1 /* ssl/s3_cbc.c */ 2 /* ==================================================================== 3 * Copyright (c) 2012 The OpenSSL Project. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in 14 * the documentation and/or other materials provided with the 15 * distribution. 16 * 17 * 3. All advertising materials mentioning features or use of this 18 * software must display the following acknowledgment: 19 * "This product includes software developed by the OpenSSL Project 20 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" 21 * 22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to 23 * endorse or promote products derived from this software without 24 * prior written permission. For written permission, please contact 25 * openssl-core@openssl.org. 26 * 27 * 5. Products derived from this software may not be called "OpenSSL" 28 * nor may "OpenSSL" appear in their names without prior written 29 * permission of the OpenSSL Project. 30 * 31 * 6. Redistributions of any form whatsoever must retain the following 32 * acknowledgment: 33 * "This product includes software developed by the OpenSSL Project 34 * for use in the OpenSSL Toolkit (http://www.openssl.org/)" 35 * 36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY 37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR 40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED 47 * OF THE POSSIBILITY OF SUCH DAMAGE. 48 * ==================================================================== 49 * 50 * This product includes cryptographic software written by Eric Young 51 * (eay@cryptsoft.com). This product includes software written by Tim 52 * Hudson (tjh@cryptsoft.com). 53 * 54 */ 55 56 #include "../crypto/constant_time_locl.h" 57 #include "ssl_locl.h" 58 59 #include <openssl/md5.h> 60 #include <openssl/sha.h> 61 62 /* 63 * MAX_HASH_BIT_COUNT_BYTES is the maximum number of bytes in the hash's 64 * length field. (SHA-384/512 have 128-bit length.) 65 */ 66 #define MAX_HASH_BIT_COUNT_BYTES 16 67 68 /* 69 * MAX_HASH_BLOCK_SIZE is the maximum hash block size that we'll support. 70 * Currently SHA-384/512 has a 128-byte block size and that's the largest 71 * supported by TLS.) 72 */ 73 #define MAX_HASH_BLOCK_SIZE 128 74 75 /*- 76 * ssl3_cbc_remove_padding removes padding from the decrypted, SSLv3, CBC 77 * record in |rec| by updating |rec->length| in constant time. 78 * 79 * block_size: the block size of the cipher used to encrypt the record. 80 * returns: 81 * 0: (in non-constant time) if the record is publicly invalid. 82 * 1: if the padding was valid 83 * -1: otherwise. 84 */ 85 int ssl3_cbc_remove_padding(const SSL *s, 86 SSL3_RECORD *rec, 87 unsigned block_size, unsigned mac_size) 88 { 89 unsigned padding_length, good; 90 const unsigned overhead = 1 /* padding length byte */ + mac_size; 91 92 /* 93 * These lengths are all public so we can test them in non-constant time. 94 */ 95 if (overhead > rec->length) 96 return 0; 97 98 padding_length = rec->data[rec->length - 1]; 99 good = constant_time_ge(rec->length, padding_length + overhead); 100 /* SSLv3 requires that the padding is minimal. */ 101 good &= constant_time_ge(block_size, padding_length + 1); 102 padding_length = good & (padding_length + 1); 103 rec->length -= padding_length; 104 rec->type |= padding_length << 8; /* kludge: pass padding length */ 105 return constant_time_select_int(good, 1, -1); 106 } 107 108 /*- 109 * tls1_cbc_remove_padding removes the CBC padding from the decrypted, TLS, CBC 110 * record in |rec| in constant time and returns 1 if the padding is valid and 111 * -1 otherwise. It also removes any explicit IV from the start of the record 112 * without leaking any timing about whether there was enough space after the 113 * padding was removed. 