xref: /freebsd/crypto/openssl/providers/implementations/rands/seeding/rand_unix.c (revision 95eb4b873b6a8b527c5bd78d7191975dfca38998)
1 /*
2  * Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved.
3  *
4  * Licensed under the Apache License 2.0 (the "License").  You may not use
5  * this file except in compliance with the License.  You can obtain a copy
6  * in the file LICENSE in the source distribution or at
7  * https://www.openssl.org/source/license.html
8  */
9 
10 #ifndef _GNU_SOURCE
11 # define _GNU_SOURCE
12 #endif
13 #include "../e_os.h"
14 #include <stdio.h>
15 #include "internal/cryptlib.h"
16 #include <openssl/rand.h>
17 #include <openssl/crypto.h>
18 #include "crypto/rand_pool.h"
19 #include "crypto/rand.h"
20 #include <stdio.h>
21 #include "internal/dso.h"
22 #include "prov/seeding.h"
23 
24 #ifdef __linux
25 # include <sys/syscall.h>
26 # ifdef DEVRANDOM_WAIT
27 #  include <sys/shm.h>
28 #  include <sys/utsname.h>
29 # endif
30 #endif
31 #if (defined(__FreeBSD__) || defined(__NetBSD__)) && !defined(OPENSSL_SYS_UEFI)
32 # include <sys/types.h>
33 # include <sys/sysctl.h>
34 # include <sys/param.h>
35 #endif
36 #if defined(__OpenBSD__)
37 # include <sys/param.h>
38 #endif
39 #if defined(__DragonFly__)
40 # include <sys/param.h>
41 # include <sys/random.h>
42 #endif
43 
44 #if (defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_SYS_VXWORKS)) \
45      || defined(__DJGPP__)
46 # include <sys/types.h>
47 # include <sys/stat.h>
48 # include <fcntl.h>
49 # include <unistd.h>
50 # include <sys/time.h>
51 
52 static uint64_t get_time_stamp(void);
53 static uint64_t get_timer_bits(void);
54 
55 /* Macro to convert two thirty two bit values into a sixty four bit one */
56 # define TWO32TO64(a, b) ((((uint64_t)(a)) << 32) + (b))
57 
58 /*
59  * Check for the existence and support of POSIX timers.  The standard
60  * says that the _POSIX_TIMERS macro will have a positive value if they
61  * are available.
62  *
63  * However, we want an additional constraint: that the timer support does
64  * not require an extra library dependency.  Early versions of glibc
65  * require -lrt to be specified on the link line to access the timers,
66  * so this needs to be checked for.
67  *
68  * It is worse because some libraries define __GLIBC__ but don't
69  * support the version testing macro (e.g. uClibc).  This means
70  * an extra check is needed.
71  *
72  * The final condition is:
73  *      "have posix timers and either not glibc or glibc without -lrt"
74  *
75  * The nested #if sequences are required to avoid using a parameterised
76  * macro that might be undefined.
77  */
78 # undef OSSL_POSIX_TIMER_OKAY
79 /* On some systems, _POSIX_TIMERS is defined but empty.
80  * Subtracting by 0 when comparing avoids an error in this case. */
81 # if defined(_POSIX_TIMERS) && _POSIX_TIMERS -0 > 0
82 #  if defined(__GLIBC__)
83 #   if defined(__GLIBC_PREREQ)
84 #    if __GLIBC_PREREQ(2, 17)
85 #     define OSSL_POSIX_TIMER_OKAY
86 #    endif
87 #   endif
88 #  else
89 #   define OSSL_POSIX_TIMER_OKAY
90 #  endif
91 # endif
92 #endif /* (defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_SYS_VXWORKS))
93           || defined(__DJGPP__) */
94 
95 #if defined(OPENSSL_RAND_SEED_NONE)
96 /* none means none. this simplifies the following logic */
97 # undef OPENSSL_RAND_SEED_OS
98 # undef OPENSSL_RAND_SEED_GETRANDOM
99 # undef OPENSSL_RAND_SEED_LIBRANDOM
100 # undef OPENSSL_RAND_SEED_DEVRANDOM
101 # undef OPENSSL_RAND_SEED_RDTSC
102 # undef OPENSSL_RAND_SEED_RDCPU
103 # undef OPENSSL_RAND_SEED_EGD
104 #endif
105 
106 #if defined(OPENSSL_SYS_UEFI) && !defined(OPENSSL_RAND_SEED_NONE)
107 # error "UEFI only supports seeding NONE"
108 #endif
109 
110 #if !(defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_WIN32) \
111     || defined(OPENSSL_SYS_VMS) || defined(OPENSSL_SYS_VXWORKS) \
112     || defined(OPENSSL_SYS_UEFI))
113 
114 # if defined(OPENSSL_SYS_VOS)
115 
116 #  ifndef OPENSSL_RAND_SEED_OS
117 #   error "Unsupported seeding method configured; must be os"
118 #  endif
119 
120 #  if defined(OPENSSL_SYS_VOS_HPPA) && defined(OPENSSL_SYS_VOS_IA32)
121 #   error "Unsupported HP-PA and IA32 at the same time."
