, 0, 0, CIPHER_ADD, -1,
1511                           &head, &tail);
1512     ssl_cipher_apply_rule(0, 0, 0, SSL_CHACHA20, 0, 0, 0, CIPHER_ADD, -1,
1513                           &head, &tail);
1514 
1515     /*
1516      * ...and generally, our preferred cipher is AES.
1517      * Note that AEADs will be bumped to take preference after sorting by
1518      * strength.
1519      */
1520     ssl_cipher_apply_rule(0, 0, 0, SSL_AES ^ SSL_AESGCM, 0, 0, 0, CIPHER_ADD,
1521                           -1, &head, &tail);
1522 
1523     /* Temporarily enable everything else for sorting */
1524     ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_ADD, -1, &head, &tail);
1525 
1526     /* Low priority for MD5 */
1527     ssl_cipher_apply_rule(0, 0, 0, 0, SSL_MD5, 0, 0, CIPHER_ORD, -1, &head,
1528                           &tail);
1529 
1530     /*
1531      * Move anonymous ciphers to the end.  Usually, these will remain
1532      * disabled. (For applications that allow them, they aren't too bad, but
1533      * we prefer authenticated ciphers.)
1534      */
1535     ssl_cipher_apply_rule(0, 0, SSL_aNULL, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
1536                           &tail);
1537 
1538     ssl_cipher_apply_rule(0, SSL_kRSA, 0, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
1539                           &tail);
1540     ssl_cipher_apply_rule(0, SSL_kPSK, 0, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
1541                           &tail);
1542 
1543     /* RC4 is sort-of broken -- move to the end */
1544     ssl_cipher_apply_rule(0, 0, 0, SSL_RC4, 0, 0, 0, CIPHER_ORD, -1, &head,
1545                           &tail);
1546 
1547     /*
1548      * Now sort by symmetric encryption strength.  The above ordering remains
1549      * in force within each class
1550      */
1551     if (!ssl_cipher_strength_sort(&head, &tail)) {
1552         OPENSSL_free(co_list);
1553         return NULL;
1554     }
1555 
1556     /*
1557      * Partially overrule strength sort to prefer TLS 1.2 ciphers/PRFs.
1558      */
1559     ssl_cipher_apply_rule(0, 0, 0, 0, 0, TLS1_2_VERSION, 0, CIPHER_BUMP, -1,
1560                           &head, &tail);
1561 
1562     /*
1563      * Irrespective of strength, enforce the following order:
1564      * (EC)DHE + AEAD > (EC)DHE > rest of AEAD > rest.
1565      * Within each group, ciphers remain sorted by strength and previous
1566      * preference, i.e.,
1567      * 1) ECDHE > DHE
1568      * 2) GCM > CHACHA
1569      * 3) AES > rest
1570      * 4) TLS 1.2 > legacy
1571      *
1572      * Because we now bump ciphers to the top of the list, we proceed in
1573      * reverse order of preference.
1574      */
1575     ssl_cipher_apply_rule(0, 0, 0, 0, SSL_AEAD, 0, 0, CIPHER_BUMP, -1,
1576                           &head, &tail);
1577     ssl_cipher_apply_rule(0, SSL_kDHE | SSL_kECDHE, 0, 0, 0, 0, 0,
1578                           CIPHER_BUMP, -1, &head, &tail);
1579     ssl_cipher_apply_rule(0, SSL_kDHE | SSL_kECDHE, 0, 0, SSL_AEAD, 0, 0,
1580                           CIPHER_BUMP, -1, &head, &tail);
1581 
1582     /* Now disable everything (maintaining the ordering!) */
1583     ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_DEL, -1, &head, &tail);
1584 
1585     /*
1586      * We also need cipher aliases for selecting based on the rule_str.
1587      * There might be two types of entries in the rule_str: 1) names
1588      * of ciphers themselves 2) aliases for groups of ciphers.
1589      * For 1) we need the available ciphers and for 2) the cipher
1590      * groups of cipher_aliases added together in one list (otherwise
1591      * we would be happy with just the cipher_aliases table).
