xref: /freebsd/crypto/openssl/ssl/s3_cbc.c (revision bd81e07d2761cf1c13063eb49a5c0cb4a6951318)
1 /* ssl/s3_cbc.c */
2 /* ====================================================================
3  * Copyright (c) 2012 The OpenSSL Project.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  *
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in
14  *    the documentation and/or other materials provided with the
15  *    distribution.
16  *
17  * 3. All advertising materials mentioning features or use of this
18  *    software must display the following acknowledgment:
19  *    "This product includes software developed by the OpenSSL Project
20  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21  *
22  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23  *    endorse or promote products derived from this software without
24  *    prior written permission. For written permission, please contact
25  *    openssl-core@openssl.org.
26  *
27  * 5. Products derived from this software may not be called "OpenSSL"
28  *    nor may "OpenSSL" appear in their names without prior written
29  *    permission of the OpenSSL Project.
30  *
31  * 6. Redistributions of any form whatsoever must retain the following
32  *    acknowledgment:
33  *    "This product includes software developed by the OpenSSL Project
34  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35  *
36  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
37  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
40  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47  * OF THE POSSIBILITY OF SUCH DAMAGE.
48  * ====================================================================
49  *
50  * This product includes cryptographic software written by Eric Young
51  * (eay@cryptsoft.com).  This product includes software written by Tim
52  * Hudson (tjh@cryptsoft.com).
53  *
54  */
55 
56 #include "../crypto/constant_time_locl.h"
57 #include "ssl_locl.h"
58 
59 #include <openssl/md5.h>
60 #include <openssl/sha.h>
61 
62 /*
63  * MAX_HASH_BIT_COUNT_BYTES is the maximum number of bytes in the hash's
64  * length field. (SHA-384/512 have 128-bit length.)
65  */
66 #define MAX_HASH_BIT_COUNT_BYTES 16
67 
68 /*
69  * MAX_HASH_BLOCK_SIZE is the maximum hash block size that we'll support.
70  * Currently SHA-384/512 has a 128-byte block size and that's the largest
71  * supported by TLS.)
72  */
73 #define MAX_HASH_BLOCK_SIZE 128
74 
75 /*-
76  * ssl3_cbc_remove_padding removes padding from the decrypted, SSLv3, CBC
77  * record in |rec| by updating |rec->length| in constant time.
78  *
79  * block_size: the block size of the cipher used to encrypt the record.
80  * returns:
81  *   0: (in non-constant time) if the record is publicly invalid.
82  *   1: if the padding was valid
83  *  -1: otherwise.
84  */
85 int ssl3_cbc_remove_padding(const SSL *s,
86                             SSL3_RECORD *rec,
87                             unsigned block_size, unsigned mac_size)
88 {
89     unsigned padding_length, good;
90     const unsigned overhead = 1 /* padding length byte */  + mac_size;
91 
92     /*
93      * These lengths are all public so we can test them in non-constant time.
94      */
95     if (overhead > rec->length)
96         return 0;
97 
98     padding_length = rec->data[rec->length - 1];
99     good = constant_time_ge(rec->length, padding_length + overhead);
100     /* SSLv3 requires that the padding is minimal. */
101     good &= constant_time_ge(block_size, padding_length + 1);
102     padding_length = good & (padding_length + 1);
103     rec->length -= padding_length;
104     rec->type |= padding_length << 8; /* kludge: pass padding length */
105     return constant_time_select_int(good, 1, -1);
106 }
107 
108 /*-
109  * tls1_cbc_remove_padding removes the CBC padding from the decrypted, TLS, CBC
110  * record in |rec| in constant time and returns 1 if the padding is valid and
111  * -1 otherwise. It also removes any explicit IV from the start of the record
112  * without leaking any timing about whether there was enough space after the
113  * padding was removed.
114  *
115  * block_size: the block size of the cipher used to encrypt the record.
116  * returns:
117  *   0: (in non-constant time) if the record is publicly invalid.
118  *   1: if the padding was valid
119  *  -1: otherwise.
