xref: /freebsd/crypto/openssl/doc/man7/EVP_KDF-SCRYPT.pod (revision b077aed33b7b6aefca7b17ddb250cf521f938613)
1*b077aed3SPierre Pronchery=pod
2*b077aed3SPierre Pronchery
3*b077aed3SPierre Pronchery=head1 NAME
4*b077aed3SPierre Pronchery
5*b077aed3SPierre ProncheryEVP_KDF-SCRYPT - The scrypt EVP_KDF implementation
6*b077aed3SPierre Pronchery
7*b077aed3SPierre Pronchery=head1 DESCRIPTION
8*b077aed3SPierre Pronchery
9*b077aed3SPierre ProncherySupport for computing the B<scrypt> password-based KDF through the B<EVP_KDF>
10*b077aed3SPierre ProncheryAPI.
11*b077aed3SPierre Pronchery
12*b077aed3SPierre ProncheryThe EVP_KDF-SCRYPT algorithm implements the scrypt password-based key
13*b077aed3SPierre Proncheryderivation function, as described in RFC 7914.  It is memory-hard in the sense
14*b077aed3SPierre Proncherythat it deliberately requires a significant amount of RAM for efficient
15*b077aed3SPierre Proncherycomputation. The intention of this is to render brute forcing of passwords on
16*b077aed3SPierre Proncherysystems that lack large amounts of main memory (such as GPUs or ASICs)
17*b077aed3SPierre Proncherycomputationally infeasible.
18*b077aed3SPierre Pronchery
19*b077aed3SPierre Proncheryscrypt provides three work factors that can be customized: N, r and p. N, which
20*b077aed3SPierre Proncheryhas to be a positive power of two, is the general work factor and scales CPU
21*b077aed3SPierre Proncherytime in an approximately linear fashion. r is the block size of the internally
22*b077aed3SPierre Proncheryused hash function and p is the parallelization factor. Both r and p need to be
23*b077aed3SPierre Proncherygreater than zero. The amount of RAM that scrypt requires for its computation
24*b077aed3SPierre Proncheryis roughly (128 * N * r * p) bytes.
25*b077aed3SPierre Pronchery
26*b077aed3SPierre ProncheryIn the original paper of Colin Percival ("Stronger Key Derivation via
27*b077aed3SPierre ProncherySequential Memory-Hard Functions", 2009), the suggested values that give a
28*b077aed3SPierre Proncherycomputation time of less than 5 seconds on a 2.5 GHz Intel Core 2 Duo are N =
29*b077aed3SPierre Pronchery2^20 = 1048576, r = 8, p = 1. Consequently, the required amount of memory for
30*b077aed3SPierre Proncherythis computation is roughly 1 GiB. On a more recent CPU (Intel i7-5930K at 3.5
31*b077aed3SPierre ProncheryGHz), this computation takes about 3 seconds. When N, r or p are not specified,
32*b077aed3SPierre Proncherythey default to 1048576, 8, and 1, respectively. The maximum amount of RAM that
33*b077aed3SPierre Proncherymay be used by scrypt defaults to 1025 MiB.
34*b077aed3SPierre Pronchery
35*b077aed3SPierre Pronchery=head2 Identity
36*b077aed3SPierre Pronchery
37*b077aed3SPierre Pronchery"SCRYPT" is the name for this implementation; it
38*b077aed3SPierre Proncherycan be used with the EVP_KDF_fetch() function.
39*b077aed3SPierre Pronchery
40*b077aed3SPierre Pronchery=head2 Supported parameters
41*b077aed3SPierre Pronchery
42*b077aed3SPierre ProncheryThe supported parameters are:
43*b077aed3SPierre Pronchery
44*b077aed3SPierre Pronchery=over 4
45*b077aed3SPierre Pronchery
46*b077aed3SPierre Pronchery=item "pass" (B<OSSL_KDF_PARAM_PASSWORD>) <octet string>
47*b077aed3SPierre Pronchery
48*b077aed3SPierre Pronchery=item "salt" (B<OSSL_KDF_PARAM_SALT>) <octet string>
49*b077aed3SPierre Pronchery
50*b077aed3SPierre ProncheryThese parameters work as described in L<EVP_KDF(3)/PARAMETERS>.