122 #  endif
123 #  if !defined(OPENSSL_SYS_VOS_HPPA) && !defined(OPENSSL_SYS_VOS_IA32)
124 #   error "Must have one of HP-PA or IA32"
125 #  endif
126 
127 /*
128  * The following algorithm repeatedly samples the real-time clock (RTC) to
129  * generate a sequence of unpredictable data.  The algorithm relies upon the
130  * uneven execution speed of the code (due to factors such as cache misses,
131  * interrupts, bus activity, and scheduling) and upon the rather large
132  * relative difference between the speed of the clock and the rate at which
133  * it can be read.  If it is ported to an environment where execution speed
134  * is more constant or where the RTC ticks at a much slower rate, or the
135  * clock can be read with fewer instructions, it is likely that the results
136  * would be far more predictable.  This should only be used for legacy
137  * platforms.
138  *
139  * As a precaution, we assume only 2 bits of entropy per byte.
140  */
141 size_t ossl_pool_acquire_entropy(RAND_POOL *pool)
142 {
143     short int code;
144     int i, k;
145     size_t bytes_needed;
146     struct timespec ts;
147     unsigned char v;
148 #  ifdef OPENSSL_SYS_VOS_HPPA
149     long duration;
150     extern void s$sleep(long *_duration, short int *_code);
151 #  else
152     long long duration;
153     extern void s$sleep2(long long *_duration, short int *_code);
154 #  endif
155 
156     bytes_needed = ossl_rand_pool_bytes_needed(pool, 4 /*entropy_factor*/);
157 
158     for (i = 0; i < bytes_needed; i++) {
159         /*
160          * burn some cpu; hope for interrupts, cache collisions, bus
161          * interference, etc.
162          */
163         for (k = 0; k < 99; k++)
164             ts.tv_nsec = random();
165 
166 #  ifdef OPENSSL_SYS_VOS_HPPA
167         /* sleep for 1/1024 of a second (976 us).  */
168         duration = 1;
169         s$sleep(&duration, &code);
170 #  else
171         /* sleep for 1/65536 of a second (15 us).  */
172         duration = 1;
173         s$sleep2(&duration, &code);
174 #  endif
175 
176         /* Get wall clock time, take 8 bits. */
177         clock_gettime(CLOCK_REALTIME, &ts);
178         v = (unsigned char)(ts.tv_nsec & 0xFF);
179         ossl_rand_pool_add(pool, arg, &v, sizeof(v) , 2);
180     }
181     return ossl_rand_pool_entropy_available(pool);
182 }
183 
184 void ossl_rand_pool_cleanup(void)
185 {
186 }
187 
188 void ossl_rand_pool_keep_random_devices_open(int keep)
189 {
190 }
191 
192 # else
193 
194 #  if defined(OPENSSL_RAND_SEED_EGD) && \
195         (defined(OPENSSL_NO_EGD) || !defined(DEVRANDOM_EGD))
196 #   error "Seeding uses EGD but EGD is turned off or no device given"
197 #  endif
198 
199 #  if defined(OPENSSL_RAND_SEED_DEVRANDOM) && !defined(DEVRANDOM)
200 #   error "Seeding uses urandom but DEVRANDOM is not configured"
201 #  endif
202 
203 #  if defined(OPENSSL_RAND_SEED_OS)
204 #   if !defined(DEVRANDOM)
205 #    error "OS seeding requires DEVRANDOM to be configured"
206 #   endif
207 #   define OPENSSL_RAND_SEED_GETRANDOM
208 #   define OPENSSL_RAND_SEED_DEVRANDOM
209 #  endif
210 
211 #  if defined(OPENSSL_RAND_SEED_LIBRANDOM)
212 #   error "librandom not (yet) supported"
213 #  endif
214 
215 #  if (defined(__FreeBSD__) || defined(__NetBSD__)) && defined(KERN_ARND)
216 /*
217  * sysctl_random(): Use sysctl() to read a random number from the kernel
218  * Returns the number of bytes returned in buf on success, -1 on failure.
