1=pod 2 3=head1 NAME 4 5LHASH, DECLARE_LHASH_OF, 6OPENSSL_LH_COMPFUNC, OPENSSL_LH_HASHFUNC, OPENSSL_LH_DOALL_FUNC, 7LHASH_DOALL_ARG_FN_TYPE, 8IMPLEMENT_LHASH_HASH_FN, IMPLEMENT_LHASH_COMP_FN, 9lh_TYPE_new, lh_TYPE_free, lh_TYPE_flush, 10lh_TYPE_insert, lh_TYPE_delete, lh_TYPE_retrieve, 11lh_TYPE_doall, lh_TYPE_doall_arg, lh_TYPE_error, 12OPENSSL_LH_new, OPENSSL_LH_free, OPENSSL_LH_flush, 13OPENSSL_LH_insert, OPENSSL_LH_delete, OPENSSL_LH_retrieve, 14OPENSSL_LH_doall, OPENSSL_LH_doall_arg, OPENSSL_LH_error 15- dynamic hash table 16 17=head1 SYNOPSIS 18 19=for openssl generic 20 21 #include <openssl/lhash.h> 22 23 DECLARE_LHASH_OF(TYPE); 24 25 LHASH_OF(TYPE) *lh_TYPE_new(OPENSSL_LH_HASHFUNC hash, OPENSSL_LH_COMPFUNC compare); 26 void lh_TYPE_free(LHASH_OF(TYPE) *table); 27 void lh_TYPE_flush(LHASH_OF(TYPE) *table); 28 29 TYPE *lh_TYPE_insert(LHASH_OF(TYPE) *table, TYPE *data); 30 TYPE *lh_TYPE_delete(LHASH_OF(TYPE) *table, TYPE *data); 31 TYPE *lh_TYPE_retrieve(LHASH_OF(TYPE) *table, TYPE *data); 32 33 void lh_TYPE_doall(LHASH_OF(TYPE) *table, OPENSSL_LH_DOALL_FUNC func); 34 void lh_TYPE_doall_arg(LHASH_OF(TYPE) *table, OPENSSL_LH_DOALL_FUNCARG func, 35 TYPE *arg); 36 37 int lh_TYPE_error(LHASH_OF(TYPE) *table); 38 39 typedef int (*OPENSSL_LH_COMPFUNC)(const void *, const void *); 40 typedef unsigned long (*OPENSSL_LH_HASHFUNC)(const void *); 41 typedef void (*OPENSSL_LH_DOALL_FUNC)(const void *); 42 typedef void (*LHASH_DOALL_ARG_FN_TYPE)(const void *, const void *); 43 44 OPENSSL_LHASH *OPENSSL_LH_new(OPENSSL_LH_HASHFUNC h, OPENSSL_LH_COMPFUNC c); 45 void OPENSSL_LH_free(OPENSSL_LHASH *lh); 46 void OPENSSL_LH_flush(OPENSSL_LHASH *lh); 47 48 void *OPENSSL_LH_insert(OPENSSL_LHASH *lh, void *data); 49 void *OPENSSL_LH_delete(OPENSSL_LHASH *lh, const void *data); 50 void *OPENSSL_LH_retrieve(OPENSSL_LHASH *lh, const void *data); 51 52 void OPENSSL_LH_doall(OPENSSL_LHASH *lh, OPENSSL_LH_DOALL_FUNC func); 53 void OPENSSL_LH_doall_arg(OPENSSL_LHASH *lh, OPENSSL_LH_DOALL_FUNCARG func, void *arg); 54 55 int OPENSSL_LH_error(OPENSSL_LHASH *lh); 56 57=head1 DESCRIPTION 58 59This library implements type-checked dynamic hash tables. The hash 60table entries can be arbitrary structures. Usually they consist of key 61and value fields. In the description here, B<I<TYPE>> is used a placeholder 62for any of the OpenSSL datatypes, such as I<SSL_SESSION>. 63 64B<lh_I<TYPE>_new>() creates a new B<LHASH_OF>(B<I<TYPE>>) structure to store 65arbitrary data entries, and specifies the 'hash' and 'compare' 66callbacks to be used in organising the table's entries. The I<hash> 67callback takes a pointer to a table entry as its argument and returns 68an unsigned long hash value for its key field. The hash value is 69normally truncated to a power of 2, so make sure that your hash 70function returns well mixed low order bits. The I<compare> callback 71takes two arguments (pointers to two hash table entries), and returns 720 if their keys are equal, nonzero otherwise. 73 74If your hash table 75will contain items of some particular type and the I<hash> and 76I<compare> callbacks hash/compare these types, then the 77B<IMPLEMENT_LHASH_HASH_FN> and B<IMPLEMENT_LHASH_COMP_FN> macros can be 78used to create callback wrappers of the prototypes required by 79B<lh_I<TYPE>_new>() as shown in this example: 80 81 /* 82 * Implement the hash and compare functions; "stuff" can be any word. 83 */ 84 static unsigned long stuff_hash(const TYPE *a) 85 { 86 ... 87 } 88 static int stuff_cmp(const TYPE *a, const TYPE *b) 89 { 90 ... 91 } 92 93 /* 94 * Implement the wrapper functions. 95 */ 96 static IMPLEMENT_LHASH_HASH_FN(stuff, TYPE) 97 static IMPLEMENT_LHASH_COMP_FN(stuff, TYPE) 98 99If the type is going to be used in several places, the following macros 100can be used in a common header file to declare the function wrappers: 101 102 DECLARE_LHASH_HASH_FN(stuff, TYPE) 103 DECLARE_LHASH_COMP_FN(stuff, TYPE) 104 105Then a hash table of B<I<TYPE>> objects can be created using this: 106 107 LHASH_OF(TYPE) *htable; 108 109 htable = B<lh_I<TYPE>_new>(LHASH_HASH_FN(stuff), LHASH_COMP_FN(stuff)); 110 111B<lh_I<TYPE>_free>() frees the B<LHASH_OF>(B<I<TYPE>>) structure 112I<table>. Allocated hash table entries will not be freed; consider 113using B<lh_I<TYPE>_doall>() to deallocate any remaining entries in the 114hash table (see below). 