1=pod 2 3=head1 NAME 4 5LHASH, DECLARE_LHASH_OF, 6OPENSSL_LH_COMPFUNC, OPENSSL_LH_HASHFUNC, OPENSSL_LH_DOALL_FUNC, 7LHASH_DOALL_ARG_FN_TYPE, 8IMPLEMENT_LHASH_HASH_FN, IMPLEMENT_LHASH_COMP_FN, 9lh_TYPE_new, lh_TYPE_free, lh_TYPE_flush, 10lh_TYPE_insert, lh_TYPE_delete, lh_TYPE_retrieve, 11lh_TYPE_doall, lh_TYPE_doall_arg, lh_TYPE_num_items, lh_TYPE_get_down_load, 12lh_TYPE_set_down_load, lh_TYPE_error, 13OPENSSL_LH_new, OPENSSL_LH_free, OPENSSL_LH_flush, 14OPENSSL_LH_insert, OPENSSL_LH_delete, OPENSSL_LH_retrieve, 15OPENSSL_LH_doall, OPENSSL_LH_doall_arg, OPENSSL_LH_num_items, 16OPENSSL_LH_get_down_load, OPENSSL_LH_set_down_load, OPENSSL_LH_error 17- dynamic hash table 18 19=head1 SYNOPSIS 20 21=for openssl generic 22 23 #include <openssl/lhash.h> 24 25 DECLARE_LHASH_OF(TYPE); 26 27 LHASH_OF(TYPE) *lh_TYPE_new(OPENSSL_LH_HASHFUNC hash, OPENSSL_LH_COMPFUNC compare); 28 void lh_TYPE_free(LHASH_OF(TYPE) *table); 29 void lh_TYPE_flush(LHASH_OF(TYPE) *table); 30 31 TYPE *lh_TYPE_insert(LHASH_OF(TYPE) *table, TYPE *data); 32 TYPE *lh_TYPE_delete(LHASH_OF(TYPE) *table, TYPE *data); 33 TYPE *lh_TYPE_retrieve(LHASH_OF(TYPE) *table, TYPE *data); 34 35 void lh_TYPE_doall(LHASH_OF(TYPE) *table, OPENSSL_LH_DOALL_FUNC func); 36 void lh_TYPE_doall_arg(LHASH_OF(TYPE) *table, OPENSSL_LH_DOALL_FUNCARG func, 37 TYPE *arg); 38 39 unsigned long lh_TYPE_num_items(OPENSSL_LHASH *lh); 40 unsigned long lh_TYPE_get_down_load(OPENSSL_LHASH *lh); 41 void lh_TYPE_set_down_load(OPENSSL_LHASH *lh, unsigned long dl); 42 43 int lh_TYPE_error(LHASH_OF(TYPE) *table); 44 45 typedef int (*OPENSSL_LH_COMPFUNC)(const void *, const void *); 46 typedef unsigned long (*OPENSSL_LH_HASHFUNC)(const void *); 47 typedef void (*OPENSSL_LH_DOALL_FUNC)(const void *); 48 typedef void (*LHASH_DOALL_ARG_FN_TYPE)(const void *, const void *); 49 50 OPENSSL_LHASH *OPENSSL_LH_new(OPENSSL_LH_HASHFUNC h, OPENSSL_LH_COMPFUNC c); 51 void OPENSSL_LH_free(OPENSSL_LHASH *lh); 52 void OPENSSL_LH_flush(OPENSSL_LHASH *lh); 53 54 void *OPENSSL_LH_insert(OPENSSL_LHASH *lh, void *data); 55 void *OPENSSL_LH_delete(OPENSSL_LHASH *lh, const void *data); 56 void *OPENSSL_LH_retrieve(OPENSSL_LHASH *lh, const void *data); 57 58 void OPENSSL_LH_doall(OPENSSL_LHASH *lh, OPENSSL_LH_DOALL_FUNC func); 59 void OPENSSL_LH_doall_arg(OPENSSL_LHASH *lh, OPENSSL_LH_DOALL_FUNCARG func, void *arg); 60 61 unsigned long OPENSSL_LH_num_items(OPENSSL_LHASH *lh); 62 unsigned long OPENSSL_LH_get_down_load(OPENSSL_LHASH *lh); 63 void OPENSSL_LH_set_down_load(OPENSSL_LHASH *lh, unsigned long dl); 64 65 int OPENSSL_LH_error(OPENSSL_LHASH *lh); 66 67 #define LH_LOAD_MULT /* integer constant */ 68 69=head1 DESCRIPTION 70 71This library implements type-checked dynamic hash tables. The hash 72table entries can be arbitrary structures. Usually they consist of key 73and value fields. In the description here, B<I<TYPE>> is used a placeholder 74for any of the OpenSSL datatypes, such as I<SSL_SESSION>. 75 76B<lh_I<TYPE>_new>() creates a new B<LHASH_OF>(B<I<TYPE>>) structure to store 77arbitrary data entries, and specifies the 'hash' and 'compare' 78callbacks to be used in organising the table's entries. The I<hash> 79callback takes a pointer to a table entry as its argument and returns 80an unsigned long hash value for its key field. The hash value is 81normally truncated to a power of 2, so make sure that your hash 82function returns well mixed low order bits. The I<compare> callback 83takes two arguments (pointers to two hash table entries), and returns 840 if their keys are equal, nonzero otherwise. 