xref: /freebsd/crypto/openssl/providers/implementations/rands/seeding/rand_unix.c (revision 59c8e88e72633afbc47a4ace0d2170d00d51f7dc)
1 /*
2  * Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved.
3  *
4  * Licensed under the Apache License 2.0 (the "License").  You may not use
5  * this file except in compliance with the License.  You can obtain a copy
6  * in the file LICENSE in the source distribution or at
7  * https://www.openssl.org/source/license.html
8  */
9 
10 #ifndef _GNU_SOURCE
11 # define _GNU_SOURCE
12 #endif
13 #include "../e_os.h"
14 #include <stdio.h>
15 #include "internal/cryptlib.h"
16 #include <openssl/rand.h>
17 #include <openssl/crypto.h>
18 #include "crypto/rand_pool.h"
19 #include "crypto/rand.h"
20 #include <stdio.h>
21 #include "internal/dso.h"
22 #include "prov/seeding.h"
23 
24 #ifdef __linux
25 # include <sys/syscall.h>
26 # ifdef DEVRANDOM_WAIT
27 #  include <sys/shm.h>
28 #  include <sys/utsname.h>
29 # endif
30 #endif
31 #if (defined(__FreeBSD__) || defined(__NetBSD__)) && !defined(OPENSSL_SYS_UEFI)
32 # include <sys/types.h>
33 # include <sys/sysctl.h>
34 # include <sys/param.h>
35 #endif
36 #if defined(__OpenBSD__)
37 # include <sys/param.h>
38 #endif
39 #if defined(__DragonFly__)
40 # include <sys/param.h>
41 # include <sys/random.h>
42 #endif
43 
44 #if (defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_SYS_VXWORKS)) \
45      || defined(__DJGPP__)
46 # include <sys/types.h>
47 # include <sys/stat.h>
48 # include <fcntl.h>
49 # include <unistd.h>
50 # include <sys/time.h>
51 
52 static uint64_t get_time_stamp(void);
53 static uint64_t get_timer_bits(void);
54 
55 /* Macro to convert two thirty two bit values into a sixty four bit one */
56 # define TWO32TO64(a, b) ((((uint64_t)(a)) << 32) + (b))
57 
58 /*
59  * Check for the existence and support of POSIX timers.  The standard
60  * says that the _POSIX_TIMERS macro will have a positive value if they
61  * are available.
62  *
63  * However, we want an additional constraint: that the timer support does
64  * not require an extra library dependency.  Early versions of glibc
65  * require -lrt to be specified on the link line to access the timers,
66  * so this needs to be checked for.
67  *
68  * It is worse because some libraries define __GLIBC__ but don't
69  * support the version testing macro (e.g. uClibc).  This means
70  * an extra check is needed.
71  *
72  * The final condition is:
73  *      "have posix timers and either not glibc or glibc without -lrt"
74  *
75  * The nested #if sequences are required to avoid using a parameterised
76  * macro that might be undefined.
77  */
78 # undef OSSL_POSIX_TIMER_OKAY
79 /* On some systems, _POSIX_TIMERS is defined but empty.
80  * Subtracting by 0 when comparing avoids an error in this case. */
81 # if defined(_POSIX_TIMERS) && _POSIX_TIMERS -0 > 0
82 #  if defined(__GLIBC__)
83 #   if defined(__GLIBC_PREREQ)
84 #    if __GLIBC_PREREQ(2, 17)
85 #     define OSSL_POSIX_TIMER_OKAY
86 #    endif
87 #   endif
88 #  else
89 #   define OSSL_POSIX_TIMER_OKAY
90 #  endif
91 # endif
92 #endif /* (defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_SYS_VXWORKS))
93           || defined(__DJGPP__) */
94 
95 #if defined(OPENSSL_RAND_SEED_NONE)
96 /* none means none. this simplifies the following logic */
97 # undef OPENSSL_RAND_SEED_OS
98 # undef OPENSSL_RAND_SEED_GETRANDOM
99 # undef OPENSSL_RAND_SEED_LIBRANDOM
100 # undef OPENSSL_RAND_SEED_DEVRANDOM
101 # undef OPENSSL_RAND_SEED_RDTSC
102 # undef OPENSSL_RAND_SEED_RDCPU
103 # undef OPENSSL_RAND_SEED_EGD
104 #endif
105 
106 #if defined(OPENSSL_SYS_UEFI) && !defined(OPENSSL_RAND_SEED_NONE)
107 # error "UEFI only supports seeding NONE"
108 #endif
109 
110 #if !(defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_WIN32) \
111     || defined(OPENSSL_SYS_VMS) || defined(OPENSSL_SYS_VXWORKS) \
112     || defined(OPENSSL_SYS_UEFI))
113 
114 # if defined(OPENSSL_SYS_VOS)
115 
116 #  ifndef OPENSSL_RAND_SEED_OS
117 #   error "Unsupported seeding method configured; must be os"
118 #  endif
119 
120 #  if defined(OPENSSL_SYS_VOS_HPPA) && defined(OPENSSL_SYS_VOS_IA32)
121 #   error "Unsupported HP-PA and IA32 at the same time."