115 116B<lh_I<TYPE>_flush>() empties the B<LHASH_OF>(B<I<TYPE>>) structure I<table>. New 117entries can be added to the flushed table. Allocated hash table entries 118will not be freed; consider using B<lh_I<TYPE>_doall>() to deallocate any 119remaining entries in the hash table (see below). 120 121B<lh_I<TYPE>_insert>() inserts the structure pointed to by I<data> into 122I<table>. If there already is an entry with the same key, the old 123value is replaced. Note that B<lh_I<TYPE>_insert>() stores pointers, the 124data are not copied. 125 126B<lh_I<TYPE>_delete>() deletes an entry from I<table>. 127 128B<lh_I<TYPE>_retrieve>() looks up an entry in I<table>. Normally, I<data> 129is a structure with the key field(s) set; the function will return a 130pointer to a fully populated structure. 131 132B<lh_I<TYPE>_doall>() will, for every entry in the hash table, call 133I<func> with the data item as its parameter. 134For example: 135 136 /* Cleans up resources belonging to 'a' (this is implemented elsewhere) */ 137 void TYPE_cleanup_doall(TYPE *a); 138 139 /* Implement a prototype-compatible wrapper for "TYPE_cleanup" */ 140 IMPLEMENT_LHASH_DOALL_FN(TYPE_cleanup, TYPE) 141 142 /* Call "TYPE_cleanup" against all items in a hash table. */ 143 lh_TYPE_doall(hashtable, LHASH_DOALL_FN(TYPE_cleanup)); 144 145 /* Then the hash table itself can be deallocated */ 146 lh_TYPE_free(hashtable); 147 148When doing this, be careful if you delete entries from the hash table 149in your callbacks: the table may decrease in size, moving the item 150that you are currently on down lower in the hash table - this could 151cause some entries to be skipped during the iteration. The second 152best solution to this problem is to set hash-E<gt>down_load=0 before 153you start (which will stop the hash table ever decreasing in size). 154The best solution is probably to avoid deleting items from the hash 155table inside a "doall" callback! 156 157B<lh_I<TYPE>_doall_arg>() is the same as B<lh_I<TYPE>_doall>() except that 158I<func> will be called with I<arg> as the second argument and I<func> 159should be of type B<LHASH_DOALL_ARG_FN>(B<I<TYPE>>) (a callback prototype 160that is passed both the table entry and an extra argument). As with 161lh_doall(), you can instead choose to declare your callback with a 162prototype matching the types you are dealing with and use the 163declare/implement macros to create compatible wrappers that cast 164variables before calling your type-specific callbacks. An example of 165this is demonstrated here (printing all hash table entries to a BIO 166that is provided by the caller): 167 168 /* Prints item 'a' to 'output_bio' (this is implemented elsewhere) */ 169 void TYPE_print_doall_arg(const TYPE *a, BIO *output_bio); 170 171 /* Implement a prototype-compatible wrapper for "TYPE_print" */ 172 static IMPLEMENT_LHASH_DOALL_ARG_FN(TYPE, const TYPE, BIO) 173 174 /* Print out the entire hashtable to a particular BIO */ 175 lh_TYPE_doall_arg(hashtable, LHASH_DOALL_ARG_FN(TYPE_print), BIO, 176 logging_bio); 177 178 179B<lh_I<TYPE>_error>() can be used to determine if an error occurred in the last 180operation. 181 182OPENSSL_LH_new() is the same as the B<lh_I<TYPE>_new>() except that it is not 183type specific. So instead of returning an B<LHASH_OF(I<TYPE>)> value it returns 184a B<void *>. In the same way the functions OPENSSL_LH_free(), 185OPENSSL_LH_flush(), OPENSSL_LH_insert(), OPENSSL_LH_delete(), 186OPENSSL_LH_retrieve(), OPENSSL_LH_doall(), OPENSSL_LH_doall_arg(), and 187OPENSSL_LH_error() are equivalent to the similarly named B<lh_I<TYPE>> functions 188except that they return or use a B<void *> where the equivalent B<lh_I<TYPE>> 189function returns or uses a B<I<TYPE> *> or B<LHASH_OF(I<TYPE>) *>. B<lh_I<TYPE>> 190functions are implemented as type checked wrappers around the B<OPENSSL_LH> 191functions. Most applications should not call the B<OPENSSL_LH> functions 192directly. 