xref: /freebsd/crypto/openssl/ssl/s3_cbc.c (revision 031beb4e239bfce798af17f5fe8dba8bcaf13d99)
1 /*
2  * Copyright 2012-2021 The OpenSSL Project Authors. All Rights Reserved.
3  *
4  * Licensed under the Apache License 2.0 (the "License").  You may not use
5  * this file except in compliance with the License.  You can obtain a copy
6  * in the file LICENSE in the source distribution or at
7  * https://www.openssl.org/source/license.html
8  */
9 
10 /*
11  * This file has no dependencies on the rest of libssl because it is shared
12  * with the providers. It contains functions for low level MAC calculations.
13  * Responsibility for this lies with the HMAC implementation in the
14  * providers. However there are legacy code paths in libssl which also need to
15  * do this. In time those legacy code paths can be removed and this file can be
16  * moved out of libssl.
17  */
18 
19 
20 /*
21  * MD5 and SHA-1 low level APIs are deprecated for public use, but still ok for
22  * internal use.
23  */
24 #include "internal/deprecated.h"
25 
26 #include "internal/constant_time.h"
27 #include "internal/cryptlib.h"
28 
29 #include <openssl/evp.h>
30 #ifndef FIPS_MODULE
31 # include <openssl/md5.h>
32 #endif
33 #include <openssl/sha.h>
34 
35 char ssl3_cbc_record_digest_supported(const EVP_MD_CTX *ctx);
36 int ssl3_cbc_digest_record(const EVP_MD *md,
37                            unsigned char *md_out,
38                            size_t *md_out_size,
39                            const unsigned char *header,
40                            const unsigned char *data,
41                            size_t data_size,
42                            size_t data_plus_mac_plus_padding_size,
43                            const unsigned char *mac_secret,
44                            size_t mac_secret_length, char is_sslv3);
45 
46 # define l2n(l,c)        (*((c)++)=(unsigned char)(((l)>>24)&0xff), \
47                          *((c)++)=(unsigned char)(((l)>>16)&0xff), \
48                          *((c)++)=(unsigned char)(((l)>> 8)&0xff), \
49                          *((c)++)=(unsigned char)(((l)    )&0xff))
50 
51 # define l2n6(l,c)       (*((c)++)=(unsigned char)(((l)>>40)&0xff), \
52                          *((c)++)=(unsigned char)(((l)>>32)&0xff), \
53                          *((c)++)=(unsigned char)(((l)>>24)&0xff), \
54                          *((c)++)=(unsigned char)(((l)>>16)&0xff), \
55                          *((c)++)=(unsigned char)(((l)>> 8)&0xff), \
56                          *((c)++)=(unsigned char)(((l)    )&0xff))
57 
58 # define l2n8(l,c)       (*((c)++)=(unsigned char)(((l)>>56)&0xff), \
59                          *((c)++)=(unsigned char)(((l)>>48)&0xff), \
60                          *((c)++)=(unsigned char)(((l)>>40)&0xff), \
61                          *((c)++)=(unsigned char)(((l)>>32)&0xff), \
62                          *((c)++)=(unsigned char)(((l)>>24)&0xff), \
63                          *((c)++)=(unsigned char)(((l)>>16)&0xff), \
64                          *((c)++)=(unsigned char)(((l)>> 8)&0xff), \
65                          *((c)++)=(unsigned char)(((l)    )&0xff))
66 
67 /*
68  * MAX_HASH_BIT_COUNT_BYTES is the maximum number of bytes in the hash's
69  * length field. (SHA-384/512 have 128-bit length.)
70  */
71 #define MAX_HASH_BIT_COUNT_BYTES 16
72 
73 /*
74  * MAX_HASH_BLOCK_SIZE is the maximum hash block size that we'll support.
75  * Currently SHA-384/512 has a 128-byte block size and that's the largest
76  * supported by TLS.)
77  */
78 #define MAX_HASH_BLOCK_SIZE 128
79 
80 #ifndef FIPS_MODULE
81 /*
82  * u32toLE serializes an unsigned, 32-bit number (n) as four bytes at (p) in
83  * little-endian order. The value of p is advanced by four.
84  */
85 # define u32toLE(n, p) \
86          (*((p)++)=(unsigned char)(n), \
87           *((p)++)=(unsigned char)(n>>8), \
88           *((p)++)=(unsigned char)(n>>16), \
89           *((p)++)=(unsigned char)(n>>24))
90 
91 /*
92  * These functions serialize the state of a hash and thus perform the
93  * standard "final" operation without adding the padding and length that such
94  * a function typically does.