1592      */
1593     num_of_group_aliases = OSSL_NELEM(cipher_aliases);
1594     num_of_alias_max = num_of_ciphers + num_of_group_aliases + 1;
1595     ca_list = OPENSSL_malloc(sizeof(*ca_list) * num_of_alias_max);
1596     if (ca_list == NULL) {
1597         OPENSSL_free(co_list);
1598         ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
1599         return NULL;          /* Failure */
1600     }
1601     ssl_cipher_collect_aliases(ca_list, num_of_group_aliases,
1602                                disabled_mkey, disabled_auth, disabled_enc,
1603                                disabled_mac, head);
1604 
1605     /*
1606      * If the rule_string begins with DEFAULT, apply the default rule
1607      * before using the (possibly available) additional rules.
1608      */
1609     ok = 1;
1610     rule_p = rule_str;
1611     if (strncmp(rule_str, "DEFAULT", 7) == 0) {
1612         ok = ssl_cipher_process_rulestr(OSSL_default_cipher_list(),
1613                                         &head, &tail, ca_list, c);
1614         rule_p += 7;
1615         if (*rule_p == ':')
1616             rule_p++;
1617     }
1618 
1619     if (ok && (rule_p[0] != '\0'))
1620         ok = ssl_cipher_process_rulestr(rule_p, &head, &tail, ca_list, c);
1621 
1622     OPENSSL_free(ca_list);      /* Not needed anymore */
1623 
1624     if (!ok) {                  /* Rule processing failure */
1625         OPENSSL_free(co_list);
1626         return NULL;
1627     }
1628 
1629     /*
1630      * Allocate new "cipherstack" for the result, return with error
1631      * if we cannot get one.
1632      */
1633     if ((cipherstack = sk_SSL_CIPHER_new_null()) == NULL) {
1634         OPENSSL_free(co_list);
1635         return NULL;
1636     }
1637 
1638     /* Add TLSv1.3 ciphers first - we always prefer those if possible */
1639     for (i = 0; i < sk_SSL_CIPHER_num(tls13_ciphersuites); i++) {
1640         const SSL_CIPHER *sslc = sk_SSL_CIPHER_value(tls13_ciphersuites, i);
1641 
1642         /* Don't include any TLSv1.3 ciphers that are disabled */
1643         if ((sslc->algorithm_enc & disabled_enc) != 0
1644                 || (ssl_cipher_table_mac[sslc->algorithm2
1645                                          & SSL_HANDSHAKE_MAC_MASK].mask
1646                     & ctx->disabled_mac_mask) != 0) {
1647             sk_SSL_CIPHER_delete(tls13_ciphersuites, i);
1648             i--;
1649             continue;
1650         }
1651 
1652         if (!sk_SSL_CIPHER_push(cipherstack, sslc)) {
1653             OPENSSL_free(co_list);
1654             sk_SSL_CIPHER_free(cipherstack);
1655             return NULL;
1656         }
1657     }
1658 
1659     OSSL_TRACE_BEGIN(TLS_CIPHER) {
1660         BIO_printf(trc_out, "cipher selection:\n");
1661     }
1662     /*
1663      * The cipher selection for the list is done. The ciphers are added
1664      * to the resulting precedence to the STACK_OF(SSL_CIPHER).
