1=pod 2 3=head1 NAME 4 5EVP_PKEY_CTX_ctrl, 6EVP_PKEY_CTX_ctrl_str, 7EVP_PKEY_CTX_ctrl_uint64, 8EVP_PKEY_CTX_md, 9EVP_PKEY_CTX_set_signature_md, 10EVP_PKEY_CTX_get_signature_md, 11EVP_PKEY_CTX_set_mac_key, 12EVP_PKEY_CTX_set_rsa_padding, 13EVP_PKEY_CTX_get_rsa_padding, 14EVP_PKEY_CTX_set_rsa_pss_saltlen, 15EVP_PKEY_CTX_get_rsa_pss_saltlen, 16EVP_PKEY_CTX_set_rsa_keygen_bits, 17EVP_PKEY_CTX_set_rsa_keygen_pubexp, 18EVP_PKEY_CTX_set_rsa_keygen_primes, 19EVP_PKEY_CTX_set_rsa_mgf1_md, 20EVP_PKEY_CTX_get_rsa_mgf1_md, 21EVP_PKEY_CTX_set_rsa_oaep_md, 22EVP_PKEY_CTX_get_rsa_oaep_md, 23EVP_PKEY_CTX_set0_rsa_oaep_label, 24EVP_PKEY_CTX_get0_rsa_oaep_label, 25EVP_PKEY_CTX_set_dsa_paramgen_bits, 26EVP_PKEY_CTX_set_dsa_paramgen_q_bits, 27EVP_PKEY_CTX_set_dsa_paramgen_md, 28EVP_PKEY_CTX_set_dh_paramgen_prime_len, 29EVP_PKEY_CTX_set_dh_paramgen_subprime_len, 30EVP_PKEY_CTX_set_dh_paramgen_generator, 31EVP_PKEY_CTX_set_dh_paramgen_type, 32EVP_PKEY_CTX_set_dh_rfc5114, 33EVP_PKEY_CTX_set_dhx_rfc5114, 34EVP_PKEY_CTX_set_dh_pad, 35EVP_PKEY_CTX_set_dh_nid, 36EVP_PKEY_CTX_set_dh_kdf_type, 37EVP_PKEY_CTX_get_dh_kdf_type, 38EVP_PKEY_CTX_set0_dh_kdf_oid, 39EVP_PKEY_CTX_get0_dh_kdf_oid, 40EVP_PKEY_CTX_set_dh_kdf_md, 41EVP_PKEY_CTX_get_dh_kdf_md, 42EVP_PKEY_CTX_set_dh_kdf_outlen, 43EVP_PKEY_CTX_get_dh_kdf_outlen, 44EVP_PKEY_CTX_set0_dh_kdf_ukm, 45EVP_PKEY_CTX_get0_dh_kdf_ukm, 46EVP_PKEY_CTX_set_ec_paramgen_curve_nid, 47EVP_PKEY_CTX_set_ec_param_enc, 48EVP_PKEY_CTX_set_ecdh_cofactor_mode, 49EVP_PKEY_CTX_get_ecdh_cofactor_mode, 50EVP_PKEY_CTX_set_ecdh_kdf_type, 51EVP_PKEY_CTX_get_ecdh_kdf_type, 52EVP_PKEY_CTX_set_ecdh_kdf_md, 53EVP_PKEY_CTX_get_ecdh_kdf_md, 54EVP_PKEY_CTX_set_ecdh_kdf_outlen, 55EVP_PKEY_CTX_get_ecdh_kdf_outlen, 56EVP_PKEY_CTX_set0_ecdh_kdf_ukm, 57EVP_PKEY_CTX_get0_ecdh_kdf_ukm, 58EVP_PKEY_CTX_set1_id, EVP_PKEY_CTX_get1_id, EVP_PKEY_CTX_get1_id_len 59- algorithm specific control operations 60 61=head1 SYNOPSIS 62 63 #include <openssl/evp.h> 64 65 int EVP_PKEY_CTX_ctrl(EVP_PKEY_CTX *ctx, int keytype, int optype, 66 int cmd, int p1, void *p2); 67 int EVP_PKEY_CTX_ctrl_uint64(EVP_PKEY_CTX *ctx, int keytype, int optype, 68 int cmd, uint64_t value); 69 int EVP_PKEY_CTX_ctrl_str(EVP_PKEY_CTX *ctx, const char *type, 70 const char *value); 71 72 int EVP_PKEY_CTX_md(EVP_PKEY_CTX *ctx, int optype, int cmd, const char *md); 73 74 int EVP_PKEY_CTX_set_signature_md(EVP_PKEY_CTX *ctx, const EVP_MD *md); 75 int EVP_PKEY_CTX_get_signature_md(EVP_PKEY_CTX *ctx, const EVP_MD **pmd); 76 77 int EVP_PKEY_CTX_set_mac_key(EVP_PKEY_CTX *ctx, unsigned char *key, int len); 78 79 #include <openssl/rsa.h> 80 81 int EVP_PKEY_CTX_set_rsa_padding(EVP_PKEY_CTX *ctx, int pad); 82 int EVP_PKEY_CTX_get_rsa_padding(EVP_PKEY_CTX *ctx, int *pad); 83 int EVP_PKEY_CTX_set_rsa_pss_saltlen(EVP_PKEY_CTX *ctx, int len); 84 int EVP_PKEY_CTX_get_rsa_pss_saltlen(EVP_PKEY_CTX *ctx, int *len); 85 int EVP_PKEY_CTX_set_rsa_keygen_bits(EVP_PKEY_CTX *ctx, int mbits); 86 int EVP_PKEY_CTX_set_rsa_keygen_pubexp(EVP_PKEY_CTX *ctx, BIGNUM *pubexp); 87 int EVP_PKEY_CTX_set_rsa_keygen_primes(EVP_PKEY_CTX *ctx, int primes); 88 int EVP_PKEY_CTX_set_rsa_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD *md); 89 int EVP_PKEY_CTX_get_rsa_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD **md); 90 int EVP_PKEY_CTX_set_rsa_oaep_md(EVP_PKEY_CTX *ctx, const EVP_MD *md); 91 int EVP_PKEY_CTX_get_rsa_oaep_md(EVP_PKEY_CTX *ctx, const EVP_MD **md); 92 int EVP_PKEY_CTX_set0_rsa_oaep_label(EVP_PKEY_CTX *ctx, unsigned char *label, int len); 93 int EVP_PKEY_CTX_get0_rsa_oaep_label(EVP_PKEY_CTX *ctx, unsigned char **label); 94 95 #include <openssl/dsa.h> 96 97 int EVP_PKEY_CTX_set_dsa_paramgen_bits(EVP_PKEY_CTX *ctx, int nbits); 98 int EVP_PKEY_CTX_set_dsa_paramgen_q_bits(EVP_PKEY_CTX *ctx, int qbits); 99 int EVP_PKEY_CTX_set_dsa_paramgen_md(EVP_PKEY_CTX *ctx, const EVP_MD *md); 100 101 #include <openssl/dh.h> 102 103 int EVP_PKEY_CTX_set_dh_paramgen_prime_len(EVP_PKEY_CTX *ctx, int len); 104 int EVP_PKEY_CTX_set_dh_paramgen_subprime_len(EVP_PKEY_CTX *ctx, int len); 105 int EVP_PKEY_CTX_set_dh_paramgen_generator(EVP_PKEY_CTX *ctx, int gen); 106 int EVP_PKEY_CTX_set_dh_paramgen_type(EVP_PKEY_CTX *ctx, int type); 107 int EVP_PKEY_CTX_set_dh_pad(EVP_PKEY_CTX *ctx, int pad); 108 int EVP_PKEY_CTX_set_dh_nid(EVP_PKEY_CTX *ctx, int nid); 109 int EVP_PKEY_CTX_set_dh_rfc5114(EVP_PKEY_CTX *ctx, int rfc5114); 110 int EVP_PKEY_CTX_set_dhx_rfc5114(EVP_PKEY_CTX *ctx, int rfc5114); 111 int EVP_PKEY_CTX_set_dh_kdf_type(EVP_PKEY_CTX *ctx, int kdf); 112 int EVP_PKEY_CTX_get_dh_kdf_type(EVP_PKEY_CTX *ctx); 113 int EVP_PKEY_CTX_set0_dh_kdf_oid(EVP_PKEY_CTX *ctx, ASN1_OBJECT *oid); 114 int EVP_PKEY_CTX_get0_dh_kdf_oid(EVP_PKEY_CTX *ctx, ASN1_OBJECT **oid); 115 int EVP_PKEY_CTX_set_dh_kdf_md(EVP_PKEY_CTX *ctx, const EVP_MD *md); 116 int EVP_PKEY_CTX_get_dh_kdf_md(EVP_PKEY_CTX *ctx, const EVP_MD **md); 117 int EVP_PKEY_CTX_set_dh_kdf_outlen(EVP_PKEY_CTX *ctx, int len); 118 int EVP_PKEY_CTX_get_dh_kdf_outlen(EVP_PKEY_CTX *ctx, int *len); 119 int EVP_PKEY_CTX_set0_dh_kdf_ukm(EVP_PKEY_CTX *ctx, unsigned char *ukm, int len); 120 int EVP_PKEY_CTX_get0_dh_kdf_ukm(EVP_PKEY_CTX *ctx, unsigned char **ukm); 121 122 #include <openssl/ec.h> 123 124 int EVP_PKEY_CTX_set_ec_paramgen_curve_nid(EVP_PKEY_CTX *ctx, int nid); 125 int EVP_PKEY_CTX_set_ec_param_enc(EVP_PKEY_CTX *ctx, int param_enc); 126 int EVP_PKEY_CTX_set_ecdh_cofactor_mode(EVP_PKEY_CTX *ctx, int cofactor_mode); 127 int EVP_PKEY_CTX_get_ecdh_cofactor_mode(EVP_PKEY_CTX *ctx); 128 int EVP_PKEY_CTX_set_ecdh_kdf_type(EVP_PKEY_CTX *ctx, int kdf); 129 int EVP_PKEY_CTX_get_ecdh_kdf_type(EVP_PKEY_CTX *ctx); 130 int EVP_PKEY_CTX_set_ecdh_kdf_md(EVP_PKEY_CTX *ctx, const EVP_MD *md); 131 int EVP_PKEY_CTX_get_ecdh_kdf_md(EVP_PKEY_CTX *ctx, const EVP_MD **md); 132 int EVP_PKEY_CTX_set_ecdh_kdf_outlen(EVP_PKEY_CTX *ctx, int len); 133 int EVP_PKEY_CTX_get_ecdh_kdf_outlen(EVP_PKEY_CTX *ctx, int *len); 134 int EVP_PKEY_CTX_set0_ecdh_kdf_ukm(EVP_PKEY_CTX *ctx, unsigned char *ukm, int len); 135 int EVP_PKEY_CTX_get0_ecdh_kdf_ukm(EVP_PKEY_CTX *ctx, unsigned char **ukm); 136 137 int EVP_PKEY_CTX_set1_id(EVP_PKEY_CTX *ctx, void *id, size_t id_len); 138 int EVP_PKEY_CTX_get1_id(EVP_PKEY_CTX *ctx, void *id); 139 int EVP_PKEY_CTX_get1_id_len(EVP_PKEY_CTX *ctx, size_t *id_len); 140 141=head1 DESCRIPTION 142 143The function EVP_PKEY_CTX_ctrl() sends a control operation to the context 144B<ctx>. The key type used must match B<keytype> if it is not -1. The parameter 145B<optype> is a mask indicating which operations the control can be applied to. 146The control command is indicated in B<cmd> and any additional arguments in 147B<p1> and B<p2>. 