95  */
96 static void tls1_md5_final_raw(void *ctx, unsigned char *md_out)
97 {
98     MD5_CTX *md5 = ctx;
99     u32toLE(md5->A, md_out);
100     u32toLE(md5->B, md_out);
101     u32toLE(md5->C, md_out);
102     u32toLE(md5->D, md_out);
103 }
104 #endif /* FIPS_MODULE */
105 
106 static void tls1_sha1_final_raw(void *ctx, unsigned char *md_out)
107 {
108     SHA_CTX *sha1 = ctx;
109     l2n(sha1->h0, md_out);
110     l2n(sha1->h1, md_out);
111     l2n(sha1->h2, md_out);
112     l2n(sha1->h3, md_out);
113     l2n(sha1->h4, md_out);
114 }
115 
116 static void tls1_sha256_final_raw(void *ctx, unsigned char *md_out)
117 {
118     SHA256_CTX *sha256 = ctx;
119     unsigned i;
120 
121     for (i = 0; i < 8; i++) {
122         l2n(sha256->h[i], md_out);
123     }
124 }
125 
126 static void tls1_sha512_final_raw(void *ctx, unsigned char *md_out)
127 {
128     SHA512_CTX *sha512 = ctx;
129     unsigned i;
130 
131     for (i = 0; i < 8; i++) {
132         l2n8(sha512->h[i], md_out);
133     }
134 }
135 
136 #undef  LARGEST_DIGEST_CTX
137 #define LARGEST_DIGEST_CTX SHA512_CTX
138 
139 /*-
140  * ssl3_cbc_digest_record computes the MAC of a decrypted, padded SSLv3/TLS
141  * record.
142  *
143  *   ctx: the EVP_MD_CTX from which we take the hash function.
144  *     ssl3_cbc_record_digest_supported must return true for this EVP_MD_CTX.
145  *   md_out: the digest output. At most EVP_MAX_MD_SIZE bytes will be written.
146  *   md_out_size: if non-NULL, the number of output bytes is written here.
147  *   header: the 13-byte, TLS record header.
148  *   data: the record data itself, less any preceding explicit IV.
149  *   data_size: the secret, reported length of the data once the MAC and padding
150  *              has been removed.
151  *   data_plus_mac_plus_padding_size: the public length of the whole
152  *     record, including MAC and padding.
153  *   is_sslv3: non-zero if we are to use SSLv3. Otherwise, TLS.
154  *
155  * On entry: we know that data is data_plus_mac_plus_padding_size in length
156  * Returns 1 on success or 0 on error
157  */
158 int ssl3_cbc_digest_record(const EVP_MD *md,
159                            unsigned char *md_out,
160                            size_t *md_out_size,
161                            const unsigned char *header,
162                            const unsigned char *data,
163                            size_t data_size,
164                            size_t data_plus_mac_plus_padding_size,
165                            const unsigned char *mac_secret,
166                            size_t mac_secret_length, char is_sslv3)
167 {
168     union {
169         OSSL_UNION_ALIGN;
170         unsigned char c[sizeof(LARGEST_DIGEST_CTX)];
171     } md_state;
172     void (*md_final_raw) (void *ctx, unsigned char *md_out);
173     void (*md_transform) (void *ctx, const unsigned char *block);
174     size_t md_size, md_block_size = 64;
175     size_t sslv3_pad_length = 40, header_length, variance_blocks,
176         len, max_mac_bytes, num_blocks,
177         num_starting_blocks, k, mac_end_offset, c, index_a, index_b;
178     size_t bits;          /* at most 18 bits */
179     unsigned char length_bytes[MAX_HASH_BIT_COUNT_BYTES];
180     /* hmac_pad is the masked HMAC key. */
181     unsigned char hmac_pad[MAX_HASH_BLOCK_SIZE];
182     unsigned char first_block[MAX_HASH_BLOCK_SIZE];
183     unsigned char mac_out[EVP_MAX_MD_SIZE];
184     size_t i, j;
185     unsigned md_out_size_u;
186     EVP_MD_CTX *md_ctx = NULL;
187     /*
188      * mdLengthSize is the number of bytes in the length field that
189      * terminates * the hash.
190      */
191     size_t md_length_size = 8;
192     char length_is_big_endian = 1;
193     int ret = 0;
194 
195     /*
196      * This is a, hopefully redundant, check that allows us to forget about
197      * many possible overflows later in this function.