122 #  endif
123 #  if !defined(OPENSSL_SYS_VOS_HPPA) && !defined(OPENSSL_SYS_VOS_IA32)
124 #   error "Must have one of HP-PA or IA32"
125 #  endif
126 
127 /*
128  * The following algorithm repeatedly samples the real-time clock (RTC) to
129  * generate a sequence of unpredictable data.  The algorithm relies upon the
130  * uneven execution speed of the code (due to factors such as cache misses,
131  * interrupts, bus activity, and scheduling) and upon the rather large
132  * relative difference between the speed of the clock and the rate at which
133  * it can be read.  If it is ported to an environment where execution speed
134  * is more constant or where the RTC ticks at a much slower rate, or the
135  * clock can be read with fewer instructions, it is likely that the results
136  * would be far more predictable.  This should only be used for legacy
137  * platforms.
138  *
139  * As a precaution, we assume only 2 bits of entropy per byte.
140  */
141 size_t ossl_pool_acquire_entropy(RAND_POOL *pool)
142 {
143     short int code;
144     int i, k;
145     size_t bytes_needed;
146     struct timespec ts;
147     unsigned char v;
148 #  ifdef OPENSSL_SYS_VOS_HPPA
149     long duration;
150     extern void s$sleep(long *_duration, short int *_code);
151 #  else
152     long long duration;
153     extern void s$sleep2(long long *_duration, short int *_code);
154 #  endif
155 
156     bytes_needed = ossl_rand_pool_bytes_needed(pool, 4 /*entropy_factor*/);
157 
158     for (i = 0; i < bytes_needed; i++) {
159         /*
160          * burn some cpu; hope for interrupts, cache collisions, bus
161          * interference, etc.
162          */
163         for (k = 0; k < 99; k++)
164             ts.tv_nsec = random();
165 
166 #  ifdef OPENSSL_SYS_VOS_HPPA
167         /* sleep for 1/1024 of a second (976 us).  */
168         duration = 1;
169         s$sleep(&duration, &code);
170 #  else
171         /* sleep for 1/65536 of a second (15 us).  */
172         duration = 1;
173         s$sleep2(&duration, &code);
174 #  endif
175 
176         /* Get wall clock time, take 8 bits. */
177         clock_gettime(CLOCK_REALTIME, &ts);
178         v = (unsigned char)(ts.tv_nsec & 0xFF);
179         ossl_rand_pool_add(pool, arg, &v, sizeof(v) , 2);
180     }
181     return ossl_rand_pool_entropy_available(pool);
182 }
183 
184 void ossl_rand_pool_cleanup(void)
185 {
186 }
187 
188 void ossl_rand_pool_keep_random_devices_open(int keep)
189 {
190 }
191 
192 # else
193 
194 #  if defined(OPENSSL_RAND_SEED_EGD) && \
195         (defined(OPENSSL_NO_EGD) || !defined(DEVRANDOM_EGD))
196 #   error "Seeding uses EGD but EGD is turned off or no device given"
197 #  endif
198 
199 #  if defined(OPENSSL_RAND_SEED_DEVRANDOM) && !defined(DEVRANDOM)
200 #   error "Seeding uses urandom but DEVRANDOM is not configured"
201 #  endif
202 
203 #  if defined(OPENSSL_RAND_SEED_OS)
204 #   if !defined(DEVRANDOM)
205 #    error "OS seeding requires DEVRANDOM to be configured"
206 #   endif
207 #   define OPENSSL_RAND_SEED_GETRANDOM
208 #   define OPENSSL_RAND_SEED_DEVRANDOM
209 #  endif
210 
211 #  if defined(OPENSSL_RAND_SEED_LIBRANDOM)
212 #   error "librandom not (yet) supported"
213 #  endif
214 
215 #  if (defined(__FreeBSD__) || defined(__NetBSD__)) && defined(KERN_ARND)
216 /*
217  * sysctl_random(): Use sysctl() to read a random number from the kernel
218  * Returns the number of bytes returned in buf on success, -1 on failure.