1665      */
1666     for (curr = head; curr != NULL; curr = curr->next) {
1667         if (curr->active) {
1668             if (!sk_SSL_CIPHER_push(cipherstack, curr->cipher)) {
1669                 OPENSSL_free(co_list);
1670                 sk_SSL_CIPHER_free(cipherstack);
1671                 OSSL_TRACE_CANCEL(TLS_CIPHER);
1672                 return NULL;
1673             }
1674             if (trc_out != NULL)
1675                 BIO_printf(trc_out, "<%s>\n", curr->cipher->name);
1676         }
1677     }
1678     OPENSSL_free(co_list);      /* Not needed any longer */
1679     OSSL_TRACE_END(TLS_CIPHER);
1680 
1681     if (!update_cipher_list_by_id(cipher_list_by_id, cipherstack)) {
1682         sk_SSL_CIPHER_free(cipherstack);
1683         return NULL;
1684     }
1685     sk_SSL_CIPHER_free(*cipher_list);
1686     *cipher_list = cipherstack;
1687 
1688     return cipherstack;
1689 }
1690 
1691 char *SSL_CIPHER_description(const SSL_CIPHER *cipher, char *buf, int len)
1692 {
1693     const char *ver;
1694     const char *kx, *au, *enc, *mac;
1695     uint32_t alg_mkey, alg_auth, alg_enc, alg_mac;
1696     static const char *format = "%-30s %-7s Kx=%-8s Au=%-5s Enc=%-22s Mac=%-4s\n";
1697 
1698     if (buf == NULL) {
1699         len = 128;
1700         if ((buf = OPENSSL_malloc(len)) == NULL) {
1701             ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
1702             return NULL;
1703         }
1704     } else if (len < 128) {
1705         return NULL;
1706     }
1707 
1708     alg_mkey = cipher->algorithm_mkey;
1709     alg_auth = cipher->algorithm_auth;
1710     alg_enc = cipher->algorithm_enc;
1711     alg_mac = cipher->algorithm_mac;
1712 
1713     ver = ssl_protocol_to_string(cipher->min_tls);
1714 
1715     switch (alg_mkey) {
1716     case SSL_kRSA:
1717         kx = "RSA";
1718         break;
1719     case SSL_kDHE:
1720         kx = "DH";
1721         break;
1722     case SSL_kECDHE:
1723         kx = "ECDH";
1724         break;
1725     case SSL_kPSK:
1726         kx = "PSK";
1727         break;
1728     case SSL_kRSAPSK:
1729         kx = "RSAPSK";
1730         break;
1731     case SSL_kECDHEPSK:
1732         kx = "ECDHEPSK";
1733         break;
1734     case SSL_kDHEPSK:
1735         kx = "DHEPSK";
1736         break;
1737     case SSL_kSRP:
1738         kx = "SRP";
1739         break;
1740     case SSL_kGOST:
1741         kx = "GOST";
1742         break;
1743     case SSL_kGOST18:
1744         kx = "GOST18";
1745         break;
1746     case SSL_kANY:
1747         kx = "any";
1748         break;
1749     default:
1750         kx = "unknown";
1751     }
1752 
1753     switch (alg_auth) {
1754     case SSL_aRSA:
1755         au = "RSA";
1756         break;
1757     case SSL_aDSS:
1758         au = "DSS";
1759         break;
1760     case SSL_aNULL:
1761         au = "None";
1762         break;
1763     case SSL_aECDSA:
1764         au = "ECDSA";
1765         break;
1766     case SSL_aPSK:
1767         au = "PSK";
1768         break;
1769     case SSL_aSRP:
1770         au = "SRP";
1771         break;
1772     case SSL_aGOST01:
1773         au = "GOST01";
1774         break;
1775     /* New GOST ciphersuites have both SSL_aGOST12 and SSL_aGOST01 bits */
1776     case (SSL_aGOST12 | SSL_aGOST01):
1777         au = "GOST12";
1778         break;
