xref: /freebsd/crypto/openssl/doc/man3/EVP_EncryptInit.pod (revision e2eeea75eb8b6dd50c1298067a0655880d186734)
1=pod
2
3=head1 NAME
4
5EVP_CIPHER_CTX_new,
6EVP_CIPHER_CTX_reset,
7EVP_CIPHER_CTX_free,
8EVP_EncryptInit_ex,
9EVP_EncryptUpdate,
10EVP_EncryptFinal_ex,
11EVP_DecryptInit_ex,
12EVP_DecryptUpdate,
13EVP_DecryptFinal_ex,
14EVP_CipherInit_ex,
15EVP_CipherUpdate,
16EVP_CipherFinal_ex,
17EVP_CIPHER_CTX_set_key_length,
18EVP_CIPHER_CTX_ctrl,
19EVP_EncryptInit,
20EVP_EncryptFinal,
21EVP_DecryptInit,
22EVP_DecryptFinal,
23EVP_CipherInit,
24EVP_CipherFinal,
25EVP_get_cipherbyname,
26EVP_get_cipherbynid,
27EVP_get_cipherbyobj,
28EVP_CIPHER_nid,
29EVP_CIPHER_block_size,
30EVP_CIPHER_key_length,
31EVP_CIPHER_iv_length,
32EVP_CIPHER_flags,
33EVP_CIPHER_mode,
34EVP_CIPHER_type,
35EVP_CIPHER_CTX_cipher,
36EVP_CIPHER_CTX_nid,
37EVP_CIPHER_CTX_block_size,
38EVP_CIPHER_CTX_key_length,
39EVP_CIPHER_CTX_iv_length,
40EVP_CIPHER_CTX_get_app_data,
41EVP_CIPHER_CTX_set_app_data,
42EVP_CIPHER_CTX_type,
43EVP_CIPHER_CTX_flags,
44EVP_CIPHER_CTX_mode,
45EVP_CIPHER_param_to_asn1,
46EVP_CIPHER_asn1_to_param,
47EVP_CIPHER_CTX_set_padding,
48EVP_enc_null
49- EVP cipher routines
50
51=head1 SYNOPSIS
52
53=for comment generic
54
55 #include <openssl/evp.h>
56
57 EVP_CIPHER_CTX *EVP_CIPHER_CTX_new(void);
58 int EVP_CIPHER_CTX_reset(EVP_CIPHER_CTX *ctx);
59 void EVP_CIPHER_CTX_free(EVP_CIPHER_CTX *ctx);
60
61 int EVP_EncryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
62                        ENGINE *impl, const unsigned char *key, const unsigned char *iv);
63 int EVP_EncryptUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out,
64                       int *outl, const unsigned char *in, int inl);
65 int EVP_EncryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl);
66
67 int EVP_DecryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
68                        ENGINE *impl, const unsigned char *key, const unsigned char *iv);
69 int EVP_DecryptUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out,
70                       int *outl, const unsigned char *in, int inl);
71 int EVP_DecryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *outm, int *outl);
72
73 int EVP_CipherInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
74                       ENGINE *impl, const unsigned char *key, const unsigned char *iv, int enc);
75 int EVP_CipherUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out,
76                      int *outl, const unsigned char *in, int inl);
77 int EVP_CipherFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *outm, int *outl);
78
79 int EVP_EncryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
80                     const unsigned char *key, const unsigned char *iv);
81 int EVP_EncryptFinal(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl);
82
83 int EVP_DecryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
84                     const unsigned char *key, const unsigned char *iv);
85 int EVP_DecryptFinal(EVP_CIPHER_CTX *ctx, unsigned char *outm, int *outl);
86
87 int EVP_CipherInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
88                    const unsigned char *key, const unsigned char *iv, int enc);