219  */
220 static ssize_t sysctl_random(char *buf, size_t buflen)
221 {
222     int mib[2];
223     size_t done = 0;
224     size_t len;
225 
226     /*
227      * Note: sign conversion between size_t and ssize_t is safe even
228      * without a range check, see comment in syscall_random()
229      */
230 
231     /*
232      * On FreeBSD old implementations returned longs, newer versions support
233      * variable sizes up to 256 byte. The code below would not work properly
234      * when the sysctl returns long and we want to request something not a
235      * multiple of longs, which should never be the case.
236      */
237 #if   defined(__FreeBSD__)
238     if (!ossl_assert(buflen % sizeof(long) == 0)) {
239         errno = EINVAL;
240         return -1;
241     }
242 #endif
243 
244     /*
245      * On NetBSD before 4.0 KERN_ARND was an alias for KERN_URND, and only
246      * filled in an int, leaving the rest uninitialized. Since NetBSD 4.0
247      * it returns a variable number of bytes with the current version supporting
248      * up to 256 bytes.
249      * Just return an error on older NetBSD versions.
250      */
251 #if   defined(__NetBSD__) && __NetBSD_Version__ < 400000000
252     errno = ENOSYS;
253     return -1;
254 #endif
255 
256     mib[0] = CTL_KERN;
257     mib[1] = KERN_ARND;
258 
259     do {
260         len = buflen > 256 ? 256 : buflen;
261         if (sysctl(mib, 2, buf, &len, NULL, 0) == -1)
262             return done > 0 ? done : -1;
263         done += len;
264         buf += len;
265         buflen -= len;
266     } while (buflen > 0);
267 
268     return done;
269 }
270 #  endif
271 
272 #  if defined(OPENSSL_RAND_SEED_GETRANDOM)
273 
274 #   if defined(__linux) && !defined(__NR_getrandom)
275 #    if defined(__arm__)
276 #     define __NR_getrandom    (__NR_SYSCALL_BASE+384)
277 #    elif defined(__i386__)
278 #     define __NR_getrandom    355
279 #    elif defined(__x86_64__)
280 #     if defined(__ILP32__)
281 #      define __NR_getrandom   (__X32_SYSCALL_BIT + 318)
282 #     else
283 #      define __NR_getrandom   318
284 #     endif
285 #    elif defined(__xtensa__)
286 #     define __NR_getrandom    338
287 #    elif defined(__s390__) || defined(__s390x__)
288 #     define __NR_getrandom    349
289 #    elif defined(__bfin__)
290 #     define __NR_getrandom    389
291 #    elif defined(__powerpc__)
292 #     define __NR_getrandom    359
293 #    elif defined(__mips__) || defined(__mips64)
294 #     if _MIPS_SIM == _MIPS_SIM_ABI32
295 #      define __NR_getrandom   (__NR_Linux + 353)
296 #     elif _MIPS_SIM == _MIPS_SIM_ABI64
297 #      define __NR_getrandom   (__NR_Linux + 313)
298 #     elif _MIPS_SIM == _MIPS_SIM_NABI32
299 #      define __NR_getrandom   (__NR_Linux + 317)
300 #     endif
301 #    elif defined(__hppa__)
302 #     define __NR_getrandom    (__NR_Linux + 339)
303 #    elif defined(__sparc__)
304 #     define __NR_getrandom    347
305 #    elif defined(__ia64__)
306 #     define __NR_getrandom    1339
307 #    elif defined(__alpha__)
308 #     define __NR_getrandom    511
309 #    elif defined(__sh__)
310 #     if defined(__SH5__)
311 #      define __NR_getrandom   373
312 #     else
313 #      define __NR_getrandom   384
314 #     endif
315 #    elif defined(__avr32__)
316 #     define __NR_getrandom    317
317 #    elif defined(__microblaze__)
318 #     define __NR_getrandom    385
319 #    elif defined(__m68k__)
320 #     define __NR_getrandom    352
321 #    elif defined(__cris__)
322 #     define __NR_getrandom    356
323 #    elif defined(__aarch64__)
324 #     define __NR_getrandom    278
325 #    else /* generic */
326 #     define __NR_getrandom    278
327 #    endif
328 #   endif
329 
330 /*
331  * syscall_random(): Try to get random data using a system call
332  * returns the number of bytes returned in buf, or < 0 on error.