198      */
199     if (!ossl_assert(data_plus_mac_plus_padding_size < 1024 * 1024))
200         return 0;
201 
202     if (EVP_MD_is_a(md, "MD5")) {
203 #ifdef FIPS_MODULE
204         return 0;
205 #else
206         if (MD5_Init((MD5_CTX *)md_state.c) <= 0)
207             return 0;
208         md_final_raw = tls1_md5_final_raw;
209         md_transform =
210             (void (*)(void *ctx, const unsigned char *block))MD5_Transform;
211         md_size = 16;
212         sslv3_pad_length = 48;
213         length_is_big_endian = 0;
214 #endif
215     } else if (EVP_MD_is_a(md, "SHA1")) {
216         if (SHA1_Init((SHA_CTX *)md_state.c) <= 0)
217             return 0;
218         md_final_raw = tls1_sha1_final_raw;
219         md_transform =
220             (void (*)(void *ctx, const unsigned char *block))SHA1_Transform;
221         md_size = 20;
222     } else if (EVP_MD_is_a(md, "SHA2-224")) {
223         if (SHA224_Init((SHA256_CTX *)md_state.c) <= 0)
224             return 0;
225         md_final_raw = tls1_sha256_final_raw;
226         md_transform =
227             (void (*)(void *ctx, const unsigned char *block))SHA256_Transform;
228         md_size = 224 / 8;
229      } else if (EVP_MD_is_a(md, "SHA2-256")) {
230         if (SHA256_Init((SHA256_CTX *)md_state.c) <= 0)
231             return 0;
232         md_final_raw = tls1_sha256_final_raw;
233         md_transform =
234             (void (*)(void *ctx, const unsigned char *block))SHA256_Transform;
235         md_size = 32;
236      } else if (EVP_MD_is_a(md, "SHA2-384")) {
237         if (SHA384_Init((SHA512_CTX *)md_state.c) <= 0)
238             return 0;
239         md_final_raw = tls1_sha512_final_raw;
240         md_transform =
241             (void (*)(void *ctx, const unsigned char *block))SHA512_Transform;
242         md_size = 384 / 8;
243         md_block_size = 128;
244         md_length_size = 16;
245     } else if (EVP_MD_is_a(md, "SHA2-512")) {
246         if (SHA512_Init((SHA512_CTX *)md_state.c) <= 0)
247             return 0;
248         md_final_raw = tls1_sha512_final_raw;
249         md_transform =
250             (void (*)(void *ctx, const unsigned char *block))SHA512_Transform;
251         md_size = 64;
252         md_block_size = 128;
253         md_length_size = 16;
254     } else {
255         /*
256          * ssl3_cbc_record_digest_supported should have been called first to
257          * check that the hash function is supported.
258          */
259         if (md_out_size != NULL)
260             *md_out_size = 0;
261         return ossl_assert(0);
262     }
263 
264     if (!ossl_assert(md_length_size <= MAX_HASH_BIT_COUNT_BYTES)
265             || !ossl_assert(md_block_size <= MAX_HASH_BLOCK_SIZE)
266             || !ossl_assert(md_size <= EVP_MAX_MD_SIZE))
267         return 0;
268 
269     header_length = 13;
270     if (is_sslv3) {
271         header_length = mac_secret_length + sslv3_pad_length + 8 /* sequence
272                                                                   * number */  +
273             1 /* record type */  +
274             2 /* record length */ ;
275     }
276 
277     /*
278      * variance_blocks is the number of blocks of the hash that we have to
279      * calculate in constant time because they could be altered by the
280      * padding value. In SSLv3, the padding must be minimal so the end of
281      * the plaintext varies by, at most, 15+20 = 35 bytes. (We conservatively
282      * assume that the MAC size varies from 0..20 bytes.) In case the 9 bytes
283      * of hash termination (0x80 + 64-bit length) don't fit in the final
284      * block, we say that the final two blocks can vary based on the padding.
285      * TLSv1 has MACs up to 48 bytes long (SHA-384) and the padding is not
286      * required to be minimal. Therefore we say that the final |variance_blocks|
287      * blocks can
288      * vary based on the padding. Later in the function, if the message is
289      * short and there obviously cannot be this many blocks then
290      * variance_blocks can be reduced.
291      */
292     variance_blocks = is_sslv3 ? 2 : ( ((255 + 1 + md_size + md_block_size - 1) / md_block_size) + 1);
293     /*
294      * From now on we're dealing with the MAC, which conceptually has 13
295      * bytes of `header' before the start of the data (TLS) or 71/75 bytes
296      * (SSLv3)
297      */
298     len = data_plus_mac_plus_padding_size + header_length;
299     /*
300      * max_mac_bytes contains the maximum bytes of bytes in the MAC,
301      * including * |header|, assuming that there's no padding.