114 * 115 * block_size: the block size of the cipher used to encrypt the record. 116 * returns: 117 * 0: (in non-constant time) if the record is publicly invalid. 118 * 1: if the padding was valid 119 * -1: otherwise. 120 */ 121 int tls1_cbc_remove_padding(const SSL *s, 122 SSL3_RECORD *rec, 123 unsigned block_size, unsigned mac_size) 124 { 125 unsigned padding_length, good, to_check, i; 126 const unsigned overhead = 1 /* padding length byte */ + mac_size; 127 /* Check if version requires explicit IV */ 128 if (SSL_USE_EXPLICIT_IV(s)) { 129 /* 130 * These lengths are all public so we can test them in non-constant 131 * time. 132 */ 133 if (overhead + block_size > rec->length) 134 return 0; 135 /* We can now safely skip explicit IV */ 136 rec->data += block_size; 137 rec->input += block_size; 138 rec->length -= block_size; 139 } else if (overhead > rec->length) 140 return 0; 141 142 padding_length = rec->data[rec->length - 1]; 143 144 /* 145 * NB: if compression is in operation the first packet may not be of even 146 * length so the padding bug check cannot be performed. This bug 147 * workaround has been around since SSLeay so hopefully it is either 148 * fixed now or no buggy implementation supports compression [steve] 149 */ 150 if ((s->options & SSL_OP_TLS_BLOCK_PADDING_BUG) && !s->expand) { 151 /* First packet is even in size, so check */ 152 if ((CRYPTO_memcmp(s->s3->read_sequence, "\0\0\0\0\0\0\0\0", 8) == 0) && 153 !(padding_length & 1)) { 154 s->s3->flags |= TLS1_FLAGS_TLS_PADDING_BUG; 155 } 156 if ((s->s3->flags & TLS1_FLAGS_TLS_PADDING_BUG) && padding_length > 0) { 157 padding_length--; 158 } 159 } 160 161 if (EVP_CIPHER_flags(s->enc_read_ctx->cipher) & EVP_CIPH_FLAG_AEAD_CIPHER) { 162 /* padding is already verified */ 163 rec->length -= padding_length + 1; 164 return 1; 165 } 166 167 good = constant_time_ge(rec->length, overhead + padding_length); 168 /* 169 * The padding consists of a length byte at the end of the record and 170 * then that many bytes of padding, all with the same value as the length 171 * byte. Thus, with the length byte included, there are i+1 bytes of 172 * padding. We can't check just |padding_length+1| bytes because that 173 * leaks decrypted information. Therefore we always have to check the 174 * maximum amount of padding possible. (Again, the length of the record 175 * is public information so we can use it.) 176 */ 177 to_check = 255; /* maximum amount of padding. */ 178 if (to_check > rec->length - 1) 179 to_check = rec->length - 1; 180 181 for (i = 0; i < to_check; i++) { 182 unsigned char mask = constant_time_ge_8(padding_length, i); 183 unsigned char b = rec->data[rec->length - 1 - i]; 184 /* 185 * The final |padding_length+1| bytes should all have the value 186 * |padding_length|. Therefore the XOR should be zero. 187 */ 188 good &= ~(mask & (padding_length ^ b)); 189 } 190 191 /* 192 * If any of the final |padding_length+1| bytes had the wrong value, one 193 * or more of the lower eight bits of |good| will be cleared. 194 */ 195 good = constant_time_eq(0xff, good & 0xff); 196 padding_length = good & (padding_length + 1); 197 rec->length -= padding_length; 198 rec->type |= padding_length << 8; /* kludge: pass padding length */ 199 200 return constant_time_select_int(good, 1, -1); 201 } 202 203 /*- 204 * ssl3_cbc_copy_mac copies |md_size| bytes from the end of |rec| to |out| in 205 * constant time (independent of the concrete value of rec->length, which may 206 * vary within a 256-byte window). 