333  */
334 static ssize_t syscall_random(void *buf, size_t buflen)
335 {
336     /*
337      * Note: 'buflen' equals the size of the buffer which is used by the
338      * get_entropy() callback of the RAND_DRBG. It is roughly bounded by
339      *
340      *   2 * RAND_POOL_FACTOR * (RAND_DRBG_STRENGTH / 8) = 2^14
341      *
342      * which is way below the OSSL_SSIZE_MAX limit. Therefore sign conversion
343      * between size_t and ssize_t is safe even without a range check.
344      */
345 
346     /*
347      * Do runtime detection to find getentropy().
348      *
349      * Known OSs that should support this:
350      * - Darwin since 16 (OSX 10.12, IOS 10.0).
351      * - Solaris since 11.3
352      * - OpenBSD since 5.6
353      * - Linux since 3.17 with glibc 2.25
354      * - FreeBSD since 12.0 (1200061)
355      *
356      * Note: Sometimes getentropy() can be provided but not implemented
357      * internally. So we need to check errno for ENOSYS
358      */
359 #  if !defined(__DragonFly__) && !defined(__NetBSD__) && !defined(__FreeBSD__)
360 #    if defined(__GNUC__) && __GNUC__>=2 && defined(__ELF__) && !defined(__hpux)
361     extern int getentropy(void *buffer, size_t length) __attribute__((weak));
362 
363     if (getentropy != NULL) {
364         if (getentropy(buf, buflen) == 0)
365             return (ssize_t)buflen;
366         if (errno != ENOSYS)
367             return -1;
368     }
369 #    elif defined(OPENSSL_APPLE_CRYPTO_RANDOM)
370 
371     if (CCRandomGenerateBytes(buf, buflen) == kCCSuccess)
372 	    return (ssize_t)buflen;
373 
374     return -1;
375 #    else
376     union {
377         void *p;
378         int (*f)(void *buffer, size_t length);
379     } p_getentropy;
380 
381     /*
382      * We could cache the result of the lookup, but we normally don't
383      * call this function often.
384      */
385     ERR_set_mark();
386     p_getentropy.p = DSO_global_lookup("getentropy");
387     ERR_pop_to_mark();
388     if (p_getentropy.p != NULL)
389         return p_getentropy.f(buf, buflen) == 0 ? (ssize_t)buflen : -1;
390 #    endif
391 #  endif /* !__DragonFly__ */
392 
393     /* Linux supports this since version 3.17 */
394 #  if defined(__linux) && defined(__NR_getrandom)
395     return syscall(__NR_getrandom, buf, buflen, 0);
396 #  elif (defined(__DragonFly__)  && __DragonFly_version >= 500700) \
397      || (defined(__NetBSD__) && __NetBSD_Version >= 1000000000) \
398      || defined(__FreeBSD__)
399     return getrandom(buf, buflen, 0);
400 #  elif defined(__NetBSD__) && defined(KERN_ARND)
401     return sysctl_random(buf, buflen);
402 #  else
403     errno = ENOSYS;
404     return -1;
405 #  endif
406 }
407 #  endif    /* defined(OPENSSL_RAND_SEED_GETRANDOM) */
408 
409 #  if defined(OPENSSL_RAND_SEED_DEVRANDOM)
410 static const char *random_device_paths[] = { DEVRANDOM };
411 static struct random_device {
412     int fd;
413     dev_t dev;
414     ino_t ino;
415     mode_t mode;
416     dev_t rdev;
417 } random_devices[OSSL_NELEM(random_device_paths)];
418 static int keep_random_devices_open = 1;
419 
420 #   if defined(__linux) && defined(DEVRANDOM_WAIT) \
421        && defined(OPENSSL_RAND_SEED_GETRANDOM)
422 static void *shm_addr;
423 
424 static void cleanup_shm(void)
425 {
426     shmdt(shm_addr);
427 }
428 
429 /*
430  * Ensure that the system randomness source has been adequately seeded.