89 int EVP_CipherFinal(EVP_CIPHER_CTX *ctx, unsigned char *outm, int *outl);
90
91 int EVP_CIPHER_CTX_set_padding(EVP_CIPHER_CTX *x, int padding);
92 int EVP_CIPHER_CTX_set_key_length(EVP_CIPHER_CTX *x, int keylen);
93 int EVP_CIPHER_CTX_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg, void *ptr);
94 int EVP_CIPHER_CTX_rand_key(EVP_CIPHER_CTX *ctx, unsigned char *key);
95
96 const EVP_CIPHER *EVP_get_cipherbyname(const char *name);
97 const EVP_CIPHER *EVP_get_cipherbynid(int nid);
98 const EVP_CIPHER *EVP_get_cipherbyobj(const ASN1_OBJECT *a);
99
100 int EVP_CIPHER_nid(const EVP_CIPHER *e);
101 int EVP_CIPHER_block_size(const EVP_CIPHER *e);
102 int EVP_CIPHER_key_length(const EVP_CIPHER *e);
103 int EVP_CIPHER_iv_length(const EVP_CIPHER *e);
104 unsigned long EVP_CIPHER_flags(const EVP_CIPHER *e);
105 unsigned long EVP_CIPHER_mode(const EVP_CIPHER *e);
106 int EVP_CIPHER_type(const EVP_CIPHER *ctx);
107
108 const EVP_CIPHER *EVP_CIPHER_CTX_cipher(const EVP_CIPHER_CTX *ctx);
109 int EVP_CIPHER_CTX_nid(const EVP_CIPHER_CTX *ctx);
110 int EVP_CIPHER_CTX_block_size(const EVP_CIPHER_CTX *ctx);
111 int EVP_CIPHER_CTX_key_length(const EVP_CIPHER_CTX *ctx);
112 int EVP_CIPHER_CTX_iv_length(const EVP_CIPHER_CTX *ctx);
113 void *EVP_CIPHER_CTX_get_app_data(const EVP_CIPHER_CTX *ctx);
114 void EVP_CIPHER_CTX_set_app_data(const EVP_CIPHER_CTX *ctx, void *data);
115 int EVP_CIPHER_CTX_type(const EVP_CIPHER_CTX *ctx);
116 int EVP_CIPHER_CTX_mode(const EVP_CIPHER_CTX *ctx);
117
118 int EVP_CIPHER_param_to_asn1(EVP_CIPHER_CTX *c, ASN1_TYPE *type);
119 int EVP_CIPHER_asn1_to_param(EVP_CIPHER_CTX *c, ASN1_TYPE *type);
120
121=head1 DESCRIPTION
122
123The EVP cipher routines are a high-level interface to certain
124symmetric ciphers.
125
126EVP_CIPHER_CTX_new() creates a cipher context.
127
128EVP_CIPHER_CTX_free() clears all information from a cipher context
129and free up any allocated memory associate with it, including B<ctx>
130itself. This function should be called after all operations using a
131cipher are complete so sensitive information does not remain in
132memory.
133
134EVP_EncryptInit_ex() sets up cipher context B<ctx> for encryption
135with cipher B<type> from ENGINE B<impl>. B<ctx> must be created
136before calling this function. B<type> is normally supplied
137by a function such as EVP_aes_256_cbc(). If B<impl> is NULL then the
138default implementation is used. B<key> is the symmetric key to use
139and B<iv> is the IV to use (if necessary), the actual number of bytes
140used for the key and IV depends on the cipher. It is possible to set
141all parameters to NULL except B<type> in an initial call and supply
142the remaining parameters in subsequent calls, all of which have B<type>
143set to NULL. This is done when the default cipher parameters are not
144appropriate.
145
146EVP_EncryptUpdate() encrypts B<inl> bytes from the buffer B<in> and
147writes the encrypted version to B<out>. This function can be called
148multiple times to encrypt successive blocks of data. The amount
149of data written depends on the block alignment of the encrypted data.
150For most ciphers and modes, the amount of data written can be anything
151from zero bytes to (inl + cipher_block_size - 1) bytes.