219  */
220 static ssize_t sysctl_random(char *buf, size_t buflen)
221 {
222     int mib[2];
223     size_t done = 0;
224     size_t len;
225 
226     /*
227      * Note: sign conversion between size_t and ssize_t is safe even
228      * without a range check, see comment in syscall_random()
229      */
230 
231     /*
232      * On FreeBSD old implementations returned longs, newer versions support
233      * variable sizes up to 256 byte. The code below would not work properly
234      * when the sysctl returns long and we want to request something not a
235      * multiple of longs, which should never be the case.
236      */
237 #if   defined(__FreeBSD__)
238     if (!ossl_assert(buflen % sizeof(long) == 0)) {
239         errno = EINVAL;
240         return -1;
241     }
242 #endif
243 
244     /*
245      * On NetBSD before 4.0 KERN_ARND was an alias for KERN_URND, and only
246      * filled in an int, leaving the rest uninitialized. Since NetBSD 4.0
247      * it returns a variable number of bytes with the current version supporting
248      * up to 256 bytes.
249      * Just return an error on older NetBSD versions.
250      */
251 #if   defined(__NetBSD__) && __NetBSD_Version__ < 400000000
252     errno = ENOSYS;
253     return -1;
254 #endif
255 
256     mib[0] = CTL_KERN;
257     mib[1] = KERN_ARND;
258 
259     do {
260         len = buflen > 256 ? 256 : buflen;
261         if (sysctl(mib, 2, buf, &len, NULL, 0) == -1)
262             return done > 0 ? done : -1;
263         done += len;
264         buf += len;
265         buflen -= len;
266     } while (buflen > 0);
267 
268     return done;
269 }
270 #  endif
271 
272 #  if defined(OPENSSL_RAND_SEED_GETRANDOM)
273 
274 #   if defined(__linux) && !defined(__NR_getrandom)
275 #    if defined(__arm__)
276 #     define __NR_getrandom    (__NR_SYSCALL_BASE+384)
277 #    elif defined(__i386__)
278 #     define __NR_getrandom    355
279 #    elif defined(__x86_64__)
280 #     if defined(__ILP32__)
281 #      define __NR_getrandom   (__X32_SYSCALL_BIT + 318)
282 #     else
283 #      define __NR_getrandom   318
284 #     endif
285 #    elif defined(__xtensa__)
286 #     define __NR_getrandom    338
287 #    elif defined(__s390__) || defined(__s390x__)
288 #     define __NR_getrandom    349
289 #    elif defined(__bfin__)
290 #     define __NR_getrandom    389
291 #    elif defined(__powerpc__)
292 #     define __NR_getrandom    359
293 #    elif defined(__mips__) || defined(__mips64)
294 #     if _MIPS_SIM == _MIPS_SIM_ABI32
295 #      define __NR_getrandom   (__NR_Linux + 353)
296 #     elif _MIPS_SIM == _MIPS_SIM_ABI64
297 #      define __NR_getrandom   (__NR_Linux + 313)
298 #     elif _MIPS_SIM == _MIPS_SIM_NABI32
299 #      define __NR_getrandom   (__NR_Linux + 317)
300 #     endif
301 #    elif defined(__hppa__)
302 #     define __NR_getrandom    (__NR_Linux + 339)
303 #    elif defined(__sparc__)
304 #     define __NR_getrandom    347
305 #    elif defined(__ia64__)
306 #     define __NR_getrandom    1339
307 #    elif defined(__alpha__)
308 #     define __NR_getrandom    511
309 #    elif defined(__sh__)
310 #     if defined(__SH5__)
311 #      define __NR_getrandom   373
312 #     else
313 #      define __NR_getrandom   384
314 #     endif
315 #    elif defined(__avr32__)
316 #     define __NR_getrandom    317
317 #    elif defined(__microblaze__)
318 #     define __NR_getrandom    385
319 #    elif defined(__m68k__)
320 #     define __NR_getrandom    352
321 #    elif defined(__cris__)
322 #     define __NR_getrandom    356
323 #    elif defined(__aarch64__)
324 #     define __NR_getrandom    278
325 #    else /* generic */
326 #     define __NR_getrandom    278
327 #    endif
328 #   endif
329 
330 /*
331  * syscall_random(): Try to get random data using a system call
332  * returns the number of bytes returned in buf, or < 0 on error.