148 149For B<cmd> = B<EVP_PKEY_CTRL_SET_MAC_KEY>, B<p1> is the length of the MAC key, 150and B<p2> is MAC key. This is used by Poly1305, SipHash, HMAC and CMAC. 151 152Applications will not normally call EVP_PKEY_CTX_ctrl() directly but will 153instead call one of the algorithm specific macros below. 154 155The function EVP_PKEY_CTX_ctrl_uint64() is a wrapper that directly passes a 156uint64 value as B<p2> to EVP_PKEY_CTX_ctrl(). 157 158The function EVP_PKEY_CTX_ctrl_str() allows an application to send an algorithm 159specific control operation to a context B<ctx> in string form. This is 160intended to be used for options specified on the command line or in text 161files. The commands supported are documented in the openssl utility 162command line pages for the option B<-pkeyopt> which is supported by the 163B<pkeyutl>, B<genpkey> and B<req> commands. 164 165The function EVP_PKEY_CTX_md() sends a message digest control operation 166to the context B<ctx>. The message digest is specified by its name B<md>. 167 168All the remaining "functions" are implemented as macros. 169 170The EVP_PKEY_CTX_set_signature_md() macro sets the message digest type used 171in a signature. It can be used in the RSA, DSA and ECDSA algorithms. 172 173The EVP_PKEY_CTX_get_signature_md() macro gets the message digest type used in a 174signature. It can be used in the RSA, DSA and ECDSA algorithms. 175 176Key generation typically involves setting up parameters to be used and 177generating the private and public key data. Some algorithm implementations 178allow private key data to be set explicitly using the EVP_PKEY_CTX_set_mac_key() 179macro. In this case key generation is simply the process of setting up the 180parameters for the key and then setting the raw key data to the value explicitly 181provided by that macro. Normally applications would call 182L<EVP_PKEY_new_raw_private_key(3)> or similar functions instead of this macro. 183 184The EVP_PKEY_CTX_set_mac_key() macro can be used with any of the algorithms 185supported by the L<EVP_PKEY_new_raw_private_key(3)> function. 186 187=head2 RSA parameters 188 189The EVP_PKEY_CTX_set_rsa_padding() macro sets the RSA padding mode for B<ctx>. 190The B<pad> parameter can take the value B<RSA_PKCS1_PADDING> for PKCS#1 191padding, B<RSA_SSLV23_PADDING> for SSLv23 padding, B<RSA_NO_PADDING> for 192no padding, B<RSA_PKCS1_OAEP_PADDING> for OAEP padding (encrypt and 193decrypt only), B<RSA_X931_PADDING> for X9.31 padding (signature operations 194only) and B<RSA_PKCS1_PSS_PADDING> (sign and verify only). 195 196Two RSA padding modes behave differently if EVP_PKEY_CTX_set_signature_md() 197is used. If this macro is called for PKCS#1 padding the plaintext buffer is 198an actual digest value and is encapsulated in a DigestInfo structure according 199to PKCS#1 when signing and this structure is expected (and stripped off) when 200verifying. If this control is not used with RSA and PKCS#1 padding then the 201supplied data is used directly and not encapsulated. In the case of X9.31 202padding for RSA the algorithm identifier byte is added or checked and removed 203if this control is called. If it is not called then the first byte of the plaintext 204buffer is expected to be the algorithm identifier byte. 205 206The EVP_PKEY_CTX_get_rsa_padding() macro gets the RSA padding mode for B<ctx>. 