120  */
121 int tls1_cbc_remove_padding(const SSL *s,
122                             SSL3_RECORD *rec,
123                             unsigned block_size, unsigned mac_size)
124 {
125     unsigned padding_length, good, to_check, i;
126     const unsigned overhead = 1 /* padding length byte */  + mac_size;
127     /* Check if version requires explicit IV */
128     if (s->version >= TLS1_1_VERSION || s->version == DTLS1_BAD_VER) {
129         /*
130          * These lengths are all public so we can test them in non-constant
131          * time.
132          */
133         if (overhead + block_size > rec->length)
134             return 0;
135         /* We can now safely skip explicit IV */
136         rec->data += block_size;
137         rec->input += block_size;
138         rec->length -= block_size;
139     } else if (overhead > rec->length)
140         return 0;
141 
142     padding_length = rec->data[rec->length - 1];
143 
144     /*
145      * NB: if compression is in operation the first packet may not be of even
146      * length so the padding bug check cannot be performed. This bug
147      * workaround has been around since SSLeay so hopefully it is either
148      * fixed now or no buggy implementation supports compression [steve]
149      */
150     if ((s->options & SSL_OP_TLS_BLOCK_PADDING_BUG) && !s->expand) {
151         /* First packet is even in size, so check */
152         if ((CRYPTO_memcmp(s->s3->read_sequence, "\0\0\0\0\0\0\0\0", 8) == 0) &&
153             !(padding_length & 1)) {
154             s->s3->flags |= TLS1_FLAGS_TLS_PADDING_BUG;
155         }
156         if ((s->s3->flags & TLS1_FLAGS_TLS_PADDING_BUG) && padding_length > 0) {
157             padding_length--;
158         }
159     }
160 
161     if (EVP_CIPHER_flags(s->enc_read_ctx->cipher) & EVP_CIPH_FLAG_AEAD_CIPHER) {
162         /* padding is already verified */
163         rec->length -= padding_length + 1;
164         return 1;
165     }
166 
167     good = constant_time_ge(rec->length, overhead + padding_length);
168     /*
169      * The padding consists of a length byte at the end of the record and
170      * then that many bytes of padding, all with the same value as the length
171      * byte. Thus, with the length byte included, there are i+1 bytes of
172      * padding. We can't check just |padding_length+1| bytes because that
173      * leaks decrypted information. Therefore we always have to check the
174      * maximum amount of padding possible. (Again, the length of the record
175      * is public information so we can use it.)
176      */
177     to_check = 255;             /* maximum amount of padding. */
178     if (to_check > rec->length - 1)
179         to_check = rec->length - 1;
180 
181     for (i = 0; i < to_check; i++) {
182         unsigned char mask = constant_time_ge_8(padding_length, i);
183         unsigned char b = rec->data[rec->length - 1 - i];
184         /*
185          * The final |padding_length+1| bytes should all have the value
186          * |padding_length|. Therefore the XOR should be zero.
187          */
188         good &= ~(mask & (padding_length ^ b));
189     }
190 
191     /*
192      * If any of the final |padding_length+1| bytes had the wrong value, one
193      * or more of the lower eight bits of |good| will be cleared.
194      */
195     good = constant_time_eq(0xff, good & 0xff);
196     padding_length = good & (padding_length + 1);
197     rec->length -= padding_length;
198     rec->type |= padding_length << 8; /* kludge: pass padding length */
199 
200     return constant_time_select_int(good, 1, -1);
201 }
202 
203 /*-
204  * ssl3_cbc_copy_mac copies |md_size| bytes from the end of |rec| to |out| in
205  * constant time (independent of the concrete value of rec->length, which may
206  * vary within a 256-byte window).
207  *
208  * ssl3_cbc_remove_padding or tls1_cbc_remove_padding must be called prior to
209  * this function.
210  *
211  * On entry:
212  *   rec->orig_len >= md_size
213  *   md_size <= EVP_MAX_MD_SIZE
214  *
215  * If CBC_MAC_ROTATE_IN_PLACE is defined then the rotation is performed with
216  * variable accesses in a 64-byte-aligned buffer. Assuming that this fits into
217  * a single or pair of cache-lines, then the variable memory accesses don't
218  * actually affect the timing. CPUs with smaller cache-lines [if any] are
219  * not multi-core and are not considered vulnerable to cache-timing attacks.
