xref: /freebsd/crypto/openssl/providers/implementations/kdfs/scrypt.c (revision 9f23cbd6cae82fd77edfad7173432fa8dccd0a95)
1 /*
2  * Copyright 2017-2021 The OpenSSL Project Authors. All Rights Reserved.
3  *
4  * Licensed under the Apache License 2.0 (the "License").  You may not use
5  * this file except in compliance with the License.  You can obtain a copy
6  * in the file LICENSE in the source distribution or at
7  * https://www.openssl.org/source/license.html
8  */
9 
10 #include <stdlib.h>
11 #include <stdarg.h>
12 #include <string.h>
13 #include <openssl/evp.h>
14 #include <openssl/kdf.h>
15 #include <openssl/err.h>
16 #include <openssl/core_names.h>
17 #include <openssl/proverr.h>
18 #include "crypto/evp.h"
19 #include "internal/numbers.h"
20 #include "prov/implementations.h"
21 #include "prov/provider_ctx.h"
22 #include "prov/providercommon.h"
23 #include "prov/implementations.h"
24 
25 #ifndef OPENSSL_NO_SCRYPT
26 
27 static OSSL_FUNC_kdf_newctx_fn kdf_scrypt_new;
28 static OSSL_FUNC_kdf_freectx_fn kdf_scrypt_free;
29 static OSSL_FUNC_kdf_reset_fn kdf_scrypt_reset;
30 static OSSL_FUNC_kdf_derive_fn kdf_scrypt_derive;
31 static OSSL_FUNC_kdf_settable_ctx_params_fn kdf_scrypt_settable_ctx_params;
32 static OSSL_FUNC_kdf_set_ctx_params_fn kdf_scrypt_set_ctx_params;
33 static OSSL_FUNC_kdf_gettable_ctx_params_fn kdf_scrypt_gettable_ctx_params;
34 static OSSL_FUNC_kdf_get_ctx_params_fn kdf_scrypt_get_ctx_params;
35 
36 static int scrypt_alg(const char *pass, size_t passlen,
37                       const unsigned char *salt, size_t saltlen,
38                       uint64_t N, uint64_t r, uint64_t p, uint64_t maxmem,
39                       unsigned char *key, size_t keylen, EVP_MD *sha256,
40                       OSSL_LIB_CTX *libctx, const char *propq);
41 
42 typedef struct {
43     OSSL_LIB_CTX *libctx;
44     char *propq;
45     unsigned char *pass;
46     size_t pass_len;
47     unsigned char *salt;
48     size_t salt_len;
49     uint64_t N;
50     uint64_t r, p;
51     uint64_t maxmem_bytes;
52     EVP_MD *sha256;
53 } KDF_SCRYPT;
54 
55 static void kdf_scrypt_init(KDF_SCRYPT *ctx);
56 
57 static void *kdf_scrypt_new(void *provctx)
58 {
59     KDF_SCRYPT *ctx;
60 
61     if (!ossl_prov_is_running())
62         return NULL;
63 
64     ctx = OPENSSL_zalloc(sizeof(*ctx));
65     if (ctx == NULL) {
66         ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE);
67         return NULL;
68     }
69     ctx->libctx = PROV_LIBCTX_OF(provctx);
70     kdf_scrypt_init(ctx);
71     return ctx;
72 }
73 
74 static void kdf_scrypt_free(void *vctx)
75 {
76     KDF_SCRYPT *ctx = (KDF_SCRYPT *)vctx;
77 
78     if (ctx != NULL) {
79         OPENSSL_free(ctx->propq);
80         EVP_MD_free(ctx->sha256);
81         kdf_scrypt_reset(ctx);
82         OPENSSL_free(ctx);
83     }
84 }
85 
86 static void kdf_scrypt_reset(void *vctx)
87 {
88     KDF_SCRYPT *ctx = (KDF_SCRYPT *)vctx;
89 
90     OPENSSL_free(ctx->salt);
91     OPENSSL_clear_free(ctx->pass, ctx->pass_len);
92     kdf_scrypt_init(ctx);
93 }
94 
95 static void kdf_scrypt_init(KDF_SCRYPT *ctx)
96 {
97     /* Default values are the most conservative recommendation given in the
98      * original paper of C. Percival. Derivation uses roughly 1 GiB of memory
99      * for this parameter choice (approx. 128 * r * N * p bytes).