333  */
334 static ssize_t syscall_random(void *buf, size_t buflen)
335 {
336     /*
337      * Note: 'buflen' equals the size of the buffer which is used by the
338      * get_entropy() callback of the RAND_DRBG. It is roughly bounded by
339      *
340      *   2 * RAND_POOL_FACTOR * (RAND_DRBG_STRENGTH / 8) = 2^14
341      *
342      * which is way below the OSSL_SSIZE_MAX limit. Therefore sign conversion
343      * between size_t and ssize_t is safe even without a range check.
344      */
345 
346     /*
347      * Do runtime detection to find getentropy().
348      *
349      * Known OSs that should support this:
350      * - Darwin since 16 (OSX 10.12, IOS 10.0).
351      * - Solaris since 11.3
352      * - OpenBSD since 5.6
353      * - Linux since 3.17 with glibc 2.25
354      * - FreeBSD since 12.0 (1200061)
355      *
356      * Note: Sometimes getentropy() can be provided but not implemented
357      * internally. So we need to check errno for ENOSYS
358      */
359 #  if !defined(__DragonFly__) && !defined(__NetBSD__)
360 #    if defined(__GNUC__) && __GNUC__>=2 && defined(__ELF__) && !defined(__hpux)
361     extern int getentropy(void *buffer, size_t length) __attribute__((weak));
362 
363     if (getentropy != NULL) {
364         if (getentropy(buf, buflen) == 0)
365             return (ssize_t)buflen;
366         if (errno != ENOSYS)
367             return -1;
368     }
369 #    elif defined(OPENSSL_APPLE_CRYPTO_RANDOM)
370 
371     if (CCRandomGenerateBytes(buf, buflen) == kCCSuccess)
372 	    return (ssize_t)buflen;
373 
374     return -1;
375 #    else
376     union {
377         void *p;
378         int (*f)(void *buffer, size_t length);
379     } p_getentropy;
380 
381     /*
382      * We could cache the result of the lookup, but we normally don't
383      * call this function often.
384      */
385     ERR_set_mark();
386     p_getentropy.p = DSO_global_lookup("getentropy");
387     ERR_pop_to_mark();
388     if (p_getentropy.p != NULL)
389         return p_getentropy.f(buf, buflen) == 0 ? (ssize_t)buflen : -1;
390 #    endif
391 #  endif /* !__DragonFly__ */
392 
393     /* Linux supports this since version 3.17 */
394 #  if defined(__linux) && defined(__NR_getrandom)
395     return syscall(__NR_getrandom, buf, buflen, 0);
396 #  elif (defined(__FreeBSD__) || defined(__NetBSD__)) && defined(KERN_ARND)
397     return sysctl_random(buf, buflen);
398 #  elif (defined(__DragonFly__)  && __DragonFly_version >= 500700) \
399      || (defined(__NetBSD__) && __NetBSD_Version >= 1000000000)
400     return getrandom(buf, buflen, 0);
401 #  else
402     errno = ENOSYS;
403     return -1;
404 #  endif
405 }
406 #  endif    /* defined(OPENSSL_RAND_SEED_GETRANDOM) */
407 
408 #  if defined(OPENSSL_RAND_SEED_DEVRANDOM)
409 static const char *random_device_paths[] = { DEVRANDOM };
410 static struct random_device {
411     int fd;
412     dev_t dev;
413     ino_t ino;
414     mode_t mode;
415     dev_t rdev;
416 } random_devices[OSSL_NELEM(random_device_paths)];
417 static int keep_random_devices_open = 1;
418 
419 #   if defined(__linux) && defined(DEVRANDOM_WAIT) \
420        && defined(OPENSSL_RAND_SEED_GETRANDOM)
421 static void *shm_addr;
422 
423 static void cleanup_shm(void)
424 {
425     shmdt(shm_addr);
426 }
427 
428 /*
429  * Ensure that the system randomness source has been adequately seeded.
