xref: /freebsd/crypto/openssl/ssl/s3_cbc.c (revision 43d55325406e96e37be661de52289c2592c82ec9)
1 /* ssl/s3_cbc.c */
2 /* ====================================================================
3  * Copyright (c) 2012 The OpenSSL Project.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  *
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in
14  *    the documentation and/or other materials provided with the
15  *    distribution.
16  *
17  * 3. All advertising materials mentioning features or use of this
18  *    software must display the following acknowledgment:
19  *    "This product includes software developed by the OpenSSL Project
20  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21  *
22  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23  *    endorse or promote products derived from this software without
24  *    prior written permission. For written permission, please contact
25  *    openssl-core@openssl.org.
26  *
27  * 5. Products derived from this software may not be called "OpenSSL"
28  *    nor may "OpenSSL" appear in their names without prior written
29  *    permission of the OpenSSL Project.
30  *
31  * 6. Redistributions of any form whatsoever must retain the following
32  *    acknowledgment:
33  *    "This product includes software developed by the OpenSSL Project
34  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35  *
36  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
37  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
40  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47  * OF THE POSSIBILITY OF SUCH DAMAGE.
48  * ====================================================================
49  *
50  * This product includes cryptographic software written by Eric Young
51  * (eay@cryptsoft.com).  This product includes software written by Tim
52  * Hudson (tjh@cryptsoft.com).
53  *
54  */
55 
56 #include "../crypto/constant_time_locl.h"
57 #include "ssl_locl.h"
58 
59 #include <openssl/md5.h>
60 #include <openssl/sha.h>
61 
62 /* MAX_HASH_BIT_COUNT_BYTES is the maximum number of bytes in the hash's length
63  * field. (SHA-384/512 have 128-bit length.) */
64 #define MAX_HASH_BIT_COUNT_BYTES 16
65 
66 /* MAX_HASH_BLOCK_SIZE is the maximum hash block size that we'll support.
67  * Currently SHA-384/512 has a 128-byte block size and that's the largest
68  * supported by TLS.) */
69 #define MAX_HASH_BLOCK_SIZE 128
70 
71 /* ssl3_cbc_remove_padding removes padding from the decrypted, SSLv3, CBC
72  * record in |rec| by updating |rec->length| in constant time.
73  *
74  * block_size: the block size of the cipher used to encrypt the record.
75  * returns:
76  *   0: (in non-constant time) if the record is publicly invalid.
77  *   1: if the padding was valid
78  *  -1: otherwise. */
79 int ssl3_cbc_remove_padding(const SSL* s,
80 			    SSL3_RECORD *rec,
81 			    unsigned block_size,
82 			    unsigned mac_size)
83 	{
84 	unsigned padding_length, good;
85 	const unsigned overhead = 1 /* padding length byte */ + mac_size;
86 
87 	/* These lengths are all public so we can test them in non-constant
88 	 * time. */
89 	if (overhead > rec->length)
90 		return 0;
91 
92 	padding_length = rec->data[rec->length-1];
93 	good = constant_time_ge(rec->length, padding_length+overhead);
94 	/* SSLv3 requires that the padding is minimal. */
95 	good &= constant_time_ge(block_size, padding_length+1);
96 	padding_length = good & (padding_length+1);
97 	rec->length -= padding_length;
98 	rec->type |= padding_length<<8;	/* kludge: pass padding length */
99 	return constant_time_select_int(good, 1, -1);
100 	}
101 
102 /* tls1_cbc_remove_padding removes the CBC padding from the decrypted, TLS, CBC
103  * record in |rec| in constant time and returns 1 if the padding is valid and
104  * -1 otherwise. It also removes any explicit IV from the start of the record
105  * without leaking any timing about whether there was enough space after the
106  * padding was removed.
107  *
108  * block_size: the block size of the cipher used to encrypt the record.
109  * returns:
110  *   0: (in non-constant time) if the record is publicly invalid.