220  */
221 #define CBC_MAC_ROTATE_IN_PLACE
222 
223 void ssl3_cbc_copy_mac(unsigned char *out,
224                        const SSL3_RECORD *rec,
225                        unsigned md_size, unsigned orig_len)
226 {
227 #if defined(CBC_MAC_ROTATE_IN_PLACE)
228     unsigned char rotated_mac_buf[64 + EVP_MAX_MD_SIZE];
229     unsigned char *rotated_mac;
230 #else
231     unsigned char rotated_mac[EVP_MAX_MD_SIZE];
232 #endif
233 
234     /*
235      * mac_end is the index of |rec->data| just after the end of the MAC.
236      */
237     unsigned mac_end = rec->length;
238     unsigned mac_start = mac_end - md_size;
239     /*
240      * scan_start contains the number of bytes that we can ignore because the
241      * MAC's position can only vary by 255 bytes.
242      */
243     unsigned scan_start = 0;
244     unsigned i, j;
245     unsigned div_spoiler;
246     unsigned rotate_offset;
247 
248     OPENSSL_assert(orig_len >= md_size);
249     OPENSSL_assert(md_size <= EVP_MAX_MD_SIZE);
250 
251 #if defined(CBC_MAC_ROTATE_IN_PLACE)
252     rotated_mac = rotated_mac_buf + ((0 - (size_t)rotated_mac_buf) & 63);
253 #endif
254 
255     /* This information is public so it's safe to branch based on it. */
256     if (orig_len > md_size + 255 + 1)
257         scan_start = orig_len - (md_size + 255 + 1);
258     /*
259      * div_spoiler contains a multiple of md_size that is used to cause the
260      * modulo operation to be constant time. Without this, the time varies
261      * based on the amount of padding when running on Intel chips at least.
262      * The aim of right-shifting md_size is so that the compiler doesn't
263      * figure out that it can remove div_spoiler as that would require it to
264      * prove that md_size is always even, which I hope is beyond it.
265      */
266     div_spoiler = md_size >> 1;
267     div_spoiler <<= (sizeof(div_spoiler) - 1) * 8;
268     rotate_offset = (div_spoiler + mac_start - scan_start) % md_size;
269 
270     memset(rotated_mac, 0, md_size);
271     for (i = scan_start, j = 0; i < orig_len; i++) {
272         unsigned char mac_started = constant_time_ge_8(i, mac_start);
273         unsigned char mac_ended = constant_time_ge_8(i, mac_end);
274         unsigned char b = rec->data[i];
275         rotated_mac[j++] |= b & mac_started & ~mac_ended;
276         j &= constant_time_lt(j, md_size);
277     }
278 
279     /* Now rotate the MAC */
280 #if defined(CBC_MAC_ROTATE_IN_PLACE)
281     j = 0;
282     for (i = 0; i < md_size; i++) {
283         /* in case cache-line is 32 bytes, touch second line */
284         ((volatile unsigned char *)rotated_mac)[rotate_offset ^ 32];
285         out[j++] = rotated_mac[rotate_offset++];
286         rotate_offset &= constant_time_lt(rotate_offset, md_size);
287     }
288 #else
289     memset(out, 0, md_size);
290     rotate_offset = md_size - rotate_offset;
291     rotate_offset &= constant_time_lt(rotate_offset, md_size);
292     for (i = 0; i < md_size; i++) {
293         for (j = 0; j < md_size; j++)
294             out[j] |= rotated_mac[i] & constant_time_eq_8(j, rotate_offset);
295         rotate_offset++;
296         rotate_offset &= constant_time_lt(rotate_offset, md_size);
297     }
298 #endif
299 }
300 
301 /*
302  * u32toLE serialises an unsigned, 32-bit number (n) as four bytes at (p) in
303  * little-endian order. The value of p is advanced by four.
304  */
305 #define u32toLE(n, p) \
306         (*((p)++)=(unsigned char)(n), \
307          *((p)++)=(unsigned char)(n>>8), \
308          *((p)++)=(unsigned char)(n>>16), \
309          *((p)++)=(unsigned char)(n>>24))
310 
311 /*
312  * These functions serialize the state of a hash and thus perform the
313  * standard "final" operation without adding the padding and length that such
314  * a function typically does.
