1=pod 2 3=head1 NAME 4 5EVP_CIPHER_CTX_new, 6EVP_CIPHER_CTX_reset, 7EVP_CIPHER_CTX_free, 8EVP_EncryptInit_ex, 9EVP_EncryptUpdate, 10EVP_EncryptFinal_ex, 11EVP_DecryptInit_ex, 12EVP_DecryptUpdate, 13EVP_DecryptFinal_ex, 14EVP_CipherInit_ex, 15EVP_CipherUpdate, 16EVP_CipherFinal_ex, 17EVP_CIPHER_CTX_set_key_length, 18EVP_CIPHER_CTX_ctrl, 19EVP_EncryptInit, 20EVP_EncryptFinal, 21EVP_DecryptInit, 22EVP_DecryptFinal, 23EVP_CipherInit, 24EVP_CipherFinal, 25EVP_get_cipherbyname, 26EVP_get_cipherbynid, 27EVP_get_cipherbyobj, 28EVP_CIPHER_nid, 29EVP_CIPHER_block_size, 30EVP_CIPHER_key_length, 31EVP_CIPHER_iv_length, 32EVP_CIPHER_flags, 33EVP_CIPHER_mode, 34EVP_CIPHER_type, 35EVP_CIPHER_CTX_cipher, 36EVP_CIPHER_CTX_nid, 37EVP_CIPHER_CTX_block_size, 38EVP_CIPHER_CTX_key_length, 39EVP_CIPHER_CTX_iv_length, 40EVP_CIPHER_CTX_get_app_data, 41EVP_CIPHER_CTX_set_app_data, 42EVP_CIPHER_CTX_type, 43EVP_CIPHER_CTX_flags, 44EVP_CIPHER_CTX_mode, 45EVP_CIPHER_param_to_asn1, 46EVP_CIPHER_asn1_to_param, 47EVP_CIPHER_CTX_set_padding, 48EVP_enc_null 49- EVP cipher routines 50 51=head1 SYNOPSIS 52 53=for comment generic 54 55 #include <openssl/evp.h> 56 57 EVP_CIPHER_CTX *EVP_CIPHER_CTX_new(void); 58 int EVP_CIPHER_CTX_reset(EVP_CIPHER_CTX *ctx); 59 void EVP_CIPHER_CTX_free(EVP_CIPHER_CTX *ctx); 60 61 int EVP_EncryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type, 62 ENGINE *impl, const unsigned char *key, const unsigned char *iv); 63 int EVP_EncryptUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out, 64 int *outl, const unsigned char *in, int inl); 65 int EVP_EncryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl); 66 67 int EVP_DecryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type, 68 ENGINE *impl, const unsigned char *key, const unsigned char *iv); 69 int EVP_DecryptUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out, 70 int *outl, const unsigned char *in, int inl); 71 int EVP_DecryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *outm, int *outl); 72 73 int EVP_CipherInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type, 74 ENGINE *impl, const unsigned char *key, const unsigned char *iv, int enc); 75 int EVP_CipherUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out, 76 int *outl, const unsigned char *in, int inl); 77 int EVP_CipherFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *outm, int *outl); 78 79 int EVP_EncryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type, 80 const unsigned char *key, const unsigned char *iv); 81 int EVP_EncryptFinal(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl); 82 83 int EVP_DecryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type, 84 const unsigned char *key, const unsigned char *iv); 85 int EVP_DecryptFinal(EVP_CIPHER_CTX *ctx, unsigned char *outm, int *outl); 86 87 int EVP_CipherInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type, 88 const unsigned char *key, const unsigned char *iv, int enc); 89 int EVP_CipherFinal(EVP_CIPHER_CTX *ctx, unsigned char *outm, int *outl); 90 91 int EVP_CIPHER_CTX_set_padding(EVP_CIPHER_CTX *x, int padding); 92 int EVP_CIPHER_CTX_set_key_length(EVP_CIPHER_CTX *x, int keylen); 93 int EVP_CIPHER_CTX_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg, void *ptr); 94 int EVP_CIPHER_CTX_rand_key(EVP_CIPHER_CTX *ctx, unsigned char *key); 95 96 const EVP_CIPHER *EVP_get_cipherbyname(const char *name); 97 const EVP_CIPHER *EVP_get_cipherbynid(int nid); 98 const EVP_CIPHER *EVP_get_cipherbyobj(const ASN1_OBJECT *a); 99 100 int EVP_CIPHER_nid(const EVP_CIPHER *e); 101 int EVP_CIPHER_block_size(const EVP_CIPHER *e); 102 int EVP_CIPHER_key_length(const EVP_CIPHER *e); 103 int EVP_CIPHER_iv_length(const EVP_CIPHER *e); 104 unsigned long EVP_CIPHER_flags(const EVP_CIPHER *e); 105 unsigned long EVP_CIPHER_mode(const EVP_CIPHER *e); 106 