207 * 208 * ssl3_cbc_remove_padding or tls1_cbc_remove_padding must be called prior to 209 * this function. 210 * 211 * On entry: 212 * rec->orig_len >= md_size 213 * md_size <= EVP_MAX_MD_SIZE 214 * 215 * If CBC_MAC_ROTATE_IN_PLACE is defined then the rotation is performed with 216 * variable accesses in a 64-byte-aligned buffer. Assuming that this fits into 217 * a single or pair of cache-lines, then the variable memory accesses don't 218 * actually affect the timing. CPUs with smaller cache-lines [if any] are 219 * not multi-core and are not considered vulnerable to cache-timing attacks. 220 */ 221 #define CBC_MAC_ROTATE_IN_PLACE 222 223 void ssl3_cbc_copy_mac(unsigned char *out, 224 const SSL3_RECORD *rec, 225 unsigned md_size, unsigned orig_len) 226 { 227 #if defined(CBC_MAC_ROTATE_IN_PLACE) 228 unsigned char rotated_mac_buf[64 + EVP_MAX_MD_SIZE]; 229 unsigned char *rotated_mac; 230 #else 231 unsigned char rotated_mac[EVP_MAX_MD_SIZE]; 232 #endif 233 234 /* 235 * mac_end is the index of |rec->data| just after the end of the MAC. 236 */ 237 unsigned mac_end = rec->length; 238 unsigned mac_start = mac_end - md_size; 239 /* 240 * scan_start contains the number of bytes that we can ignore because the 241 * MAC's position can only vary by 255 bytes. 242 */ 243 unsigned scan_start = 0; 244 unsigned i, j; 245 unsigned div_spoiler; 246 unsigned rotate_offset; 247 248 OPENSSL_assert(orig_len >= md_size); 249 OPENSSL_assert(md_size <= EVP_MAX_MD_SIZE); 250 251 #if defined(CBC_MAC_ROTATE_IN_PLACE) 252 rotated_mac = rotated_mac_buf + ((0 - (size_t)rotated_mac_buf) & 63); 253 #endif 254 255 /* This information is public so it's safe to branch based on it. */ 256 if (orig_len > md_size + 255 + 1) 257 scan_start = orig_len - (md_size + 255 + 1); 258 /* 259 * div_spoiler contains a multiple of md_size that is used to cause the 260 * modulo operation to be constant time. Without this, the time varies 261 * based on the amount of padding when running on Intel chips at least. 262 * The aim of right-shifting md_size is so that the compiler doesn't 263 * figure out that it can remove div_spoiler as that would require it to 264 * prove that md_size is always even, which I hope is beyond it. 265 */ 266 div_spoiler = md_size >> 1; 267 div_spoiler <<= (sizeof(div_spoiler) - 1) * 8; 268 rotate_offset = (div_spoiler + mac_start - scan_start) % md_size; 269 270 memset(rotated_mac, 0, md_size); 271 for (i = scan_start, j = 0; i < orig_len; i++) { 272 unsigned char mac_started = constant_time_ge_8(i, mac_start); 273 unsigned char mac_ended = constant_time_ge_8(i, mac_end); 274 unsigned char b = rec->data[i]; 275 rotated_mac[j++] |= b & mac_started & ~mac_ended; 276 j &= constant_time_lt(j, md_size); 277 } 278 279 /* Now rotate the MAC */ 280 #if defined(CBC_MAC_ROTATE_IN_PLACE) 281 j = 0; 282 for (i = 0; i < md_size; i++) { 283 /* in case cache-line is 32 bytes, touch second line */ 284 ((volatile unsigned char *)rotated_mac)[rotate_offset ^ 32]; 285 out[j++] = rotated_mac[rotate_offset++]; 286 rotate_offset &= constant_time_lt(rotate_offset, md_size); 287 } 288 #else 289 memset(out, 0, md_size); 290 rotate_offset = md_size - rotate_offset; 291 rotate_offset &= constant_time_lt(rotate_offset, md_size); 292 for (i = 0; i < md_size; i++) { 293 for (j = 0; j < md_size; j++) 294 out[j] |= rotated_mac[i] & constant_time_eq_8(j, rotate_offset); 295 rotate_offset++; 296 rotate_offset &= constant_time_lt(rotate_offset, md_size); 297 } 298 #endif 299 } 300 301 /* 302 * u32toLE serialises