315  */
316 static void tls1_md5_final_raw(void *ctx, unsigned char *md_out)
317 {
318     MD5_CTX *md5 = ctx;
319     u32toLE(md5->A, md_out);
320     u32toLE(md5->B, md_out);
321     u32toLE(md5->C, md_out);
322     u32toLE(md5->D, md_out);
323 }
324 
325 static void tls1_sha1_final_raw(void *ctx, unsigned char *md_out)
326 {
327     SHA_CTX *sha1 = ctx;
328     l2n(sha1->h0, md_out);
329     l2n(sha1->h1, md_out);
330     l2n(sha1->h2, md_out);
331     l2n(sha1->h3, md_out);
332     l2n(sha1->h4, md_out);
333 }
334 
335 #define LARGEST_DIGEST_CTX SHA_CTX
336 
337 #ifndef OPENSSL_NO_SHA256
338 static void tls1_sha256_final_raw(void *ctx, unsigned char *md_out)
339 {
340     SHA256_CTX *sha256 = ctx;
341     unsigned i;
342 
343     for (i = 0; i < 8; i++) {
344         l2n(sha256->h[i], md_out);
345     }
346 }
347 
348 # undef  LARGEST_DIGEST_CTX
349 # define LARGEST_DIGEST_CTX SHA256_CTX
350 #endif
351 
352 #ifndef OPENSSL_NO_SHA512
353 static void tls1_sha512_final_raw(void *ctx, unsigned char *md_out)
354 {
355     SHA512_CTX *sha512 = ctx;
356     unsigned i;
357 
358     for (i = 0; i < 8; i++) {
359         l2n8(sha512->h[i], md_out);
360     }
361 }
362 
363 # undef  LARGEST_DIGEST_CTX
364 # define LARGEST_DIGEST_CTX SHA512_CTX
365 #endif
366 
367 /*
368  * ssl3_cbc_record_digest_supported returns 1 iff |ctx| uses a hash function
369  * which ssl3_cbc_digest_record supports.
370  */
371 char ssl3_cbc_record_digest_supported(const EVP_MD_CTX *ctx)
372 {
373 #ifdef OPENSSL_FIPS
374     if (FIPS_mode())
375         return 0;
376 #endif
377     switch (EVP_MD_CTX_type(ctx)) {
378     case NID_md5:
379     case NID_sha1:
380 #ifndef OPENSSL_NO_SHA256
381     case NID_sha224:
382     case NID_sha256:
383 #endif
384 #ifndef OPENSSL_NO_SHA512
385     case NID_sha384:
386     case NID_sha512:
387 #endif
388         return 1;
389     default:
390         return 0;
391     }
392 }
393 
394 /*-
395  * ssl3_cbc_digest_record computes the MAC of a decrypted, padded SSLv3/TLS
396  * record.
397  *
398  *   ctx: the EVP_MD_CTX from which we take the hash function.
399  *     ssl3_cbc_record_digest_supported must return true for this EVP_MD_CTX.
400  *   md_out: the digest output. At most EVP_MAX_MD_SIZE bytes will be written.
401  *   md_out_size: if non-NULL, the number of output bytes is written here.
402  *   header: the 13-byte, TLS record header.
403  *   data: the record data itself, less any preceeding explicit IV.
404  *   data_plus_mac_size: the secret, reported length of the data and MAC
405  *     once the padding has been removed.
406  *   data_plus_mac_plus_padding_size: the public length of the whole
407  *     record, including padding.
408  *   is_sslv3: non-zero if we are to use SSLv3. Otherwise, TLS.