int EVP_CIPHER_type(const EVP_CIPHER *ctx); 107 108 const EVP_CIPHER *EVP_CIPHER_CTX_cipher(const EVP_CIPHER_CTX *ctx); 109 int EVP_CIPHER_CTX_nid(const EVP_CIPHER_CTX *ctx); 110 int EVP_CIPHER_CTX_block_size(const EVP_CIPHER_CTX *ctx); 111 int EVP_CIPHER_CTX_key_length(const EVP_CIPHER_CTX *ctx); 112 int EVP_CIPHER_CTX_iv_length(const EVP_CIPHER_CTX *ctx); 113 void *EVP_CIPHER_CTX_get_app_data(const EVP_CIPHER_CTX *ctx); 114 void EVP_CIPHER_CTX_set_app_data(const EVP_CIPHER_CTX *ctx, void *data); 115 int EVP_CIPHER_CTX_type(const EVP_CIPHER_CTX *ctx); 116 int EVP_CIPHER_CTX_mode(const EVP_CIPHER_CTX *ctx); 117 118 int EVP_CIPHER_param_to_asn1(EVP_CIPHER_CTX *c, ASN1_TYPE *type); 119 int EVP_CIPHER_asn1_to_param(EVP_CIPHER_CTX *c, ASN1_TYPE *type); 120 121=head1 DESCRIPTION 122 123The EVP cipher routines are a high level interface to certain 124symmetric ciphers. 125 126EVP_CIPHER_CTX_new() creates a cipher context. 127 128EVP_CIPHER_CTX_free() clears all information from a cipher context 129and free up any allocated memory associate with it, including B<ctx> 130itself. This function should be called after all operations using a 131cipher are complete so sensitive information does not remain in 132memory. 133 134EVP_EncryptInit_ex() sets up cipher context B<ctx> for encryption 135with cipher B<type> from ENGINE B<impl>. B<ctx> must be created 136before calling this function. B<type> is normally supplied 137by a function such as EVP_aes_256_cbc(). If B<impl> is NULL then the 138default implementation is used. B<key> is the symmetric key to use 139and B<iv> is the IV to use (if necessary), the actual number of bytes 140used for the key and IV depends on the cipher. It is possible to set 141all parameters to NULL except B<type> in an initial call and supply 142the remaining parameters in subsequent calls, all of which have B<type> 143set to NULL. This is done when the default cipher parameters are not 144appropriate. 145 146EVP_EncryptUpdate() encrypts B<inl> bytes from the buffer B<in> and 147writes the encrypted version to B<out>. This function can be called 148multiple times to encrypt successive blocks of data. The amount 149of data written depends on the block alignment of the encrypted data: 150as a result the amount of data written may be anything from zero bytes 151to (inl + cipher_block_size - 1) so B<out> should contain sufficient 152room. The actual number of bytes written is placed in B<outl>. It also 153checks if B<in> and B<out> are partially overlapping, and if they are 1540 is returned to indicate failure. 155 156If padding is enabled (the default) then EVP_EncryptFinal_ex() encrypts 157the "final" data, that is any data that remains in a partial block. 158It uses standard block padding (aka PKCS padding) as described in 159the NOTES section, below. The encrypted 160final data is written to B<out> which should have sufficient space for 161one cipher block. The number of bytes written is placed in B<outl>. After 162this function is called the encryption operation is finished and no further 163calls to EVP_EncryptUpdate() should be made. 164 165If padding is disabled then EVP_EncryptFinal_ex() will not encrypt any more 166data and it will return an error if any data remains in a partial block: 167that is if the total data length is not a multiple of the block size. 168 169EVP_DecryptInit_ex(), EVP_DecryptUpdate() and EVP_DecryptFinal_ex() are the 170corresponding decryption operations. EVP_DecryptFinal() will return an 171error code if padding is enabled and the final block is not correctly 172formatted. The parameters and restrictions are identical to the encryption 173operations except that if padding is enabled the decrypted data buffer B<out> 174passed to EVP_DecryptUpdate() should have sufficient room for 175(B<inl> + cipher_block_size) bytes unless the cipher block size is 1 in 176which case B<inl> bytes is sufficient. 