152For wrap cipher modes, the amount of data written can be anything
153from zero bytes to (inl + cipher_block_size) bytes.
154For stream ciphers, the amount of data written can be anything from zero
155bytes to inl bytes.
156Thus, B<out> should contain sufficient room for the operation being performed.
157The actual number of bytes written is placed in B<outl>. It also
158checks if B<in> and B<out> are partially overlapping, and if they are
1590 is returned to indicate failure.
160
161If padding is enabled (the default) then EVP_EncryptFinal_ex() encrypts
162the "final" data, that is any data that remains in a partial block.
163It uses standard block padding (aka PKCS padding) as described in
164the NOTES section, below. The encrypted
165final data is written to B<out> which should have sufficient space for
166one cipher block. The number of bytes written is placed in B<outl>. After
167this function is called the encryption operation is finished and no further
168calls to EVP_EncryptUpdate() should be made.
169
170If padding is disabled then EVP_EncryptFinal_ex() will not encrypt any more
171data and it will return an error if any data remains in a partial block:
172that is if the total data length is not a multiple of the block size.
173
174EVP_DecryptInit_ex(), EVP_DecryptUpdate() and EVP_DecryptFinal_ex() are the
175corresponding decryption operations. EVP_DecryptFinal() will return an
176error code if padding is enabled and the final block is not correctly
177formatted. The parameters and restrictions are identical to the encryption
178operations except that if padding is enabled the decrypted data buffer B<out>
179passed to EVP_DecryptUpdate() should have sufficient room for
180(B<inl> + cipher_block_size) bytes unless the cipher block size is 1 in
181which case B<inl> bytes is sufficient.
182
183EVP_CipherInit_ex(), EVP_CipherUpdate() and EVP_CipherFinal_ex() are
184functions that can be used for decryption or encryption. The operation
185performed depends on the value of the B<enc> parameter. It should be set
186to 1 for encryption, 0 for decryption and -1 to leave the value unchanged
187(the actual value of 'enc' being supplied in a previous call).
188
189EVP_CIPHER_CTX_reset() clears all information from a cipher context
190and free up any allocated memory associate with it, except the B<ctx>
191itself. This function should be called anytime B<ctx> is to be reused
192for another EVP_CipherInit() / EVP_CipherUpdate() / EVP_CipherFinal()
193series of calls.
194
195EVP_EncryptInit(), EVP_DecryptInit() and EVP_CipherInit() behave in a
196similar way to EVP_EncryptInit_ex(), EVP_DecryptInit_ex() and
197EVP_CipherInit_ex() except they always use the default cipher implementation.
198
199EVP_EncryptFinal(), EVP_DecryptFinal() and EVP_CipherFinal() are
200identical to EVP_EncryptFinal_ex(), EVP_DecryptFinal_ex() and
201EVP_CipherFinal_ex(). In previous releases they also cleaned up
202the B<ctx>, but this is no longer done and EVP_CIPHER_CTX_clean()
203must be called to free any context resources.
204
205EVP_get_cipherbyname(), EVP_get_cipherbynid() and EVP_get_cipherbyobj()
206return an EVP_CIPHER structure when passed a cipher name, a NID or an
207ASN1_OBJECT structure.
208
209EVP_CIPHER_nid() and EVP_CIPHER_CTX_nid() return the NID of a cipher when
210passed an B<EVP_CIPHER> or B<EVP_CIPHER_CTX> structure.  The actual NID
211value is an internal value which may not have a corresponding OBJECT
212IDENTIFIER.
213
214EVP_CIPHER_CTX_set_padding() enables or disables padding. This
215function should be called after the context is set up for encryption
216or decryption with EVP_EncryptInit_ex(), EVP_DecryptInit_ex() or
217EVP_CipherInit_ex(). By default encryption operations are padded using
218standard block padding and the padding is checked and removed when
219decrypting. If the B<pad> parameter is zero then no padding is
220performed, the total amount of data encrypted or decrypted must then
221be a multiple of the block size or an error will occur.