51*b077aed3SPierre Pronchery
52*b077aed3SPierre Pronchery=item "n" (B<OSSL_KDF_PARAM_SCRYPT_N>) <unsigned integer>
53*b077aed3SPierre Pronchery
54*b077aed3SPierre Pronchery=item "r" (B<OSSL_KDF_PARAM_SCRYPT_R>) <unsigned integer>
55*b077aed3SPierre Pronchery
56*b077aed3SPierre Pronchery=item "p" (B<OSSL_KDF_PARAM_SCRYPT_P>) <unsigned integer>
57*b077aed3SPierre Pronchery
58*b077aed3SPierre Pronchery=item "maxmem_bytes" (B<OSSL_KDF_PARAM_SCRYPT_MAXMEM>) <unsigned integer>
59*b077aed3SPierre Pronchery
60*b077aed3SPierre ProncheryThese parameters configure the scrypt work factors N, r, maxmem and p.
61*b077aed3SPierre ProncheryBoth N and maxmem_bytes are parameters of type B<uint64_t>.
62*b077aed3SPierre ProncheryBoth r and p are parameters of type B<uint32_t>.
63*b077aed3SPierre Pronchery
64*b077aed3SPierre Pronchery=item "properties" (B<OSSL_KDF_PARAM_PROPERTIES>) <UTF8 string>
65*b077aed3SPierre Pronchery
66*b077aed3SPierre ProncheryThis can be used to set the property query string when fetching the
67*b077aed3SPierre Proncheryfixed digest internally. NULL is used if this value is not set.
68*b077aed3SPierre Pronchery
69*b077aed3SPierre Pronchery=back
70*b077aed3SPierre Pronchery
71*b077aed3SPierre Pronchery=head1 NOTES
72*b077aed3SPierre Pronchery
73*b077aed3SPierre ProncheryA context for scrypt can be obtained by calling:
74*b077aed3SPierre Pronchery
75*b077aed3SPierre Pronchery EVP_KDF *kdf = EVP_KDF_fetch(NULL, "SCRYPT", NULL);
76*b077aed3SPierre Pronchery EVP_KDF_CTX *kctx = EVP_KDF_CTX_new(kdf);
77*b077aed3SPierre Pronchery
78*b077aed3SPierre ProncheryThe output length of an scrypt key derivation is specified via the
79*b077aed3SPierre Pronchery"keylen" parameter to the L<EVP_KDF_derive(3)> function.
80*b077aed3SPierre Pronchery
81*b077aed3SPierre Pronchery=head1 EXAMPLES
82*b077aed3SPierre Pronchery
83*b077aed3SPierre ProncheryThis example derives a 64-byte long test vector using scrypt with the password
84*b077aed3SPierre Pronchery"password", salt "NaCl" and N = 1024, r = 8, p = 16.
85*b077aed3SPierre Pronchery
86*b077aed3SPierre Pronchery EVP_KDF *kdf;
87*b077aed3SPierre Pronchery EVP_KDF_CTX *kctx;
88*b077aed3SPierre Pronchery unsigned char out[64];
89*b077aed3SPierre Pronchery OSSL_PARAM params[6], *p = params;
90*b077aed3SPierre Pronchery
91*b077aed3SPierre Pronchery kdf = EVP_KDF_fetch(NULL, "SCRYPT", NULL);
92*b077aed3SPierre Pronchery kctx = EVP_KDF_CTX_new(kdf);
93*b077aed3SPierre Pronchery EVP_KDF_free(kdf);
94*b077aed3SPierre Pronchery
95*b077aed3SPierre Pronchery *p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_PASSWORD,
96*b077aed3SPierre Pronchery                                          "password", (size_t)8);
97*b077aed3SPierre Pronchery *p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_SALT,
98*b077aed3SPierre Pronchery                                          "NaCl", (size_t)4);
99*b077aed3SPierre Pronchery *p++ = OSSL_PARAM_construct_uint64(OSSL_KDF_PARAM_SCRYPT_N, (uint64_t)1024);