177 178EVP_CipherInit_ex(), EVP_CipherUpdate() and EVP_CipherFinal_ex() are 179functions that can be used for decryption or encryption. The operation 180performed depends on the value of the B<enc> parameter. It should be set 181to 1 for encryption, 0 for decryption and -1 to leave the value unchanged 182(the actual value of 'enc' being supplied in a previous call). 183 184EVP_CIPHER_CTX_reset() clears all information from a cipher context 185and free up any allocated memory associate with it, except the B<ctx> 186itself. This function should be called anytime B<ctx> is to be reused 187for another EVP_CipherInit() / EVP_CipherUpdate() / EVP_CipherFinal() 188series of calls. 189 190EVP_EncryptInit(), EVP_DecryptInit() and EVP_CipherInit() behave in a 191similar way to EVP_EncryptInit_ex(), EVP_DecryptInit_ex() and 192EVP_CipherInit_ex() except they always use the default cipher implementation. 193 194EVP_EncryptFinal(), EVP_DecryptFinal() and EVP_CipherFinal() are 195identical to EVP_EncryptFinal_ex(), EVP_DecryptFinal_ex() and 196EVP_CipherFinal_ex(). In previous releases they also cleaned up 197the B<ctx>, but this is no longer done and EVP_CIPHER_CTX_clean() 198must be called to free any context resources. 199 200EVP_get_cipherbyname(), EVP_get_cipherbynid() and EVP_get_cipherbyobj() 201return an EVP_CIPHER structure when passed a cipher name, a NID or an 202ASN1_OBJECT structure. 203 204EVP_CIPHER_nid() and EVP_CIPHER_CTX_nid() return the NID of a cipher when 205passed an B<EVP_CIPHER> or B<EVP_CIPHER_CTX> structure. The actual NID 206value is an internal value which may not have a corresponding OBJECT 207IDENTIFIER. 208 209EVP_CIPHER_CTX_set_padding() enables or disables padding. This 210function should be called after the context is set up for encryption 211or decryption with EVP_EncryptInit_ex(), EVP_DecryptInit_ex() or 212EVP_CipherInit_ex(). By default encryption operations are padded using 213standard block padding and the padding is checked and removed when 214decrypting. If the B<pad> parameter is zero then no padding is 215performed, the total amount of data encrypted or decrypted must then 216be a multiple of the block size or an error will occur. 217 218EVP_CIPHER_key_length() and EVP_CIPHER_CTX_key_length() return the key 219length of a cipher when passed an B<EVP_CIPHER> or B<EVP_CIPHER_CTX> 220structure. The constant B<EVP_MAX_KEY_LENGTH> is the maximum key length 221for all ciphers. Note: although EVP_CIPHER_key_length() is fixed for a 222given cipher, the value of EVP_CIPHER_CTX_key_length() may be different 223for variable key length ciphers. 224 225EVP_CIPHER_CTX_set_key_length() sets the key length of the cipher ctx. 226If the cipher is a fixed length cipher then attempting to set the key 227length to any value other than the fixed value is an error. 228 229EVP_CIPHER_iv_length() and EVP_CIPHER_CTX_iv_length() return the IV 230length of a cipher when passed an B<EVP_CIPHER> or B<EVP_CIPHER_CTX>. 231It will return zero if the cipher does not use an IV. The constant 232B<EVP_MAX_IV_LENGTH> is the maximum IV length for all ciphers. 233 234EVP_CIPHER_block_size() and EVP_CIPHER_CTX_block_size() return the block 235size of a cipher when passed an B<EVP_CIPHER> or B<EVP_CIPHER_CTX> 236structure. The constant B<EVP_MAX_BLOCK_LENGTH> is also the maximum block 237length for all ciphers. 238 239EVP_CIPHER_type() and EVP_CIPHER_CTX_type() return the type of the passed 240cipher or context. This "type" is the actual NID of the cipher OBJECT 241IDENTIFIER as such it ignores the cipher parameters and 40 bit RC2 and 242128 bit RC2 have the same NID. If the cipher does not have an object 243identifier or does not have ASN1 support this function will return 244B<NID_undef>. 