an unsigned, 32-bit number (n) as four bytes at (p) in 303 * little-endian order. The value of p is advanced by four. 304 */ 305 #define u32toLE(n, p) \ 306 (*((p)++)=(unsigned char)(n), \ 307 *((p)++)=(unsigned char)(n>>8), \ 308 *((p)++)=(unsigned char)(n>>16), \ 309 *((p)++)=(unsigned char)(n>>24)) 310 311 /* 312 * These functions serialize the state of a hash and thus perform the 313 * standard "final" operation without adding the padding and length that such 314 * a function typically does. 315 */ 316 static void tls1_md5_final_raw(void *ctx, unsigned char *md_out) 317 { 318 MD5_CTX *md5 = ctx; 319 u32toLE(md5->A, md_out); 320 u32toLE(md5->B, md_out); 321 u32toLE(md5->C, md_out); 322 u32toLE(md5->D, md_out); 323 } 324 325 static void tls1_sha1_final_raw(void *ctx, unsigned char *md_out) 326 { 327 SHA_CTX *sha1 = ctx; 328 l2n(sha1->h0, md_out); 329 l2n(sha1->h1, md_out); 330 l2n(sha1->h2, md_out); 331 l2n(sha1->h3, md_out); 332 l2n(sha1->h4, md_out); 333 } 334 335 #define LARGEST_DIGEST_CTX SHA_CTX 336 337 #ifndef OPENSSL_NO_SHA256 338 static void tls1_sha256_final_raw(void *ctx, unsigned char *md_out) 339 { 340 SHA256_CTX *sha256 = ctx; 341 unsigned i; 342 343 for (i = 0; i < 8; i++) { 344 l2n(sha256->h[i], md_out); 345 } 346 } 347 348 # undef LARGEST_DIGEST_CTX 349 # define LARGEST_DIGEST_CTX SHA256_CTX 350 #endif 351 352 #ifndef OPENSSL_NO_SHA512 353 static void tls1_sha512_final_raw(void *ctx, unsigned char *md_out) 354 { 355 SHA512_CTX *sha512 = ctx; 356 unsigned i; 357 358 for (i = 0; i < 8; i++) { 359 l2n8(sha512->h[i], md_out); 360 } 361 } 362 363 # undef LARGEST_DIGEST_CTX 364 # define LARGEST_DIGEST_CTX SHA512_CTX 365 #endif 366 367 /* 368 * ssl3_cbc_record_digest_supported returns 1 iff |ctx| uses a hash function 369 * which ssl3_cbc_digest_record supports. 370 */ 371 char ssl3_cbc_record_digest_supported(const EVP_MD_CTX *ctx) 372 { 373 #ifdef OPENSSL_FIPS 374 if (FIPS_mode()) 375 return 0; 376 #endif 377 switch (EVP_MD_CTX_type(ctx)) { 378 case NID_md5: 379 case NID_sha1: 380 #ifndef OPENSSL_NO_SHA256 381 case NID_sha224: 382 case NID_sha256: 383 #endif 384 #ifndef OPENSSL_NO_SHA512 385 case NID_sha384: 386 case NID_sha512: 387 #endif 388 return 1; 389 default: 390 return 0; 391 } 392 } 393 394 /*- 395 * ssl3_cbc_digest_record computes the MAC of a decrypted, padded SSLv3/TLS 396 * record. 397 * 398 * ctx: the EVP_MD_CTX from which we take the hash function. 399 * ssl3_cbc_record_digest_supported must return true for this EVP_MD_CTX. 400 * md_out: the digest output. At most EVP_MAX_MD_SIZE bytes will be written. 401 * md_out_size: if non-NULL, the number of output bytes is written here. 402 * header: the 13-byte, TLS record header. 403 * data: the record data itself, less any preceeding explicit IV. 404 * data_plus_mac_size: the secret, reported length of the data and MAC 405 * once the padding has been removed. 406 * data_plus_mac_plus_padding_size: the public length of the whole 407 * record, including padding. 408 * is_sslv3: non-zero if we are to use SSLv3. Otherwise, TLS. 409 * 410 * On entry: by virtue of having been through one of the remove_padding 411 * functions, above, we know that data_plus_mac_size is large enough to contain 412 * a padding byte and MAC. (If the padding was invalid, it might contain the 413 * padding too. ) 414 * Returns 1 on success or 0 on error 415 */ 416 int ssl3_cbc_digest_record(const EVP_MD_CTX *ctx, 417 unsigned char *md_out, 418 size_t *md_out_size, 419 const unsigned char header[13], 420 const unsigned char *data, 421 size_t data_plus_mac_size, 422 size_t