1779     case SSL_aANY:
1780         au = "any";
1781         break;
1782     default:
1783         au = "unknown";
1784         break;
1785     }
1786 
1787     switch (alg_enc) {
1788     case SSL_DES:
1789         enc = "DES(56)";
1790         break;
1791     case SSL_3DES:
1792         enc = "3DES(168)";
1793         break;
1794     case SSL_RC4:
1795         enc = "RC4(128)";
1796         break;
1797     case SSL_RC2:
1798         enc = "RC2(128)";
1799         break;
1800     case SSL_IDEA:
1801         enc = "IDEA(128)";
1802         break;
1803     case SSL_eNULL:
1804         enc = "None";
1805         break;
1806     case SSL_AES128:
1807         enc = "AES(128)";
1808         break;
1809     case SSL_AES256:
1810         enc = "AES(256)";
1811         break;
1812     case SSL_AES128GCM:
1813         enc = "AESGCM(128)";
1814         break;
1815     case SSL_AES256GCM:
1816         enc = "AESGCM(256)";
1817         break;
1818     case SSL_AES128CCM:
1819         enc = "AESCCM(128)";
1820         break;
1821     case SSL_AES256CCM:
1822         enc = "AESCCM(256)";
1823         break;
1824     case SSL_AES128CCM8:
1825         enc = "AESCCM8(128)";
1826         break;
1827     case SSL_AES256CCM8:
1828         enc = "AESCCM8(256)";
1829         break;
1830     case SSL_CAMELLIA128:
1831         enc = "Camellia(128)";
1832         break;
1833     case SSL_CAMELLIA256:
1834         enc = "Camellia(256)";
1835         break;
1836     case SSL_ARIA128GCM:
1837         enc = "ARIAGCM(128)";
1838         break;
1839     case SSL_ARIA256GCM:
1840         enc = "ARIAGCM(256)";
1841         break;
1842     case SSL_SEED:
1843         enc = "SEED(128)";
1844         break;
1845     case SSL_eGOST2814789CNT:
1846     case SSL_eGOST2814789CNT12:
1847         enc = "GOST89(256)";
1848         break;
1849     case SSL_MAGMA:
1850         enc = "MAGMA";
1851         break;
1852     case SSL_KUZNYECHIK:
1853         enc = "KUZNYECHIK";
1854         break;
1855     case SSL_CHACHA20POLY1305:
1856         enc = "CHACHA20/POLY1305(256)";
1857         break;
1858     default:
1859         enc = "unknown";
1860         break;
1861     }
1862 
1863     switch (alg_mac) {
1864     case SSL_MD5:
1865         mac = "MD5";
1866         break;
1867     case SSL_SHA1:
1868         mac = "SHA1";
1869         break;
1870     case SSL_SHA256:
1871         mac = "SHA256";
1872         break;
1873     case SSL_SHA384:
1874         mac = "SHA384";
1875         break;
1876     case SSL_AEAD:
1877         mac = "AEAD";
1878         break;
1879     case SSL_GOST89MAC:
1880     case SSL_GOST89MAC12:
1881         mac = "GOST89";
1882         break;
1883     case SSL_GOST94:
1884         mac = "GOST94";
1885         break;
1886     case SSL_GOST12_256:
1887     case SSL_GOST12_512:
1888         mac = "GOST2012";
1889         break;
1890     default:
1891         mac = "unknown";
1892         break;
1893     }
1894 
1895     BIO_snprintf(buf, len, format, cipher->name, ver, kx, au, enc, mac);
1896 
1897     return buf;
1898 }
1899 
1900 const char *SSL_CIPHER_get_version(const SSL_CIPHER *c)
1901 {
1902     if (c == NULL)
1903         return "(NONE)";
1904 
1905     /*
1906      * Backwards-compatibility crutch.  In almost all contexts we report TLS
1907      * 1.0 as "TLSv1", but for ciphers we report "TLSv1.0".