430  * This is done by having the first start of libcrypto, wait until the device
431  * /dev/random becomes able to supply a byte of entropy.  Subsequent starts
432  * of the library and later reseedings do not need to do this.
433  */
434 static int wait_random_seeded(void)
435 {
436     static int seeded = OPENSSL_RAND_SEED_DEVRANDOM_SHM_ID < 0;
437     static const int kernel_version[] = { DEVRANDOM_SAFE_KERNEL };
438     int kernel[2];
439     int shm_id, fd, r;
440     char c, *p;
441     struct utsname un;
442     fd_set fds;
443 
444     if (!seeded) {
445         /* See if anything has created the global seeded indication */
446         if ((shm_id = shmget(OPENSSL_RAND_SEED_DEVRANDOM_SHM_ID, 1, 0)) == -1) {
447             /*
448              * Check the kernel's version and fail if it is too recent.
449              *
450              * Linux kernels from 4.8 onwards do not guarantee that
451              * /dev/urandom is properly seeded when /dev/random becomes
452              * readable.  However, such kernels support the getentropy(2)
453              * system call and this should always succeed which renders
454              * this alternative but essentially identical source moot.
455              */
456             if (uname(&un) == 0) {
457                 kernel[0] = atoi(un.release);
458                 p = strchr(un.release, '.');
459                 kernel[1] = p == NULL ? 0 : atoi(p + 1);
460                 if (kernel[0] > kernel_version[0]
461                     || (kernel[0] == kernel_version[0]
462                         && kernel[1] >= kernel_version[1])) {
463                     return 0;
464                 }
465             }
466             /* Open /dev/random and wait for it to be readable */
467             if ((fd = open(DEVRANDOM_WAIT, O_RDONLY)) != -1) {
468                 if (DEVRANDM_WAIT_USE_SELECT && fd < FD_SETSIZE) {
469                     FD_ZERO(&fds);
470                     FD_SET(fd, &fds);
471                     while ((r = select(fd + 1, &fds, NULL, NULL, NULL)) < 0
472                            && errno == EINTR);
473                 } else {
474                     while ((r = read(fd, &c, 1)) < 0 && errno == EINTR);
475                 }
476                 close(fd);
477                 if (r == 1) {
478                     seeded = 1;
479                     /* Create the shared memory indicator */
480                     shm_id = shmget(OPENSSL_RAND_SEED_DEVRANDOM_SHM_ID, 1,
481                                     IPC_CREAT | S_IRUSR | S_IRGRP | S_IROTH);
482                 }
483             }
484         }
485         if (shm_id != -1) {
486             seeded = 1;
487             /*
488              * Map the shared memory to prevent its premature destruction.
489              * If this call fails, it isn't a big problem.
490              */
491             shm_addr = shmat(shm_id, NULL, SHM_RDONLY);
492             if (shm_addr != (void *)-1)
493                 OPENSSL_atexit(&cleanup_shm);
494         }
495     }
496     return seeded;
497 }
498 #   else /* defined __linux && DEVRANDOM_WAIT && OPENSSL_RAND_SEED_GETRANDOM */
499 static int wait_random_seeded(void)
500 {
501     return 1;
502 }
503 #   endif
504 
505 /*
506  * Verify that the file descriptor associated with the random source is
507  * still valid. The rationale for doing this is the fact that it is not
508  * uncommon for daemons to close all open file handles when daemonizing.