111  *   1: if the padding was valid
112  *  -1: otherwise. */
113 int tls1_cbc_remove_padding(const SSL* s,
114 			    SSL3_RECORD *rec,
115 			    unsigned block_size,
116 			    unsigned mac_size)
117 	{
118 	unsigned padding_length, good, to_check, i;
119 	const unsigned overhead = 1 /* padding length byte */ + mac_size;
120 	/* Check if version requires explicit IV */
121 	if (s->version >= TLS1_1_VERSION || s->version == DTLS1_BAD_VER)
122 		{
123 		/* These lengths are all public so we can test them in
124 		 * non-constant time.
125 		 */
126 		if (overhead + block_size > rec->length)
127 			return 0;
128 		/* We can now safely skip explicit IV */
129 		rec->data += block_size;
130 		rec->input += block_size;
131 		rec->length -= block_size;
132 		}
133 	else if (overhead > rec->length)
134 		return 0;
135 
136 	padding_length = rec->data[rec->length-1];
137 
138 	/* NB: if compression is in operation the first packet may not be of
139 	 * even length so the padding bug check cannot be performed. This bug
140 	 * workaround has been around since SSLeay so hopefully it is either
141 	 * fixed now or no buggy implementation supports compression [steve]
142 	 */
143 	if ( (s->options&SSL_OP_TLS_BLOCK_PADDING_BUG) && !s->expand)
144 		{
145 		/* First packet is even in size, so check */
146 		if ((memcmp(s->s3->read_sequence, "\0\0\0\0\0\0\0\0",8) == 0) &&
147 		    !(padding_length & 1))
148 			{
149 			s->s3->flags|=TLS1_FLAGS_TLS_PADDING_BUG;
150 			}
151 		if ((s->s3->flags & TLS1_FLAGS_TLS_PADDING_BUG) &&
152 		    padding_length > 0)
153 			{
154 			padding_length--;
155 			}
156 		}
157 
158 	if (EVP_CIPHER_flags(s->enc_read_ctx->cipher)&EVP_CIPH_FLAG_AEAD_CIPHER)
159 		{
160 		/* padding is already verified */
161 		rec->length -= padding_length + 1;
162 		return 1;
163 		}
164 
165 	good = constant_time_ge(rec->length, overhead+padding_length);
166 	/* The padding consists of a length byte at the end of the record and
167 	 * then that many bytes of padding, all with the same value as the
168 	 * length byte. Thus, with the length byte included, there are i+1
169 	 * bytes of padding.
170 	 *
171 	 * We can't check just |padding_length+1| bytes because that leaks
172 	 * decrypted information. Therefore we always have to check the maximum
173 	 * amount of padding possible. (Again, the length of the record is
174 	 * public information so we can use it.) */
175 	to_check = 255; /* maximum amount of padding. */
176 	if (to_check > rec->length-1)
177 		to_check = rec->length-1;
178 
179 	for (i = 0; i < to_check; i++)
180 		{
181 		unsigned char mask = constant_time_ge_8(padding_length, i);
182 		unsigned char b = rec->data[rec->length-1-i];
183 		/* The final |padding_length+1| bytes should all have the value
184 		 * |padding_length|. Therefore the XOR should be zero. */
185 		good &= ~(mask&(padding_length ^ b));
186 		}
187 
188 	/* If any of the final |padding_length+1| bytes had the wrong value,
189 	 * one or more of the lower eight bits of |good| will be cleared.
190 	 */
191 	good = constant_time_eq(0xff, good & 0xff);
192 	padding_length = good & (padding_length+1);
193 	rec->length -= padding_length;
194 	rec->type |= padding_length<<8;	/* kludge: pass padding length */
195 
196 	return constant_time_select_int(good, 1, -1);
197 	}
198 
199 /* ssl3_cbc_copy_mac copies |md_size| bytes from the end of |rec| to |out| in
200  * constant time (independent of the concrete value of rec->length, which may
201  * vary within a 256-byte window).
202  *
203  * ssl3_cbc_remove_padding or tls1_cbc_remove_padding must be called prior to
204  * this function.
205  *
206  * On entry:
207  *   rec->orig_len >= md_size
208  *   md_size <= EVP_MAX_MD_SIZE
209  *
210  * If CBC_MAC_ROTATE_IN_PLACE is defined then the rotation is performed with
211  * variable accesses in a 64-byte-aligned buffer. Assuming that this fits into
212  * a single or pair of cache-lines, then the variable memory accesses don't
213  * actually affect the timing. CPUs with smaller cache-lines [if any] are
214  * not multi-core and are not considered vulnerable to cache-timing attacks.