85 86If your hash table 87will contain items of some particular type and the I<hash> and 88I<compare> callbacks hash/compare these types, then the 89B<IMPLEMENT_LHASH_HASH_FN> and B<IMPLEMENT_LHASH_COMP_FN> macros can be 90used to create callback wrappers of the prototypes required by 91B<lh_I<TYPE>_new>() as shown in this example: 92 93 /* 94 * Implement the hash and compare functions; "stuff" can be any word. 95 */ 96 static unsigned long stuff_hash(const TYPE *a) 97 { 98 ... 99 } 100 static int stuff_cmp(const TYPE *a, const TYPE *b) 101 { 102 ... 103 } 104 105 /* 106 * Implement the wrapper functions. 107 */ 108 static IMPLEMENT_LHASH_HASH_FN(stuff, TYPE) 109 static IMPLEMENT_LHASH_COMP_FN(stuff, TYPE) 110 111If the type is going to be used in several places, the following macros 112can be used in a common header file to declare the function wrappers: 113 114 DECLARE_LHASH_HASH_FN(stuff, TYPE) 115 DECLARE_LHASH_COMP_FN(stuff, TYPE) 116 117Then a hash table of B<I<TYPE>> objects can be created using this: 118 119 LHASH_OF(TYPE) *htable; 120 121 htable = B<lh_I<TYPE>_new>(LHASH_HASH_FN(stuff), LHASH_COMP_FN(stuff)); 122 123B<lh_I<TYPE>_free>() frees the B<LHASH_OF>(B<I<TYPE>>) structure 124I<table>. Allocated hash table entries will not be freed; consider 125using B<lh_I<TYPE>_doall>() to deallocate any remaining entries in the 126hash table (see below). 127 128B<lh_I<TYPE>_flush>() empties the B<LHASH_OF>(B<I<TYPE>>) structure I<table>. New 129entries can be added to the flushed table. Allocated hash table entries 130will not be freed; consider using B<lh_I<TYPE>_doall>() to deallocate any 131remaining entries in the hash table (see below). 132 133B<lh_I<TYPE>_insert>() inserts the structure pointed to by I<data> into 134I<table>. If there already is an entry with the same key, the old 135value is replaced. Note that B<lh_I<TYPE>_insert>() stores pointers, the 136data are not copied. 137 138B<lh_I<TYPE>_delete>() deletes an entry from I<table>. 139 140B<lh_I<TYPE>_retrieve>() looks up an entry in I<table>. Normally, I<data> 141is a structure with the key field(s) set; the function will return a 142pointer to a fully populated structure. 143 144B<lh_I<TYPE>_doall>() will, for every entry in the hash table, call 145I<func> with the data item as its parameter. 146For example: 147 148 /* Cleans up resources belonging to 'a' (this is implemented elsewhere) */ 149 void TYPE_cleanup_doall(TYPE *a); 150 151 /* Implement a prototype-compatible wrapper for "TYPE_cleanup" */ 152 IMPLEMENT_LHASH_DOALL_FN(TYPE_cleanup, TYPE) 153 154 /* Call "TYPE_cleanup" against all items in a hash table. */ 155 lh_TYPE_doall(hashtable, LHASH_DOALL_FN(TYPE_cleanup)); 156 157 /* Then the hash table itself can be deallocated */ 158 lh_TYPE_free(hashtable); 159 160B<lh_I<TYPE>_doall_arg>() is the same as B<lh_I<TYPE>_doall>() except that 161I<func> will be called with I<arg> as the second argument and I<func> 162should be of type B<LHASH_DOALL_ARG_FN>(B<I<TYPE>>) (a callback prototype 163that is passed both the table entry and an extra argument). As with 164lh_doall(), you can instead choose to declare your callback with a 165prototype matching the types you are dealing with and use the 166declare/implement macros to create compatible wrappers that cast 167variables before calling your type-specific callbacks. An example of 168this is demonstrated here (printing all hash