222
223EVP_CIPHER_key_length() and EVP_CIPHER_CTX_key_length() return the key
224length of a cipher when passed an B<EVP_CIPHER> or B<EVP_CIPHER_CTX>
225structure. The constant B<EVP_MAX_KEY_LENGTH> is the maximum key length
226for all ciphers. Note: although EVP_CIPHER_key_length() is fixed for a
227given cipher, the value of EVP_CIPHER_CTX_key_length() may be different
228for variable key length ciphers.
229
230EVP_CIPHER_CTX_set_key_length() sets the key length of the cipher ctx.
231If the cipher is a fixed length cipher then attempting to set the key
232length to any value other than the fixed value is an error.
233
234EVP_CIPHER_iv_length() and EVP_CIPHER_CTX_iv_length() return the IV
235length of a cipher when passed an B<EVP_CIPHER> or B<EVP_CIPHER_CTX>.
236It will return zero if the cipher does not use an IV.  The constant
237B<EVP_MAX_IV_LENGTH> is the maximum IV length for all ciphers.
238
239EVP_CIPHER_block_size() and EVP_CIPHER_CTX_block_size() return the block
240size of a cipher when passed an B<EVP_CIPHER> or B<EVP_CIPHER_CTX>
241structure. The constant B<EVP_MAX_BLOCK_LENGTH> is also the maximum block
242length for all ciphers.
243
244EVP_CIPHER_type() and EVP_CIPHER_CTX_type() return the type of the passed
245cipher or context. This "type" is the actual NID of the cipher OBJECT
246IDENTIFIER as such it ignores the cipher parameters and 40 bit RC2 and
247128 bit RC2 have the same NID. If the cipher does not have an object
248identifier or does not have ASN1 support this function will return
249B<NID_undef>.
250
251EVP_CIPHER_CTX_cipher() returns the B<EVP_CIPHER> structure when passed
252an B<EVP_CIPHER_CTX> structure.
253
254EVP_CIPHER_mode() and EVP_CIPHER_CTX_mode() return the block cipher mode:
255EVP_CIPH_ECB_MODE, EVP_CIPH_CBC_MODE, EVP_CIPH_CFB_MODE, EVP_CIPH_OFB_MODE,
256EVP_CIPH_CTR_MODE, EVP_CIPH_GCM_MODE, EVP_CIPH_CCM_MODE, EVP_CIPH_XTS_MODE,
257EVP_CIPH_WRAP_MODE or EVP_CIPH_OCB_MODE. If the cipher is a stream cipher then
258EVP_CIPH_STREAM_CIPHER is returned.
259
260EVP_CIPHER_param_to_asn1() sets the AlgorithmIdentifier "parameter" based
261on the passed cipher. This will typically include any parameters and an
262IV. The cipher IV (if any) must be set when this call is made. This call
263should be made before the cipher is actually "used" (before any
264EVP_EncryptUpdate(), EVP_DecryptUpdate() calls for example). This function
265may fail if the cipher does not have any ASN1 support.
266
267EVP_CIPHER_asn1_to_param() sets the cipher parameters based on an ASN1
268AlgorithmIdentifier "parameter". The precise effect depends on the cipher
269In the case of RC2, for example, it will set the IV and effective key length.
270This function should be called after the base cipher type is set but before
271the key is set. For example EVP_CipherInit() will be called with the IV and
272key set to NULL, EVP_CIPHER_asn1_to_param() will be called and finally
273EVP_CipherInit() again with all parameters except the key set to NULL. It is
274possible for this function to fail if the cipher does not have any ASN1 support
275or the parameters cannot be set (for example the RC2 effective key length
276is not supported.
277
278EVP_CIPHER_CTX_ctrl() allows various cipher specific parameters to be determined
279and set.
280
281EVP_CIPHER_CTX_rand_key() generates a random key of the appropriate length
282based on the cipher context. The EVP_CIPHER can provide its own random key
283generation routine to support keys of a specific form. B<Key> must point to a
284buffer at least as big as the value returned by EVP_CIPHER_CTX_key_length().