409  *
410  * On entry: by virtue of having been through one of the remove_padding
411  * functions, above, we know that data_plus_mac_size is large enough to contain
412  * a padding byte and MAC. (If the padding was invalid, it might contain the
413  * padding too. )
414  */
415 void ssl3_cbc_digest_record(const EVP_MD_CTX *ctx,
416                             unsigned char *md_out,
417                             size_t *md_out_size,
418                             const unsigned char header[13],
419                             const unsigned char *data,
420                             size_t data_plus_mac_size,
421                             size_t data_plus_mac_plus_padding_size,
422                             const unsigned char *mac_secret,
423                             unsigned mac_secret_length, char is_sslv3)
424 {
425     union {
426         double align;
427         unsigned char c[sizeof(LARGEST_DIGEST_CTX)];
428     } md_state;
429     void (*md_final_raw) (void *ctx, unsigned char *md_out);
430     void (*md_transform) (void *ctx, const unsigned char *block);
431     unsigned md_size, md_block_size = 64;
432     unsigned sslv3_pad_length = 40, header_length, variance_blocks,
433         len, max_mac_bytes, num_blocks,
434         num_starting_blocks, k, mac_end_offset, c, index_a, index_b;
435     unsigned int bits;          /* at most 18 bits */
436     unsigned char length_bytes[MAX_HASH_BIT_COUNT_BYTES];
437     /* hmac_pad is the masked HMAC key. */
438     unsigned char hmac_pad[MAX_HASH_BLOCK_SIZE];
439     unsigned char first_block[MAX_HASH_BLOCK_SIZE];
440     unsigned char mac_out[EVP_MAX_MD_SIZE];
441     unsigned i, j, md_out_size_u;
442     EVP_MD_CTX md_ctx;
443     /*
444      * mdLengthSize is the number of bytes in the length field that
445      * terminates * the hash.
446      */
447     unsigned md_length_size = 8;
448     char length_is_big_endian = 1;
449 
450     /*
451      * This is a, hopefully redundant, check that allows us to forget about
452      * many possible overflows later in this function.
453      */
454     OPENSSL_assert(data_plus_mac_plus_padding_size < 1024 * 1024);
455 
456     switch (EVP_MD_CTX_type(ctx)) {
457     case NID_md5:
458         MD5_Init((MD5_CTX *)md_state.c);
459         md_final_raw = tls1_md5_final_raw;
460         md_transform =
461             (void (*)(void *ctx, const unsigned char *block))MD5_Transform;
462         md_size = 16;
463         sslv3_pad_length = 48;
464         length_is_big_endian = 0;
465         break;
466     case NID_sha1:
467         SHA1_Init((SHA_CTX *)md_state.c);
468         md_final_raw = tls1_sha1_final_raw;
469         md_transform =
470             (void (*)(void *ctx, const unsigned char *block))SHA1_Transform;
471         md_size = 20;
472         break;
473 #ifndef OPENSSL_NO_SHA256
474     case NID_sha224:
475         SHA224_Init((SHA256_CTX *)md_state.c);
476         md_final_raw = tls1_sha256_final_raw;
477         md_transform =
478             (void (*)(void *ctx, const unsigned char *block))SHA256_Transform;
479         md_size = 224 / 8;
480         break;
481     case NID_sha256:
482         SHA256_Init((SHA256_CTX *)md_state.c);
483         md_final_raw = tls1_sha256_final_raw;
484         md_transform =
485             (void (*)(void *ctx, const unsigned char *block))SHA256_Transform;
486         md_size = 32;
487         break;
488 #endif
489 #ifndef OPENSSL_NO_SHA512
490     case NID_sha384:
491         SHA384_Init((SHA512_CTX *)md_state.c);
492         md_final_raw = tls1_sha512_final_raw;
493         md_transform =
494             (void (*)(void *ctx, const unsigned char *block))SHA512_Transform;
495         md_size = 384 / 8;
496         md_block_size = 128;
497         md_length_size = 16;
498         break;
499     case NID_sha512:
500         SHA512_Init((SHA512_CTX *)md_state.c);
501         md_final_raw = tls1_sha512_final_raw;
502         md_transform =
503             (void (*)(void *ctx, const unsigned char *block))SHA512_Transform;
504         md_size = 64;
505         md_block_size = 128;
506         md_length_size = 16;
507         break;
508 #endif
509     default:
510         /*
511          * ssl3_cbc_record_digest_supported should have been called first to
512          * check that the hash function is supported.