data_plus_mac_plus_padding_size, 423 const unsigned char *mac_secret, 424 unsigned mac_secret_length, char is_sslv3) 425 { 426 union { 427 double align; 428 unsigned char c[sizeof(LARGEST_DIGEST_CTX)]; 429 } md_state; 430 void (*md_final_raw) (void *ctx, unsigned char *md_out); 431 void (*md_transform) (void *ctx, const unsigned char *block); 432 unsigned md_size, md_block_size = 64; 433 unsigned sslv3_pad_length = 40, header_length, variance_blocks, 434 len, max_mac_bytes, num_blocks, 435 num_starting_blocks, k, mac_end_offset, c, index_a, index_b; 436 unsigned int bits; /* at most 18 bits */ 437 unsigned char length_bytes[MAX_HASH_BIT_COUNT_BYTES]; 438 /* hmac_pad is the masked HMAC key. */ 439 unsigned char hmac_pad[MAX_HASH_BLOCK_SIZE]; 440 unsigned char first_block[MAX_HASH_BLOCK_SIZE]; 441 unsigned char mac_out[EVP_MAX_MD_SIZE]; 442 unsigned i, j, md_out_size_u; 443 EVP_MD_CTX md_ctx; 444 /* 445 * mdLengthSize is the number of bytes in the length field that 446 * terminates * the hash. 447 */ 448 unsigned md_length_size = 8; 449 char length_is_big_endian = 1; 450 451 /* 452 * This is a, hopefully redundant, check that allows us to forget about 453 * many possible overflows later in this function. 454 */ 455 OPENSSL_assert(data_plus_mac_plus_padding_size < 1024 * 1024); 456 457 switch (EVP_MD_CTX_type(ctx)) { 458 case NID_md5: 459 if (MD5_Init((MD5_CTX *)md_state.c) <= 0) 460 return 0; 461 md_final_raw = tls1_md5_final_raw; 462 md_transform = 463 (void (*)(void *ctx, const unsigned char *block))MD5_Transform; 464 md_size = 16; 465 sslv3_pad_length = 48; 466 length_is_big_endian = 0; 467 break; 468 case NID_sha1: 469 if (SHA1_Init((SHA_CTX *)md_state.c) <= 0) 470 return 0; 471 md_final_raw = tls1_sha1_final_raw; 472 md_transform = 473 (void (*)(void *ctx, const unsigned char *block))SHA1_Transform; 474 md_size = 20; 475 break; 476 #ifndef OPENSSL_NO_SHA256 477 case NID_sha224: 478 if (SHA224_Init((SHA256_CTX *)md_state.c) <= 0) 479 return 0; 480 md_final_raw = tls1_sha256_final_raw; 481 md_transform = 482 (void (*)(void *ctx, const unsigned char *block))SHA256_Transform; 483 md_size = 224 / 8; 484 break; 485 case NID_sha256: 486 if (SHA256_Init((SHA256_CTX *)md_state.c) <= 0) 487 return 0; 488 md_final_raw = tls1_sha256_final_raw; 489 md_transform = 490 (void (*)(void *ctx, const unsigned char *block))SHA256_Transform; 491 md_size = 32; 492 break; 493 #endif 494 #ifndef OPENSSL_NO_SHA512 495 case NID_sha384: 496 if (SHA384_Init((SHA512_CTX *)md_state.c) <= 0) 497 return 0; 498 md_final_raw = tls1_sha512_final_raw; 499 md_transform = 500 (void (*)(void *ctx, const unsigned char *block))SHA512_Transform; 501 md_size = 384 / 8; 502 md_block_size = 128; 503 md_length_size = 16; 504 break; 505 case NID_sha512: 506 if (SHA512_Init((SHA512_CTX *)md_state.c) <= 0) 507 return 0; 508 md_final_raw = tls1_sha512_final_raw; 509 md_transform = 510 (void (*)(void *ctx, const unsigned char *block))SHA512_Transform; 511 md_size = 64; 512 md_block_size = 128; 513 md_length_size = 16; 514 break; 515 #endif 516 default: 517 /* 518 * ssl3_cbc_record_digest_supported should have been called first to 519 * check that the hash function is supported. 