245 246EVP_CIPHER_CTX_cipher() returns the B<EVP_CIPHER> structure when passed 247an B<EVP_CIPHER_CTX> structure. 248 249EVP_CIPHER_mode() and EVP_CIPHER_CTX_mode() return the block cipher mode: 250EVP_CIPH_ECB_MODE, EVP_CIPH_CBC_MODE, EVP_CIPH_CFB_MODE, EVP_CIPH_OFB_MODE, 251EVP_CIPH_CTR_MODE, EVP_CIPH_GCM_MODE, EVP_CIPH_CCM_MODE, EVP_CIPH_XTS_MODE, 252EVP_CIPH_WRAP_MODE or EVP_CIPH_OCB_MODE. If the cipher is a stream cipher then 253EVP_CIPH_STREAM_CIPHER is returned. 254 255EVP_CIPHER_param_to_asn1() sets the AlgorithmIdentifier "parameter" based 256on the passed cipher. This will typically include any parameters and an 257IV. The cipher IV (if any) must be set when this call is made. This call 258should be made before the cipher is actually "used" (before any 259EVP_EncryptUpdate(), EVP_DecryptUpdate() calls for example). This function 260may fail if the cipher does not have any ASN1 support. 261 262EVP_CIPHER_asn1_to_param() sets the cipher parameters based on an ASN1 263AlgorithmIdentifier "parameter". The precise effect depends on the cipher 264In the case of RC2, for example, it will set the IV and effective key length. 265This function should be called after the base cipher type is set but before 266the key is set. For example EVP_CipherInit() will be called with the IV and 267key set to NULL, EVP_CIPHER_asn1_to_param() will be called and finally 268EVP_CipherInit() again with all parameters except the key set to NULL. It is 269possible for this function to fail if the cipher does not have any ASN1 support 270or the parameters cannot be set (for example the RC2 effective key length 271is not supported. 272 273EVP_CIPHER_CTX_ctrl() allows various cipher specific parameters to be determined 274and set. 275 276EVP_CIPHER_CTX_rand_key() generates a random key of the appropriate length 277based on the cipher context. The EVP_CIPHER can provide its own random key 278generation routine to support keys of a specific form. B<Key> must point to a 279buffer at least as big as the value returned by EVP_CIPHER_CTX_key_length(). 280 281=head1 RETURN VALUES 282 283EVP_CIPHER_CTX_new() returns a pointer to a newly created 284B<EVP_CIPHER_CTX> for success and B<NULL> for failure. 285 286EVP_EncryptInit_ex(), EVP_EncryptUpdate() and EVP_EncryptFinal_ex() 287return 1 for success and 0 for failure. 288 289EVP_DecryptInit_ex() and EVP_DecryptUpdate() return 1 for success and 0 for failure. 290EVP_DecryptFinal_ex() returns 0 if the decrypt failed or 1 for success. 291 292EVP_CipherInit_ex() and EVP_CipherUpdate() return 1 for success and 0 for failure. 293EVP_CipherFinal_ex() returns 0 for a decryption failure or 1 for success. 294 295EVP_CIPHER_CTX_reset() returns 1 for success and 0 for failure. 296 297EVP_get_cipherbyname(), EVP_get_cipherbynid() and EVP_get_cipherbyobj() 298return an B<EVP_CIPHER> structure or NULL on error. 299 300EVP_CIPHER_nid() and EVP_CIPHER_CTX_nid() return a NID. 301 302EVP_CIPHER_block_size() and EVP_CIPHER_CTX_block_size() return the block 303size. 304 305EVP_CIPHER_key_length() and EVP_CIPHER_CTX_key_length() return the key 306length. 307 308EVP_CIPHER_CTX_set_padding() always returns 1. 309 310EVP_CIPHER_iv_length() and EVP_CIPHER_CTX_iv_length() return the IV 311length or zero if the cipher does not use an IV. 312 313EVP_CIPHER_type() and EVP_CIPHER_CTX_type() return the NID of the cipher's 314OBJECT IDENTIFIER or NID_undef if it has no defined OBJECT IDENTIFIER. 315 316EVP_CIPHER_CTX_cipher() returns an B<EVP_CIPHER> structure. 317 318EVP_CIPHER_param_to_asn1() and EVP_CIPHER_asn1_to_param() return greater 319than zero for success and zero or a negative number on failure. 320 321EVP_CIPHER_CTX_rand_key() returns 1 for success. 322 323=head1 CIPHER LISTING 324 325All algorithms have a fixed key length unless otherwise stated. 