513          */
514         OPENSSL_assert(0);
515         if (md_out_size)
516             *md_out_size = -1;
517         return;
518     }
519 
520     OPENSSL_assert(md_length_size <= MAX_HASH_BIT_COUNT_BYTES);
521     OPENSSL_assert(md_block_size <= MAX_HASH_BLOCK_SIZE);
522     OPENSSL_assert(md_size <= EVP_MAX_MD_SIZE);
523 
524     header_length = 13;
525     if (is_sslv3) {
526         header_length = mac_secret_length + sslv3_pad_length + 8 /* sequence
527                                                                   * number */  +
528             1 /* record type */  +
529             2 /* record length */ ;
530     }
531 
532     /*
533      * variance_blocks is the number of blocks of the hash that we have to
534      * calculate in constant time because they could be altered by the
535      * padding value. In SSLv3, the padding must be minimal so the end of
536      * the plaintext varies by, at most, 15+20 = 35 bytes. (We conservatively
537      * assume that the MAC size varies from 0..20 bytes.) In case the 9 bytes
538      * of hash termination (0x80 + 64-bit length) don't fit in the final
539      * block, we say that the final two blocks can vary based on the padding.
540      * TLSv1 has MACs up to 48 bytes long (SHA-384) and the padding is not
541      * required to be minimal. Therefore we say that the final six blocks can
542      * vary based on the padding. Later in the function, if the message is
543      * short and there obviously cannot be this many blocks then
544      * variance_blocks can be reduced.
545      */
546     variance_blocks = is_sslv3 ? 2 : 6;
547     /*
548      * From now on we're dealing with the MAC, which conceptually has 13
549      * bytes of `header' before the start of the data (TLS) or 71/75 bytes
550      * (SSLv3)
551      */
552     len = data_plus_mac_plus_padding_size + header_length;
553     /*
554      * max_mac_bytes contains the maximum bytes of bytes in the MAC,
555      * including * |header|, assuming that there's no padding.
556      */
557     max_mac_bytes = len - md_size - 1;
558     /* num_blocks is the maximum number of hash blocks. */
559     num_blocks =
560         (max_mac_bytes + 1 + md_length_size + md_block_size -
561          1) / md_block_size;
562     /*
563      * In order to calculate the MAC in constant time we have to handle the
564      * final blocks specially because the padding value could cause the end
565      * to appear somewhere in the final |variance_blocks| blocks and we can't
566      * leak where. However, |num_starting_blocks| worth of data can be hashed
567      * right away because no padding value can affect whether they are
568      * plaintext.
569      */
570     num_starting_blocks = 0;
571     /*
572      * k is the starting byte offset into the conceptual header||data where
573      * we start processing.
574      */
575     k = 0;
576     /*
577      * mac_end_offset is the index just past the end of the data to be MACed.
578      */
579     mac_end_offset = data_plus_mac_size + header_length - md_size;
580     /*
581      * c is the index of the 0x80 byte in the final hash block that contains
582      * application data.
583      */
584     c = mac_end_offset % md_block_size;
585     /*
586      * index_a is the hash block number that contains the 0x80 terminating
587      * value.
588      */
589     index_a = mac_end_offset / md_block_size;
590     /*
591      * index_b is the hash block number that contains the 64-bit hash length,
592      * in bits.
593      */
594     index_b = (mac_end_offset + md_length_size) / md_block_size;
595     /*
596      * bits is the hash-length in bits. It includes the additional hash block
597      * for the masked HMAC key, or whole of |header| in the case of SSLv3.
598      */
599 
600     /*
601      * For SSLv3, if we're going to have any starting blocks then we need at
602      * least two because the header is larger than a single block.
603      */
604     if (num_blocks > variance_blocks + (is_sslv3 ? 1 : 0)) {
605         num_starting_blocks = num_blocks - variance_blocks;
606         k = md_block_size * num_starting_blocks;
607     }
608 
609     bits = 8 * mac_end_offset;
610     if (!is_sslv3) {
611         /*
612          * Compute the initial HMAC block. For SSLv3, the padding and secret
613          * bytes are included in |header| because they take more than a
614          * single block.