302      */
303     max_mac_bytes = len - md_size - 1;
304     /* num_blocks is the maximum number of hash blocks. */
305     num_blocks =
306         (max_mac_bytes + 1 + md_length_size + md_block_size -
307          1) / md_block_size;
308     /*
309      * In order to calculate the MAC in constant time we have to handle the
310      * final blocks specially because the padding value could cause the end
311      * to appear somewhere in the final |variance_blocks| blocks and we can't
312      * leak where. However, |num_starting_blocks| worth of data can be hashed
313      * right away because no padding value can affect whether they are
314      * plaintext.
315      */
316     num_starting_blocks = 0;
317     /*
318      * k is the starting byte offset into the conceptual header||data where
319      * we start processing.
320      */
321     k = 0;
322     /*
323      * mac_end_offset is the index just past the end of the data to be MACed.
324      */
325     mac_end_offset = data_size + header_length;
326     /*
327      * c is the index of the 0x80 byte in the final hash block that contains
328      * application data.
329      */
330     c = mac_end_offset % md_block_size;
331     /*
332      * index_a is the hash block number that contains the 0x80 terminating
333      * value.
334      */
335     index_a = mac_end_offset / md_block_size;
336     /*
337      * index_b is the hash block number that contains the 64-bit hash length,
338      * in bits.
339      */
340     index_b = (mac_end_offset + md_length_size) / md_block_size;
341     /*
342      * bits is the hash-length in bits. It includes the additional hash block
343      * for the masked HMAC key, or whole of |header| in the case of SSLv3.
344      */
345 
346     /*
347      * For SSLv3, if we're going to have any starting blocks then we need at
348      * least two because the header is larger than a single block.
349      */
350     if (num_blocks > variance_blocks + (is_sslv3 ? 1 : 0)) {
351         num_starting_blocks = num_blocks - variance_blocks;
352         k = md_block_size * num_starting_blocks;
353     }
354 
355     bits = 8 * mac_end_offset;
356     if (!is_sslv3) {
357         /*
358          * Compute the initial HMAC block. For SSLv3, the padding and secret
359          * bytes are included in |header| because they take more than a
360          * single block.
361          */
362         bits += 8 * md_block_size;
363         memset(hmac_pad, 0, md_block_size);
364         if (!ossl_assert(mac_secret_length <= sizeof(hmac_pad)))
365             return 0;
366         memcpy(hmac_pad, mac_secret, mac_secret_length);
367         for (i = 0; i < md_block_size; i++)
368             hmac_pad[i] ^= 0x36;
369 
370         md_transform(md_state.c, hmac_pad);
371     }
372 
373     if (length_is_big_endian) {
374         memset(length_bytes, 0, md_length_size - 4);
375         length_bytes[md_length_size - 4] = (unsigned char)(bits >> 24);
376         length_bytes[md_length_size - 3] = (unsigned char)(bits >> 16);
377         length_bytes[md_length_size - 2] = (unsigned char)(bits >> 8);
378         length_bytes[md_length_size - 1] = (unsigned char)bits;
379     } else {
380         memset(length_bytes, 0, md_length_size);
381         length_bytes[md_length_size - 5] = (unsigned char)(bits >> 24);
382         length_bytes[md_length_size - 6] = (unsigned char)(bits >> 16);
383         length_bytes[md_length_size - 7] = (unsigned char)(bits >> 8);
384         length_bytes[md_length_size - 8] = (unsigned char)bits;
385     }
386 
387     if (k > 0) {
388         if (is_sslv3) {
389             size_t overhang;
390 
391             /*
392              * The SSLv3 header is larger than a single block. overhang is
393              * the number of bytes beyond a single block that the header
394              * consumes: either 7 bytes (SHA1) or 11 bytes (MD5). There are no
395              * ciphersuites in SSLv3 that are not SHA1 or MD5 based and
396              * therefore we can be confident that the header_length will be
397              * greater than |md_block_size|. However we add a sanity check just
398              * in case
399              */
400             if (header_length <= md_block_size) {
401                 /* Should never happen */
402                 return 0;
403             }
404             overhang = header_length - md_block_size;
405             md_transform(md_state.c, header);
406             memcpy(first_block, header + md_block_size, overhang);
407             memcpy(first_block + overhang, data, md_block_size - overhang);
408             md_transform(md_state.c, first_block);
409             for (i = 1; i < k / md_block_size - 1; i++)
410                 md_transform(md_state.c, data + md_block_size * i - overhang);
411         } else {
412             /* k is a multiple of md_block_size. */
413             memcpy(first_block, header, 13);
414             memcpy(first_block + 13, data, md_block_size - 13);
415             md_transform(md_state.c, first_block);
416             for (i = 1; i < k / md_block_size; i++)
417                 md_transform(md_state.c, data + md_block_size * i - 13);
418         }
419     }
420 
421     memset(mac_out, 0, sizeof(mac_out));
422 
423     /*
424      * We now process the final hash blocks. For each block, we construct it
425      * in constant time. If the |i==index_a| then we'll include the 0x80
426      * bytes and zero pad etc. For each block we selectively copy it, in
427      * constant time, to |mac_out|.