509  * So the handle might have been closed or even reused for opening
510  * another file.
511  */
512 static int check_random_device(struct random_device * rd)
513 {
514     struct stat st;
515 
516     return rd->fd != -1
517            && fstat(rd->fd, &st) != -1
518            && rd->dev == st.st_dev
519            && rd->ino == st.st_ino
520            && ((rd->mode ^ st.st_mode) & ~(S_IRWXU | S_IRWXG | S_IRWXO)) == 0
521            && rd->rdev == st.st_rdev;
522 }
523 
524 /*
525  * Open a random device if required and return its file descriptor or -1 on error
526  */
527 static int get_random_device(size_t n)
528 {
529     struct stat st;
530     struct random_device * rd = &random_devices[n];
531 
532     /* reuse existing file descriptor if it is (still) valid */
533     if (check_random_device(rd))
534         return rd->fd;
535 
536     /* open the random device ... */
537     if ((rd->fd = open(random_device_paths[n], O_RDONLY)) == -1)
538         return rd->fd;
539 
540     /* ... and cache its relevant stat(2) data */
541     if (fstat(rd->fd, &st) != -1) {
542         rd->dev = st.st_dev;
543         rd->ino = st.st_ino;
544         rd->mode = st.st_mode;
545         rd->rdev = st.st_rdev;
546     } else {
547         close(rd->fd);
548         rd->fd = -1;
549     }
550 
551     return rd->fd;
552 }
553 
554 /*
555  * Close a random device making sure it is a random device
556  */
557 static void close_random_device(size_t n)
558 {
559     struct random_device * rd = &random_devices[n];
560 
561     if (check_random_device(rd))
562         close(rd->fd);
563     rd->fd = -1;
564 }
565 
566 int ossl_rand_pool_init(void)
567 {
568     size_t i;
569 
570     for (i = 0; i < OSSL_NELEM(random_devices); i++)
571         random_devices[i].fd = -1;
572 
573     return 1;
574 }
575 
576 void ossl_rand_pool_cleanup(void)
577 {
578     size_t i;
579 
580     for (i = 0; i < OSSL_NELEM(random_devices); i++)
581         close_random_device(i);
582 }
583 
584 void ossl_rand_pool_keep_random_devices_open(int keep)
585 {
586     if (!keep)
587         ossl_rand_pool_cleanup();
588 
589     keep_random_devices_open = keep;
590 }
591 
592 #  else     /* !defined(OPENSSL_RAND_SEED_DEVRANDOM) */
593 
594 int ossl_rand_pool_init(void)
595 {
596     return 1;
597 }
598 
599 void ossl_rand_pool_cleanup(void)
600 {
601 }
602 
603 void ossl_rand_pool_keep_random_devices_open(int keep)
604 {
605 }
606 
607 #  endif    /* defined(OPENSSL_RAND_SEED_DEVRANDOM) */
608 
609 /*
610  * Try the various seeding methods in turn, exit when successful.
611  *
612  * If more than one entropy source is available, is it
613  * preferable to stop as soon as enough entropy has been collected
614  * (as favored by @rsalz) or should one rather be defensive and add
615  * more entropy than requested and/or from different sources?
616  *
617  * Currently, the user can select multiple entropy sources in the
618  * configure step, yet in practice only the first available source
619  * will be used. A more flexible solution has been requested, but
620  * currently it is not clear how this can be achieved without
621  * overengineering the problem. There are many parameters which
622  * could be taken into account when selecting the order and amount
623  * of input from the different entropy sources (trust, quality,
624  * possibility of blocking).