215  */
216 #define CBC_MAC_ROTATE_IN_PLACE
217 
218 void ssl3_cbc_copy_mac(unsigned char* out,
219 		       const SSL3_RECORD *rec,
220 		       unsigned md_size,unsigned orig_len)
221 	{
222 #if defined(CBC_MAC_ROTATE_IN_PLACE)
223 	unsigned char rotated_mac_buf[64+EVP_MAX_MD_SIZE];
224 	unsigned char *rotated_mac;
225 #else
226 	unsigned char rotated_mac[EVP_MAX_MD_SIZE];
227 #endif
228 
229 	/* mac_end is the index of |rec->data| just after the end of the MAC. */
230 	unsigned mac_end = rec->length;
231 	unsigned mac_start = mac_end - md_size;
232 	/* scan_start contains the number of bytes that we can ignore because
233 	 * the MAC's position can only vary by 255 bytes. */
234 	unsigned scan_start = 0;
235 	unsigned i, j;
236 	unsigned div_spoiler;
237 	unsigned rotate_offset;
238 
239 	OPENSSL_assert(orig_len >= md_size);
240 	OPENSSL_assert(md_size <= EVP_MAX_MD_SIZE);
241 
242 #if defined(CBC_MAC_ROTATE_IN_PLACE)
243 	rotated_mac = rotated_mac_buf + ((0-(size_t)rotated_mac_buf)&63);
244 #endif
245 
246 	/* This information is public so it's safe to branch based on it. */
247 	if (orig_len > md_size + 255 + 1)
248 		scan_start = orig_len - (md_size + 255 + 1);
249 	/* div_spoiler contains a multiple of md_size that is used to cause the
250 	 * modulo operation to be constant time. Without this, the time varies
251 	 * based on the amount of padding when running on Intel chips at least.
252 	 *
253 	 * The aim of right-shifting md_size is so that the compiler doesn't
254 	 * figure out that it can remove div_spoiler as that would require it
255 	 * to prove that md_size is always even, which I hope is beyond it. */
256 	div_spoiler = md_size >> 1;
257 	div_spoiler <<= (sizeof(div_spoiler)-1)*8;
258 	rotate_offset = (div_spoiler + mac_start - scan_start) % md_size;
259 
260 	memset(rotated_mac, 0, md_size);
261 	for (i = scan_start, j = 0; i < orig_len; i++)
262 		{
263 		unsigned char mac_started = constant_time_ge_8(i, mac_start);
264 		unsigned char mac_ended = constant_time_ge_8(i, mac_end);
265 		unsigned char b = rec->data[i];
266 		rotated_mac[j++] |= b & mac_started & ~mac_ended;
267 		j &= constant_time_lt(j,md_size);
268 		}
269 
270 	/* Now rotate the MAC */
271 #if defined(CBC_MAC_ROTATE_IN_PLACE)
272 	j = 0;
273 	for (i = 0; i < md_size; i++)
274 		{
275 		/* in case cache-line is 32 bytes, touch second line */
276 		((volatile unsigned char *)rotated_mac)[rotate_offset^32];
277 		out[j++] = rotated_mac[rotate_offset++];
278 		rotate_offset &= constant_time_lt(rotate_offset,md_size);
279 		}
280 #else
281 	memset(out, 0, md_size);
282 	rotate_offset = md_size - rotate_offset;
283 	rotate_offset &= constant_time_lt(rotate_offset,md_size);
284 	for (i = 0; i < md_size; i++)
285 		{
286 		for (j = 0; j < md_size; j++)
287 			out[j] |= rotated_mac[i] & constant_time_eq_8(j, rotate_offset);
288 		rotate_offset++;
289 		rotate_offset &= constant_time_lt(rotate_offset,md_size);
290 		}
291 #endif
292 	}
293 
294 /* u32toLE serialises an unsigned, 32-bit number (n) as four bytes at (p) in