615          */
616         bits += 8 * md_block_size;
617         memset(hmac_pad, 0, md_block_size);
618         OPENSSL_assert(mac_secret_length <= sizeof(hmac_pad));
619         memcpy(hmac_pad, mac_secret, mac_secret_length);
620         for (i = 0; i < md_block_size; i++)
621             hmac_pad[i] ^= 0x36;
622 
623         md_transform(md_state.c, hmac_pad);
624     }
625 
626     if (length_is_big_endian) {
627         memset(length_bytes, 0, md_length_size - 4);
628         length_bytes[md_length_size - 4] = (unsigned char)(bits >> 24);
629         length_bytes[md_length_size - 3] = (unsigned char)(bits >> 16);
630         length_bytes[md_length_size - 2] = (unsigned char)(bits >> 8);
631         length_bytes[md_length_size - 1] = (unsigned char)bits;
632     } else {
633         memset(length_bytes, 0, md_length_size);
634         length_bytes[md_length_size - 5] = (unsigned char)(bits >> 24);
635         length_bytes[md_length_size - 6] = (unsigned char)(bits >> 16);
636         length_bytes[md_length_size - 7] = (unsigned char)(bits >> 8);
637         length_bytes[md_length_size - 8] = (unsigned char)bits;
638     }
639 
640     if (k > 0) {
641         if (is_sslv3) {
642             unsigned overhang;
643 
644             /*
645              * The SSLv3 header is larger than a single block. overhang is
646              * the number of bytes beyond a single block that the header
647              * consumes: either 7 bytes (SHA1) or 11 bytes (MD5). There are no
648              * ciphersuites in SSLv3 that are not SHA1 or MD5 based and
649              * therefore we can be confident that the header_length will be
650              * greater than |md_block_size|. However we add a sanity check just
651              * in case
652              */
653             if (header_length <= md_block_size) {
654                 /* Should never happen */
655                 return;
656             }
657             overhang = header_length - md_block_size;
658             md_transform(md_state.c, header);
659             memcpy(first_block, header + md_block_size, overhang);
660             memcpy(first_block + overhang, data, md_block_size - overhang);
661             md_transform(md_state.c, first_block);
662             for (i = 1; i < k / md_block_size - 1; i++)
663                 md_transform(md_state.c, data + md_block_size * i - overhang);
664         } else {
665             /* k is a multiple of md_block_size. */
666             memcpy(first_block, header, 13);
667             memcpy(first_block + 13, data, md_block_size - 13);
668             md_transform(md_state.c, first_block);
669             for (i = 1; i < k / md_block_size; i++)
670                 md_transform(md_state.c, data + md_block_size * i - 13);
671         }
672     }
673 
674     memset(mac_out, 0, sizeof(mac_out));
675 
676     /*
677      * We now process the final hash blocks. For each block, we construct it
678      * in constant time. If the |i==index_a| then we'll include the 0x80
679      * bytes and zero pad etc. For each block we selectively copy it, in
680      * constant time, to |mac_out|.
681      */
682     for (i = num_starting_blocks; i <= num_starting_blocks + variance_blocks;
683          i++) {
684         unsigned char block[MAX_HASH_BLOCK_SIZE];
685         unsigned char is_block_a = constant_time_eq_8(i, index_a);
686         unsigned char is_block_b = constant_time_eq_8(i, index_b);
687         for (j = 0; j < md_block_size; j++) {
688             unsigned char b = 0, is_past_c, is_past_cp1;
689             if (k < header_length)
690                 b = header[k];
691             else if (k < data_plus_mac_plus_padding_size + header_length)
692                 b = data[k - header_length];
693             k++;
694 
695             is_past_c = is_block_a & constant_time_ge_8(j, c);
696             is_past_cp1 = is_block_a & constant_time_ge_8(j, c + 1);
697             /*
698              * If this is the block containing the end of the application
699              * data, and we are at the offset for the 0x80 value, then
700              * overwrite b with 0x80.
701              */
702             b = constant_time_select_8(is_past_c, 0x80, b);
703             /*
704              * If this the the block containing the end of the application
705              * data and we're past the 0x80 value then just write zero.
706              */
707             b = b & ~is_past_cp1;
708             /*
709              * If this is index_b (the final block), but not index_a (the end
710              * of the data), then the 64-bit length didn't fit into index_a
711              * and we're having to add an extra block of zeros.
712              */
713             b &= ~is_block_b | is_block_a;
714 
715             /*
716              * The final bytes of one of the blocks contains the length.