285
286=head1 RETURN VALUES
287
288EVP_CIPHER_CTX_new() returns a pointer to a newly created
289B<EVP_CIPHER_CTX> for success and B<NULL> for failure.
290
291EVP_EncryptInit_ex(), EVP_EncryptUpdate() and EVP_EncryptFinal_ex()
292return 1 for success and 0 for failure.
293
294EVP_DecryptInit_ex() and EVP_DecryptUpdate() return 1 for success and 0 for failure.
295EVP_DecryptFinal_ex() returns 0 if the decrypt failed or 1 for success.
296
297EVP_CipherInit_ex() and EVP_CipherUpdate() return 1 for success and 0 for failure.
298EVP_CipherFinal_ex() returns 0 for a decryption failure or 1 for success.
299
300EVP_CIPHER_CTX_reset() returns 1 for success and 0 for failure.
301
302EVP_get_cipherbyname(), EVP_get_cipherbynid() and EVP_get_cipherbyobj()
303return an B<EVP_CIPHER> structure or NULL on error.
304
305EVP_CIPHER_nid() and EVP_CIPHER_CTX_nid() return a NID.
306
307EVP_CIPHER_block_size() and EVP_CIPHER_CTX_block_size() return the block
308size.
309
310EVP_CIPHER_key_length() and EVP_CIPHER_CTX_key_length() return the key
311length.
312
313EVP_CIPHER_CTX_set_padding() always returns 1.
314
315EVP_CIPHER_iv_length() and EVP_CIPHER_CTX_iv_length() return the IV
316length or zero if the cipher does not use an IV.
317
318EVP_CIPHER_type() and EVP_CIPHER_CTX_type() return the NID of the cipher's
319OBJECT IDENTIFIER or NID_undef if it has no defined OBJECT IDENTIFIER.
320
321EVP_CIPHER_CTX_cipher() returns an B<EVP_CIPHER> structure.
322
323EVP_CIPHER_param_to_asn1() and EVP_CIPHER_asn1_to_param() return greater
324than zero for success and zero or a negative number on failure.
325
326EVP_CIPHER_CTX_rand_key() returns 1 for success.
327
328=head1 CIPHER LISTING
329
330All algorithms have a fixed key length unless otherwise stated.
331
332Refer to L<SEE ALSO> for the full list of ciphers available through the EVP
333interface.
334
335=over 4
336
337=item EVP_enc_null()
338
339Null cipher: does nothing.
340
341=back
342
343=head1 AEAD Interface
344
345The EVP interface for Authenticated Encryption with Associated Data (AEAD)
346modes are subtly altered and several additional I<ctrl> operations are supported
347depending on the mode specified.
348
349To specify additional authenticated data (AAD), a call to EVP_CipherUpdate(),
350EVP_EncryptUpdate() or EVP_DecryptUpdate() should be made with the output
351parameter B<out> set to B<NULL>.
352
353When decrypting, the return value of EVP_DecryptFinal() or EVP_CipherFinal()
354indicates whether the operation was successful. If it does not indicate success,
355the authentication operation has failed and any output data B<MUST NOT> be used
356as it is corrupted.
357
358=head2 GCM and OCB Modes
359
360The following I<ctrl>s are supported in GCM and OCB modes.
361
362=over 4
363
364=item EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_IVLEN, ivlen, NULL)
365
366Sets the IV length. This call can only be made before specifying an IV. If
367not called a default IV length is used.
368
369For GCM AES and OCB AES the default is 12 (i.e. 96 bits). For OCB mode the
370maximum is 15.
371
372=item EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_GET_TAG, taglen, tag)
373
374Writes C<taglen> bytes of the tag value to the buffer indicated by C<tag>.
375This call can only be made when encrypting data and B<after> all data has been
376processed (e.g. after an EVP_EncryptFinal() call).