520 */ 521 OPENSSL_assert(0); 522 if (md_out_size) 523 *md_out_size = 0; 524 return 0; 525 } 526 527 OPENSSL_assert(md_length_size <= MAX_HASH_BIT_COUNT_BYTES); 528 OPENSSL_assert(md_block_size <= MAX_HASH_BLOCK_SIZE); 529 OPENSSL_assert(md_size <= EVP_MAX_MD_SIZE); 530 531 header_length = 13; 532 if (is_sslv3) { 533 header_length = mac_secret_length + sslv3_pad_length + 8 /* sequence 534 * number */ + 535 1 /* record type */ + 536 2 /* record length */ ; 537 } 538 539 /* 540 * variance_blocks is the number of blocks of the hash that we have to 541 * calculate in constant time because they could be altered by the 542 * padding value. In SSLv3, the padding must be minimal so the end of 543 * the plaintext varies by, at most, 15+20 = 35 bytes. (We conservatively 544 * assume that the MAC size varies from 0..20 bytes.) In case the 9 bytes 545 * of hash termination (0x80 + 64-bit length) don't fit in the final 546 * block, we say that the final two blocks can vary based on the padding. 547 * TLSv1 has MACs up to 48 bytes long (SHA-384) and the padding is not 548 * required to be minimal. Therefore we say that the final six blocks can 549 * vary based on the padding. Later in the function, if the message is 550 * short and there obviously cannot be this many blocks then 551 * variance_blocks can be reduced. 552 */ 553 variance_blocks = is_sslv3 ? 2 : 6; 554 /* 555 * From now on we're dealing with the MAC, which conceptually has 13 556 * bytes of `header' before the start of the data (TLS) or 71/75 bytes 557 * (SSLv3) 558 */ 559 len = data_plus_mac_plus_padding_size + header_length; 560 /* 561 * max_mac_bytes contains the maximum bytes of bytes in the MAC, 562 * including * |header|, assuming that there's no padding. 563 */ 564 max_mac_bytes = len - md_size - 1; 565 /* num_blocks is the maximum number of hash blocks. */ 566 num_blocks = 567 (max_mac_bytes + 1 + md_length_size + md_block_size - 568 1) / md_block_size; 569 /* 570 * In order to calculate the MAC in constant time we have to handle the 571 * final blocks specially because the padding value could cause the end 572 * to appear somewhere in the final |variance_blocks| blocks and we can't 573 * leak where. However, |num_starting_blocks| worth of data can be hashed 574 * right away because no padding value can affect whether they are 575 * plaintext. 576 */ 577 num_starting_blocks = 0; 578 /* 579 * k is the starting byte offset into the conceptual header||data where 580 * we start processing. 581 */ 582 k = 0; 583 /* 584 * mac_end_offset is the index just past the end of the data to be MACed. 585 */ 586 mac_end_offset = data_plus_mac_size + header_length - md_size; 587 /* 588 * c is the index of the 0x80 byte in the final hash block that contains 589 * application data. 590 */ 591 c = mac_end_offset % md_block_size; 592 /* 593 * index_a is the hash block number that contains the 0x80 terminating 594 * value. 595 */ 596 index_a = mac_end_offset / md_block_size; 597 /* 598 * index_b is the hash block number that contains the 64-bit hash length, 599 * in bits. 600 */ 601 index_b = (mac_end_offset + md_length_size) / md_block_size; 602 /* 603 * bits is the hash-length in bits. It includes the additional hash block 604 * for the masked HMAC key, or whole of |header| in the case of SSLv3. 605 */ 606 607 /* 608 * For SSLv3, if we're going to have any starting blocks then we need at 609 * least two because the header is larger than a single block. 610 */ 611 if (num_blocks > variance_blocks + (is_sslv3 ? 1 : 0)) { 612 num_starting_blocks = num_blocks - variance_blocks; 613 k = md_block_size * num_starting_blocks; 614 } 615 616 bits = 8 * mac_end_offset; 617 if (!is_sslv3) { 618 /* 619 * Compute the initial HMAC block. For SSLv3, the padding and secret 620 * bytes are included in |header| because they take more than a 621 * single block. 