295  * little-endian order. The value of p is advanced by four. */
296 #define u32toLE(n, p) \
297 	(*((p)++)=(unsigned char)(n), \
298 	 *((p)++)=(unsigned char)(n>>8), \
299 	 *((p)++)=(unsigned char)(n>>16), \
300 	 *((p)++)=(unsigned char)(n>>24))
301 
302 /* These functions serialize the state of a hash and thus perform the standard
303  * "final" operation without adding the padding and length that such a function
304  * typically does. */
305 static void tls1_md5_final_raw(void* ctx, unsigned char *md_out)
306 	{
307 	MD5_CTX *md5 = ctx;
308 	u32toLE(md5->A, md_out);
309 	u32toLE(md5->B, md_out);
310 	u32toLE(md5->C, md_out);
311 	u32toLE(md5->D, md_out);
312 	}
313 
314 static void tls1_sha1_final_raw(void* ctx, unsigned char *md_out)
315 	{
316 	SHA_CTX *sha1 = ctx;
317 	l2n(sha1->h0, md_out);
318 	l2n(sha1->h1, md_out);
319 	l2n(sha1->h2, md_out);
320 	l2n(sha1->h3, md_out);
321 	l2n(sha1->h4, md_out);
322 	}
323 #define LARGEST_DIGEST_CTX SHA_CTX
324 
325 #ifndef OPENSSL_NO_SHA256
326 static void tls1_sha256_final_raw(void* ctx, unsigned char *md_out)
327 	{
328 	SHA256_CTX *sha256 = ctx;
329 	unsigned i;
330 
331 	for (i = 0; i < 8; i++)
332 		{
333 		l2n(sha256->h[i], md_out);
334 		}
335 	}
336 #undef  LARGEST_DIGEST_CTX
337 #define LARGEST_DIGEST_CTX SHA256_CTX
338 #endif
339 
340 #ifndef OPENSSL_NO_SHA512
341 static void tls1_sha512_final_raw(void* ctx, unsigned char *md_out)
342 	{
343 	SHA512_CTX *sha512 = ctx;
344 	unsigned i;
345 
346 	for (i = 0; i < 8; i++)
347 		{
348 		l2n8(sha512->h[i], md_out);
349 		}
350 	}
351 #undef  LARGEST_DIGEST_CTX
352 #define LARGEST_DIGEST_CTX SHA512_CTX
353 #endif
354 
355 /* ssl3_cbc_record_digest_supported returns 1 iff |ctx| uses a hash function
356  * which ssl3_cbc_digest_record supports. */
357 char ssl3_cbc_record_digest_supported(const EVP_MD_CTX *ctx)
358 	{
359 #ifdef OPENSSL_FIPS
360 	if (FIPS_mode())
361 		return 0;
362 #endif
363 	switch (EVP_MD_CTX_type(ctx))
364 		{
365 		case NID_md5:
366 		case NID_sha1:
367 #ifndef OPENSSL_NO_SHA256
368 		case NID_sha224:
369 		case NID_sha256:
370 #endif
371 #ifndef OPENSSL_NO_SHA512
372 		case NID_sha384:
373 		case NID_sha512:
374 #endif
375 			return 1;
376 		default:
377 			return 0;
378 		}
379 	}
380 
381 /* ssl3_cbc_digest_record computes the MAC of a decrypted, padded SSLv3/TLS
382  * record.
383  *
384  *   ctx: the EVP_MD_CTX from which we take the hash function.
385  *     ssl3_cbc_record_digest_supported must return true for this EVP_MD_CTX.
386  *   md_out: the digest output. At most EVP_MAX_MD_SIZE bytes will be written.
387  *   md_out_size: if non-NULL, the number of output bytes is written here.
388  *   header: the 13-byte, TLS record header.
389  *   data: the record data itself, less any preceeding explicit IV.
390  *   data_plus_mac_size: the secret, reported length of the data and MAC
391  *     once the padding has been removed.
392  *   data_plus_mac_plus_padding_size: the public length of the whole
393  *     record, including padding.
394  *   is_sslv3: non-zero if we are to use SSLv3. Otherwise, TLS.