100      */
101     ctx->N = 1 << 20;
102     ctx->r = 8;
103     ctx->p = 1;
104     ctx->maxmem_bytes = 1025 * 1024 * 1024;
105 }
106 
107 static int scrypt_set_membuf(unsigned char **buffer, size_t *buflen,
108                              const OSSL_PARAM *p)
109 {
110     OPENSSL_clear_free(*buffer, *buflen);
111     *buffer = NULL;
112     *buflen = 0;
113 
114     if (p->data_size == 0) {
115         if ((*buffer = OPENSSL_malloc(1)) == NULL) {
116             ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE);
117             return 0;
118         }
119     } else if (p->data != NULL) {
120         if (!OSSL_PARAM_get_octet_string(p, (void **)buffer, 0, buflen))
121             return 0;
122     }
123     return 1;
124 }
125 
126 static int set_digest(KDF_SCRYPT *ctx)
127 {
128     EVP_MD_free(ctx->sha256);
129     ctx->sha256 = EVP_MD_fetch(ctx->libctx, "sha256", ctx->propq);
130     if (ctx->sha256 == NULL) {
131         OPENSSL_free(ctx);
132         ERR_raise(ERR_LIB_PROV, PROV_R_UNABLE_TO_LOAD_SHA256);
133         return 0;
134     }
135     return 1;
136 }
137 
138 static int set_property_query(KDF_SCRYPT *ctx, const char *propq)
139 {
140     OPENSSL_free(ctx->propq);
141     ctx->propq = NULL;
142     if (propq != NULL) {
143         ctx->propq = OPENSSL_strdup(propq);
144         if (ctx->propq == NULL) {
145             ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE);
146             return 0;
147         }
148     }
149     return 1;
150 }
151 
152 static int kdf_scrypt_derive(void *vctx, unsigned char *key, size_t keylen,
153                              const OSSL_PARAM params[])
154 {
155     KDF_SCRYPT *ctx = (KDF_SCRYPT *)vctx;
156 
157     if (!ossl_prov_is_running() || !kdf_scrypt_set_ctx_params(ctx, params))
158         return 0;
159 
160     if (ctx->pass == NULL) {
161         ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_PASS);
162         return 0;
163     }
164 
165     if (ctx->salt == NULL) {
166         ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_SALT);
167         return 0;
168     }
169 
170     if (ctx->sha256 == NULL && !set_digest(ctx))
171         return 0;
172 
173     return scrypt_alg((char *)ctx->pass, ctx->pass_len, ctx->salt,
174                       ctx->salt_len, ctx->N, ctx->r, ctx->p,
175                       ctx->maxmem_bytes, key, keylen, ctx->sha256,
176                       ctx->libctx, ctx->propq);
177 }
178 
179 static int is_power_of_two(uint64_t value)
180 {
181     return (value != 0) && ((value & (value - 1)) == 0);
182 }
183 
184 static int kdf_scrypt_set_ctx_params(void *vctx, const OSSL_PARAM params[])
185 {
186     const OSSL_PARAM *p;
187     KDF_SCRYPT *ctx = vctx;
188     uint64_t u64_value;
189 
190     if (params == NULL)
191         return 1;
192 
193     if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_PASSWORD)) != NULL)
194         if (!scrypt_set_membuf(&ctx->pass, &ctx->pass_len, p))
195             return 0;
196 
197     if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SALT)) != NULL)
198         if (!scrypt_set_membuf(&ctx->salt, &ctx->salt_len, p))
199             return 0;
200 
201     if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SCRYPT_N))
202         != NULL) {
203         if (!OSSL_PARAM_get_uint64(p, &u64_value)
204             || u64_value <= 1
205             || !is_power_of_two(u64_value))