326 327Refer to L<SEE ALSO> for the full list of ciphers available through the EVP 328interface. 329 330=over 4 331 332=item EVP_enc_null() 333 334Null cipher: does nothing. 335 336=back 337 338=head1 AEAD Interface 339 340The EVP interface for Authenticated Encryption with Associated Data (AEAD) 341modes are subtly altered and several additional I<ctrl> operations are supported 342depending on the mode specified. 343 344To specify additional authenticated data (AAD), a call to EVP_CipherUpdate(), 345EVP_EncryptUpdate() or EVP_DecryptUpdate() should be made with the output 346parameter B<out> set to B<NULL>. 347 348When decrypting, the return value of EVP_DecryptFinal() or EVP_CipherFinal() 349indicates whether the operation was successful. If it does not indicate success, 350the authentication operation has failed and any output data B<MUST NOT> be used 351as it is corrupted. 352 353=head2 GCM and OCB Modes 354 355The following I<ctrl>s are supported in GCM and OCB modes. 356 357=over 4 358 359=item EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_IVLEN, ivlen, NULL) 360 361Sets the IV length. This call can only be made before specifying an IV. If 362not called a default IV length is used. 363 364For GCM AES and OCB AES the default is 12 (i.e. 96 bits). For OCB mode the 365maximum is 15. 366 367=item EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_GET_TAG, taglen, tag) 368 369Writes C<taglen> bytes of the tag value to the buffer indicated by C<tag>. 370This call can only be made when encrypting data and B<after> all data has been 371processed (e.g. after an EVP_EncryptFinal() call). 372 373For OCB, C<taglen> must either be 16 or the value previously set via 374B<EVP_CTRL_AEAD_SET_TAG>. 375 376=item EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, taglen, tag) 377 378Sets the expected tag to C<taglen> bytes from C<tag>. 379The tag length can only be set before specifying an IV. 380C<taglen> must be between 1 and 16 inclusive. 381 382For GCM, this call is only valid when decrypting data. 383 384For OCB, this call is valid when decrypting data to set the expected tag, 385and before encryption to set the desired tag length. 386 387In OCB mode, calling this before encryption with C<tag> set to C<NULL> sets the 388tag length. If this is not called prior to encryption, a default tag length is 389used. 390 391For OCB AES, the default tag length is 16 (i.e. 128 bits). It is also the 392maximum tag length for OCB. 393 394=back 395 396=head2 CCM Mode 397 398The EVP interface for CCM mode is similar to that of the GCM mode but with a 399few additional requirements and different I<ctrl> values. 400 401For CCM mode, the total plaintext or ciphertext length B<MUST> be passed to 402EVP_CipherUpdate(), EVP_EncryptUpdate() or EVP_DecryptUpdate() with the output 403and input parameters (B<in> and B<out>) set to B<NULL> and the length passed in 404the B<inl> parameter. 405 406The following I<ctrl>s are supported in CCM mode. 407 408=over 4 409 410=item EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, taglen, tag) 411 412This call is made to set the expected B<CCM> tag value when decrypting or 413the length of the tag (with the C<tag> parameter set to NULL) when encrypting. 414The tag length is often referred to as B<M>. If not set a default value is 415used (12 for AES). 416 417=item EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_CCM_SET_L, ivlen, NULL) 418 419Sets the CCM B<L> value. If not set a default is used (8 for AES). 420 421=item EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_IVLEN, ivlen, NULL) 422 423Sets the CCM nonce (IV) length. This call can only be made before specifying an 424nonce value. The nonce length is given by B<15 - L> so it is 7 by default for 425AES. 426 427=back 428 429=head2 ChaCha20-Poly1305 430 431The following I<ctrl>s are supported for the ChaCha20-Poly1305 AEAD algorithm. 