395  *
396  * On entry: by virtue of having been through one of the remove_padding
397  * functions, above, we know that data_plus_mac_size is large enough to contain
398  * a padding byte and MAC. (If the padding was invalid, it might contain the
399  * padding too. ) */
400 void ssl3_cbc_digest_record(
401 	const EVP_MD_CTX *ctx,
402 	unsigned char* md_out,
403 	size_t* md_out_size,
404 	const unsigned char header[13],
405 	const unsigned char *data,
406 	size_t data_plus_mac_size,
407 	size_t data_plus_mac_plus_padding_size,
408 	const unsigned char *mac_secret,
409 	unsigned mac_secret_length,
410 	char is_sslv3)
411 	{
412 	union {	double align;
413 		unsigned char c[sizeof(LARGEST_DIGEST_CTX)]; } md_state;
414 	void (*md_final_raw)(void *ctx, unsigned char *md_out);
415 	void (*md_transform)(void *ctx, const unsigned char *block);
416 	unsigned md_size, md_block_size = 64;
417 	unsigned sslv3_pad_length = 40, header_length, variance_blocks,
418 		 len, max_mac_bytes, num_blocks,
419 		 num_starting_blocks, k, mac_end_offset, c, index_a, index_b;
420 	unsigned int bits;	/* at most 18 bits */
421 	unsigned char length_bytes[MAX_HASH_BIT_COUNT_BYTES];
422 	/* hmac_pad is the masked HMAC key. */
423 	unsigned char hmac_pad[MAX_HASH_BLOCK_SIZE];
424 	unsigned char first_block[MAX_HASH_BLOCK_SIZE];
425 	unsigned char mac_out[EVP_MAX_MD_SIZE];
426 	unsigned i, j, md_out_size_u;
427 	EVP_MD_CTX md_ctx;
428 	/* mdLengthSize is the number of bytes in the length field that terminates
429 	* the hash. */
430 	unsigned md_length_size = 8;
431 	char length_is_big_endian = 1;
432 
433 	/* This is a, hopefully redundant, check that allows us to forget about
434 	 * many possible overflows later in this function. */
435 	OPENSSL_assert(data_plus_mac_plus_padding_size < 1024*1024);
436 
437 	switch (EVP_MD_CTX_type(ctx))
438 		{
439 		case NID_md5:
440 			MD5_Init((MD5_CTX*)md_state.c);
441 			md_final_raw = tls1_md5_final_raw;
442 			md_transform = (void(*)(void *ctx, const unsigned char *block)) MD5_Transform;
443 			md_size = 16;
444 			sslv3_pad_length = 48;
445 			length_is_big_endian = 0;
446 			break;
447 		case NID_sha1:
448 			SHA1_Init((SHA_CTX*)md_state.c);
449 			md_final_raw = tls1_sha1_final_raw;
450 			md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA1_Transform;
451 			md_size = 20;
452 			break;
453 #ifndef OPENSSL_NO_SHA256
454 		case NID_sha224:
455 			SHA224_Init((SHA256_CTX*)md_state.c);
456 			md_final_raw = tls1_sha256_final_raw;
457 			md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA256_Transform;
458 			md_size = 224/8;
459 			break;
460 		case NID_sha256:
461 			SHA256_Init((SHA256_CTX*)md_state.c);
462 			md_final_raw = tls1_sha256_final_raw;
463 			md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA256_Transform;
464 			md_size = 32;
465 			break;
466 #endif
467 #ifndef OPENSSL_NO_SHA512
468 		case NID_sha384:
469 			SHA384_Init((SHA512_CTX*)md_state.c);
470 			md_final_raw = tls1_sha512_final_raw;
471 			md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA512_Transform;
472 			md_size = 384/8;
473 			md_block_size = 128;
474 			md_length_size = 16;
475 			break;
476 		case NID_sha512:
477 			SHA512_Init((SHA512_CTX*)md_state.c);
478 			md_final_raw = tls1_sha512_final_raw;
479 			md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA512_Transform;
480 			md_size = 64;
481 			md_block_size = 128;
482 			md_length_size = 16;
483 			break;
484 #endif
485 		default:
486 			/* ssl3_cbc_record_digest_supported should have been
487 			 * called first to check that the hash function is
488 			 * supported. */
489 			OPENSSL_assert(0);
490 			if (md_out_size)
491 				*md_out_size = -1;
492 			return;
493 		}
494 
495 	OPENSSL_assert(md_length_size <= MAX_HASH_BIT_COUNT_BYTES);
496 	OPENSSL_assert(md_block_size <= MAX_HASH_BLOCK_SIZE);
497 	OPENSSL_assert(md_size <= EVP_MAX_MD_SIZE);
498 
499 	header_length = 13;
500 	if (is_sslv3)
501 		{
502 		header_length =
503 			mac_secret_length +
504 			sslv3_pad_length +
505 			8 /* sequence number */ +
506 			1 /* record type */ +
507 			2 /* record length */;
508 		}
509 
510 	/* variance_blocks is the number of blocks of the hash that we have to
511 	 * calculate in constant time because they could be altered by the
512 	 * padding value.