377
378For OCB, C<taglen> must either be 16 or the value previously set via
379B<EVP_CTRL_AEAD_SET_TAG>.
380
381=item EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, taglen, tag)
382
383Sets the expected tag to C<taglen> bytes from C<tag>.
384The tag length can only be set before specifying an IV.
385C<taglen> must be between 1 and 16 inclusive.
386
387For GCM, this call is only valid when decrypting data.
388
389For OCB, this call is valid when decrypting data to set the expected tag,
390and before encryption to set the desired tag length.
391
392In OCB mode, calling this before encryption with C<tag> set to C<NULL> sets the
393tag length.  If this is not called prior to encryption, a default tag length is
394used.
395
396For OCB AES, the default tag length is 16 (i.e. 128 bits).  It is also the
397maximum tag length for OCB.
398
399=back
400
401=head2 CCM Mode
402
403The EVP interface for CCM mode is similar to that of the GCM mode but with a
404few additional requirements and different I<ctrl> values.
405
406For CCM mode, the total plaintext or ciphertext length B<MUST> be passed to
407EVP_CipherUpdate(), EVP_EncryptUpdate() or EVP_DecryptUpdate() with the output
408and input parameters (B<in> and B<out>) set to B<NULL> and the length passed in
409the B<inl> parameter.
410
411The following I<ctrl>s are supported in CCM mode.
412
413=over 4
414
415=item EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, taglen, tag)
416
417This call is made to set the expected B<CCM> tag value when decrypting or
418the length of the tag (with the C<tag> parameter set to NULL) when encrypting.
419The tag length is often referred to as B<M>. If not set a default value is
420used (12 for AES). When decrypting, the tag needs to be set before passing
421in data to be decrypted, but as in GCM and OCB mode, it can be set after
422passing additional authenticated data (see L<AEAD Interface>).
423
424=item EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_CCM_SET_L, ivlen, NULL)
425
426Sets the CCM B<L> value. If not set a default is used (8 for AES).
427
428=item EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_IVLEN, ivlen, NULL)
429
430Sets the CCM nonce (IV) length. This call can only be made before specifying
431a nonce value. The nonce length is given by B<15 - L> so it is 7 by default for
432AES.
433
434=back
435
436=head2 ChaCha20-Poly1305
437
438The following I<ctrl>s are supported for the ChaCha20-Poly1305 AEAD algorithm.
439
440=over 4
441
442=item EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_IVLEN, ivlen, NULL)
443
444Sets the nonce length. This call can only be made before specifying the nonce.
445If not called a default nonce length of 12 (i.e. 96 bits) is used. The maximum
446nonce length is 12 bytes (i.e. 96-bits). If a nonce of less than 12 bytes is set
447then the nonce is automatically padded with leading 0 bytes to make it 12 bytes
448in length.
449
450=item EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_GET_TAG, taglen, tag)
451
452Writes C<taglen> bytes of the tag value to the buffer indicated by C<tag>.
453This call can only be made when encrypting data and B<after> all data has been
454processed (e.g. after an EVP_EncryptFinal() call).
455
456C<taglen> specified here must be 16 (B<POLY1305_BLOCK_SIZE>, i.e. 128-bits) or
457less.
458
459=item EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, taglen, tag)
460
461Sets the expected tag to C<taglen> bytes from C<tag>.
462The tag length can only be set before specifying an IV.
463C<taglen> must be between 1 and 16 (B<POLY1305_BLOCK_SIZE>) inclusive.
464This call is only valid when decrypting data.
465
466=back
467
468=head1 NOTES
469
470Where possible the B<EVP> interface to symmetric ciphers should be used in
471preference to the low-level interfaces. This is because the code then becomes
472transparent to the cipher used and much more flexible. Additionally, the
473B<EVP> interface will ensure the use of platform specific cryptographic
474acceleration such as AES-NI (the low-level interfaces do not provide the
475guarantee).