625  */
626 size_t ossl_pool_acquire_entropy(RAND_POOL *pool)
627 {
628 #  if defined(OPENSSL_RAND_SEED_NONE)
629     return ossl_rand_pool_entropy_available(pool);
630 #  else
631     size_t entropy_available = 0;
632 
633     (void)entropy_available;    /* avoid compiler warning */
634 
635 #   if defined(OPENSSL_RAND_SEED_GETRANDOM)
636     {
637         size_t bytes_needed;
638         unsigned char *buffer;
639         ssize_t bytes;
640         /* Maximum allowed number of consecutive unsuccessful attempts */
641         int attempts = 3;
642 
643         bytes_needed = ossl_rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
644         while (bytes_needed != 0 && attempts-- > 0) {
645             buffer = ossl_rand_pool_add_begin(pool, bytes_needed);
646             bytes = syscall_random(buffer, bytes_needed);
647             if (bytes > 0) {
648                 ossl_rand_pool_add_end(pool, bytes, 8 * bytes);
649                 bytes_needed -= bytes;
650                 attempts = 3; /* reset counter after successful attempt */
651             } else if (bytes < 0 && errno != EINTR) {
652                 break;
653             }
654         }
655     }
656     entropy_available = ossl_rand_pool_entropy_available(pool);
657     if (entropy_available > 0)
658         return entropy_available;
659 #   endif
660 
661 #   if defined(OPENSSL_RAND_SEED_LIBRANDOM)
662     {
663         /* Not yet implemented. */
664     }
665 #   endif
666 
667 #   if defined(OPENSSL_RAND_SEED_DEVRANDOM)
668     if (wait_random_seeded()) {
669         size_t bytes_needed;
670         unsigned char *buffer;
671         size_t i;
672 
673         bytes_needed = ossl_rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
674         for (i = 0; bytes_needed > 0 && i < OSSL_NELEM(random_device_paths);
675              i++) {
676             ssize_t bytes = 0;
677             /* Maximum number of consecutive unsuccessful attempts */
678             int attempts = 3;
679             const int fd = get_random_device(i);
680 
681             if (fd == -1)
682                 continue;
683 
684             while (bytes_needed != 0 && attempts-- > 0) {
685                 buffer = ossl_rand_pool_add_begin(pool, bytes_needed);
686                 bytes = read(fd, buffer, bytes_needed);
687 
688                 if (bytes > 0) {
689                     ossl_rand_pool_add_end(pool, bytes, 8 * bytes);
690                     bytes_needed -= bytes;
691                     attempts = 3; /* reset counter on successful attempt */
692                 } else if (bytes < 0 && errno != EINTR) {
693                     break;
694                 }
695             }
696             if (bytes < 0 || !keep_random_devices_open)
697                 close_random_device(i);
698 
699             bytes_needed = ossl_rand_pool_bytes_needed(pool, 1);
700         }
701         entropy_available = ossl_rand_pool_entropy_available(pool);
702         if (entropy_available > 0)
703             return entropy_available;
704     }
705 #   endif
706 
707 #   if defined(OPENSSL_RAND_SEED_RDTSC)
708     entropy_available = ossl_prov_acquire_entropy_from_tsc(pool);
709     if (entropy_available > 0)
710         return entropy_available;
711 #   endif
712 
713 #   if defined(OPENSSL_RAND_SEED_RDCPU)
714     entropy_available = ossl_prov_acquire_entropy_from_cpu(pool);
715     if (entropy_available > 0)
716         return entropy_available;
717 #   endif
718 
719 #   if defined(OPENSSL_RAND_SEED_EGD)
720     {
721         static const char *paths[] = { DEVRANDOM_EGD, NULL };
722         size_t bytes_needed;
723         unsigned char *buffer;
724         int i;
725 
726         bytes_needed = ossl_rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
727         for (i = 0; bytes_needed > 0 && paths[i] != NULL; i++) {
728             size_t bytes = 0;
729             int num;
730 
731             buffer = ossl_rand_pool_add_begin(pool, bytes_needed);
732             num = RAND_query_egd_bytes(paths[i],
733                                        buffer, (int)bytes_needed);
734             if (num == (int)bytes_needed)
735                 bytes = bytes_needed;
736 
737             ossl_rand_pool_add_end(pool, bytes, 8 * bytes);
738             bytes_needed = ossl_rand_pool_bytes_needed(pool, 1);
739         }
740         entropy_available = ossl_rand_pool_entropy_available(pool);
741         if (entropy_available > 0)
742             return entropy_available;
743     }
744 #   endif
745 
746     return ossl_rand_pool_entropy_available(pool);
747 #  endif
748 }
749 # endif
750 #endif
751 
752 #if (defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_SYS_VXWORKS)) \
753      || defined(__DJGPP__)
754 int ossl_pool_add_nonce_data(RAND_POOL *pool)
755 {
756     struct {
757         pid_t pid;
758         CRYPTO_THREAD_ID tid;
759         uint64_t time;
760     } data;
761 
762     /* Erase the entire structure including any padding */
763     memset(&data, 0, sizeof(data));
764 
765     /*
766      * Add process id, thread id, and a high resolution timestamp to
767      * ensure that the nonce is unique with high probability for
768      * different process instances.