513 	 *
514 	 * In SSLv3, the padding must be minimal so the end of the plaintext
515 	 * varies by, at most, 15+20 = 35 bytes. (We conservatively assume that
516 	 * the MAC size varies from 0..20 bytes.) In case the 9 bytes of hash
517 	 * termination (0x80 + 64-bit length) don't fit in the final block, we
518 	 * say that the final two blocks can vary based on the padding.
519 	 *
520 	 * TLSv1 has MACs up to 48 bytes long (SHA-384) and the padding is not
521 	 * required to be minimal. Therefore we say that the final six blocks
522 	 * can vary based on the padding.
523 	 *
524 	 * Later in the function, if the message is short and there obviously
525 	 * cannot be this many blocks then variance_blocks can be reduced. */
526 	variance_blocks = is_sslv3 ? 2 : 6;
527 	/* From now on we're dealing with the MAC, which conceptually has 13
528 	 * bytes of `header' before the start of the data (TLS) or 71/75 bytes
529 	 * (SSLv3) */
530 	len = data_plus_mac_plus_padding_size + header_length;
531 	/* max_mac_bytes contains the maximum bytes of bytes in the MAC, including
532 	* |header|, assuming that there's no padding. */
533 	max_mac_bytes = len - md_size - 1;
534 	/* num_blocks is the maximum number of hash blocks. */
535 	num_blocks = (max_mac_bytes + 1 + md_length_size + md_block_size - 1) / md_block_size;
536 	/* In order to calculate the MAC in constant time we have to handle
537 	 * the final blocks specially because the padding value could cause the
538 	 * end to appear somewhere in the final |variance_blocks| blocks and we
539 	 * can't leak where. However, |num_starting_blocks| worth of data can
540 	 * be hashed right away because no padding value can affect whether
541 	 * they are plaintext. */
542 	num_starting_blocks = 0;
543 	/* k is the starting byte offset into the conceptual header||data where
544 	 * we start processing. */
545 	k = 0;
546 	/* mac_end_offset is the index just past the end of the data to be
547 	 * MACed. */
548 	mac_end_offset = data_plus_mac_size + header_length - md_size;
549 	/* c is the index of the 0x80 byte in the final hash block that
550 	 * contains application data. */
551 	c = mac_end_offset % md_block_size;
552 	/* index_a is the hash block number that contains the 0x80 terminating
553 	 * value. */
554 	index_a = mac_end_offset / md_block_size;
555 	/* index_b is the hash block number that contains the 64-bit hash
556 	 * length, in bits. */
557 	index_b = (mac_end_offset + md_length_size) / md_block_size;
558 	/* bits is the hash-length in bits. It includes the additional hash
559 	 * block for the masked HMAC key, or whole of |header| in the case of
560 	 * SSLv3. */
561 
562 	/* For SSLv3, if we're going to have any starting blocks then we need
563 	 * at least two because the header is larger than a single block. */
564 	if (num_blocks > variance_blocks + (is_sslv3 ? 1 : 0))
565 		{
566 		num_starting_blocks = num_blocks - variance_blocks;
567 		k = md_block_size*num_starting_blocks;
568 		}
569 
570 	bits = 8*mac_end_offset;
571 	if (!is_sslv3)
572 		{
573 		/* Compute the initial HMAC block. For SSLv3, the padding and
574 		 * secret bytes are included in |header| because they take more
575 		 * than a single block. */
576 		bits += 8*md_block_size;
577 		memset(hmac_pad, 0, md_block_size);
578 		OPENSSL_assert(mac_secret_length <= sizeof(hmac_pad));
579 		memcpy(hmac_pad, mac_secret, mac_secret_length);
580 		for (i = 0; i < md_block_size; i++)
581 			hmac_pad[i] ^= 0x36;
582 
583 		md_transform(md_state.c, hmac_pad);
584 		}
585 
586 	if (length_is_big_endian)
587 		{
588 		memset(length_bytes,0,md_length_size-4);
589 		length_bytes[md_length_size-4] = (unsigned char)(bits>>24);
590 		length_bytes[md_length_size-3] = (unsigned char)(bits>>16);
591 		length_bytes[md_length_size-2] = (unsigned char)(bits>>8);
592 		length_bytes[md_length_size-1] = (unsigned char)bits;
593 		}
594 	else
595 		{
596 		memset(length_bytes,0,md_length_size);
597 		length_bytes[md_length_size-5] = (unsigned char)(bits>>24);
598 		length_bytes[md_length_size-6] = (unsigned char)(bits>>16);
599 		length_bytes[md_length_size-7] = (unsigned char)(bits>>8);
600 		length_bytes[md_length_size-8] = (unsigned char)bits;
601 		}
602 
603 	if (k > 0)
604 		{
605 		if (is_sslv3)
606 			{
607 			/* The SSLv3 header is larger than a single block.