431  * This is done by having the first start of libcrypto, wait until the device
432  * /dev/random becomes able to supply a byte of entropy.  Subsequent starts
433  * of the library and later reseedings do not need to do this.
434  */
435 static int wait_random_seeded(void)
436 {
437     static int seeded = OPENSSL_RAND_SEED_DEVRANDOM_SHM_ID < 0;
438     static const int kernel_version[] = { DEVRANDOM_SAFE_KERNEL };
439     int kernel[2];
440     int shm_id, fd, r;
441     char c, *p;
442     struct utsname un;
443     fd_set fds;
444 
445     if (!seeded) {
446         /* See if anything has created the global seeded indication */
447         if ((shm_id = shmget(OPENSSL_RAND_SEED_DEVRANDOM_SHM_ID, 1, 0)) == -1) {
448             /*
449              * Check the kernel's version and fail if it is too recent.
450              *
451              * Linux kernels from 4.8 onwards do not guarantee that
452              * /dev/urandom is properly seeded when /dev/random becomes
453              * readable.  However, such kernels support the getentropy(2)
454              * system call and this should always succeed which renders
455              * this alternative but essentially identical source moot.
456              */
457             if (uname(&un) == 0) {
458                 kernel[0] = atoi(un.release);
459                 p = strchr(un.release, '.');
460                 kernel[1] = p == NULL ? 0 : atoi(p + 1);
461                 if (kernel[0] > kernel_version[0]
462                     || (kernel[0] == kernel_version[0]
463                         && kernel[1] >= kernel_version[1])) {
464                     return 0;
465                 }
466             }
467             /* Open /dev/random and wait for it to be readable */
468             if ((fd = open(DEVRANDOM_WAIT, O_RDONLY)) != -1) {
469                 if (DEVRANDM_WAIT_USE_SELECT && fd < FD_SETSIZE) {
470                     FD_ZERO(&fds);
471                     FD_SET(fd, &fds);
472                     while ((r = select(fd + 1, &fds, NULL, NULL, NULL)) < 0
473                            && errno == EINTR);
474                 } else {
475                     while ((r = read(fd, &c, 1)) < 0 && errno == EINTR);
476                 }
477                 close(fd);
478                 if (r == 1) {
479                     seeded = 1;
480                     /* Create the shared memory indicator */
481                     shm_id = shmget(OPENSSL_RAND_SEED_DEVRANDOM_SHM_ID, 1,
482                                     IPC_CREAT | S_IRUSR | S_IRGRP | S_IROTH);
483                 }
484             }
485         }
486         if (shm_id != -1) {
487             seeded = 1;
488             /*
489              * Map the shared memory to prevent its premature destruction.
490              * If this call fails, it isn't a big problem.
491              */
492             shm_addr = shmat(shm_id, NULL, SHM_RDONLY);
493             if (shm_addr != (void *)-1)
494                 OPENSSL_atexit(&cleanup_shm);
495         }
496     }
497     return seeded;
498 }
499 #   else /* defined __linux && DEVRANDOM_WAIT && OPENSSL_RAND_SEED_GETRANDOM */
500 static int wait_random_seeded(void)
501 {
502     return 1;
503 }
504 #   endif
505 
506 /*
507  * Verify that the file descriptor associated with the random source is
508  * still valid. The rationale for doing this is the fact that it is not
509  * uncommon for daemons to close all open file handles when daemonizing.