100*b077aed3SPierre Pronchery *p++ = OSSL_PARAM_construct_uint32(OSSL_KDF_PARAM_SCRYPT_R, (uint32_t)8);
101*b077aed3SPierre Pronchery *p++ = OSSL_PARAM_construct_uint32(OSSL_KDF_PARAM_SCRYPT_P, (uint32_t)16);
102*b077aed3SPierre Pronchery *p = OSSL_PARAM_construct_end();
103*b077aed3SPierre Pronchery if (EVP_KDF_derive(kctx, out, sizeof(out), params) <= 0) {
104*b077aed3SPierre Pronchery     error("EVP_KDF_derive");
105*b077aed3SPierre Pronchery }
106*b077aed3SPierre Pronchery
107*b077aed3SPierre Pronchery {
108*b077aed3SPierre Pronchery     const unsigned char expected[sizeof(out)] = {
109*b077aed3SPierre Pronchery         0xfd, 0xba, 0xbe, 0x1c, 0x9d, 0x34, 0x72, 0x00,
110*b077aed3SPierre Pronchery         0x78, 0x56, 0xe7, 0x19, 0x0d, 0x01, 0xe9, 0xfe,
111*b077aed3SPierre Pronchery         0x7c, 0x6a, 0xd7, 0xcb, 0xc8, 0x23, 0x78, 0x30,
112*b077aed3SPierre Pronchery         0xe7, 0x73, 0x76, 0x63, 0x4b, 0x37, 0x31, 0x62,
113*b077aed3SPierre Pronchery         0x2e, 0xaf, 0x30, 0xd9, 0x2e, 0x22, 0xa3, 0x88,
114*b077aed3SPierre Pronchery         0x6f, 0xf1, 0x09, 0x27, 0x9d, 0x98, 0x30, 0xda,
115*b077aed3SPierre Pronchery         0xc7, 0x27, 0xaf, 0xb9, 0x4a, 0x83, 0xee, 0x6d,
116*b077aed3SPierre Pronchery         0x83, 0x60, 0xcb, 0xdf, 0xa2, 0xcc, 0x06, 0x40
117*b077aed3SPierre Pronchery     };
118*b077aed3SPierre Pronchery
119*b077aed3SPierre Pronchery     assert(!memcmp(out, expected, sizeof(out)));
120*b077aed3SPierre Pronchery }
121*b077aed3SPierre Pronchery
122*b077aed3SPierre Pronchery EVP_KDF_CTX_free(kctx);
123*b077aed3SPierre Pronchery
124*b077aed3SPierre Pronchery=head1 CONFORMING TO
125*b077aed3SPierre Pronchery
126*b077aed3SPierre ProncheryRFC 7914
127*b077aed3SPierre Pronchery
128*b077aed3SPierre Pronchery=head1 SEE ALSO
129*b077aed3SPierre Pronchery
130*b077aed3SPierre ProncheryL<EVP_KDF(3)>,
131*b077aed3SPierre ProncheryL<EVP_KDF_CTX_new(3)>,
132*b077aed3SPierre ProncheryL<EVP_KDF_CTX_free(3)>,
133*b077aed3SPierre ProncheryL<EVP_KDF_CTX_set_params(3)>,
134*b077aed3SPierre ProncheryL<EVP_KDF_derive(3)>,
135*b077aed3SPierre ProncheryL<EVP_KDF(3)/PARAMETERS>
136*b077aed3SPierre Pronchery
137*b077aed3SPierre Pronchery=head1 HISTORY
138*b077aed3SPierre Pronchery
139*b077aed3SPierre ProncheryThis functionality was added in OpenSSL 3.0.
140*b077aed3SPierre Pronchery
141*b077aed3SPierre Pronchery=head1 COPYRIGHT
142*b077aed3SPierre Pronchery
143*b077aed3SPierre ProncheryCopyright 2017-2021 The OpenSSL Project Authors. All Rights Reserved.
144*b077aed3SPierre Pronchery
145*b077aed3SPierre ProncheryLicensed under the Apache License 2.0 (the "License").  You may not use
146*b077aed3SPierre Proncherythis file except in compliance with the License.  You can obtain a copy
147*b077aed3SPierre Proncheryin the file LICENSE in the source distribution or at
148*b077aed3SPierre ProncheryL<https://www.openssl.org/source/license.html>.
149*b077aed3SPierre Pronchery
150*b077aed3SPierre Pronchery=cut
151