476
477PKCS padding works by adding B<n> padding bytes of value B<n> to make the total
478length of the encrypted data a multiple of the block size. Padding is always
479added so if the data is already a multiple of the block size B<n> will equal
480the block size. For example if the block size is 8 and 11 bytes are to be
481encrypted then 5 padding bytes of value 5 will be added.
482
483When decrypting the final block is checked to see if it has the correct form.
484
485Although the decryption operation can produce an error if padding is enabled,
486it is not a strong test that the input data or key is correct. A random block
487has better than 1 in 256 chance of being of the correct format and problems with
488the input data earlier on will not produce a final decrypt error.
489
490If padding is disabled then the decryption operation will always succeed if
491the total amount of data decrypted is a multiple of the block size.
492
493The functions EVP_EncryptInit(), EVP_EncryptFinal(), EVP_DecryptInit(),
494EVP_CipherInit() and EVP_CipherFinal() are obsolete but are retained for
495compatibility with existing code. New code should use EVP_EncryptInit_ex(),
496EVP_EncryptFinal_ex(), EVP_DecryptInit_ex(), EVP_DecryptFinal_ex(),
497EVP_CipherInit_ex() and EVP_CipherFinal_ex() because they can reuse an
498existing context without allocating and freeing it up on each call.
499
500There are some differences between functions EVP_CipherInit() and
501EVP_CipherInit_ex(), significant in some circumstances. EVP_CipherInit() fills
502the passed context object with zeros.  As a consequence, EVP_CipherInit() does
503not allow step-by-step initialization of the ctx when the I<key> and I<iv> are
504passed in separate calls. It also means that the flags set for the CTX are
505removed, and it is especially important for the
506B<EVP_CIPHER_CTX_FLAG_WRAP_ALLOW> flag treated specially in
507EVP_CipherInit_ex().
508
509EVP_get_cipherbynid(), and EVP_get_cipherbyobj() are implemented as macros.
510
511=head1 BUGS
512
513B<EVP_MAX_KEY_LENGTH> and B<EVP_MAX_IV_LENGTH> only refer to the internal
514ciphers with default key lengths. If custom ciphers exceed these values the
515results are unpredictable. This is because it has become standard practice to
516define a generic key as a fixed unsigned char array containing
517B<EVP_MAX_KEY_LENGTH> bytes.
518
519The ASN1 code is incomplete (and sometimes inaccurate) it has only been tested
520for certain common S/MIME ciphers (RC2, DES, triple DES) in CBC mode.
521
522=head1 EXAMPLES
523
524Encrypt a string using IDEA:
525
526 int do_crypt(char *outfile)
527 {
528     unsigned char outbuf[1024];
529     int outlen, tmplen;
530     /*
531      * Bogus key and IV: we'd normally set these from
532      * another source.
533      */
534     unsigned char key[] = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};
535     unsigned char iv[] = {1,2,3,4,5,6,7,8};
536     char intext[] = "Some Crypto Text";
537     EVP_CIPHER_CTX *ctx;
538     FILE *out;
539
540     ctx = EVP_CIPHER_CTX_new();
541     EVP_EncryptInit_ex(ctx, EVP_idea_cbc(), NULL, key, iv);
542
543     if (!EVP_EncryptUpdate(ctx, outbuf, &outlen, intext, strlen(intext))) {
544         /* Error */
545         EVP_CIPHER_CTX_free(ctx);
546         return 0;
547     }
548     /*
549      * Buffer passed to EVP_EncryptFinal() must be after data just
550      * encrypted to avoid overwriting it.
551      */
552     if (!EVP_EncryptFinal_ex(ctx, outbuf + outlen, &tmplen)) {
553         /* Error */
554         EVP_CIPHER_CTX_free(ctx);
555         return 0;
556     }
557     outlen += tmplen;
558     EVP_CIPHER_CTX_free(ctx);
559     /*
560      * Need binary mode for fopen because encrypted data is
561      * binary data. Also cannot use strlen() on it because
562      * it won't be NUL terminated and may contain embedded
563      * NULs.