206             return 0;
207         ctx->N = u64_value;
208     }
209 
210     if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SCRYPT_R))
211         != NULL) {
212         if (!OSSL_PARAM_get_uint64(p, &u64_value) || u64_value < 1)
213             return 0;
214         ctx->r = u64_value;
215     }
216 
217     if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SCRYPT_P))
218         != NULL) {
219         if (!OSSL_PARAM_get_uint64(p, &u64_value) || u64_value < 1)
220             return 0;
221         ctx->p = u64_value;
222     }
223 
224     if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SCRYPT_MAXMEM))
225         != NULL) {
226         if (!OSSL_PARAM_get_uint64(p, &u64_value) || u64_value < 1)
227             return 0;
228         ctx->maxmem_bytes = u64_value;
229     }
230 
231     p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_PROPERTIES);
232     if (p != NULL) {
233         if (p->data_type != OSSL_PARAM_UTF8_STRING
234             || !set_property_query(ctx, p->data)
235             || !set_digest(ctx))
236             return 0;
237     }
238     return 1;
239 }
240 
241 static const OSSL_PARAM *kdf_scrypt_settable_ctx_params(ossl_unused void *ctx,
242                                                         ossl_unused void *p_ctx)
243 {
244     static const OSSL_PARAM known_settable_ctx_params[] = {
245         OSSL_PARAM_octet_string(OSSL_KDF_PARAM_PASSWORD, NULL, 0),
246         OSSL_PARAM_octet_string(OSSL_KDF_PARAM_SALT, NULL, 0),
247         OSSL_PARAM_uint64(OSSL_KDF_PARAM_SCRYPT_N, NULL),
248         OSSL_PARAM_uint32(OSSL_KDF_PARAM_SCRYPT_R, NULL),
249         OSSL_PARAM_uint32(OSSL_KDF_PARAM_SCRYPT_P, NULL),
250         OSSL_PARAM_uint64(OSSL_KDF_PARAM_SCRYPT_MAXMEM, NULL),
251         OSSL_PARAM_utf8_string(OSSL_KDF_PARAM_PROPERTIES, NULL, 0),
252         OSSL_PARAM_END
253     };
254     return known_settable_ctx_params;
255 }
256 
257 static int kdf_scrypt_get_ctx_params(void *vctx, OSSL_PARAM params[])
258 {
259     OSSL_PARAM *p;
260 
261     if ((p = OSSL_PARAM_locate(params, OSSL_KDF_PARAM_SIZE)) != NULL)
262         return OSSL_PARAM_set_size_t(p, SIZE_MAX);
263     return -2;
264 }
265 
266 static const OSSL_PARAM *kdf_scrypt_gettable_ctx_params(ossl_unused void *ctx,
267                                                         ossl_unused void *p_ctx)
268 {
269     static const OSSL_PARAM known_gettable_ctx_params[] = {
270         OSSL_PARAM_size_t(OSSL_KDF_PARAM_SIZE, NULL),
271         OSSL_PARAM_END
272     };
273     return known_gettable_ctx_params;
274 }
275 
276 const OSSL_DISPATCH ossl_kdf_scrypt_functions[] = {
277     { OSSL_FUNC_KDF_NEWCTX, (void(*)(void))kdf_scrypt_new },
278     { OSSL_FUNC_KDF_FREECTX, (void(*)(void))kdf_scrypt_free },
279     { OSSL_FUNC_KDF_RESET, (void(*)(void))kdf_scrypt_reset },
280     { OSSL_FUNC_KDF_DERIVE, (void(*)(void))kdf_scrypt_derive },
281     { OSSL_FUNC_KDF_SETTABLE_CTX_PARAMS,
282       (void(*)(void))kdf_scrypt_settable_ctx_params },
283     { OSSL_FUNC_KDF_SET_CTX_PARAMS, (void(*)(void))kdf_scrypt_set_ctx_params },
284     { OSSL_FUNC_KDF_GETTABLE_CTX_PARAMS,
285       (void(*)(void))kdf_scrypt_gettable_ctx_params },
286     { OSSL_FUNC_KDF_GET_CTX_PARAMS, (void(*)(void))kdf_scrypt_get_ctx_params },
287     { 0, NULL }
288 };
289 
290 #define R(a,b) (((a) << (b)) | ((a) >> (32 - (b))))
291 static void salsa208_word_specification(uint32_t inout[16])