622 */ 623 bits += 8 * md_block_size; 624 memset(hmac_pad, 0, md_block_size); 625 OPENSSL_assert(mac_secret_length <= sizeof(hmac_pad)); 626 memcpy(hmac_pad, mac_secret, mac_secret_length); 627 for (i = 0; i < md_block_size; i++) 628 hmac_pad[i] ^= 0x36; 629 630 md_transform(md_state.c, hmac_pad); 631 } 632 633 if (length_is_big_endian) { 634 memset(length_bytes, 0, md_length_size - 4); 635 length_bytes[md_length_size - 4] = (unsigned char)(bits >> 24); 636 length_bytes[md_length_size - 3] = (unsigned char)(bits >> 16); 637 length_bytes[md_length_size - 2] = (unsigned char)(bits >> 8); 638 length_bytes[md_length_size - 1] = (unsigned char)bits; 639 } else { 640 memset(length_bytes, 0, md_length_size); 641 length_bytes[md_length_size - 5] = (unsigned char)(bits >> 24); 642 length_bytes[md_length_size - 6] = (unsigned char)(bits >> 16); 643 length_bytes[md_length_size - 7] = (unsigned char)(bits >> 8); 644 length_bytes[md_length_size - 8] = (unsigned char)bits; 645 } 646 647 if (k > 0) { 648 if (is_sslv3) { 649 unsigned overhang; 650 651 /* 652 * The SSLv3 header is larger than a single block. overhang is 653 * the number of bytes beyond a single block that the header 654 * consumes: either 7 bytes (SHA1) or 11 bytes (MD5). There are no 655 * ciphersuites in SSLv3 that are not SHA1 or MD5 based and 656 * therefore we can be confident that the header_length will be 657 * greater than |md_block_size|. However we add a sanity check just 658 * in case 659 */ 660 if (header_length <= md_block_size) { 661 /* Should never happen */ 662 return 0; 663 } 664 overhang = header_length - md_block_size; 665 md_transform(md_state.c, header); 666 memcpy(first_block, header + md_block_size, overhang); 667 memcpy(first_block + overhang, data, md_block_size - overhang); 668 md_transform(md_state.c, first_block); 669 for (i = 1; i < k / md_block_size - 1; i++) 670 md_transform(md_state.c, data + md_block_size * i - overhang); 671 } else { 672 /* k is a multiple of md_block_size. */ 673 memcpy(first_block, header, 13); 674 memcpy(first_block + 13, data, md_block_size - 13); 675 md_transform(md_state.c, first_block); 676 for (i = 1; i < k / md_block_size; i++) 677 md_transform(md_state.c, data + md_block_size * i - 13); 678 } 679 } 680 681 memset(mac_out, 0, sizeof(mac_out)); 682 683 /* 684 * We now process the final hash blocks. For each block, we construct it 685 * in constant time. If the |i==index_a| then we'll include the 0x80 686 * bytes and zero pad etc. For each block we selectively copy it, in 687 * constant time, to |mac_out|. 688 */ 689 for (i = num_starting_blocks; i <= num_starting_blocks + variance_blocks; 690 i++) { 691 unsigned char block[MAX_HASH_BLOCK_SIZE]; 692 unsigned char is_block_a = constant_time_eq_8(i, index_a); 693 unsigned char is_block_b = constant_time_eq_8(i, index_b); 694 for (j = 0; j < md_block_size; j++) { 695 unsigned char b = 0, is_past_c, is_past_cp1; 696 if (k < header_length) 697 b = header[k]; 698 else if (k < data_plus_mac_plus_padding_size + header_length) 699 b = data[k - header_length]; 700 k++; 701 702 is_past_c = is_block_a & constant_time_ge_8(j, c); 703 is_past_cp1 = is_block_a & constant_time_ge_8(j, c + 1); 704 /* 705 * If this is the block containing the end of the application 706 * data, and we are at the offset for the 0x80 value, then 707 * overwrite b with 0x80. 708 */ 709 b = constant_time_select_8(is_past_c, 0x80, b); 710 /* 711 * If this the the block containing the end of the application 712 * data and we're past the 0x80 value then just write zero. 713 */ 714 b = b & ~is_past_cp1; 715 /* 716 * If this is index_b (the final block), but not index_a (the end 717 * of the data), then the 64-bit length didn't fit into index_a 718 * and we're having to add an extra block of zeros. 