1908      */
1909     if (c->min_tls == TLS1_VERSION)
1910         return "TLSv1.0";
1911     return ssl_protocol_to_string(c->min_tls);
1912 }
1913 
1914 /* return the actual cipher being used */
1915 const char *SSL_CIPHER_get_name(const SSL_CIPHER *c)
1916 {
1917     if (c != NULL)
1918         return c->name;
1919     return "(NONE)";
1920 }
1921 
1922 /* return the actual cipher being used in RFC standard name */
1923 const char *SSL_CIPHER_standard_name(const SSL_CIPHER *c)
1924 {
1925     if (c != NULL)
1926         return c->stdname;
1927     return "(NONE)";
1928 }
1929 
1930 /* return the OpenSSL name based on given RFC standard name */
1931 const char *OPENSSL_cipher_name(const char *stdname)
1932 {
1933     const SSL_CIPHER *c;
1934 
1935     if (stdname == NULL)
1936         return "(NONE)";
1937     c = ssl3_get_cipher_by_std_name(stdname);
1938     return SSL_CIPHER_get_name(c);
1939 }
1940 
1941 /* number of bits for symmetric cipher */
1942 int SSL_CIPHER_get_bits(const SSL_CIPHER *c, int *alg_bits)
1943 {
1944     int ret = 0;
1945 
1946     if (c != NULL) {
1947         if (alg_bits != NULL)
1948             *alg_bits = (int)c->alg_bits;
1949         ret = (int)c->strength_bits;
1950     }
1951     return ret;
1952 }
1953 
1954 uint32_t SSL_CIPHER_get_id(const SSL_CIPHER *c)
1955 {
1956     return c->id;
1957 }
1958 
1959 uint16_t SSL_CIPHER_get_protocol_id(const SSL_CIPHER *c)
1960 {
1961     return c->id & 0xFFFF;
1962 }
1963 
1964 SSL_COMP *ssl3_comp_find(STACK_OF(SSL_COMP) *sk, int n)
1965 {
1966     SSL_COMP *ctmp;
1967     int i, nn;
1968 
1969     if ((n == 0) || (sk == NULL))
1970         return NULL;
1971     nn = sk_SSL_COMP_num(sk);
1972     for (i = 0; i < nn; i++) {
1973         ctmp = sk_SSL_COMP_value(sk, i);
1974         if (ctmp->id == n)
1975             return ctmp;
1976     }
1977     return NULL;
1978 }
1979 
1980 #ifdef OPENSSL_NO_COMP
1981 STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void)
1982 {
1983     return NULL;
1984 }
1985 
1986 STACK_OF(SSL_COMP) *SSL_COMP_set0_compression_methods(STACK_OF(SSL_COMP)
1987                                                       *meths)
1988 {
1989     return meths;
1990 }
1991 
1992 int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm)
1993 {
1994     return 1;
1995 }
1996 
1997 #else
1998 STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void)
1999 {
2000     load_builtin_compressions();
2001     return ssl_comp_methods;
2002 }
2003 
2004 STACK_OF(SSL_COMP) *SSL_COMP_set0_compression_methods(STACK_OF(SSL_COMP)
2005                                                       *meths)
2006 {
2007     STACK_OF(SSL_COMP) *old_meths = ssl_comp_methods;
2008     ssl_comp_methods = meths;
2009     return old_meths;
2010 }
2011 
2012 static void cmeth_free(SSL_COMP *cm)
2013 {
2014     OPENSSL_free(cm);
2015 }
2016 
2017 void ssl_comp_free_compression_methods_int(void)
2018 {
2019     STACK_OF(SSL_COMP) *old_meths = ssl_comp_methods;
2020     ssl_comp_methods = NULL;
2021     sk_SSL_COMP_pop_free(old_meths, cmeth_free);
2022 }
2023 
2024 int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm)
2025 {
2026     SSL_COMP *comp;
2027 
2028     if (cm == NULL || COMP_get_type(cm) == NID_undef)
2029         return 1;
2030 
2031     /*-
2032      * According to draft-ietf-tls-compression-04.txt, the
2033      * compression number ranges should be the following:
2034      *
2035      *   0 to  63:  methods defined by the IETF
2036      *  64 to 192:  external party methods assigned by IANA
2037      * 193 to 255:  reserved for private use
2038      */
2039     if (id < 193 || id > 255) {
2040         ERR_raise(ERR_LIB_SSL, SSL_R_COMPRESSION_ID_NOT_WITHIN_PRIVATE_RANGE);
2041         return 1;
2042     }
2043 
2044     comp = OPENSSL_malloc(sizeof(*comp));
2045     if (comp == NULL) {
2046         ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
2047         return 1;
2048     }
2049 
2050     comp->id = id;
2051     comp->method = cm;
2052     load_builtin_compressions();
2053     if (ssl_comp_methods && sk_SSL_COMP_find(ssl_comp_methods, comp) >= 0) {
2054         OPENSSL_free(comp);
2055         ERR_raise(ERR_LIB_SSL, SSL_R_DUPLICATE_COMPRESSION_ID);
2056         return 1;
2057     }
2058     if (ssl_comp_methods == NULL || !sk_SSL_COMP_push(ssl_comp_methods, comp)) {
2059         OPENSSL_free(comp);
2060         ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
2061         return 1;
2062     }
2063     return 0;
2064 }
2065 #endif
2066 
2067 const char *SSL_COMP_get_name(const COMP_METHOD *comp)
2068 {
2069 #ifndef OPENSSL_NO_COMP
2070     return comp ? COMP_get_name(comp) : NULL;
2071 #else
2072     return NULL;
2073 #endif
2074 }
2075 
2076 const char *SSL_COMP_get0_name(const SSL_COMP *comp)
2077 {
2078 #ifndef OPENSSL_NO_COMP
2079     return comp->name;
2080 #else
2081     return NULL;
2082 #endif
2083 }
2084 
2085 int SSL_COMP_get_id(const SSL_COMP *comp)
2086 {
2087 #ifndef OPENSSL_NO_COMP
2088     return comp->id;
2089 #else
2090     return -1;
2091 #endif
2092 }
2093 
2094 const SSL_CIPHER *ssl_get_cipher_by_char(SSL *ssl, const unsigned char *ptr,
2095                                          int all)
2096 {
2097     const SSL_CIPHER *c = ssl->method->get_cipher_by_char(ptr);
2098 
2099     if (c == NULL || (!all && c->valid == 0))
2100         return NULL;
2101     return c;
2102 }
2103 
2104 const SSL_CIPHER *SSL_CIPHER_find(SSL *ssl, const unsigned char *ptr)
2105 {
2106     return ssl->method->get_cipher_by_char(ptr);
2107 }
2108 
2109 int SSL_CIPHER_get_cipher_nid(const SSL_CIPHER *c)
2110 {
2111     int i;
2112     if (c == NULL)
2113         return NID_undef;
2114     i = ssl_cipher_info_lookup(ssl_cipher_table_cipher, c->algorithm_enc);
2115     if (i == -1)
2116         return NID_undef;
2117     return ssl_cipher_table_cipher[i].nid;
2118 }
2119 
2120 int SSL_CIPHER_get_digest_nid(const SSL_CIPHER *c)
2121 {
2122     int i = ssl_cipher_info_lookup(ssl_cipher_table_mac, c->algorithm_mac);
2123 
2124     if (i == -1)
2125         return NID_undef;
2126     return ssl_cipher_table_mac[i].nid;
2127 }
2128 
2129 int SSL_CIPHER_get_kx_nid(const SSL_CIPHER *c)
2130 {
2131     int i = ssl_cipher_info_lookup(ssl_cipher_table_kx, c->algorithm_mkey);
2132 
2133     if (i == -1)
2134         return NID_undef;
2135     return ssl_cipher_table_kx[i].nid;
2136 }
2137 
2138 int SSL_CIPHER_get_auth_nid(const SSL_CIPHER *c)
2139 {
2140     int i = ssl_cipher_info_lookup(ssl_cipher_table_auth, c->algorithm_auth);
2141 
2142     if (i == -1)
2143         return NID_undef;
2144     return ssl_cipher_table_auth[i].nid;
2145 }
2146 
2147 const EVP_MD *SSL_CIPHER_get_handshake_digest(const SSL_CIPHER *c)
2148 {
2149     int idx = c->algorithm2 & SSL_HANDSHAKE_MAC_MASK;