table entries to a BIO 169that is provided by the caller): 170 171 /* Prints item 'a' to 'output_bio' (this is implemented elsewhere) */ 172 void TYPE_print_doall_arg(const TYPE *a, BIO *output_bio); 173 174 /* Implement a prototype-compatible wrapper for "TYPE_print" */ 175 static IMPLEMENT_LHASH_DOALL_ARG_FN(TYPE, const TYPE, BIO) 176 177 /* Print out the entire hashtable to a particular BIO */ 178 lh_TYPE_doall_arg(hashtable, LHASH_DOALL_ARG_FN(TYPE_print), BIO, 179 logging_bio); 180 181Note that it is by default B<not> safe to use B<lh_I<TYPE>_delete>() inside a 182callback passed to B<lh_I<TYPE>_doall>() or B<lh_I<TYPE>_doall_arg>(). The 183reason for this is that deleting an item from the hash table may result in the 184hash table being contracted to a smaller size and rehashed. 185B<lh_I<TYPE>_doall>() and B<lh_I<TYPE>_doall_arg>() are unsafe and will exhibit 186undefined behaviour under these conditions, as these functions assume the hash 187table size and bucket pointers do not change during the call. 188 189If it is desired to use B<lh_I<TYPE>_doall>() or B<lh_I<TYPE>_doall_arg>() with 190B<lh_I<TYPE>_delete>(), it is essential that you call 191B<lh_I<TYPE>_set_down_load>() with a I<down_load> argument of 0 first. This 192disables hash table contraction and guarantees that it will be safe to delete 193items from a hash table during a call to B<lh_I<TYPE>_doall>() or 194B<lh_I<TYPE>_doall_arg>(). 195 196It is never safe to call B<lh_I<TYPE>_insert>() during a call to 197B<lh_I<TYPE>_doall>() or B<lh_I<TYPE>_doall_arg>(). 198 199B<lh_I<TYPE>_error>() can be used to determine if an error occurred in the last 200operation. 201 202B<lh_I<TYPE>_num_items>() returns the number of items in the hash table. 203 204B<lh_I<TYPE>_get_down_load>() and B<lh_I<TYPE>_set_down_load>() get and set the 205factor used to determine when the hash table is contracted. The factor is the 206load factor at or below which hash table contraction will occur, multiplied by 207B<LH_LOAD_MULT>, where the load factor is the number of items divided by the 208number of nodes. Setting this value to 0 disables hash table contraction. 209 210OPENSSL_LH_new() is the same as the B<lh_I<TYPE>_new>() except that it is not 211type specific. So instead of returning an B<LHASH_OF(I<TYPE>)> value it returns 212a B<void *>. In the same way the functions OPENSSL_LH_free(), 213OPENSSL_LH_flush(), OPENSSL_LH_insert(), OPENSSL_LH_delete(), 214OPENSSL_LH_retrieve(), OPENSSL_LH_doall(), OPENSSL_LH_doall_arg(), 215OPENSSL_LH_num_items(), OPENSSL_LH_get_down_load(), OPENSSL_LH_set_down_load() 216and OPENSSL_LH_error() are equivalent to the similarly named B<lh_I<TYPE>> 217functions except that they return or use a B<void *> where the equivalent 218B<lh_I<TYPE>> function returns or uses a B<I<TYPE> *> or B<LHASH_OF(I<TYPE>) *>. 219B<lh_I<TYPE>> functions are implemented as type checked wrappers around the 220B<OPENSSL_LH> functions. Most applications should not call the B<OPENSSL_LH> 221functions directly. 222 223=head1 RETURN VALUES 224 225B<lh_I<TYPE>_new>() and OPENSSL_LH_new() return NULL on error, otherwise a 226pointer to the new B<LHASH> structure. 227 228When a hash table entry is replaced, B<lh_I<TYPE>_insert>() or 229OPENSSL_LH_insert() return the value being replaced. NULL is returned on normal 230operation and on error. 231 232B<lh_I<TYPE>_delete>() and OPENSSL_LH_delete() return the entry being deleted. 233NULL is returned if there is no such value in the hash table. 