717              */
718             if (j >= md_block_size - md_length_size) {
719                 /* If this is index_b, write a length byte. */
720                 b = constant_time_select_8(is_block_b,
721                                            length_bytes[j -
722                                                         (md_block_size -
723                                                          md_length_size)], b);
724             }
725             block[j] = b;
726         }
727 
728         md_transform(md_state.c, block);
729         md_final_raw(md_state.c, block);
730         /* If this is index_b, copy the hash value to |mac_out|. */
731         for (j = 0; j < md_size; j++)
732             mac_out[j] |= block[j] & is_block_b;
733     }
734 
735     EVP_MD_CTX_init(&md_ctx);
736     EVP_DigestInit_ex(&md_ctx, ctx->digest, NULL /* engine */ );
737     if (is_sslv3) {
738         /* We repurpose |hmac_pad| to contain the SSLv3 pad2 block. */
739         memset(hmac_pad, 0x5c, sslv3_pad_length);
740 
741         EVP_DigestUpdate(&md_ctx, mac_secret, mac_secret_length);
742         EVP_DigestUpdate(&md_ctx, hmac_pad, sslv3_pad_length);
743         EVP_DigestUpdate(&md_ctx, mac_out, md_size);
744     } else {
745         /* Complete the HMAC in the standard manner. */
746         for (i = 0; i < md_block_size; i++)
747             hmac_pad[i] ^= 0x6a;
748 
749         EVP_DigestUpdate(&md_ctx, hmac_pad, md_block_size);
750         EVP_DigestUpdate(&md_ctx, mac_out, md_size);
751     }
752     EVP_DigestFinal(&md_ctx, md_out, &md_out_size_u);
753     if (md_out_size)
754         *md_out_size = md_out_size_u;
755     EVP_MD_CTX_cleanup(&md_ctx);
756 }
757 
758 #ifdef OPENSSL_FIPS
759 
760 /*
761  * Due to the need to use EVP in FIPS mode we can't reimplement digests but
762  * we can ensure the number of blocks processed is equal for all cases by
763  * digesting additional data.
764  */
765 
766 void tls_fips_digest_extra(const EVP_CIPHER_CTX *cipher_ctx,
767                            EVP_MD_CTX *mac_ctx, const unsigned char *data,
768                            size_t data_len, size_t orig_len)
769 {
770     size_t block_size, digest_pad, blocks_data, blocks_orig;
771     if (EVP_CIPHER_CTX_mode(cipher_ctx) != EVP_CIPH_CBC_MODE)
772         return;
773     block_size = EVP_MD_CTX_block_size(mac_ctx);
774     /*-
775      * We are in FIPS mode if we get this far so we know we have only SHA*
776      * digests and TLS to deal with.
777      * Minimum digest padding length is 17 for SHA384/SHA512 and 9
778      * otherwise.
779      * Additional header is 13 bytes. To get the number of digest blocks
780      * processed round up the amount of data plus padding to the nearest
781      * block length. Block length is 128 for SHA384/SHA512 and 64 otherwise.
782      * So we have:
783      * blocks = (payload_len + digest_pad + 13 + block_size - 1)/block_size
784      * equivalently:
785      * blocks = (payload_len + digest_pad + 12)/block_size + 1
786      * HMAC adds a constant overhead.
787      * We're ultimately only interested in differences so this becomes
788      * blocks = (payload_len + 29)/128
789      * for SHA384/SHA512 and
790      * blocks = (payload_len + 21)/64
791      * otherwise.
792      */
793     digest_pad = block_size == 64 ? 21 : 29;
794     blocks_orig = (orig_len + digest_pad) / block_size;
795     blocks_data = (data_len + digest_pad) / block_size;
796     /*
797      * MAC enough blocks to make up the difference between the original and
798      * actual lengths plus one extra block to ensure this is never a no op.
799      * The "data" pointer should always have enough space to perform this
800      * operation as it is large enough for a maximum length TLS buffer.
801      */
802     EVP_DigestSignUpdate(mac_ctx, data,
803                          (blocks_orig - blocks_data + 1) * block_size);
804 }
805 #endif
806