510  * So the handle might have been closed or even reused for opening
511  * another file.
512  */
513 static int check_random_device(struct random_device * rd)
514 {
515     struct stat st;
516 
517     return rd->fd != -1
518            && fstat(rd->fd, &st) != -1
519            && rd->dev == st.st_dev
520            && rd->ino == st.st_ino
521            && ((rd->mode ^ st.st_mode) & ~(S_IRWXU | S_IRWXG | S_IRWXO)) == 0
522            && rd->rdev == st.st_rdev;
523 }
524 
525 /*
526  * Open a random device if required and return its file descriptor or -1 on error
527  */
528 static int get_random_device(size_t n)
529 {
530     struct stat st;
531     struct random_device * rd = &random_devices[n];
532 
533     /* reuse existing file descriptor if it is (still) valid */
534     if (check_random_device(rd))
535         return rd->fd;
536 
537     /* open the random device ... */
538     if ((rd->fd = open(random_device_paths[n], O_RDONLY)) == -1)
539         return rd->fd;
540 
541     /* ... and cache its relevant stat(2) data */
542     if (fstat(rd->fd, &st) != -1) {
543         rd->dev = st.st_dev;
544         rd->ino = st.st_ino;
545         rd->mode = st.st_mode;
546         rd->rdev = st.st_rdev;
547     } else {
548         close(rd->fd);
549         rd->fd = -1;
550     }
551 
552     return rd->fd;
553 }
554 
555 /*
556  * Close a random device making sure it is a random device
557  */
558 static void close_random_device(size_t n)
559 {
560     struct random_device * rd = &random_devices[n];
561 
562     if (check_random_device(rd))
563         close(rd->fd);
564     rd->fd = -1;
565 }
566 
567 int ossl_rand_pool_init(void)
568 {
569     size_t i;
570 
571     for (i = 0; i < OSSL_NELEM(random_devices); i++)
572         random_devices[i].fd = -1;
573 
574     return 1;
575 }
576 
577 void ossl_rand_pool_cleanup(void)
578 {
579     size_t i;
580 
581     for (i = 0; i < OSSL_NELEM(random_devices); i++)
582         close_random_device(i);
583 }
584 
585 void ossl_rand_pool_keep_random_devices_open(int keep)
586 {
587     if (!keep)
588         ossl_rand_pool_cleanup();
589 
590     keep_random_devices_open = keep;
591 }
592 
593 #  else     /* !defined(OPENSSL_RAND_SEED_DEVRANDOM) */
594 
595 int ossl_rand_pool_init(void)
596 {
597     return 1;
598 }
599 
600 void ossl_rand_pool_cleanup(void)
601 {
602 }
603 
604 void ossl_rand_pool_keep_random_devices_open(int keep)
605 {
606 }
607 
608 #  endif    /* defined(OPENSSL_RAND_SEED_DEVRANDOM) */
609 
610 /*
611  * Try the various seeding methods in turn, exit when successful.
612  *
613  * If more than one entropy source is available, is it
614  * preferable to stop as soon as enough entropy has been collected
615  * (as favored by @rsalz) or should one rather be defensive and add
616  * more entropy than requested and/or from different sources?
617  *
618  * Currently, the user can select multiple entropy sources in the
619  * configure step, yet in practice only the first available source
620  * will be used. A more flexible solution has been requested, but
621  * currently it is not clear how this can be achieved without
622  * overengineering the problem. There are many parameters which
623  * could be taken into account when selecting the order and amount
624  * of input from the different entropy sources (trust, quality,
625  * possibility of blocking).