769      */
770     data.pid = getpid();
771     data.tid = CRYPTO_THREAD_get_current_id();
772     data.time = get_time_stamp();
773 
774     return ossl_rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0);
775 }
776 
777 int ossl_rand_pool_add_additional_data(RAND_POOL *pool)
778 {
779     struct {
780         int fork_id;
781         CRYPTO_THREAD_ID tid;
782         uint64_t time;
783     } data;
784 
785     /* Erase the entire structure including any padding */
786     memset(&data, 0, sizeof(data));
787 
788     /*
789      * Add some noise from the thread id and a high resolution timer.
790      * The fork_id adds some extra fork-safety.
791      * The thread id adds a little randomness if the drbg is accessed
792      * concurrently (which is the case for the <master> drbg).
793      */
794     data.fork_id = openssl_get_fork_id();
795     data.tid = CRYPTO_THREAD_get_current_id();
796     data.time = get_timer_bits();
797 
798     return ossl_rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0);
799 }
800 
801 
802 /*
803  * Get the current time with the highest possible resolution
804  *
805  * The time stamp is added to the nonce, so it is optimized for not repeating.
806  * The current time is ideal for this purpose, provided the computer's clock
807  * is synchronized.
808  */
809 static uint64_t get_time_stamp(void)
810 {
811 # if defined(OSSL_POSIX_TIMER_OKAY)
812     {
813         struct timespec ts;
814 
815         if (clock_gettime(CLOCK_REALTIME, &ts) == 0)
816             return TWO32TO64(ts.tv_sec, ts.tv_nsec);
817     }
818 # endif
819 # if defined(__unix__) \
820      || (defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 200112L)
821     {
822         struct timeval tv;
823 
824         if (gettimeofday(&tv, NULL) == 0)
825             return TWO32TO64(tv.tv_sec, tv.tv_usec);
826     }
827 # endif
828     return time(NULL);
829 }
830 
831 /*
832  * Get an arbitrary timer value of the highest possible resolution
833  *
834  * The timer value is added as random noise to the additional data,
835  * which is not considered a trusted entropy sourec, so any result
836  * is acceptable.
837  */
838 static uint64_t get_timer_bits(void)
839 {
840     uint64_t res = OPENSSL_rdtsc();
841 
842     if (res != 0)
843         return res;
844 
845 # if defined(__sun) || defined(__hpux)
846     return gethrtime();
847 # elif defined(_AIX)
848     {
849         timebasestruct_t t;
850 
851         read_wall_time(&t, TIMEBASE_SZ);
852         return TWO32TO64(t.tb_high, t.tb_low);
853     }
854 # elif defined(OSSL_POSIX_TIMER_OKAY)
855     {
856         struct timespec ts;
857 
858 #  ifdef CLOCK_BOOTTIME
859 #   define CLOCK_TYPE CLOCK_BOOTTIME
860 #  elif defined(_POSIX_MONOTONIC_CLOCK)
861 #   define CLOCK_TYPE CLOCK_MONOTONIC
862 #  else
863 #   define CLOCK_TYPE CLOCK_REALTIME
864 #  endif
865 
866         if (clock_gettime(CLOCK_TYPE, &ts) == 0)
867             return TWO32TO64(ts.tv_sec, ts.tv_nsec);
868     }
869 # endif
870 # if defined(__unix__) \
871      || (defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 200112L)
872     {
873         struct timeval tv;
874 
875         if (gettimeofday(&tv, NULL) == 0)
876             return TWO32TO64(tv.tv_sec, tv.tv_usec);
877     }
878 # endif
879     return time(NULL);
880 }
881 #endif /* (defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_SYS_VXWORKS))
882           || defined(__DJGPP__) */
883