207 208The EVP_PKEY_CTX_set_rsa_pss_saltlen() macro sets the RSA PSS salt length to 209B<len>. As its name implies it is only supported for PSS padding. Three special 210values are supported: B<RSA_PSS_SALTLEN_DIGEST> sets the salt length to the 211digest length, B<RSA_PSS_SALTLEN_MAX> sets the salt length to the maximum 212permissible value. When verifying B<RSA_PSS_SALTLEN_AUTO> causes the salt length 213to be automatically determined based on the B<PSS> block structure. If this 214macro is not called maximum salt length is used when signing and auto detection 215when verifying is used by default. 216 217The EVP_PKEY_CTX_get_rsa_pss_saltlen() macro gets the RSA PSS salt length 218for B<ctx>. The padding mode must have been set to B<RSA_PKCS1_PSS_PADDING>. 219 220The EVP_PKEY_CTX_set_rsa_keygen_bits() macro sets the RSA key length for 221RSA key generation to B<bits>. If not specified 1024 bits is used. 222 223The EVP_PKEY_CTX_set_rsa_keygen_pubexp() macro sets the public exponent value 224for RSA key generation to B<pubexp>. Currently it should be an odd integer. The 225B<pubexp> pointer is used internally by this function so it should not be 226modified or freed after the call. If not specified 65537 is used. 227 228The EVP_PKEY_CTX_set_rsa_keygen_primes() macro sets the number of primes for 229RSA key generation to B<primes>. If not specified 2 is used. 230 231The EVP_PKEY_CTX_set_rsa_mgf1_md() macro sets the MGF1 digest for RSA padding 232schemes to B<md>. If not explicitly set the signing digest is used. The 233padding mode must have been set to B<RSA_PKCS1_OAEP_PADDING> 234or B<RSA_PKCS1_PSS_PADDING>. 235 236The EVP_PKEY_CTX_get_rsa_mgf1_md() macro gets the MGF1 digest for B<ctx>. 237If not explicitly set the signing digest is used. The padding mode must have 238been set to B<RSA_PKCS1_OAEP_PADDING> or B<RSA_PKCS1_PSS_PADDING>. 239 240The EVP_PKEY_CTX_set_rsa_oaep_md() macro sets the message digest type used 241in RSA OAEP to B<md>. The padding mode must have been set to 242B<RSA_PKCS1_OAEP_PADDING>. 243 244The EVP_PKEY_CTX_get_rsa_oaep_md() macro gets the message digest type used 245in RSA OAEP to B<md>. The padding mode must have been set to 246B<RSA_PKCS1_OAEP_PADDING>. 247 248The EVP_PKEY_CTX_set0_rsa_oaep_label() macro sets the RSA OAEP label to 249B<label> and its length to B<len>. If B<label> is NULL or B<len> is 0, 250the label is cleared. The library takes ownership of the label so the 251caller should not free the original memory pointed to by B<label>. 252The padding mode must have been set to B<RSA_PKCS1_OAEP_PADDING>. 253 254The EVP_PKEY_CTX_get0_rsa_oaep_label() macro gets the RSA OAEP label to 255B<label>. The return value is the label length. The padding mode 256must have been set to B<RSA_PKCS1_OAEP_PADDING>. The resulting pointer is owned 257by the library and should not be freed by the caller. 258 259=head2 DSA parameters 260 261The EVP_PKEY_CTX_set_dsa_paramgen_bits() macro sets the number of bits used 262for DSA parameter generation to B<nbits>. If not specified, 1024 is used. 263 264The EVP_PKEY_CTX_set_dsa_paramgen_q_bits() macro sets the number of bits in the 265subprime parameter B<q> for DSA parameter generation to B<qbits>. If not 266specified, 160 is used. If a digest function is specified below, this parameter 267is ignored and instead, the number of bits in B<q> matches the size of the 268digest. 269 270The EVP_PKEY_CTX_set_dsa_paramgen_md() macro sets the digest function used for 271DSA parameter generation to B<md>. If not specified, one of SHA-1, SHA-224, or 272SHA-256 is selected to match the bit length of B<q> above. 