626  */
627 size_t ossl_pool_acquire_entropy(RAND_POOL *pool)
628 {
629 #  if defined(OPENSSL_RAND_SEED_NONE)
630     return ossl_rand_pool_entropy_available(pool);
631 #  else
632     size_t entropy_available = 0;
633 
634     (void)entropy_available;    /* avoid compiler warning */
635 
636 #   if defined(OPENSSL_RAND_SEED_GETRANDOM)
637     {
638         size_t bytes_needed;
639         unsigned char *buffer;
640         ssize_t bytes;
641         /* Maximum allowed number of consecutive unsuccessful attempts */
642         int attempts = 3;
643 
644         bytes_needed = ossl_rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
645         while (bytes_needed != 0 && attempts-- > 0) {
646             buffer = ossl_rand_pool_add_begin(pool, bytes_needed);
647             bytes = syscall_random(buffer, bytes_needed);
648             if (bytes > 0) {
649                 ossl_rand_pool_add_end(pool, bytes, 8 * bytes);
650                 bytes_needed -= bytes;
651                 attempts = 3; /* reset counter after successful attempt */
652             } else if (bytes < 0 && errno != EINTR) {
653                 break;
654             }
655         }
656     }
657     entropy_available = ossl_rand_pool_entropy_available(pool);
658     if (entropy_available > 0)
659         return entropy_available;
660 #   endif
661 
662 #   if defined(OPENSSL_RAND_SEED_LIBRANDOM)
663     {
664         /* Not yet implemented. */
665     }
666 #   endif
667 
668 #   if defined(OPENSSL_RAND_SEED_DEVRANDOM)
669     if (wait_random_seeded()) {
670         size_t bytes_needed;
671         unsigned char *buffer;
672         size_t i;
673 
674         bytes_needed = ossl_rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
675         for (i = 0; bytes_needed > 0 && i < OSSL_NELEM(random_device_paths);
676              i++) {
677             ssize_t bytes = 0;
678             /* Maximum number of consecutive unsuccessful attempts */
679             int attempts = 3;
680             const int fd = get_random_device(i);
681 
682             if (fd == -1)
683                 continue;
684 
685             while (bytes_needed != 0 && attempts-- > 0) {
686                 buffer = ossl_rand_pool_add_begin(pool, bytes_needed);
687                 bytes = read(fd, buffer, bytes_needed);
688 
689                 if (bytes > 0) {
690                     ossl_rand_pool_add_end(pool, bytes, 8 * bytes);
691                     bytes_needed -= bytes;
692                     attempts = 3; /* reset counter on successful attempt */
693                 } else if (bytes < 0 && errno != EINTR) {
694                     break;
695                 }
696             }
697             if (bytes < 0 || !keep_random_devices_open)
698                 close_random_device(i);
699 
700             bytes_needed = ossl_rand_pool_bytes_needed(pool, 1);
701         }
702         entropy_available = ossl_rand_pool_entropy_available(pool);
703         if (entropy_available > 0)
704             return entropy_available;
705     }
706 #   endif
707 
708 #   if defined(OPENSSL_RAND_SEED_RDTSC)
709     entropy_available = ossl_prov_acquire_entropy_from_tsc(pool);
710     if (entropy_available > 0)
711         return entropy_available;
712 #   endif
713 
714 #   if defined(OPENSSL_RAND_SEED_RDCPU)
715     entropy_available = ossl_prov_acquire_entropy_from_cpu(pool);
716     if (entropy_available > 0)
717         return entropy_available;
718 #   endif
719 
720 #   if defined(OPENSSL_RAND_SEED_EGD)
721     {
722         static const char *paths[] = { DEVRANDOM_EGD, NULL };
723         size_t bytes_needed;
724         unsigned char *buffer;
725         int i;
726 
727         bytes_needed = ossl_rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
728         for (i = 0; bytes_needed > 0 && paths[i] != NULL; i++) {
729             size_t bytes = 0;
730             int num;
731 
732             buffer = ossl_rand_pool_add_begin(pool, bytes_needed);
733             num = RAND_query_egd_bytes(paths[i],
734                                        buffer, (int)bytes_needed);
735             if (num == (int)bytes_needed)
736                 bytes = bytes_needed;
737 
738             ossl_rand_pool_add_end(pool, bytes, 8 * bytes);
739             bytes_needed = ossl_rand_pool_bytes_needed(pool, 1);
740         }
741         entropy_available = ossl_rand_pool_entropy_available(pool);
742         if (entropy_available > 0)
743             return entropy_available;
744     }
745 #   endif
746 
747     return ossl_rand_pool_entropy_available(pool);
748 #  endif
749 }
750 # endif
751 #endif
752 
753 #if (defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_SYS_VXWORKS)) \
754      || defined(__DJGPP__)
755 int ossl_pool_add_nonce_data(RAND_POOL *pool)
756 {
757     struct {
758         pid_t pid;
759         CRYPTO_THREAD_ID tid;
760         uint64_t time;
761     } data;
762 
763     /* Erase the entire structure including any padding */
764     memset(&data, 0, sizeof(data));
765 
766     /*
767      * Add process id, thread id, and a high resolution timestamp to
768      * ensure that the nonce is unique with high probability for
769      * different process instances.