292 {
293     int i;
294     uint32_t x[16];
295 
296     memcpy(x, inout, sizeof(x));
297     for (i = 8; i > 0; i -= 2) {
298         x[4] ^= R(x[0] + x[12], 7);
299         x[8] ^= R(x[4] + x[0], 9);
300         x[12] ^= R(x[8] + x[4], 13);
301         x[0] ^= R(x[12] + x[8], 18);
302         x[9] ^= R(x[5] + x[1], 7);
303         x[13] ^= R(x[9] + x[5], 9);
304         x[1] ^= R(x[13] + x[9], 13);
305         x[5] ^= R(x[1] + x[13], 18);
306         x[14] ^= R(x[10] + x[6], 7);
307         x[2] ^= R(x[14] + x[10], 9);
308         x[6] ^= R(x[2] + x[14], 13);
309         x[10] ^= R(x[6] + x[2], 18);
310         x[3] ^= R(x[15] + x[11], 7);
311         x[7] ^= R(x[3] + x[15], 9);
312         x[11] ^= R(x[7] + x[3], 13);
313         x[15] ^= R(x[11] + x[7], 18);
314         x[1] ^= R(x[0] + x[3], 7);
315         x[2] ^= R(x[1] + x[0], 9);
316         x[3] ^= R(x[2] + x[1], 13);
317         x[0] ^= R(x[3] + x[2], 18);
318         x[6] ^= R(x[5] + x[4], 7);
319         x[7] ^= R(x[6] + x[5], 9);
320         x[4] ^= R(x[7] + x[6], 13);
321         x[5] ^= R(x[4] + x[7], 18);
322         x[11] ^= R(x[10] + x[9], 7);
323         x[8] ^= R(x[11] + x[10], 9);
324         x[9] ^= R(x[8] + x[11], 13);
325         x[10] ^= R(x[9] + x[8], 18);
326         x[12] ^= R(x[15] + x[14], 7);
327         x[13] ^= R(x[12] + x[15], 9);
328         x[14] ^= R(x[13] + x[12], 13);
329         x[15] ^= R(x[14] + x[13], 18);
330     }
331     for (i = 0; i < 16; ++i)
332         inout[i] += x[i];
333     OPENSSL_cleanse(x, sizeof(x));
334 }
335 
336 static void scryptBlockMix(uint32_t *B_, uint32_t *B, uint64_t r)
337 {
338     uint64_t i, j;
339     uint32_t X[16], *pB;
340 
341     memcpy(X, B + (r * 2 - 1) * 16, sizeof(X));
342     pB = B;
343     for (i = 0; i < r * 2; i++) {
344         for (j = 0; j < 16; j++)
345             X[j] ^= *pB++;
346         salsa208_word_specification(X);
347         memcpy(B_ + (i / 2 + (i & 1) * r) * 16, X, sizeof(X));
348     }
349     OPENSSL_cleanse(X, sizeof(X));
350 }
351 
352 static void scryptROMix(unsigned char *B, uint64_t r, uint64_t N,
353                         uint32_t *X, uint32_t *T, uint32_t *V)
354 {
355     unsigned char *pB;
356     uint32_t *pV;
357     uint64_t i, k;
358 
359     /* Convert from little endian input */
360     for (pV = V, i = 0, pB = B; i < 32 * r; i++, pV++) {
361         *pV = *pB++;
362         *pV |= *pB++ << 8;
363         *pV |= *pB++ << 16;
364         *pV |= (uint32_t)*pB++ << 24;
365     }
366 
367     for (i = 1; i < N; i++, pV += 32 * r)
368         scryptBlockMix(pV, pV - 32 * r, r);
369 
370     scryptBlockMix(X, V + (N - 1) * 32 * r, r);
371 
372     for (i = 0; i < N; i++) {
373         uint32_t j;
374         j = X[16 * (2 * r - 1)] % N;
375         pV = V + 32 * r * j;
376         for (k = 0; k < 32 * r; k++)
377             T[k] = X[k] ^ *pV++;
378         scryptBlockMix(X, T, r);
379     }
380     /* Convert output to little endian */
381     for (i = 0, pB = B; i < 32 * r; i++) {
382         uint32_t xtmp = X[i];
383         *pB++ = xtmp & 0xff;
384         *pB++ = (xtmp >> 8) & 0xff;
385         *pB++ = (xtmp >> 16) & 0xff;
386         *pB++ = (xtmp >> 24) & 0xff;
387     }
388 }
389 
390 #ifndef SIZE_MAX
391 # define SIZE_MAX    ((size_t)-1)
392 #endif
393 
394 /*
395  * Maximum power of two that will fit in uint64_t: this should work on
396  * most (all?) platforms.