608 			 * overhang is the number of bytes beyond a single
609 			 * block that the header consumes: either 7 bytes
610 			 * (SHA1) or 11 bytes (MD5). */
611 			unsigned overhang = header_length-md_block_size;
612 			md_transform(md_state.c, header);
613 			memcpy(first_block, header + md_block_size, overhang);
614 			memcpy(first_block + overhang, data, md_block_size-overhang);
615 			md_transform(md_state.c, first_block);
616 			for (i = 1; i < k/md_block_size - 1; i++)
617 				md_transform(md_state.c, data + md_block_size*i - overhang);
618 			}
619 		else
620 			{
621 			/* k is a multiple of md_block_size. */
622 			memcpy(first_block, header, 13);
623 			memcpy(first_block+13, data, md_block_size-13);
624 			md_transform(md_state.c, first_block);
625 			for (i = 1; i < k/md_block_size; i++)
626 				md_transform(md_state.c, data + md_block_size*i - 13);
627 			}
628 		}
629 
630 	memset(mac_out, 0, sizeof(mac_out));
631 
632 	/* We now process the final hash blocks. For each block, we construct
633 	 * it in constant time. If the |i==index_a| then we'll include the 0x80
634 	 * bytes and zero pad etc. For each block we selectively copy it, in
635 	 * constant time, to |mac_out|. */
636 	for (i = num_starting_blocks; i <= num_starting_blocks+variance_blocks; i++)
637 		{
638 		unsigned char block[MAX_HASH_BLOCK_SIZE];
639 		unsigned char is_block_a = constant_time_eq_8(i, index_a);
640 		unsigned char is_block_b = constant_time_eq_8(i, index_b);
641 		for (j = 0; j < md_block_size; j++)
642 			{
643 			unsigned char b = 0, is_past_c, is_past_cp1;
644 			if (k < header_length)
645 				b = header[k];
646 			else if (k < data_plus_mac_plus_padding_size + header_length)
647 				b = data[k-header_length];
648 			k++;
649 
650 			is_past_c = is_block_a & constant_time_ge_8(j, c);
651 			is_past_cp1 = is_block_a & constant_time_ge_8(j, c+1);
652 			/* If this is the block containing the end of the
653 			 * application data, and we are at the offset for the
654 			 * 0x80 value, then overwrite b with 0x80. */
655                         b =  constant_time_select_8(is_past_c, 0x80, b);
656 			/* If this the the block containing the end of the
657 			 * application data and we're past the 0x80 value then
658 			 * just write zero. */
659 			b = b&~is_past_cp1;
660 			/* If this is index_b (the final block), but not
661 			 * index_a (the end of the data), then the 64-bit
662 			 * length didn't fit into index_a and we're having to
663 			 * add an extra block of zeros. */
664 			b &= ~is_block_b | is_block_a;
665 
666 			/* The final bytes of one of the blocks contains the
667 			 * length. */
668 			if (j >= md_block_size - md_length_size)
669 				{
670 				/* If this is index_b, write a length byte. */
671 				b = constant_time_select_8(
672 					is_block_b, length_bytes[j-(md_block_size-md_length_size)], b);
673 				}
674 			block[j] = b;
675 			}
676 
677 		md_transform(md_state.c, block);
678 		md_final_raw(md_state.c, block);