770      */
771     data.pid = getpid();
772     data.tid = CRYPTO_THREAD_get_current_id();
773     data.time = get_time_stamp();
774 
775     return ossl_rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0);
776 }
777 
778 int ossl_rand_pool_add_additional_data(RAND_POOL *pool)
779 {
780     struct {
781         int fork_id;
782         CRYPTO_THREAD_ID tid;
783         uint64_t time;
784     } data;
785 
786     /* Erase the entire structure including any padding */
787     memset(&data, 0, sizeof(data));
788 
789     /*
790      * Add some noise from the thread id and a high resolution timer.
791      * The fork_id adds some extra fork-safety.
792      * The thread id adds a little randomness if the drbg is accessed
793      * concurrently (which is the case for the <master> drbg).
794      */
795     data.fork_id = openssl_get_fork_id();
796     data.tid = CRYPTO_THREAD_get_current_id();
797     data.time = get_timer_bits();
798 
799     return ossl_rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0);
800 }
801 
802 
803 /*
804  * Get the current time with the highest possible resolution
805  *
806  * The time stamp is added to the nonce, so it is optimized for not repeating.
807  * The current time is ideal for this purpose, provided the computer's clock
808  * is synchronized.
809  */
810 static uint64_t get_time_stamp(void)
811 {
812 # if defined(OSSL_POSIX_TIMER_OKAY)
813     {
814         struct timespec ts;
815 
816         if (clock_gettime(CLOCK_REALTIME, &ts) == 0)
817             return TWO32TO64(ts.tv_sec, ts.tv_nsec);
818     }
819 # endif
820 # if defined(__unix__) \
821      || (defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 200112L)
822     {
823         struct timeval tv;
824 
825         if (gettimeofday(&tv, NULL) == 0)
826             return TWO32TO64(tv.tv_sec, tv.tv_usec);
827     }
828 # endif
829     return time(NULL);
830 }
831 
832 /*
833  * Get an arbitrary timer value of the highest possible resolution
834  *
835  * The timer value is added as random noise to the additional data,
836  * which is not considered a trusted entropy sourec, so any result
837  * is acceptable.
838  */
839 static uint64_t get_timer_bits(void)
840 {
841     uint64_t res = OPENSSL_rdtsc();
842 
843     if (res != 0)
844         return res;
845 
846 # if defined(__sun) || defined(__hpux)
847     return gethrtime();
848 # elif defined(_AIX)
849     {
850         timebasestruct_t t;
851 
852         read_wall_time(&t, TIMEBASE_SZ);
853         return TWO32TO64(t.tb_high, t.tb_low);
854     }
855 # elif defined(OSSL_POSIX_TIMER_OKAY)
856     {
857         struct timespec ts;
858 
859 #  ifdef CLOCK_BOOTTIME
860 #   define CLOCK_TYPE CLOCK_BOOTTIME
861 #  elif defined(_POSIX_MONOTONIC_CLOCK)
862 #   define CLOCK_TYPE CLOCK_MONOTONIC
863 #  else
864 #   define CLOCK_TYPE CLOCK_REALTIME
865 #  endif
866 
867         if (clock_gettime(CLOCK_TYPE, &ts) == 0)
868             return TWO32TO64(ts.tv_sec, ts.tv_nsec);
869     }
870 # endif
871 # if defined(__unix__) \
872      || (defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 200112L)
873     {
874         struct timeval tv;
875 
876         if (gettimeofday(&tv, NULL) == 0)
877             return TWO32TO64(tv.tv_sec, tv.tv_usec);
878     }
879 # endif
880     return time(NULL);
881 }
882 #endif /* (defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_SYS_VXWORKS))
883           || defined(__DJGPP__) */
884