397  */
398 
399 #define LOG2_UINT64_MAX         (sizeof(uint64_t) * 8 - 1)
400 
401 /*
402  * Maximum value of p * r:
403  * p <= ((2^32-1) * hLen) / MFLen =>
404  * p <= ((2^32-1) * 32) / (128 * r) =>
405  * p * r <= (2^30-1)
406  */
407 
408 #define SCRYPT_PR_MAX   ((1 << 30) - 1)
409 
410 static int scrypt_alg(const char *pass, size_t passlen,
411                       const unsigned char *salt, size_t saltlen,
412                       uint64_t N, uint64_t r, uint64_t p, uint64_t maxmem,
413                       unsigned char *key, size_t keylen, EVP_MD *sha256,
414                       OSSL_LIB_CTX *libctx, const char *propq)
415 {
416     int rv = 0;
417     unsigned char *B;
418     uint32_t *X, *V, *T;
419     uint64_t i, Blen, Vlen;
420 
421     /* Sanity check parameters */
422     /* initial check, r,p must be non zero, N >= 2 and a power of 2 */
423     if (r == 0 || p == 0 || N < 2 || (N & (N - 1)))
424         return 0;
425     /* Check p * r < SCRYPT_PR_MAX avoiding overflow */
426     if (p > SCRYPT_PR_MAX / r) {
427         ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
428         return 0;
429     }
430 
431     /*
432      * Need to check N: if 2^(128 * r / 8) overflows limit this is
433      * automatically satisfied since N <= UINT64_MAX.
434      */
435 
436     if (16 * r <= LOG2_UINT64_MAX) {
437         if (N >= (((uint64_t)1) << (16 * r))) {
438             ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
439             return 0;
440         }
441     }
442 
443     /* Memory checks: check total allocated buffer size fits in uint64_t */
444 
445     /*
446      * B size in section 5 step 1.S
447      * Note: we know p * 128 * r < UINT64_MAX because we already checked
448      * p * r < SCRYPT_PR_MAX
449      */
450     Blen = p * 128 * r;
451     /*
452      * Yet we pass it as integer to PKCS5_PBKDF2_HMAC... [This would
453      * have to be revised when/if PKCS5_PBKDF2_HMAC accepts size_t.]
454      */
455     if (Blen > INT_MAX) {
456         ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
457         return 0;
458     }
459 
460     /*
461      * Check 32 * r * (N + 2) * sizeof(uint32_t) fits in uint64_t
462      * This is combined size V, X and T (section 4)
463      */
464     i = UINT64_MAX / (32 * sizeof(uint32_t));
465     if (N + 2 > i / r) {
466         ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
467         return 0;
468     }
469     Vlen = 32 * r * (N + 2) * sizeof(uint32_t);
470 
471     /* check total allocated size fits in uint64_t */
472     if (Blen > UINT64_MAX - Vlen) {
473         ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
474         return 0;
475     }
476 
477     /* Check that the maximum memory doesn't exceed a size_t limits */
478     if (maxmem > SIZE_MAX)
479         maxmem = SIZE_MAX;
480 
481     if (Blen + Vlen > maxmem) {
482         ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
483         return 0;
484     }
485 
486     /* If no key return to indicate parameters are OK */
487     if (key == NULL)
488         return 1;
489 
490     B = OPENSSL_malloc((size_t)(Blen + Vlen));
491     if (B == NULL) {
492         ERR_raise(ERR_LIB_EVP, ERR_R_MALLOC_FAILURE);
493         return 0;
494     }
495     X = (uint32_t *)(B + Blen);
496     T = X + 32 * r;
497     V = T + 32 * r;
498     if (ossl_pkcs5_pbkdf2_hmac_ex(pass, passlen, salt, saltlen, 1, sha256,
499                                   (int)Blen, B, libctx, propq) == 0)
500         goto err;
501 
502     for (i = 0; i < p; i++)
503         scryptROMix(B + 128 * r * i, r, N, X, T, V);
504 
505     if (ossl_pkcs5_pbkdf2_hmac_ex(pass, passlen, B, (int)Blen, 1, sha256,
506                                   keylen, key, libctx, propq) == 0)
507         goto err;
508     rv = 1;
509  err:
510     if (rv == 0)
511         ERR_raise(ERR_LIB_EVP, EVP_R_PBKDF2_ERROR);
512 
513     OPENSSL_clear_free(B, (size_t)(Blen + Vlen));
514     return rv;
515 }
516 
517 #endif
518