564      */
565     out = fopen(outfile, "wb");
566     if (out == NULL) {
567         /* Error */
568         return 0;
569     }
570     fwrite(outbuf, 1, outlen, out);
571     fclose(out);
572     return 1;
573 }
574
575The ciphertext from the above example can be decrypted using the B<openssl>
576utility with the command line (shown on two lines for clarity):
577
578 openssl idea -d \
579     -K 000102030405060708090A0B0C0D0E0F -iv 0102030405060708 <filename
580
581General encryption and decryption function example using FILE I/O and AES128
582with a 128-bit key:
583
584 int do_crypt(FILE *in, FILE *out, int do_encrypt)
585 {
586     /* Allow enough space in output buffer for additional block */
587     unsigned char inbuf[1024], outbuf[1024 + EVP_MAX_BLOCK_LENGTH];
588     int inlen, outlen;
589     EVP_CIPHER_CTX *ctx;
590     /*
591      * Bogus key and IV: we'd normally set these from
592      * another source.
593      */
594     unsigned char key[] = "0123456789abcdeF";
595     unsigned char iv[] = "1234567887654321";
596
597     /* Don't set key or IV right away; we want to check lengths */
598     ctx = EVP_CIPHER_CTX_new();
599     EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, NULL, NULL,
600                       do_encrypt);
601     OPENSSL_assert(EVP_CIPHER_CTX_key_length(ctx) == 16);
602     OPENSSL_assert(EVP_CIPHER_CTX_iv_length(ctx) == 16);
603
604     /* Now we can set key and IV */
605     EVP_CipherInit_ex(ctx, NULL, NULL, key, iv, do_encrypt);
606
607     for (;;) {
608         inlen = fread(inbuf, 1, 1024, in);
609         if (inlen <= 0)
610             break;
611         if (!EVP_CipherUpdate(ctx, outbuf, &outlen, inbuf, inlen)) {
612             /* Error */
613             EVP_CIPHER_CTX_free(ctx);
614             return 0;
615         }
616         fwrite(outbuf, 1, outlen, out);
617     }
618     if (!EVP_CipherFinal_ex(ctx, outbuf, &outlen)) {
619         /* Error */
620         EVP_CIPHER_CTX_free(ctx);
621         return 0;
622     }
623     fwrite(outbuf, 1, outlen, out);
624
625     EVP_CIPHER_CTX_free(ctx);
626     return 1;
627 }
628
629
630=head1 SEE ALSO
631
632L<evp(7)>
633
634Supported ciphers are listed in:
635
636L<EVP_aes(3)>,
637L<EVP_aria(3)>,
638L<EVP_bf(3)>,
639L<EVP_camellia(3)>,
640L<EVP_cast5(3)>,
641L<EVP_chacha20(3)>,
642L<EVP_des(3)>,
643L<EVP_desx(3)>,
644L<EVP_idea(3)>,
645L<EVP_rc2(3)>,
646L<EVP_rc4(3)>,
647L<EVP_rc5(3)>,
648L<EVP_seed(3)>,
649L<EVP_sm4(3)>
650
651=head1 HISTORY
652
653Support for OCB mode was added in OpenSSL 1.1.0.
654
655B<EVP_CIPHER_CTX> was made opaque in OpenSSL 1.1.0.  As a result,
656EVP_CIPHER_CTX_reset() appeared and EVP_CIPHER_CTX_cleanup()
657disappeared.  EVP_CIPHER_CTX_init() remains as an alias for
658EVP_CIPHER_CTX_reset().
659
660=head1 COPYRIGHT
661
662Copyright 2000-2020 The OpenSSL Project Authors. All Rights Reserved.
663
664Licensed under the OpenSSL license (the "License").  You may not use
665this file except in compliance with the License.  You can obtain a copy
666in the file LICENSE in the source distribution or at
667L<https://www.openssl.org/source/license.html>.
668
669=cut
670