273 274=head2 DH parameters 275 276The EVP_PKEY_CTX_set_dh_paramgen_prime_len() macro sets the length of the DH 277prime parameter B<p> for DH parameter generation. If this macro is not called 278then 1024 is used. Only accepts lengths greater than or equal to 256. 279 280The EVP_PKEY_CTX_set_dh_paramgen_subprime_len() macro sets the length of the DH 281optional subprime parameter B<q> for DH parameter generation. The default is 282256 if the prime is at least 2048 bits long or 160 otherwise. The DH 283paramgen type must have been set to x9.42. 284 285The EVP_PKEY_CTX_set_dh_paramgen_generator() macro sets DH generator to B<gen> 286for DH parameter generation. If not specified 2 is used. 287 288The EVP_PKEY_CTX_set_dh_paramgen_type() macro sets the key type for DH 289parameter generation. Use 0 for PKCS#3 DH and 1 for X9.42 DH. 290The default is 0. 291 292The EVP_PKEY_CTX_set_dh_pad() macro sets the DH padding mode. If B<pad> is 2931 the shared secret is padded with zeroes up to the size of the DH prime B<p>. 294If B<pad> is zero (the default) then no padding is performed. 295 296EVP_PKEY_CTX_set_dh_nid() sets the DH parameters to values corresponding to 297B<nid> as defined in RFC7919. The B<nid> parameter must be B<NID_ffdhe2048>, 298B<NID_ffdhe3072>, B<NID_ffdhe4096>, B<NID_ffdhe6144>, B<NID_ffdhe8192> 299or B<NID_undef> to clear the stored value. This macro can be called during 300parameter or key generation. 301The nid parameter and the rfc5114 parameter are mutually exclusive. 302 303The EVP_PKEY_CTX_set_dh_rfc5114() and EVP_PKEY_CTX_set_dhx_rfc5114() macros are 304synonymous. They set the DH parameters to the values defined in RFC5114. The 305B<rfc5114> parameter must be 1, 2 or 3 corresponding to RFC5114 sections 3062.1, 2.2 and 2.3. or 0 to clear the stored value. This macro can be called 307during parameter generation. The B<ctx> must have a key type of 308B<EVP_PKEY_DHX>. 309The rfc5114 parameter and the nid parameter are mutually exclusive. 310 311=head2 DH key derivation function parameters 312 313Note that all of the following functions require that the B<ctx> parameter has 314a private key type of B<EVP_PKEY_DHX>. When using key derivation, the output of 315EVP_PKEY_derive() is the output of the KDF instead of the DH shared secret. 316The KDF output is typically used as a Key Encryption Key (KEK) that in turn 317encrypts a Content Encryption Key (CEK). 318 319The EVP_PKEY_CTX_set_dh_kdf_type() macro sets the key derivation function type 320to B<kdf> for DH key derivation. Possible values are B<EVP_PKEY_DH_KDF_NONE> 321and B<EVP_PKEY_DH_KDF_X9_42> which uses the key derivation specified in RFC2631 322(based on the keying algorithm described in X9.42). When using key derivation, 323the B<kdf_oid>, B<kdf_md> and B<kdf_outlen> parameters must also be specified. 324 325The EVP_PKEY_CTX_get_dh_kdf_type() macro gets the key derivation function type 326for B<ctx> used for DH key derivation. Possible values are B<EVP_PKEY_DH_KDF_NONE> 327and B<EVP_PKEY_DH_KDF_X9_42>. 328 329The EVP_PKEY_CTX_set0_dh_kdf_oid() macro sets the key derivation function 330object identifier to B<oid> for DH key derivation. This OID should identify 331the algorithm to be used with the Content Encryption Key. 332The library takes ownership of the object identifier so the caller should not 333free the original memory pointed to by B<oid>. 