432 433=over 4 434 435=item EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_IVLEN, ivlen, NULL) 436 437Sets the nonce length. This call can only be made before specifying the nonce. 438If not called a default nonce length of 12 (i.e. 96 bits) is used. The maximum 439nonce length is 16 (B<CHACHA_CTR_SIZE>, i.e. 128-bits). 440 441=item EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_GET_TAG, taglen, tag) 442 443Writes C<taglen> bytes of the tag value to the buffer indicated by C<tag>. 444This call can only be made when encrypting data and B<after> all data has been 445processed (e.g. after an EVP_EncryptFinal() call). 446 447C<taglen> specified here must be 16 (B<POLY1305_BLOCK_SIZE>, i.e. 128-bits) or 448less. 449 450=item EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, taglen, tag) 451 452Sets the expected tag to C<taglen> bytes from C<tag>. 453The tag length can only be set before specifying an IV. 454C<taglen> must be between 1 and 16 (B<POLY1305_BLOCK_SIZE>) inclusive. 455This call is only valid when decrypting data. 456 457=back 458 459=head1 NOTES 460 461Where possible the B<EVP> interface to symmetric ciphers should be used in 462preference to the low level interfaces. This is because the code then becomes 463transparent to the cipher used and much more flexible. Additionally, the 464B<EVP> interface will ensure the use of platform specific cryptographic 465acceleration such as AES-NI (the low level interfaces do not provide the 466guarantee). 467 468PKCS padding works by adding B<n> padding bytes of value B<n> to make the total 469length of the encrypted data a multiple of the block size. Padding is always 470added so if the data is already a multiple of the block size B<n> will equal 471the block size. For example if the block size is 8 and 11 bytes are to be 472encrypted then 5 padding bytes of value 5 will be added. 473 474When decrypting the final block is checked to see if it has the correct form. 475 476Although the decryption operation can produce an error if padding is enabled, 477it is not a strong test that the input data or key is correct. A random block 478has better than 1 in 256 chance of being of the correct format and problems with 479the input data earlier on will not produce a final decrypt error. 480 481If padding is disabled then the decryption operation will always succeed if 482the total amount of data decrypted is a multiple of the block size. 483 484The functions EVP_EncryptInit(), EVP_EncryptFinal(), EVP_DecryptInit(), 485EVP_CipherInit() and EVP_CipherFinal() are obsolete but are retained for 486compatibility with existing code. New code should use EVP_EncryptInit_ex(), 487EVP_EncryptFinal_ex(), EVP_DecryptInit_ex(), EVP_DecryptFinal_ex(), 488EVP_CipherInit_ex() and EVP_CipherFinal_ex() because they can reuse an 489existing context without allocating and freeing it up on each call. 490 491EVP_get_cipherbynid(), and EVP_get_cipherbyobj() are implemented as macros. 492 493=head1 BUGS 494 495B<EVP_MAX_KEY_LENGTH> and B<EVP_MAX_IV_LENGTH> only refer to the internal 496ciphers with default key lengths. If custom ciphers exceed these values the 497results are unpredictable. This is because it has become standard practice to 498define a generic key as a fixed unsigned char array containing 499B<EVP_MAX_KEY_LENGTH> bytes. 500 501The ASN1 code is incomplete (and sometimes inaccurate) it has only been tested 502for certain common S/MIME ciphers (RC2, DES, triple DES) in CBC mode. 503 504=head1 EXAMPLES 505 506Encrypt a string using IDEA: 507 508 int do_crypt(char *outfile) 509 { 510 unsigned char outbuf[1024]; 511 int outlen, tmplen; 512 /* 513 * Bogus key and IV: we'd normally set these from 514 * another source. 