428      */
429     for (i = num_starting_blocks; i <= num_starting_blocks + variance_blocks;
430          i++) {
431         unsigned char block[MAX_HASH_BLOCK_SIZE];
432         unsigned char is_block_a = constant_time_eq_8_s(i, index_a);
433         unsigned char is_block_b = constant_time_eq_8_s(i, index_b);
434         for (j = 0; j < md_block_size; j++) {
435             unsigned char b = 0, is_past_c, is_past_cp1;
436             if (k < header_length)
437                 b = header[k];
438             else if (k < data_plus_mac_plus_padding_size + header_length)
439                 b = data[k - header_length];
440             k++;
441 
442             is_past_c = is_block_a & constant_time_ge_8_s(j, c);
443             is_past_cp1 = is_block_a & constant_time_ge_8_s(j, c + 1);
444             /*
445              * If this is the block containing the end of the application
446              * data, and we are at the offset for the 0x80 value, then
447              * overwrite b with 0x80.
448              */
449             b = constant_time_select_8(is_past_c, 0x80, b);
450             /*
451              * If this block contains the end of the application data
452              * and we're past the 0x80 value then just write zero.
453              */
454             b = b & ~is_past_cp1;
455             /*
456              * If this is index_b (the final block), but not index_a (the end
457              * of the data), then the 64-bit length didn't fit into index_a
458              * and we're having to add an extra block of zeros.
459              */
460             b &= ~is_block_b | is_block_a;
461 
462             /*
463              * The final bytes of one of the blocks contains the length.
464              */
465             if (j >= md_block_size - md_length_size) {
466                 /* If this is index_b, write a length byte. */
467                 b = constant_time_select_8(is_block_b,
468                                            length_bytes[j -
469                                                         (md_block_size -
470                                                          md_length_size)], b);
471             }
472             block[j] = b;
473         }
474 
475         md_transform(md_state.c, block);
476         md_final_raw(md_state.c, block);
477         /* If this is index_b, copy the hash value to |mac_out|. */
478         for (j = 0; j < md_size; j++)
479             mac_out[j] |= block[j] & is_block_b;
480     }
481 
482     md_ctx = EVP_MD_CTX_new();
483     if (md_ctx == NULL)
484         goto err;
485 
486     if (EVP_DigestInit_ex(md_ctx, md, NULL /* engine */ ) <= 0)
487         goto err;
488     if (is_sslv3) {
489         /* We repurpose |hmac_pad| to contain the SSLv3 pad2 block. */
490         memset(hmac_pad, 0x5c, sslv3_pad_length);
491 
492         if (EVP_DigestUpdate(md_ctx, mac_secret, mac_secret_length) <= 0
493             || EVP_DigestUpdate(md_ctx, hmac_pad, sslv3_pad_length) <= 0
494             || EVP_DigestUpdate(md_ctx, mac_out, md_size) <= 0)
495             goto err;
496     } else {
497         /* Complete the HMAC in the standard manner. */
498         for (i = 0; i < md_block_size; i++)
499             hmac_pad[i] ^= 0x6a;
500 
501         if (EVP_DigestUpdate(md_ctx, hmac_pad, md_block_size) <= 0
502             || EVP_DigestUpdate(md_ctx, mac_out, md_size) <= 0)
503             goto err;
504     }
505     ret = EVP_DigestFinal(md_ctx, md_out, &md_out_size_u);
506     if (ret && md_out_size)
507         *md_out_size = md_out_size_u;
508 
509     ret = 1;
510  err:
511     EVP_MD_CTX_free(md_ctx);
512     return ret;
513 }
514