334 335The EVP_PKEY_CTX_get0_dh_kdf_oid() macro gets the key derivation function oid 336for B<ctx> used for DH key derivation. The resulting pointer is owned by the 337library and should not be freed by the caller. 338 339The EVP_PKEY_CTX_set_dh_kdf_md() macro sets the key derivation function 340message digest to B<md> for DH key derivation. Note that RFC2631 specifies 341that this digest should be SHA1 but OpenSSL tolerates other digests. 342 343The EVP_PKEY_CTX_get_dh_kdf_md() macro gets the key derivation function 344message digest for B<ctx> used for DH key derivation. 345 346The EVP_PKEY_CTX_set_dh_kdf_outlen() macro sets the key derivation function 347output length to B<len> for DH key derivation. 348 349The EVP_PKEY_CTX_get_dh_kdf_outlen() macro gets the key derivation function 350output length for B<ctx> used for DH key derivation. 351 352The EVP_PKEY_CTX_set0_dh_kdf_ukm() macro sets the user key material to 353B<ukm> and its length to B<len> for DH key derivation. This parameter is optional 354and corresponds to the partyAInfo field in RFC2631 terms. The specification 355requires that it is 512 bits long but this is not enforced by OpenSSL. 356The library takes ownership of the user key material so the caller should not 357free the original memory pointed to by B<ukm>. 358 359The EVP_PKEY_CTX_get0_dh_kdf_ukm() macro gets the user key material for B<ctx>. 360The return value is the user key material length. The resulting pointer is owned 361by the library and should not be freed by the caller. 362 363=head2 EC parameters 364 365The EVP_PKEY_CTX_set_ec_paramgen_curve_nid() sets the EC curve for EC parameter 366generation to B<nid>. For EC parameter generation this macro must be called 367or an error occurs because there is no default curve. 368This function can also be called to set the curve explicitly when 369generating an EC key. 370 371The EVP_PKEY_CTX_set_ec_param_enc() macro sets the EC parameter encoding to 372B<param_enc> when generating EC parameters or an EC key. The encoding can be 373B<OPENSSL_EC_EXPLICIT_CURVE> for explicit parameters (the default in versions 374of OpenSSL before 1.1.0) or B<OPENSSL_EC_NAMED_CURVE> to use named curve form. 375For maximum compatibility the named curve form should be used. Note: the 376B<OPENSSL_EC_NAMED_CURVE> value was added in OpenSSL 1.1.0; previous 377versions should use 0 instead. 378 379=head2 ECDH parameters 380 381The EVP_PKEY_CTX_set_ecdh_cofactor_mode() macro sets the cofactor mode to 382B<cofactor_mode> for ECDH key derivation. Possible values are 1 to enable 383cofactor key derivation, 0 to disable it and -1 to clear the stored cofactor 384mode and fallback to the private key cofactor mode. 385 386The EVP_PKEY_CTX_get_ecdh_cofactor_mode() macro returns the cofactor mode for 387B<ctx> used for ECDH key derivation. Possible values are 1 when cofactor key 388derivation is enabled and 0 otherwise. 389 390=head2 ECDH key derivation function parameters 391 392The EVP_PKEY_CTX_set_ecdh_kdf_type() macro sets the key derivation function type 393to B<kdf> for ECDH key derivation. Possible values are B<EVP_PKEY_ECDH_KDF_NONE> 394and B<EVP_PKEY_ECDH_KDF_X9_63> which uses the key derivation specified in X9.63. 395When using key derivation, the B<kdf_md> and B<kdf_outlen> parameters must 396also be specified. 