515 */ 516 unsigned char key[] = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}; 517 unsigned char iv[] = {1,2,3,4,5,6,7,8}; 518 char intext[] = "Some Crypto Text"; 519 EVP_CIPHER_CTX *ctx; 520 FILE *out; 521 522 ctx = EVP_CIPHER_CTX_new(); 523 EVP_EncryptInit_ex(ctx, EVP_idea_cbc(), NULL, key, iv); 524 525 if (!EVP_EncryptUpdate(ctx, outbuf, &outlen, intext, strlen(intext))) { 526 /* Error */ 527 EVP_CIPHER_CTX_free(ctx); 528 return 0; 529 } 530 /* 531 * Buffer passed to EVP_EncryptFinal() must be after data just 532 * encrypted to avoid overwriting it. 533 */ 534 if (!EVP_EncryptFinal_ex(ctx, outbuf + outlen, &tmplen)) { 535 /* Error */ 536 EVP_CIPHER_CTX_free(ctx); 537 return 0; 538 } 539 outlen += tmplen; 540 EVP_CIPHER_CTX_free(ctx); 541 /* 542 * Need binary mode for fopen because encrypted data is 543 * binary data. Also cannot use strlen() on it because 544 * it won't be NUL terminated and may contain embedded 545 * NULs. 546 */ 547 out = fopen(outfile, "wb"); 548 if (out == NULL) { 549 /* Error */ 550 return 0; 551 } 552 fwrite(outbuf, 1, outlen, out); 553 fclose(out); 554 return 1; 555 } 556 557The ciphertext from the above example can be decrypted using the B<openssl> 558utility with the command line (shown on two lines for clarity): 559 560 openssl idea -d \ 561 -K 000102030405060708090A0B0C0D0E0F -iv 0102030405060708 <filename 562 563General encryption and decryption function example using FILE I/O and AES128 564with a 128-bit key: 565 566 int do_crypt(FILE *in, FILE *out, int do_encrypt) 567 { 568 /* Allow enough space in output buffer for additional block */ 569 unsigned char inbuf[1024], outbuf[1024 + EVP_MAX_BLOCK_LENGTH]; 570 int inlen, outlen; 571 EVP_CIPHER_CTX *ctx; 572 /* 573 * Bogus key and IV: we'd normally set these from 574 * another source. 575 */ 576 unsigned char key[] = "0123456789abcdeF"; 577 unsigned char iv[] = "1234567887654321"; 578 579 /* Don't set key or IV right away; we want to check lengths */ 580 ctx = EVP_CIPHER_CTX_new(); 581 EVP_CipherInit_ex(&ctx, EVP_aes_128_cbc(), NULL, NULL, NULL, 582 do_encrypt); 583 OPENSSL_assert(EVP_CIPHER_CTX_key_length(ctx) == 16); 584 OPENSSL_assert(EVP_CIPHER_CTX_iv_length(ctx) == 16); 585 586 /* Now we can set key and IV */ 587 EVP_CipherInit_ex(ctx, NULL, NULL, key, iv, do_encrypt); 588 589 for (;;) { 590 inlen = fread(inbuf, 1, 1024, in); 591 if (inlen <= 0) 592 break; 593 if (!EVP_CipherUpdate(ctx, outbuf, &outlen, inbuf, inlen)) { 594 /* Error */ 595 EVP_CIPHER_CTX_free(ctx); 596 return 0; 597 } 598 fwrite(outbuf, 1, outlen, out); 599 } 600 if (!EVP_CipherFinal_ex(ctx, outbuf, &outlen)) { 601 /* Error */ 602 EVP_CIPHER_CTX_free(ctx); 603 return 0; 604 } 605 fwrite(outbuf, 1, outlen, out); 606 607 EVP_CIPHER_CTX_free(ctx); 608 return 1; 609 } 610 611 612=head1 SEE ALSO 613 614L<evp(7)> 615 616Supported ciphers are listed in: 617 618L<EVP_aes(3)>, 619L<EVP_aria(3)>, 620L<EVP_bf(3)>, 621L<EVP_camellia(3)>, 622L<EVP_cast5(3)>, 623L<EVP_chacha20(3)>, 624L<EVP_des(3)>, 625L<EVP_desx(3)>, 626L<EVP_idea(3)>, 627L<EVP_rc2(3)>, 628L<EVP_rc4(3)>, 629L<EVP_rc5(3)>, 630L<EVP_seed(3)>, 631L<EVP_sm4(3)> 632 633=head1 HISTORY 634 635Support for OCB mode was added in OpenSSL 1.1.0 636 637B<EVP_CIPHER_CTX> was made opaque in OpenSSL 1.1.0. As a result, 638EVP_CIPHER_CTX_reset() appeared and EVP_CIPHER_CTX_cleanup() 639disappeared. EVP_CIPHER_CTX_init() remains as an alias for 640EVP_CIPHER_CTX_reset(). 641 642=head1 COPYRIGHT 643 644Copyright 2000-2018 The OpenSSL Project Authors. All Rights Reserved. 645 646Licensed under the OpenSSL license (the "License"). You may not use 647this file except in compliance with the License. You can obtain a copy 648in the file LICENSE in the source distribution or at 649L<https://www.openssl.org/source/license.html>. 650 651=cut 652