2150 
2151     if (idx < 0 || idx >= SSL_MD_NUM_IDX)
2152         return NULL;
2153     return EVP_get_digestbynid(ssl_cipher_table_mac[idx].nid);
2154 }
2155 
2156 int SSL_CIPHER_is_aead(const SSL_CIPHER *c)
2157 {
2158     return (c->algorithm_mac & SSL_AEAD) ? 1 : 0;
2159 }
2160 
2161 int ssl_cipher_get_overhead(const SSL_CIPHER *c, size_t *mac_overhead,
2162                             size_t *int_overhead, size_t *blocksize,
2163                             size_t *ext_overhead)
2164 {
2165     size_t mac = 0, in = 0, blk = 0, out = 0;
2166 
2167     /* Some hard-coded numbers for the CCM/Poly1305 MAC overhead
2168      * because there are no handy #defines for those. */
2169     if (c->algorithm_enc & (SSL_AESGCM | SSL_ARIAGCM)) {
2170         out = EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN;
2171     } else if (c->algorithm_enc & (SSL_AES128CCM | SSL_AES256CCM)) {
2172         out = EVP_CCM_TLS_EXPLICIT_IV_LEN + 16;
2173     } else if (c->algorithm_enc & (SSL_AES128CCM8 | SSL_AES256CCM8)) {
2174         out = EVP_CCM_TLS_EXPLICIT_IV_LEN + 8;
2175     } else if (c->algorithm_enc & SSL_CHACHA20POLY1305) {
2176         out = 16;
2177     } else if (c->algorithm_mac & SSL_AEAD) {
2178         /* We're supposed to have handled all the AEAD modes above */
2179         return 0;
2180     } else {
2181         /* Non-AEAD modes. Calculate MAC/cipher overhead separately */
2182         int digest_nid = SSL_CIPHER_get_digest_nid(c);
2183         const EVP_MD *e_md = EVP_get_digestbynid(digest_nid);
2184 
2185         if (e_md == NULL)
2186             return 0;
2187 
2188         mac = EVP_MD_get_size(e_md);
2189         if (c->algorithm_enc != SSL_eNULL) {
2190             int cipher_nid = SSL_CIPHER_get_cipher_nid(c);
2191             const EVP_CIPHER *e_ciph = EVP_get_cipherbynid(cipher_nid);
2192 
2193             /* If it wasn't AEAD or SSL_eNULL, we expect it to be a
2194                known CBC cipher. */
2195             if (e_ciph == NULL ||
2196                 EVP_CIPHER_get_mode(e_ciph) != EVP_CIPH_CBC_MODE)
2197                 return 0;
2198 
2199             in = 1; /* padding length byte */
2200             out = EVP_CIPHER_get_iv_length(e_ciph);
2201             blk = EVP_CIPHER_get_block_size(e_ciph);
2202         }
2203     }
2204 
2205     *mac_overhead = mac;
2206     *int_overhead = in;
2207     *blocksize = blk;
2208     *ext_overhead = out;
2209 
2210     return 1;
2211 }
2212 
2213 int ssl_cert_is_disabled(SSL_CTX *ctx, size_t idx)
2214 {
2215     const SSL_CERT_LOOKUP *cl = ssl_cert_lookup_by_idx(idx);
2216 
2217     if (cl == NULL || (cl->amask & ctx->disabled_auth_mask) != 0)
2218         return 1;
2219     return 0;
2220 }
2221 
2222 /*
2223  * Default list of TLSv1.2 (and earlier) ciphers
2224  * SSL_DEFAULT_CIPHER_LIST deprecated in 3.0.0
2225  * Update both macro and function simultaneously
2226  */
2227 const char *OSSL_default_cipher_list(void)
2228 {
2229     return "ALL:!COMPLEMENTOFDEFAULT:!eNULL";
2230 }
2231 
2232 /*
2233  * Default list of TLSv1.3 (and later) ciphers
2234  * TLS_DEFAULT_CIPHERSUITES deprecated in 3.0.0
2235  * Update both macro and function simultaneously
2236  */
2237 const char *OSSL_default_ciphersuites(void)
2238 {
2239     return "TLS_AES_256_GCM_SHA384:"
2240            "TLS_CHACHA20_POLY1305_SHA256:"
2241            "TLS_AES_128_GCM_SHA256";
2242 }
2243