397 398The EVP_PKEY_CTX_get_ecdh_kdf_type() macro returns the key derivation function 399type for B<ctx> used for ECDH key derivation. Possible values are 400B<EVP_PKEY_ECDH_KDF_NONE> and B<EVP_PKEY_ECDH_KDF_X9_63>. 401 402The EVP_PKEY_CTX_set_ecdh_kdf_md() macro sets the key derivation function 403message digest to B<md> for ECDH key derivation. Note that X9.63 specifies 404that this digest should be SHA1 but OpenSSL tolerates other digests. 405 406The EVP_PKEY_CTX_get_ecdh_kdf_md() macro gets the key derivation function 407message digest for B<ctx> used for ECDH key derivation. 408 409The EVP_PKEY_CTX_set_ecdh_kdf_outlen() macro sets the key derivation function 410output length to B<len> for ECDH key derivation. 411 412The EVP_PKEY_CTX_get_ecdh_kdf_outlen() macro gets the key derivation function 413output length for B<ctx> used for ECDH key derivation. 414 415The EVP_PKEY_CTX_set0_ecdh_kdf_ukm() macro sets the user key material to B<ukm> 416for ECDH key derivation. This parameter is optional and corresponds to the 417shared info in X9.63 terms. The library takes ownership of the user key material 418so the caller should not free the original memory pointed to by B<ukm>. 419 420The EVP_PKEY_CTX_get0_ecdh_kdf_ukm() macro gets the user key material for B<ctx>. 421The return value is the user key material length. The resulting pointer is owned 422by the library and should not be freed by the caller. 423 424=head2 Other parameters 425 426The EVP_PKEY_CTX_set1_id(), EVP_PKEY_CTX_get1_id() and EVP_PKEY_CTX_get1_id_len() 427macros are used to manipulate the special identifier field for specific signature 428algorithms such as SM2. The EVP_PKEY_CTX_set1_id() sets an ID pointed by B<id> with 429the length B<id_len> to the library. The library takes a copy of the id so that 430the caller can safely free the original memory pointed to by B<id>. The 431EVP_PKEY_CTX_get1_id_len() macro returns the length of the ID set via a previous 432call to EVP_PKEY_CTX_set1_id(). The length is usually used to allocate adequate 433memory for further calls to EVP_PKEY_CTX_get1_id(). The EVP_PKEY_CTX_get1_id() 434macro returns the previously set ID value to caller in B<id>. The caller should 435allocate adequate memory space for the B<id> before calling EVP_PKEY_CTX_get1_id(). 436 437=head1 RETURN VALUES 438 439EVP_PKEY_CTX_ctrl() and its macros return a positive value for success and 0 440or a negative value for failure. In particular a return value of -2 441indicates the operation is not supported by the public key algorithm. 442 443=head1 SEE ALSO 444 445L<EVP_PKEY_CTX_new(3)>, 446L<EVP_PKEY_encrypt(3)>, 447L<EVP_PKEY_decrypt(3)>, 448L<EVP_PKEY_sign(3)>, 449L<EVP_PKEY_verify(3)>, 450L<EVP_PKEY_verify_recover(3)>, 451L<EVP_PKEY_derive(3)>, 452L<EVP_PKEY_keygen(3)> 453 454=head1 HISTORY 455 456The 457EVP_PKEY_CTX_set1_id(), EVP_PKEY_CTX_get1_id() and EVP_PKEY_CTX_get1_id_len() 458macros were added in 1.1.1, other functions were added in OpenSSL 1.0.0. 459 460=head1 COPYRIGHT 461 462Copyright 2006-2018 The OpenSSL Project Authors. All Rights Reserved. 463 464Licensed under the OpenSSL license (the "License"). You may not use 465this file except in compliance with the License. You can obtain a copy 466in the file LICENSE in the source distribution or at 467L<https://www.openssl.org/source/license.html>. 468 469=cut 470