679 		/* If this is index_b, copy the hash value to |mac_out|. */
680 		for (j = 0; j < md_size; j++)
681 			mac_out[j] |= block[j]&is_block_b;
682 		}
683 
684 	EVP_MD_CTX_init(&md_ctx);
685 	EVP_DigestInit_ex(&md_ctx, ctx->digest, NULL /* engine */);
686 	if (is_sslv3)
687 		{
688 		/* We repurpose |hmac_pad| to contain the SSLv3 pad2 block. */
689 		memset(hmac_pad, 0x5c, sslv3_pad_length);
690 
691 		EVP_DigestUpdate(&md_ctx, mac_secret, mac_secret_length);
692 		EVP_DigestUpdate(&md_ctx, hmac_pad, sslv3_pad_length);
693 		EVP_DigestUpdate(&md_ctx, mac_out, md_size);
694 		}
695 	else
696 		{
697 		/* Complete the HMAC in the standard manner. */
698 		for (i = 0; i < md_block_size; i++)
699 			hmac_pad[i] ^= 0x6a;
700 
701 		EVP_DigestUpdate(&md_ctx, hmac_pad, md_block_size);
702 		EVP_DigestUpdate(&md_ctx, mac_out, md_size);
703 		}
704 	EVP_DigestFinal(&md_ctx, md_out, &md_out_size_u);
705 	if (md_out_size)
706 		*md_out_size = md_out_size_u;
707 	EVP_MD_CTX_cleanup(&md_ctx);
708 	}
709 
710 #ifdef OPENSSL_FIPS
711 
712 /* Due to the need to use EVP in FIPS mode we can't reimplement digests but
713  * we can ensure the number of blocks processed is equal for all cases
714  * by digesting additional data.
715  */
716 
717 void tls_fips_digest_extra(
718 	const EVP_CIPHER_CTX *cipher_ctx, EVP_MD_CTX *mac_ctx,
719 	const unsigned char *data, size_t data_len, size_t orig_len)
720 	{
721 	size_t block_size, digest_pad, blocks_data, blocks_orig;
722 	if (EVP_CIPHER_CTX_mode(cipher_ctx) != EVP_CIPH_CBC_MODE)
723 		return;
724 	block_size = EVP_MD_CTX_block_size(mac_ctx);
725 	/* We are in FIPS mode if we get this far so we know we have only SHA*
726 	 * digests and TLS to deal with.
727 	 * Minimum digest padding length is 17 for SHA384/SHA512 and 9
728 	 * otherwise.
729 	 * Additional header is 13 bytes. To get the number of digest blocks
730 	 * processed round up the amount of data plus padding to the nearest
731 	 * block length. Block length is 128 for SHA384/SHA512 and 64 otherwise.
732 	 * So we have:
733 	 * blocks = (payload_len + digest_pad + 13 + block_size - 1)/block_size
734 	 * equivalently:
735 	 * blocks = (payload_len + digest_pad + 12)/block_size + 1
736 	 * HMAC adds a constant overhead.
737 	 * We're ultimately only interested in differences so this becomes
738 	 * blocks = (payload_len + 29)/128
739 	 * for SHA384/SHA512 and
740 	 * blocks = (payload_len + 21)/64
741 	 * otherwise.
742 	 */
743 	digest_pad = block_size == 64 ? 21 : 29;
744 	blocks_orig = (orig_len + digest_pad)/block_size;
745 	blocks_data = (data_len + digest_pad)/block_size;
746 	/* MAC enough blocks to make up the difference between the original
747 	 * and actual lengths plus one extra block to ensure this is never a
748 	 * no op. The "data" pointer should always have enough space to
749 	 * perform this operation as it is large enough for a maximum
750 	 * length TLS buffer.
751 	 */
752 	EVP_DigestSignUpdate(mac_ctx, data,
753 				(blocks_orig - blocks_data + 1) * block_size);
754 	}
755 #endif
756