193 194=head1 RETURN VALUES 195 196B<lh_I<TYPE>_new>() and OPENSSL_LH_new() return NULL on error, otherwise a 197pointer to the new B<LHASH> structure. 198 199When a hash table entry is replaced, B<lh_I<TYPE>_insert>() or 200OPENSSL_LH_insert() return the value being replaced. NULL is returned on normal 201operation and on error. 202 203B<lh_I<TYPE>_delete>() and OPENSSL_LH_delete() return the entry being deleted. 204NULL is returned if there is no such value in the hash table. 205 206B<lh_I<TYPE>_retrieve>() and OPENSSL_LH_retrieve() return the hash table entry 207if it has been found, NULL otherwise. 208 209B<lh_I<TYPE>_error>() and OPENSSL_LH_error() return 1 if an error occurred in 210the last operation, 0 otherwise. It's meaningful only after non-retrieve 211operations. 212 213B<lh_I<TYPE>_free>(), OPENSSL_LH_free(), B<lh_I<TYPE>_flush>(), 214OPENSSL_LH_flush(), B<lh_I<TYPE>_doall>() OPENSSL_LH_doall(), 215B<lh_I<TYPE>_doall_arg>() and OPENSSL_LH_doall_arg() return no values. 216 217=head1 NOTE 218 219The LHASH code is not thread safe. All updating operations, as well as 220B<lh_I<TYPE>_error>() or OPENSSL_LH_error() calls must be performed under 221a write lock. All retrieve operations should be performed under a read lock, 222I<unless> accurate usage statistics are desired. In which case, a write lock 223should be used for retrieve operations as well. For output of the usage 224statistics, using the functions from L<OPENSSL_LH_stats(3)>, a read lock 225suffices. 226 227The LHASH code regards table entries as constant data. As such, it 228internally represents lh_insert()'d items with a "const void *" 229pointer type. This is why callbacks such as those used by lh_doall() 230and lh_doall_arg() declare their prototypes with "const", even for the 231parameters that pass back the table items' data pointers - for 232consistency, user-provided data is "const" at all times as far as the 233LHASH code is concerned. However, as callers are themselves providing 234these pointers, they can choose whether they too should be treating 235all such parameters as constant. 236 237As an example, a hash table may be maintained by code that, for 238reasons of encapsulation, has only "const" access to the data being 239indexed in the hash table (i.e. it is returned as "const" from 240elsewhere in their code) - in this case the LHASH prototypes are 241appropriate as-is. Conversely, if the caller is responsible for the 242life-time of the data in question, then they may well wish to make 243modifications to table item passed back in the lh_doall() or 244lh_doall_arg() callbacks (see the "TYPE_cleanup" example above). If 245so, the caller can either cast the "const" away (if they're providing 246the raw callbacks themselves) or use the macros to declare/implement 247the wrapper functions without "const" types. 248 249Callers that only have "const" access to data they're indexing in a 250table, yet declare callbacks without constant types (or cast the 251"const" away themselves), are therefore creating their own risks/bugs 252without being encouraged to do so by the API. On a related note, 253those auditing code should pay special attention to any instances of 254DECLARE/IMPLEMENT_LHASH_DOALL_[ARG_]_FN macros that provide types 255without any "const" qualifiers. 256 257=head1 BUGS 258 259B<lh_I<TYPE>_insert>() and OPENSSL_LH_insert() return NULL both for success 260and error. 261 262=head1 SEE ALSO 263 264L<OPENSSL_LH_stats(3)> 265 266=head1 HISTORY 267 268In OpenSSL 1.0.0, the lhash interface was revamped for better 269type checking. 270 271=head1 COPYRIGHT 272 273Copyright 2000-2022 The OpenSSL Project Authors. All Rights Reserved. 274 275Licensed under the Apache License 2.0 (the "License"). You may not use 276this file except in compliance with the License. You can obtain a copy 277in the file LICENSE in the source distribution or at 278L<https://www.openssl.org/source/license.html>. 279 280=cut 281