234 235B<lh_I<TYPE>_retrieve>() and OPENSSL_LH_retrieve() return the hash table entry 236if it has been found, NULL otherwise. 237 238B<lh_I<TYPE>_error>() and OPENSSL_LH_error() return 1 if an error occurred in 239the last operation, 0 otherwise. It's meaningful only after non-retrieve 240operations. 241 242B<lh_I<TYPE>_free>(), OPENSSL_LH_free(), B<lh_I<TYPE>_flush>(), 243OPENSSL_LH_flush(), B<lh_I<TYPE>_doall>() OPENSSL_LH_doall(), 244B<lh_I<TYPE>_doall_arg>() and OPENSSL_LH_doall_arg() return no values. 245 246=head1 NOTE 247 248The LHASH code is not thread safe. All updating operations, as well as 249B<lh_I<TYPE>_error>() or OPENSSL_LH_error() calls must be performed under 250a write lock. All retrieve operations should be performed under a read lock, 251I<unless> accurate usage statistics are desired. In which case, a write lock 252should be used for retrieve operations as well. For output of the usage 253statistics, using the functions from L<OPENSSL_LH_stats(3)>, a read lock 254suffices. 255 256The LHASH code regards table entries as constant data. As such, it 257internally represents lh_insert()'d items with a "const void *" 258pointer type. This is why callbacks such as those used by lh_doall() 259and lh_doall_arg() declare their prototypes with "const", even for the 260parameters that pass back the table items' data pointers - for 261consistency, user-provided data is "const" at all times as far as the 262LHASH code is concerned. However, as callers are themselves providing 263these pointers, they can choose whether they too should be treating 264all such parameters as constant. 265 266As an example, a hash table may be maintained by code that, for 267reasons of encapsulation, has only "const" access to the data being 268indexed in the hash table (i.e. it is returned as "const" from 269elsewhere in their code) - in this case the LHASH prototypes are 270appropriate as-is. Conversely, if the caller is responsible for the 271life-time of the data in question, then they may well wish to make 272modifications to table item passed back in the lh_doall() or 273lh_doall_arg() callbacks (see the "TYPE_cleanup" example above). If 274so, the caller can either cast the "const" away (if they're providing 275the raw callbacks themselves) or use the macros to declare/implement 276the wrapper functions without "const" types. 277 278Callers that only have "const" access to data they're indexing in a 279table, yet declare callbacks without constant types (or cast the 280"const" away themselves), are therefore creating their own risks/bugs 281without being encouraged to do so by the API. On a related note, 282those auditing code should pay special attention to any instances of 283DECLARE/IMPLEMENT_LHASH_DOALL_[ARG_]_FN macros that provide types 284without any "const" qualifiers. 285 286=head1 BUGS 287 288B<lh_I<TYPE>_insert>() and OPENSSL_LH_insert() return NULL both for success 289and error. 290 291=head1 SEE ALSO 292 293L<OPENSSL_LH_stats(3)> 294 295=head1 HISTORY 296 297In OpenSSL 1.0.0, the lhash interface was revamped for better 298type checking. 299 300=head1 COPYRIGHT 301 302Copyright 2000-2022 The OpenSSL Project Authors. All Rights Reserved. 303 304Licensed under the Apache License 2.0 (the "License"). You may not use 305this file except in compliance with the License. You can obtain a copy 306in the file LICENSE in the source distribution or at 307L<https://www.openssl.org/source/license.html>. 308 309=cut 310