719 */ 720 b &= ~is_block_b | is_block_a; 721 722 /* 723 * The final bytes of one of the blocks contains the length. 724 */ 725 if (j >= md_block_size - md_length_size) { 726 /* If this is index_b, write a length byte. */ 727 b = constant_time_select_8(is_block_b, 728 length_bytes[j - 729 (md_block_size - 730 md_length_size)], b); 731 } 732 block[j] = b; 733 } 734 735 md_transform(md_state.c, block); 736 md_final_raw(md_state.c, block); 737 /* If this is index_b, copy the hash value to |mac_out|. */ 738 for (j = 0; j < md_size; j++) 739 mac_out[j] |= block[j] & is_block_b; 740 } 741 742 EVP_MD_CTX_init(&md_ctx); 743 if (EVP_DigestInit_ex(&md_ctx, ctx->digest, NULL /* engine */ ) <= 0) 744 goto err; 745 if (is_sslv3) { 746 /* We repurpose |hmac_pad| to contain the SSLv3 pad2 block. */ 747 memset(hmac_pad, 0x5c, sslv3_pad_length); 748 749 if (EVP_DigestUpdate(&md_ctx, mac_secret, mac_secret_length) <= 0 750 || EVP_DigestUpdate(&md_ctx, hmac_pad, sslv3_pad_length) <= 0 751 || EVP_DigestUpdate(&md_ctx, mac_out, md_size) <= 0) 752 goto err; 753 } else { 754 /* Complete the HMAC in the standard manner. */ 755 for (i = 0; i < md_block_size; i++) 756 hmac_pad[i] ^= 0x6a; 757 758 if (EVP_DigestUpdate(&md_ctx, hmac_pad, md_block_size) <= 0 759 || EVP_DigestUpdate(&md_ctx, mac_out, md_size) <= 0) 760 goto err; 761 } 762 EVP_DigestFinal(&md_ctx, md_out, &md_out_size_u); 763 if (md_out_size) 764 *md_out_size = md_out_size_u; 765 EVP_MD_CTX_cleanup(&md_ctx); 766 767 return 1; 768 err: 769 EVP_MD_CTX_cleanup(&md_ctx); 770 return 0; 771 } 772 773 #ifdef OPENSSL_FIPS 774 775 /* 776 * Due to the need to use EVP in FIPS mode we can't reimplement digests but 777 * we can ensure the number of blocks processed is equal for all cases by 778 * digesting additional data. 779 */ 780 781 void tls_fips_digest_extra(const EVP_CIPHER_CTX *cipher_ctx, 782 EVP_MD_CTX *mac_ctx, const unsigned char *data, 783 size_t data_len, size_t orig_len) 784 { 785 size_t block_size, digest_pad, blocks_data, blocks_orig; 786 if (EVP_CIPHER_CTX_mode(cipher_ctx) != EVP_CIPH_CBC_MODE) 787 return; 788 block_size = EVP_MD_CTX_block_size(mac_ctx); 789 /*- 790 * We are in FIPS mode if we get this far so we know we have only SHA* 791 * digests and TLS to deal with. 792 * Minimum digest padding length is 17 for SHA384/SHA512 and 9 793 * otherwise. 794 * Additional header is 13 bytes. To get the number of digest blocks 795 * processed round up the amount of data plus padding to the nearest 796 * block length. Block length is 128 for SHA384/SHA512 and 64 otherwise. 797 * So we have: 798 * blocks = (payload_len + digest_pad + 13 + block_size - 1)/block_size 799 * equivalently: 800 * blocks = (payload_len + digest_pad + 12)/block_size + 1 801 * HMAC adds a constant overhead. 802 * We're ultimately only interested in differences so this becomes 803 * blocks = (payload_len + 29)/128 804 * for SHA384/SHA512 and 805 * blocks = (payload_len + 21)/64 806 * otherwise. 807 */ 808 digest_pad = block_size == 64 ? 21 : 29; 809 blocks_orig = (orig_len + digest_pad) / block_size; 810 blocks_data = (data_len + digest_pad) / block_size; 811 /* 812 * MAC enough blocks to make up the difference between the original and 813 * actual lengths plus one extra block to ensure this is never a no op. 814 * The "data" pointer should always have enough space to perform this 815 * operation as it is large enough for a maximum length TLS buffer. 816 */ 817 EVP_DigestSignUpdate(mac_ctx, data, 818 (blocks_orig - blocks_data + 1) * block_size); 819 } 820 #endif 821